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This paper presents a "branch and bound" method for solving mixed integer linear pro- 
gramming problems. After briefly discussing the bases of the method, new concepts called 
pseudo-costs and estimations are introduced. Then, the heuristic rules for generating the tree, 
which are the main features of the method, are presented. Numerous parameters allow the user 
for adjusting the search strategy to a given problem. 

This method has been implemented in the IBM Extended Mathematical Programming 
System in order to solve large mixed integer L.P. problems. Numerical results making com- 
parisons between different choices of rules are provided and discussed. 

1. Introduction 

This paper presents a "branch and bound" method for solving mixed 
integer linear programming problems. After briefly discussing the bases 
of the method, new concepts called pseudo-costs and estimations are 
introduced. Then, the heuristic rules for generating the tree, which are 
the main features of the method, are presented. Numerous parameters 
allow the user to adjust the search strategy for a given problem. 

This method has been implemented in the IBM Extended Mathemat- 
ical Programming System in order to solve large mixed integer L. P. 
problems. An early version of this method, not including all the features 
described here, has been adapted in a code presently available in all 
IBM World Trade Data Centers. Numerical results making comparisons 
between different choices of rules are provided and discussed. 

* This paper was presented at the 7th Mathematical Programming Symposium The Hague, 
The Netherlands. 
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2. "Branch and bound"  method 

2.1. Problem Statement 
Any mixed integer linear program can be writ ten in the following 

way: 
Let X and Y denote two column vectors the components  of which 

are x i, i = 1 to p and yp  ] = 1 to q respectively. The two rectangular 
matrices A and B are of the order (m, p) and (m, q) respectively. Then 
the problem is" 

Problem M 

m i n F : A ~ X + B T y  (2.1) 

under the constraints 

A X + B Y = D  (2.2) 

a/~< y/~</3j (2.3) 

yj integer f = 1 to q. (2.4) 

0 <~ x i i = 1 to p. (2.5) 

The x i are the continuous variables, whereas the Yi are the integer 
variables. The bounds over the yj must be finite, but can be, either 
positive o f  negative. The problem, obtained when removing the 
integrality condition (2.4), is called t he  continuous problem C. 

An integer solution of  M or C is a set of  values for the x i and t h e y /  
,.satisfying (2.2)' to (2.5). An optimal integer solution is an integer 
solution minimizing F (in this paper, minimization will always be 
assumed). 

2.2. Stages o f  the Method 
The method  involves two stages: 
- First an optimal continuous solution of C is searched for by means 

of the usual linear programming methods.  If this solution is integer, 
problem M is solved. Assume this is not  the case. 

Then, an ordered sequence of continuous linear programming 
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problems C k called sub-problems  is built and an optimal solution is 
calculated for each of  them. 

A sub-problem C k differs from C by  the bound constraints (2.3) 
which are made more restrictive. Two sub-problems differ at least by  
one bound constraint over one Yl" 

It is convenient to represent this sequence of  Cg by  a tree composed 
of  nodes  connected by  directed branches. 

To each node of  the tree are attached 
- a con t inuous  sub-prob lem,  designated by  its order number  k 
- an op t ima l  so lu t ion  of this sub-problem 
- the objec t ive  f u n c t i o n  value F k of this solution called f u n c t i o n a l  

value of node  k. 

Note that: 
- The continuous problem C is sub-problem 1, attached to node 1 

which is the root  of  the tree. 
- A node cannot be defined by an infeasible sub-problem. 

- Node k is integer if its corresponding optimal solution is an integer 
solution of  sub-problem C k (thus it also is an integer solution of  M). 

2.3. Tree generat ion - Branching  process  

As it will appear later, any non-integer node can generate 0, 1, or 2 
new nodes called its successors. 

Assuming that n nodes have already been created, we shall call 
Waiting Se t  W n the set of all the non-integer nodes, also called waiting 
nodes, which have not  ye t  been used to generate successors. At the 
beginning of  the search, this set will contain only node 1. Let us choose 
a wai t ing node  k among the waiting set W n . The branching process 
applied to node k, called branching node ,  consists of: 

- Choosing an integer variable Yb called branching variable, which 
has a non-integer value 7~  in the optimal solution of  sub-problem C k . It 
can be writ ten 

where 

0 < fb  ~ < 1, and [fib k] is integer. 

- Defining two new sub-problems C n + 1 and C + 2, which differ from 
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sub-problem C k only by the permitted range on the branching variable 
Yb" The bound constraints 

-<yb -< for c k, 

are replaced by 

ab g ~< Yb ~< [Y-b k] for one sub-problem, 

[y~] + 1 ~< Yb ~< ~k for t he  other one. 

-Optimizing Cn+ 1 and Cn+ 2 leads to one of  the following events 
for each sub-problem: 

(a) sub-problem infeasible, so that no node is created; the corre- 
sponding branch is called infeasible branch. 

(b) sub-problem feasible and its optimal solution is integer;node 
(n + 1 or n + 2) is integer and will never have a successor. 

(c) sub-problem feasible with a non-integer optimal solution; node 
(n + 1 or n + 2) is created and taken into the waiting set. 

Then, the process continues b y  choosing another branching node 
from the waiting set and by applying to it the branching process, and 
so on. As the integer variables are given finite lower and upper bounds, 
the generated tree is finite and so is the process. Furthermore,  for a 
given problem, the generated tree is not  unique if the choice of  the 
branching variable at a branching node is not  unique. 

The search is over when the waiting set is empty.  At this time each 
terminal branch is either infeasible or points to an integer node. The 
best integer solution(s) obtained is (are) optimal. If no integer solution 
has been obtained, the problem M is unfeasible. 

As in most  cases this process, although finite, may  be time consum- 
ing, at tempts are made to limit the search. This is the search limiting 
process. 

2.4. Search limiting process 
Its aim is to eliminate forever or provisionally the waiting nodes t h a t  

are likely not to lead to the desired results. We shall call node n 
descendant of  node k if it is either its successor or a descendant 's 
successor. From the previous description of the tree generation, a node 
n, descendant of  node k, is defined on a sub-domain attached to node k 
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(the activity ranges on the integer variables are more restrictive) so that 
we have F n ~> F k. 

This remark implies the two following properties: 
- Assuming integer solutions can be obtained at descendants of  node 

k, Fx  is a lower bound of  the functional value of  the best one. 
- The value 

Gn = min F i, i e W n 

is a lower bound of  the best integer solution which can still be expected 
from the current waiting nodes. 

2.5. Dropping nodes 
A parameter F ~  is provided so that all waiting nodes having a func- 

tional value worse than Foo are abandoned forever. This results in a 
new definition of  the waiting set W n 

W.'  = {k e W~ IF k -.< F ~  }. 

The value Foo can be used in several different ways such as: 
( 1 ) At the beginning of  the search, the user is not interested in integer 

solutions worse than a specified value. 
(2) After one or several integer solutions have been found, the user 

is not  interested in new integer solutions worse than the previous ones 
(this is the case when only an optimal integer solution is searched for. 
Parameter Foo is then set to the functional value of the best one ob- 
tained up to now). 

(3) The dropping value Foo can also be used to abandon a sub- 
problem optimization before it is completed if it is proved that the 
corresponding node would have a functional value worse than Foo. 

2.6. Postponing the processing o f  nodes 
Another possibility of  limiting the tree scanning is to postpone the 

processing of  some waiting nodes. A parameter 3' is defined which has 
the following effect: a waiting node k is provisionally abandoned if 
F k > 7. From this definition, a branching node is now selected from a 
sub-set of  the waiting set called the candidate set Pn" 

F n = {ke  WnlF k <<, 7} .  
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Parameter 3' allows for eliminating provisionally the nodes which are 
expected to be dropped later or have no interest for the moment  but 
may have one perhaps later. Parameter 7 can be used to speed up the 
search for an optimal integer solution 

After the basic method has been introduced, new concepts have now 
to be presented to define the rules for choosing the branching node and 
the branching variable, which are the originality of the method.  

3. Pseudo-costs and estimations 

3.1. Pseudo-costs 
The concept of pseudo-cost is introduced to measure in a quantitative 

way the "importance" of the different integer variables and to forecast 
the deterioration of the functional value when forcing an integer vari- 
able from a non integer to an integer value. Their justification and their 
use are based only on experimental results. 

Two quantities are attached to each integer variable Yi; they are called 
lower (PCL) and upper (PCUj) pseudo-costs. At the beginning of  the 
search, pseudo-costs are generally not known; they are automatically 
computed during tree scanning as follows: 

Let us consider the branching process applied at branching node k 
to branching variable Yb" It can be illustrated in the figure below: 

Permitted range: ab k ~< Yb ~< flb k 

Current value: Y~ = [Yb k ] + f~ 

k 

n+l n+2 

Permitted range: akb ~< Yb ~ [Yb k ] 

Current value: [Yb k ] [yb g ] + 1 . 
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Pseudo-costs of integer variable Yb a re  defined as follows: 

PCI_  = 
f i n  + 1 --  f fk  

P C U  b = 
f i n + 2  -- f k  

1 

• These pseudo-costs appear to be the deterioration of the functional 
value per unit of change of Yb one corresponding to a decrease and the 
other to an increase of Yb. Values of pseudo-costs o f y  b depend on the 
node where they are computed. 

Nevertheless, experiments performed using real mixed integer pro- 
blems showed that if pseudo-costs of an integer variable are computed 
at each tree node where it has a non-integer activity, these pseudo-costs 
havethe same order of magnitude except perhaps at a few nodes. There- 
fore, ' in  our method,  pseudo-costs of an integer variable are assumed to 
be constant.  

3.2. Estimations 
Using pseudo-costs and values of the integer variables at waiting 

node k, the functional value of the best integer solution which can be 
expected at a descendant of node k can be estimated by the following 
computation: 

q 
Rk =-Pk + ~ min (PCLjf~, PCUy (1 - f ~ ) ) .  

j=l 

This formula assume the pseudo-cost stability and some kind of 
independence between integer variables. E k is called the estimation 
of node k. 

The estimation of  a waiting node is computed when this node is 
reached. However, if several pseudo-costs were missing (this is true at 
the beginning of the search), the estimations would be of poor accuracy. 
Therefore, an optional means is provided to compute missing pseudo- 
costs at each node if more accurate estimations are desired. 

The considerations of pseudo-cost and estimation has led to heuristic 
rules yielding a method which has appeared to be efficient in the 
problems we have met. 
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4 .  H e u r i s t i c  r u l e s  

In this method the most  important  rules appear to be the choices of  
the branching node and of  the branching variable. Since it does not  
seem that theory can decide what  the best rules are, experiments have 
been made with different choices. The program offers a set  o f  rules 
among which the user can choose. Comparisons between these rules are 
given in section 7 of  this paper. 

4.1. Choice of  the branching node 
Let us assume that a branching process is performed at branching 

node k, so that two new nodes n + 1 and n + 2 are created. The imple- 
mentat ion has been made to have at Qur disposal all elements related 
to these two nodes (for example their basis and their corresponding 
inverse). This is not true for the other waiting nodes. Thus, if one of  
these two nodes appears to belong to the candidate set, it is convenient 
to choose it as next  branching node. Furthermore,  this choice often 
quickly provides an integer solution, because in such a way the degree 
of  freedom of  integer variables decreases monotonously .  The functional 
value of  the so obtained integer solution can then be used to drop 
waiting nodes. 

Hence, the first rule governing the choice of  the branching node is: 
If  the last branching process has produced only one candidate node, 
this node is chosen as next branching node. 

If  two candidates have been obtained, one of  them is chosen to be 
the next branching node according to one of  the following criteria: 

- choose the node having the best estimation 
- choose the node having the best functional value 
- choose the node for which the current pseudo-cost of  the branch- 

ing variable at node k is the smaller one. 
If the last branching process does not  generate any candidate, we 

have t o  find one in the candidate set. So that we have the second rule: 
- choose the node with the best estimation 
- choose the last node created 
- c h o o s e  the last one created until the first integer solution is 

obtained, then the one having the best estimation. 

4.2. Choice of  the branching variable 
Quasi-integer variables 
An integer variable y/ is called quasi-integer at node k if its value is 
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not integer and differs by less than v from an integer value (v is generally 
set to a small positive value, 0.1 for instance). 

The choice of  the branching variable results from the combination of 
two distinct rules, one concerning the quasi-integrity of a variable, the 
other concerning the definition of  a priority order. 

The branching variable is selected first among integer variables with 
non quasiqnteger values. If there are no such variables, the solution is 
called quasi-integer, and the branching variable is chosen among quasi- 
integer variables. This is generally justified, for quasi-integer variables 
often take integer activities when forcing other integer variables to 
integer values; so it is not  worthwhile to deal with them first. 

Priority order 
This priority order may be static or dynamic. In the first type, a 

fixed priority order is given to the integer variables and the branching 
variable is the first in the  list which does not  have an integer value. This 
order can be 

- The one provided by the user which should take into account the 
importance of  integer variables i n  his model, the most important  ones 
being processed first. We will see later that the importance of  an integer 
variable can be measured by the functional value deterioration it entails 
when forcing it to an integer activity. 

- The decreasing order of  their absolute cost values in the objective 
function. 

The second type of  choice (dynamic priority order) relies on pseudo- 
costs. The branching variable is the integer variable meeting the follow- 
ing criterion: 

max (min (PCLj.ff, PCUj-(1 - f f ) ) .  
i 

(4.1) 

This choice is intended to get the greatest expected deterioration of  the 
functional. The aim could be to violate as fast as possible the upper 
bound Foo, if it exists. 

4.3. Candidature rules 
We have already defined the candidate set in § 2.6 by a limitation 

over the functional value of  the waiting nodes. This limitation ~, can be 
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defined with regards to the bounds Gn and Foo limiting the waiting set 
W n . Let 61 and 8 2 be two positive numbers; we use the definition 

m 

7 =  m i n  (Gn + 81 ,F , , o  - 6 2 )  . 

Best waiting 
node Waiting set 

8 1  

Candidate set 

62 

Postponed waiting nodes Dropped nodes 

G n q' F~ +~ 

Direction of optimization (minimization) 

The interest of the 2 parameters 81 and 3 2 lies in preventing the 
search from deeply scanning the tree by not producing nodes which 
are likely to be dropped when an integer solution will be found. 
Whereas the first one 81 can be mainly used for speeding up the search 
for an optimal integer solution, the second one 8 2 is important to con- 
trol the search in order to explore the set of integer solutions according 
to the user's needs. 

Another candidature rule intends to reduce the candidate set with 
the help of estimations. A parameter E'oo can be set, which has the 
following effect: 

A node k the estimation Of which, E k, is worse than Eo. is provi- 
sionally abandoned and cannot be chosen as branching node. Thus, we 
can now write a full definition of the candidate set P . 

n 
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Parameter Zv~ can be used to speed up the search for an optimal 
integer solution or to give a good presumption that an optimal integer 
solution has been obtained without continuing the search until opti- 
mality is strictly proved. 

4.4. Stopping rules 
Their purpose is to provisionally stop the optimization of a sub- 

problem before its end when it is expected that the node defined by 
this sub-problem is likely to be dropped when reached. When the 
stopping rules are satisfied, the optimization is stopped and a pre-node 
is created to which is attached the sub-problem being optimized. The 
optimization can be later resumed, if required. Then, the pre-node is 
put into the waiting set W n. 

One stopping rule has been tested. When node k is quasi-integer 
(see definition in § 4.2), it is likely that the best expected integer 
solution will be obtained by rounding the current values of the integer 
variables at node k to the nearest integers. Thus, if branching node k is 
quasi-integer, the sub-problem (assume it is Cn+ 1 ) in which a quasi- 
integer variable is forced to the nearest integer value is optimized first ~. 
Then, the opt'lmization of the other sub-problem will be stopped if it is 
proved that the functional value of the node to be reached would 
exceed: 

Fk + 2k(G+l  - Fk) 

where k is the number of quasi-integer variables. 

5. Optimization process 

When applying the branching process to node k, i.e., when creating 
and solving the two new sub-problems Cn+ 1 and C n + 2, the following 
questions arise. 

First, knowing an optimal solution of  the continuous sub-problem 
C k, how to calculate the optimal solutions of Cn+ 1 and Cn+ 2 respec- 
tively; then, how to handle the inverse of the basis in order to minimize 
the number of required inversions. Now, we shall see how we manage to 
solve these questions. 
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5.1. Optimization o f  a sub-problem 
Let us consider a branching node k and the branching variable Yb the 

value of which is ~-b k in the optimal solution of C x . In that sub-problem, 
the bounds of Yb are: c% k ~< Yb <~ /3b k" Let us assume that we have to 
optimize sub-problem Cn+ 1 which differs from sub-problem C x only 
by a restricted activity range for variable Yb, which we shall suppose to 
be: 

-< yb -< [y l 
An obvious way to solve C n + 1 would be to impose the new upper 

bound and to solve the sub-problem by means of the simplex dual 
algorithm. However, we have chosen another method the convenience 
of which will be explained later on. 

We rather parameterize the upper bound of the variable Yb and 
consider the parametric problem derived from C x by replacing its 
previous upper bounds ~k b by 

Parameter 0 will vary from 0 to 1. 

Computational  remark 

However, since the parameterization with respect to a bound is not 
a procedure available now in MPSX, we replace the above parametric 
problem by one in which only the right hand side is a linear function of 
O. This is done through an adequate change of variable that will not 
be described here. 

Fn +1 

~k 

Fig. 5.1. 
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It is known that, as the parameterization proceeds, the functional 
value becomes worse and behaves like a convex, piece wise linear, 
function of  parameter 0 (see fig. 5.1). At each iteration there generally 
is a discontinuity in the slope of  F(O). After an iteration has been 
performed, it is possible to extrapolate the function F with the current 
slope, to get a lower bound of  F n + 1, as shown in the figure. This fact is 
used to either definitely or provisionally abandon the optimization if 
this lower bound exceeds the dropping value F ~  or the stopping value 
respectively. 

5.2. Inverse of the basis 
In MPSX, the inverse of  the basis is expanded in the product  from, 

so that it is composed of an ordered set of  elementary vectors. Let us 
again consider the branching node k, eventually issuing two new nodes, 
n + 1 and n + 2. In order to start the optimization of  sub-problems 
Cn + 1 and C n + 2, the basis of  node k and its corresponding inverse are 
required. 

Before beginning any optimization, the basis of  node k is saved and 
a first pointer indicates the position of  the last elementary vector of  the 
current inverse. Then a parameterization is performed to optimize first 
Cn+ 1 , for instance. When the optimization is completed,  the current 
basis and all elementary vectors created during the parameterization are 
saved, and a second pointer indicates the position of  the last created 
vector. Then it is generally possible to begin the optimization of  Cn+ 2 
by  restoring the basis of  node k and by  retrieving its inverse with the 
first pointer. 

As it was shown in § 4.1, at the end of  the second parameterization, 
we shall try to choose node n + 2 or node n + 1 as next branching node. 
If node n + 2 is the candidate we can continue with the current basis. 
On the contrary, if node n + 1 is the candidate, its basis can generally 
be restored and the corresponding inverse be retrieved with the second 
pointer, and the saved elementary vectors. 

6. Some features of the computer  program 

All particularities of  the method described above have been imple- 
mented in a module,  called MIP, of  the IBM Extended Mathematical 
Programming System (MPSX). 
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This code can theoretically solve mixed integer problems with up to 
16383 rows, not including the bound constraints, and 4095 integer 
variables. Practically, the size limitation is imposed by the running time. 

It is possible to use the program either in a very easy manner  or in a 
more sophisticated one which allows for stopping and resuming the 
search as well as for defining a search strategy. Furthermore,  the 
parameters of  the  search limiting process enable the user to explore the 
set of  integer solutions according to his needs. 

At last, the user can obtain extensive surveys of  the search and per- 
form post optimal studies on the integer solutions found, the integer 
variables being fixed. Large models (both in number of constraints and 
number of  integer variables) have been successfully solved with this 
program. 

7. Numerical  results 

7.1. Global results 
First, two tables (fig. 7.1a and 7.1b) give some results concerning 

solution of  several real-life mixed integer problems together with their 
characteristics. All problems were solved with the standard strategy,- 
the rules o f  which are: 

- The integer variables are processed in the decreasing order of their 
absolute cost values in the objective function (and in the matrix order 
when absolute cost values are equal). 

- T h e  branching node is the one having the best estimation either 
among the last two candidate nodes just created, if any, or among all 
nodes belonging to the candidate set. 

- The missing pseudo-costs are not computed.  
- The tolerance for quasi-integer variable is p = 0.1. 
- P a r a m e t e r s  F ~  and 3~ are set during the search to the functional 

value of the best integer solution found so far. 
For all problems, the mixed stage starts from an optimal continuous 

solution and ends with an optimal integer solution and the proof  of its 
optimality. 

From this problem set, 5 problems have been taken (i.e., 1, 8, 5, 6, 9) 
in order to compare different strategies and to emphasize the interest of  
certain choices. 

The comparison will be made with both the number  of  iterations and 
the number  of nodes because these figures do not  depend on the corn- 
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Fig. 7.1a 
Numerical results 

No. Number Number Number Number Mixed 360 Problem 
of con- of of of s t a g e  computer origin 
straints variables non-zero integer CPU 

elements variables time 
(min) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

38 34 394 14 0.11 75 Investment 
29 44 329 25 0.13 75 Investment 

137 172 2941 35 0.93 75 Investment 
721 1156 20028 39 18.3 75 Produ~ion 
368 397 1592 25 3.11 75 Investment 
405 340 1920 22 1.05 75 Banking 
162 183 995 30 0.72 75 Production 
267 739 2497 14 6.39 75 ~anfloc. 
132 145 1862 28 1.32 75 Production 
69 590 3377 590 25.7 65 Produ~ion 

Fig. 7.1b 
Numerical results 

No. Number Number Number of Number of Mixed stage 370 
of of non-zero integer CPU time com- 
constraints variables elements variables (min) puter 

11 158 187 868 24 2.02 155 
12 28 89 423 30 0.61 155 
13 37 74 523 30 1.95 155 
14 120 112 768 56 0.49 155 
15 157 78 998 78 6.07 155 

purer on which the problems were run. Furthermore,  the number  of  
iterations has a good correlation with the running time. 

7.2.  E s t i m a t i o n s  

C o m p a r i s o n  o f  c o l u m n s  7,1 and  7 .2  is i n t e n d e d  t o  s h o w  t h e  i n t e r e s t  

o f  p s e u d o - c o s t s  and  e s t i m a t i o n s  b y  c o m p a r i n g  t h e  s t a n d a r d  s t r a t e g y  t o  a 

v e r y  s i m p l e  o n e  w h e r e  n o  e s t i m a t i o n  is t a k e n  i n t o  a c c o u n t .  In  f ac t ,  i t  

d i f f e r s  f r o m  the  s t a n d a r d  s t r a t e g y  o n l y  b y  t h e  c h o i c e  o f  t h e  b r a n c h i n g  

node which is: 
- Choice of  the node having the best functional value among the two 

candidate nodes just created, if any; otherwise 
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- C h o i c e  of the last created candidate node, among all waiting 
nodes. 

The results shown emphasize the importance and the effectiveness of 
estimations particularly in finding an optimal integer solution. The 
results for problem 5 seem contradictory, but in this case, with the 
standard strategy after 31 nodes, an integer solution is found the func- 
tional value of which differs from the optimal one by less than 3%0. 

7.3. Order given by pseudo-costs 
Now, the importance of pseudo-costs for obtaining a good priority 

order for integer variables is pointed out. The two strategies used for 
the comparisons are on one hand the standard strategy, and on the 
other hand a strategy identical with the standard strategy except that 
the priority order of integer variables is still static but is now given by 
the pseudo-costs. The integer variables can be sorted for instance by 
decreasing order of the quantity: 

max (PCLj, PCU]) 

To create such an order, the pseudo-costs have been drawn from pre- 
vious runs on the same problems. 

The comparison of 7.1 and 7.3 clearly show the correlation between 
the pseudo-cost and the "importance" of the integer variable. The num- 
bers of iterations performed to obtain both an optimal integer solution 
and the proof of its optimality are significantly reduced. 

7.4. Order and missing pseudo-costs 
tn this paragraph, the standard strategy is compared to a strategy 

which computes the missing pseudo-costs and determines the branching 
variable in order to obtain the greatest expected deterioration of the 
functional value as defined in § 4.2. Though the results are unstable, 
the comparison of 7.1 and 7.4 show the interest of such a strategy to 
speed up the proof of the optimality, especially for "difficult" 
problems. 

7.5. Order 
Figure 7.5 shows how large the ratio of running times can be when 

solving a mixed integer problem with a good and a bad priority order. 
In both cases the standard strategy is used but for the priority order 
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Fig. 7.5 

93 

Strategy Good priority order Bad priority order 

Problem Number Number Number Number 
No. of of of of 

nodes iterations nodes iterations 

Optimal integer solution 34 82 42 103 
1 

Proof of optimality 44 132 110 365 

Optimal integer solution 55 245 > 250 > 1500 
5 

Proof of optimality 86 413 > 250 > 1500 

Optimal integer solution 65 107 68 124 
2 

Proof of optimality 71 135 143 329 

Optimal integer solution 36 154 > 250 > 1230 
9 

Proof of optimality 36 154 > 250 > 1230 

which is: 

max max (PCL/, PCUj) 
/ 

for the first case, and the reverse order: 

min max (PCL/, PCU/) 
/ 

for the second case. The second criterion is so bad that only a few 
problems have been solved using it. Whereas the order has not  always 
a great effect on the discovery of an optimal integer solution, it is 
crucial as far as the proof  of  optimality is concerned. This can be 
considered as a proof  of  the significance of  pseudo-costs. 

As numerical results have shown, the use of  pseudo-costs and estima- 
tions yields an efficient method.  Additional extensive experiment  
should be carried out  on problems with a larger number of  integer 
variables. However, up to now it is possible to infer that: 



94 M. Benichou et aL 

- The discovery of  an optimal integer solution mainly depends on 
the choice of the branching node. 

- T h e  proof of optimality is accelerated by a good choice of the 
branching variable. 

In all cases, the pseudo-costs are reliable to apply these choices. 
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