
Mathematical Programming 1 (1971) 76-94. North-Holland Publishing Company

EXPERIMENTS IN MIXED-INTEGER
LINEAR PROGRAMMING *

M. BENICHOU, J.M. GAUTHIER, P. GIRODET, G. HENTGES
G. RIBIERE and O. VINCENT

IBM, France, Paris

Received 9 November 1970
Revised manuscript received 12 February 1971

This paper presents a "branch and bound" method for solving mixed integer linear pro-
gramming problems. After briefly discussing the bases of the method, new concepts called
pseudo-costs and estimations are introduced. Then, the heuristic rules for generating the tree,
which are the main features of the method, are presented. Numerous parameters allow the user
for adjusting the search strategy to a given problem.

This method has been implemented in the IBM Extended Mathematical Programming
System in order to solve large mixed integer L.P. problems. Numerical results making com-
parisons between different choices of rules are provided and discussed.

1. Introduction

This paper presents a "branch and bound" method for solving mixed
integer linear programming problems. After briefly discussing the bases
of the method, new concepts called pseudo-costs and estimations are
introduced. Then, the heuristic rules for generating the tree, which are
the main features of the method, are presented. Numerous parameters
allow the user to adjust the search strategy for a given problem.

This method has been implemented in the IBM Extended Mathemat-
ical Programming System in order to solve large mixed integer L. P.
problems. An early version of this method, not including all the features
described here, has been adapted in a code presently available in all
IBM World Trade Data Centers. Numerical results making comparisons
between different choices of rules are provided and discussed.

* This paper was presented at the 7th Mathematical Programming Symposium The Hague,
The Netherlands.

Experiments in mixed-integer linear programming 77

2. "Branch and bound" method

2.1. Problem Statement
Any mixed integer linear program can be writ ten in the following

way:
Let X and Y denote two column vectors the components of which

are x i, i = 1 to p and yp] = 1 to q respectively. The two rectangular
matrices A and B are of the order (m, p) and (m, q) respectively. Then
the problem is"

Problem M

m i n F : A ~ X + B T y (2.1)

under the constraints

A X + B Y = D (2.2)

a/~< y/~</3j (2.3)

yj integer f = 1 to q. (2.4)

0 <~ x i i = 1 to p. (2.5)

The x i are the continuous variables, whereas the Yi are the integer
variables. The bounds over the yj must be finite, but can be, either
positive o f negative. The problem, obtained when removing the
integrality condition (2.4), is called t he continuous problem C.

An integer solution of M or C is a set of values for the x i and t h e y /
,.satisfying (2.2)' to (2.5). An optimal integer solution is an integer
solution minimizing F (in this paper, minimization will always be
assumed).

2.2. Stages o f the Method
The method involves two stages:
- First an optimal continuous solution of C is searched for by means

of the usual linear programming methods. If this solution is integer,
problem M is solved. Assume this is not the case.

Then, an ordered sequence of continuous linear programming

78 M. Benichou e t al.

problems C k called sub-problems is built and an optimal solution is
calculated for each of them.

A sub-problem C k differs from C by the bound constraints (2.3)
which are made more restrictive. Two sub-problems differ at least by
one bound constraint over one Yl"

It is convenient to represent this sequence of Cg by a tree composed
of nodes connected by directed branches.

To each node of the tree are attached
- a con t inuous sub-prob lem, designated by its order number k
- an op t ima l so lu t ion of this sub-problem
- the objec t ive f u n c t i o n value F k of this solution called f u n c t i o n a l

value of node k.

Note that:
- The continuous problem C is sub-problem 1, attached to node 1

which is the root of the tree.
- A node cannot be defined by an infeasible sub-problem.

- Node k is integer if its corresponding optimal solution is an integer
solution of sub-problem C k (thus it also is an integer solution of M).

2.3. Tree generat ion - Branching process

As it will appear later, any non-integer node can generate 0, 1, or 2
new nodes called its successors.

Assuming that n nodes have already been created, we shall call
Waiting Se t W n the set of all the non-integer nodes, also called waiting
nodes, which have not ye t been used to generate successors. At the
beginning of the search, this set will contain only node 1. Let us choose
a wai t ing node k among the waiting set W n . The branching process
applied to node k, called branching node , consists of:

- Choosing an integer variable Yb called branching variable, which
has a non-integer value 7~ in the optimal solution of sub-problem C k . It
can be writ ten

where

0 < fb ~ < 1, and [fib k] is integer.

- Defining two new sub-problems C n + 1 and C + 2, which differ from

Experiments in mixed-integer linear programming 79

sub-problem C k only by the permitted range on the branching variable
Yb" The bound constraints

-<yb -< for c k,

are replaced by

ab g ~< Yb ~< [Y-b k] for one sub-problem,

[y~] + 1 ~< Yb ~< ~k for t he other one.

-Optimizing Cn+ 1 and Cn+ 2 leads to one of the following events
for each sub-problem:

(a) sub-problem infeasible, so that no node is created; the corre-
sponding branch is called infeasible branch.

(b) sub-problem feasible and its optimal solution is integer;node
(n + 1 or n + 2) is integer and will never have a successor.

(c) sub-problem feasible with a non-integer optimal solution; node
(n + 1 or n + 2) is created and taken into the waiting set.

Then, the process continues b y choosing another branching node
from the waiting set and by applying to it the branching process, and
so on. As the integer variables are given finite lower and upper bounds,
the generated tree is finite and so is the process. Furthermore, for a
given problem, the generated tree is not unique if the choice of the
branching variable at a branching node is not unique.

The search is over when the waiting set is empty. At this time each
terminal branch is either infeasible or points to an integer node. The
best integer solution(s) obtained is (are) optimal. If no integer solution
has been obtained, the problem M is unfeasible.

As in most cases this process, although finite, may be time consum-
ing, at tempts are made to limit the search. This is the search limiting
process.

2.4. Search limiting process
Its aim is to eliminate forever or provisionally the waiting nodes t h a t

are likely not to lead to the desired results. We shall call node n
descendant of node k if it is either its successor or a descendant 's
successor. From the previous description of the tree generation, a node
n, descendant of node k, is defined on a sub-domain attached to node k

80 M. Beniehou et al.

(the activity ranges on the integer variables are more restrictive) so that
we have F n ~> F k.

This remark implies the two following properties:
- Assuming integer solutions can be obtained at descendants of node

k, Fx is a lower bound of the functional value of the best one.
- The value

Gn = min F i, i e W n

is a lower bound of the best integer solution which can still be expected
from the current waiting nodes.

2.5. Dropping nodes
A parameter F ~ is provided so that all waiting nodes having a func-

tional value worse than Foo are abandoned forever. This results in a
new definition of the waiting set W n

W.' = {k e W~ IF k -.< F ~ }.

The value Foo can be used in several different ways such as:
(1) At the beginning of the search, the user is not interested in integer

solutions worse than a specified value.
(2) After one or several integer solutions have been found, the user

is not interested in new integer solutions worse than the previous ones
(this is the case when only an optimal integer solution is searched for.
Parameter Foo is then set to the functional value of the best one ob-
tained up to now).

(3) The dropping value Foo can also be used to abandon a sub-
problem optimization before it is completed if it is proved that the
corresponding node would have a functional value worse than Foo.

2.6. Postponing the processing o f nodes
Another possibility of limiting the tree scanning is to postpone the

processing of some waiting nodes. A parameter 3' is defined which has
the following effect: a waiting node k is provisionally abandoned if
F k > 7. From this definition, a branching node is now selected from a
sub-set of the waiting set called the candidate set Pn"

F n = {ke WnlF k <<, 7} .

Experiments in mixed-integer linear programming 81

Parameter 3' allows for eliminating provisionally the nodes which are
expected to be dropped later or have no interest for the moment but
may have one perhaps later. Parameter 7 can be used to speed up the
search for an optimal integer solution

After the basic method has been introduced, new concepts have now
to be presented to define the rules for choosing the branching node and
the branching variable, which are the originality of the method.

3. Pseudo-costs and estimations

3.1. Pseudo-costs
The concept of pseudo-cost is introduced to measure in a quantitative

way the "importance" of the different integer variables and to forecast
the deterioration of the functional value when forcing an integer vari-
able from a non integer to an integer value. Their justification and their
use are based only on experimental results.

Two quantities are attached to each integer variable Yi; they are called
lower (PCL) and upper (PCUj) pseudo-costs. At the beginning of the
search, pseudo-costs are generally not known; they are automatically
computed during tree scanning as follows:

Let us consider the branching process applied at branching node k
to branching variable Yb" It can be illustrated in the figure below:

Permitted range: ab k ~< Yb ~< flb k

Current value: Y~ = [Yb k] + f~

k

n+l n+2

Permitted range: akb ~< Yb ~ [Yb k]

Current value: [Yb k] [yb g] + 1 .

82 M. Benichou et al.

Pseudo-costs of integer variable Yb a re defined as follows:

PCI_ =
f i n + 1 -- f fk

P C U b =
f i n + 2 -- f k

1

• These pseudo-costs appear to be the deterioration of the functional
value per unit of change of Yb one corresponding to a decrease and the
other to an increase of Yb. Values of pseudo-costs o f y b depend on the
node where they are computed.

Nevertheless, experiments performed using real mixed integer pro-
blems showed that if pseudo-costs of an integer variable are computed
at each tree node where it has a non-integer activity, these pseudo-costs
havethe same order of magnitude except perhaps at a few nodes. There-
fore, ' in our method, pseudo-costs of an integer variable are assumed to
be constant.

3.2. Estimations
Using pseudo-costs and values of the integer variables at waiting

node k, the functional value of the best integer solution which can be
expected at a descendant of node k can be estimated by the following
computation:

q
Rk =-Pk + ~ min (PCLjf~, PCUy (1 - f ~)) .

j=l

This formula assume the pseudo-cost stability and some kind of
independence between integer variables. E k is called the estimation
of node k.

The estimation of a waiting node is computed when this node is
reached. However, if several pseudo-costs were missing (this is true at
the beginning of the search), the estimations would be of poor accuracy.
Therefore, an optional means is provided to compute missing pseudo-
costs at each node if more accurate estimations are desired.

The considerations of pseudo-cost and estimation has led to heuristic
rules yielding a method which has appeared to be efficient in the
problems we have met.

Experiments in mixed-integer linear programming 83

4 . H e u r i s t i c r u l e s

In this method the most important rules appear to be the choices of
the branching node and of the branching variable. Since it does not
seem that theory can decide what the best rules are, experiments have
been made with different choices. The program offers a set o f rules
among which the user can choose. Comparisons between these rules are
given in section 7 of this paper.

4.1. Choice of the branching node
Let us assume that a branching process is performed at branching

node k, so that two new nodes n + 1 and n + 2 are created. The imple-
mentat ion has been made to have at Qur disposal all elements related
to these two nodes (for example their basis and their corresponding
inverse). This is not true for the other waiting nodes. Thus, if one of
these two nodes appears to belong to the candidate set, it is convenient
to choose it as next branching node. Furthermore, this choice often
quickly provides an integer solution, because in such a way the degree
of freedom of integer variables decreases monotonously . The functional
value of the so obtained integer solution can then be used to drop
waiting nodes.

Hence, the first rule governing the choice of the branching node is:
If the last branching process has produced only one candidate node,
this node is chosen as next branching node.

If two candidates have been obtained, one of them is chosen to be
the next branching node according to one of the following criteria:

- choose the node having the best estimation
- choose the node having the best functional value
- choose the node for which the current pseudo-cost of the branch-

ing variable at node k is the smaller one.
If the last branching process does not generate any candidate, we

have t o find one in the candidate set. So that we have the second rule:
- choose the node with the best estimation
- choose the last node created
- c h o o s e the last one created until the first integer solution is

obtained, then the one having the best estimation.

4.2. Choice of the branching variable
Quasi-integer variables
An integer variable y/ is called quasi-integer at node k if its value is

84 M. Benichou et al.

not integer and differs by less than v from an integer value (v is generally
set to a small positive value, 0.1 for instance).

The choice of the branching variable results from the combination of
two distinct rules, one concerning the quasi-integrity of a variable, the
other concerning the definition of a priority order.

The branching variable is selected first among integer variables with
non quasiqnteger values. If there are no such variables, the solution is
called quasi-integer, and the branching variable is chosen among quasi-
integer variables. This is generally justified, for quasi-integer variables
often take integer activities when forcing other integer variables to
integer values; so it is not worthwhile to deal with them first.

Priority order
This priority order may be static or dynamic. In the first type, a

fixed priority order is given to the integer variables and the branching
variable is the first in the list which does not have an integer value. This
order can be

- The one provided by the user which should take into account the
importance of integer variables i n his model, the most important ones
being processed first. We will see later that the importance of an integer
variable can be measured by the functional value deterioration it entails
when forcing it to an integer activity.

- The decreasing order of their absolute cost values in the objective
function.

The second type of choice (dynamic priority order) relies on pseudo-
costs. The branching variable is the integer variable meeting the follow-
ing criterion:

max (min (PCLj.ff, PCUj-(1 - f f)) .
i

(4.1)

This choice is intended to get the greatest expected deterioration of the
functional. The aim could be to violate as fast as possible the upper
bound Foo, if it exists.

4.3. Candidature rules
We have already defined the candidate set in § 2.6 by a limitation

over the functional value of the waiting nodes. This limitation ~, can be

Experiments in mixed-integer linear programming 85

defined with regards to the bounds Gn and Foo limiting the waiting set
W n . Let 61 and 8 2 be two positive numbers; we use the definition

m

7 = m i n (Gn + 81 ,F , , o - 6 2) .

Best waiting
node Waiting set

8 1

Candidate set

62

Postponed waiting nodes Dropped nodes

G n q' F~ +~

Direction of optimization (minimization)

The interest of the 2 parameters 81 and 3 2 lies in preventing the
search from deeply scanning the tree by not producing nodes which
are likely to be dropped when an integer solution will be found.
Whereas the first one 81 can be mainly used for speeding up the search
for an optimal integer solution, the second one 8 2 is important to con-
trol the search in order to explore the set of integer solutions according
to the user's needs.

Another candidature rule intends to reduce the candidate set with
the help of estimations. A parameter E'oo can be set, which has the
following effect:

A node k the estimation Of which, E k, is worse than Eo. is provi-
sionally abandoned and cannot be chosen as branching node. Thus, we
can now write a full definition of the candidate set P .

n

86 M. Benichou et al.

Parameter Zv~ can be used to speed up the search for an optimal
integer solution or to give a good presumption that an optimal integer
solution has been obtained without continuing the search until opti-
mality is strictly proved.

4.4. Stopping rules
Their purpose is to provisionally stop the optimization of a sub-

problem before its end when it is expected that the node defined by
this sub-problem is likely to be dropped when reached. When the
stopping rules are satisfied, the optimization is stopped and a pre-node
is created to which is attached the sub-problem being optimized. The
optimization can be later resumed, if required. Then, the pre-node is
put into the waiting set W n.

One stopping rule has been tested. When node k is quasi-integer
(see definition in § 4.2), it is likely that the best expected integer
solution will be obtained by rounding the current values of the integer
variables at node k to the nearest integers. Thus, if branching node k is
quasi-integer, the sub-problem (assume it is Cn+ 1) in which a quasi-
integer variable is forced to the nearest integer value is optimized first ~.
Then, the opt'lmization of the other sub-problem will be stopped if it is
proved that the functional value of the node to be reached would
exceed:

Fk + 2k(G+l - Fk)

where k is the number of quasi-integer variables.

5. Optimization process

When applying the branching process to node k, i.e., when creating
and solving the two new sub-problems Cn+ 1 and C n + 2, the following
questions arise.

First, knowing an optimal solution of the continuous sub-problem
C k, how to calculate the optimal solutions of Cn+ 1 and Cn+ 2 respec-
tively; then, how to handle the inverse of the basis in order to minimize
the number of required inversions. Now, we shall see how we manage to
solve these questions.

Experiments in mixed-integer linear programming 87

5.1. Optimization o f a sub-problem
Let us consider a branching node k and the branching variable Yb the

value of which is ~-b k in the optimal solution of C x . In that sub-problem,
the bounds of Yb are: c% k ~< Yb <~ /3b k" Let us assume that we have to
optimize sub-problem Cn+ 1 which differs from sub-problem C x only
by a restricted activity range for variable Yb, which we shall suppose to
be:

-< yb -< [y l
An obvious way to solve C n + 1 would be to impose the new upper

bound and to solve the sub-problem by means of the simplex dual
algorithm. However, we have chosen another method the convenience
of which will be explained later on.

We rather parameterize the upper bound of the variable Yb and
consider the parametric problem derived from C x by replacing its
previous upper bounds ~k b by

Parameter 0 will vary from 0 to 1.

Computational remark

However, since the parameterization with respect to a bound is not
a procedure available now in MPSX, we replace the above parametric
problem by one in which only the right hand side is a linear function of
O. This is done through an adequate change of variable that will not
be described here.

Fn +1

~k

Fig. 5.1.

88 M. Benichou e t al.

It is known that, as the parameterization proceeds, the functional
value becomes worse and behaves like a convex, piece wise linear,
function of parameter 0 (see fig. 5.1). At each iteration there generally
is a discontinuity in the slope of F(O). After an iteration has been
performed, it is possible to extrapolate the function F with the current
slope, to get a lower bound of F n + 1, as shown in the figure. This fact is
used to either definitely or provisionally abandon the optimization if
this lower bound exceeds the dropping value F ~ or the stopping value
respectively.

5.2. Inverse of the basis
In MPSX, the inverse of the basis is expanded in the product from,

so that it is composed of an ordered set of elementary vectors. Let us
again consider the branching node k, eventually issuing two new nodes,
n + 1 and n + 2. In order to start the optimization of sub-problems
Cn + 1 and C n + 2, the basis of node k and its corresponding inverse are
required.

Before beginning any optimization, the basis of node k is saved and
a first pointer indicates the position of the last elementary vector of the
current inverse. Then a parameterization is performed to optimize first
Cn+ 1 , for instance. When the optimization is completed, the current
basis and all elementary vectors created during the parameterization are
saved, and a second pointer indicates the position of the last created
vector. Then it is generally possible to begin the optimization of Cn+ 2
by restoring the basis of node k and by retrieving its inverse with the
first pointer.

As it was shown in § 4.1, at the end of the second parameterization,
we shall try to choose node n + 2 or node n + 1 as next branching node.
If node n + 2 is the candidate we can continue with the current basis.
On the contrary, if node n + 1 is the candidate, its basis can generally
be restored and the corresponding inverse be retrieved with the second
pointer, and the saved elementary vectors.

6. Some features of the computer program

All particularities of the method described above have been imple-
mented in a module, called MIP, of the IBM Extended Mathematical
Programming System (MPSX).

Experiments in mixed-integer linear programming 89

This code can theoretically solve mixed integer problems with up to
16383 rows, not including the bound constraints, and 4095 integer
variables. Practically, the size limitation is imposed by the running time.

It is possible to use the program either in a very easy manner or in a
more sophisticated one which allows for stopping and resuming the
search as well as for defining a search strategy. Furthermore, the
parameters of the search limiting process enable the user to explore the
set of integer solutions according to his needs.

At last, the user can obtain extensive surveys of the search and per-
form post optimal studies on the integer solutions found, the integer
variables being fixed. Large models (both in number of constraints and
number of integer variables) have been successfully solved with this
program.

7. Numerical results

7.1. Global results
First, two tables (fig. 7.1a and 7.1b) give some results concerning

solution of several real-life mixed integer problems together with their
characteristics. All problems were solved with the standard strategy,-
the rules o f which are:

- The integer variables are processed in the decreasing order of their
absolute cost values in the objective function (and in the matrix order
when absolute cost values are equal).

- T h e branching node is the one having the best estimation either
among the last two candidate nodes just created, if any, or among all
nodes belonging to the candidate set.

- The missing pseudo-costs are not computed.
- The tolerance for quasi-integer variable is p = 0.1.
- P a r a m e t e r s F ~ and 3~ are set during the search to the functional

value of the best integer solution found so far.
For all problems, the mixed stage starts from an optimal continuous

solution and ends with an optimal integer solution and the proof of its
optimality.

From this problem set, 5 problems have been taken (i.e., 1, 8, 5, 6, 9)
in order to compare different strategies and to emphasize the interest of
certain choices.

The comparison will be made with both the number of iterations and
the number of nodes because these figures do not depend on the corn-

90 M. Benichou et al.

Fig. 7.1a
Numerical results

No. Number Number Number Number Mixed 360 Problem
of con- of of of s t a g e computer origin
straints variables non-zero integer CPU

elements variables time
(min)

1
2
3
4
5
6
7
8
9

10

38 34 394 14 0.11 75 Investment
29 44 329 25 0.13 75 Investment

137 172 2941 35 0.93 75 Investment
721 1156 20028 39 18.3 75 Produ~ion
368 397 1592 25 3.11 75 Investment
405 340 1920 22 1.05 75 Banking
162 183 995 30 0.72 75 Production
267 739 2497 14 6.39 75 ~anfloc.
132 145 1862 28 1.32 75 Production
69 590 3377 590 25.7 65 Produ~ion

Fig. 7.1b
Numerical results

No. Number Number Number of Number of Mixed stage 370
of of non-zero integer CPU time com-
constraints variables elements variables (min) puter

11 158 187 868 24 2.02 155
12 28 89 423 30 0.61 155
13 37 74 523 30 1.95 155
14 120 112 768 56 0.49 155
15 157 78 998 78 6.07 155

purer on which the problems were run. Furthermore, the number of
iterations has a good correlation with the running time.

7.2. E s t i m a t i o n s

C o m p a r i s o n o f c o l u m n s 7,1 and 7 .2 is i n t e n d e d t o s h o w t h e i n t e r e s t

o f p s e u d o - c o s t s and e s t i m a t i o n s b y c o m p a r i n g t h e s t a n d a r d s t r a t e g y t o a

v e r y s i m p l e o n e w h e r e n o e s t i m a t i o n is t a k e n i n t o a c c o u n t . In f ac t , i t

d i f f e r s f r o m the s t a n d a r d s t r a t e g y o n l y b y t h e c h o i c e o f t h e b r a n c h i n g

node which is:
- Choice of the node having the best functional value among the two

candidate nodes just created, if any; otherwise

Experiments in mixed-& teger linear programming 91

© o

© 0

~a

go

g

A

CD

A

¢.I

A

p.. p.. [-. ~ ~ p.-

~D

7

A

.=.

~o

92 M. Benichou e t al.

- C h o i c e of the last created candidate node, among all waiting
nodes.

The results shown emphasize the importance and the effectiveness of
estimations particularly in finding an optimal integer solution. The
results for problem 5 seem contradictory, but in this case, with the
standard strategy after 31 nodes, an integer solution is found the func-
tional value of which differs from the optimal one by less than 3%0.

7.3. Order given by pseudo-costs
Now, the importance of pseudo-costs for obtaining a good priority

order for integer variables is pointed out. The two strategies used for
the comparisons are on one hand the standard strategy, and on the
other hand a strategy identical with the standard strategy except that
the priority order of integer variables is still static but is now given by
the pseudo-costs. The integer variables can be sorted for instance by
decreasing order of the quantity:

max (PCLj, PCU])

To create such an order, the pseudo-costs have been drawn from pre-
vious runs on the same problems.

The comparison of 7.1 and 7.3 clearly show the correlation between
the pseudo-cost and the "importance" of the integer variable. The num-
bers of iterations performed to obtain both an optimal integer solution
and the proof of its optimality are significantly reduced.

7.4. Order and missing pseudo-costs
tn this paragraph, the standard strategy is compared to a strategy

which computes the missing pseudo-costs and determines the branching
variable in order to obtain the greatest expected deterioration of the
functional value as defined in § 4.2. Though the results are unstable,
the comparison of 7.1 and 7.4 show the interest of such a strategy to
speed up the proof of the optimality, especially for "difficult"
problems.

7.5. Order
Figure 7.5 shows how large the ratio of running times can be when

solving a mixed integer problem with a good and a bad priority order.
In both cases the standard strategy is used but for the priority order

Experiments in mixed-integer linear programming

Fig. 7.5

93

Strategy Good priority order Bad priority order

Problem Number Number Number Number
No. of of of of

nodes iterations nodes iterations

Optimal integer solution 34 82 42 103
1

Proof of optimality 44 132 110 365

Optimal integer solution 55 245 > 250 > 1500
5

Proof of optimality 86 413 > 250 > 1500

Optimal integer solution 65 107 68 124
2

Proof of optimality 71 135 143 329

Optimal integer solution 36 154 > 250 > 1230
9

Proof of optimality 36 154 > 250 > 1230

which is:

max max (PCL/, PCUj)
/

for the first case, and the reverse order:

min max (PCL/, PCU/)
/

for the second case. The second criterion is so bad that only a few
problems have been solved using it. Whereas the order has not always
a great effect on the discovery of an optimal integer solution, it is
crucial as far as the proof of optimality is concerned. This can be
considered as a proof of the significance of pseudo-costs.

As numerical results have shown, the use of pseudo-costs and estima-
tions yields an efficient method. Additional extensive experiment
should be carried out on problems with a larger number of integer
variables. However, up to now it is possible to infer that:

94 M. Benichou et aL

- The discovery of an optimal integer solution mainly depends on
the choice of the branching node.

- T h e proof of optimality is accelerated by a good choice of the
branching variable.

In all cases, the pseudo-costs are reliable to apply these choices.

Acknowledgements

We would like to mention the names of Messrs Battut, Chable, and
Leplaideur who participated in a part of the study.

References

[1] E.M.L.Beale and R.E.Small, "Mixed integer programming by a branch and bound tech-
nique", Proc. IFIP Congress 65, ed. W.H.Kalenich, Vol. 2 (1966) pp. 450-451.

[2] R.J.Dakin, "A tree search algorithm for mixed integer programming problems", The
Computer Journal 8 (1965) 250-255.

[3] N.J.Driebeek, "An algorithm for the solution of mixed integer programming problems",
Management Science 12 (1966) 576-587.

[4] P. Herve, "Resolution des programmes lineaires a variables mixtes par la procedure SEP",
METRA 6, No. 1-67.

[5] A.H.Land and A.G.Doig, "An automatic method of solving discrete programming
problems", Econometrica 28 (1960) 497-520.

[6] Carlton E.Lemke and Kurt Spielberg, "Direct search zero-one and mixed integer programm-
ing", Report L 3, IBM Data Processing Division, New York Scientific Center (June, 1966).

[7] B.Roy, R.Benayoun and J.Tergny, "De la procddure SEP au programme Ophdlie mixte",
SEMA (1969).

[8] R.Shareshian and K.Spielberg, "On integer and mixed integer programming and related
areas in Mathematical programming", IBM N.Y. Scientific Center (1966).

[9] J.A.Tomlin, "Branch and bound method for integer and non-convex programming", NATO
International Summer School on integer and non-linear programming (1969).

