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Summary 

N e w m a r k ' s  concept of computing the permanent displacement under 
seismic loads has been combined with the conventional limit equilibrium analysis 
to compute the displacements of a rock wedge. The rock wedge formed by the inter- 
secting planes may or may not have a tension crack in the upper slope surface. As 
the static analysis of a rock wedge is available from the literature, only the seismic 
problem is treated theoretically in more details. 

A computer program has been developed to compute the displacements from 
the digitised input data of the acceleration-time-history. The program can take into 
account the water pressure on the intersecting planes and on the planes of the 
tension crack.The effect of rock anchors if present is also taken care of in addition 
to static surcharge loads. The program calculates the conventional static factor of 
safety, remaining resistance against sliding, the critical acceleration, exciting force, 
relative velocity with time and the cumulative displacements. 

Two model examples are presented: one with simple sinusoidal acceleration 
and the other one with actual earthquake data considering the different systems of 
forces acting on the wedge. The results are critically discussed with respect to the 
different parameters e. g. anchor forces, water pressure and cohesion influencing 
the magnitude of displacements under seismic loads. It is shown that the critical 
acceleration is a better index for the seismic stability than the conventional factor 
of safety. 

The critical acceleration presented in this paper serves as a very handy tool for 
a site engineer to get the first hand information about the stability of the wedge for 
a given acceleration-time-history without going into the details of dynamic analysis. 

Introduction 

The conven t iona l  l imit  equi l ib r ium analysis  does  not  take  into accoun t  
the d y n a m i c  load  and  denotes  fai lure  when  the value o f  the fac tor  o f  safe ty  
d rops  be low unity.  In  the conven t iona l  design, lower ing  the fac tor  o f  safe ty  
be low unity is not  permi t ted .  On the o ther  hand ,  an a t t empt  to take into 
accoun t  the d y n a m i c  forces due to an ea r thquake  by  p s e u d o  static analysis  
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leads to a too conservative design, as such analysis considers the seismic 
forces to be always present which is far from reality. Moreover in both the 
above analyses, permanent displacements are not permitted at all. 

To overcome these limitations N e w m a r k (1965) while delivering the 
Fifth Rankine lecture, first proposed to compute permanent displacements 
of earth and rockfill darns when subjected to strong seismic forces instead 
of computing the conventional factor of safety. This concept of 
N e w m a r k  is well established today. Credit goes to S a r m a  (1975), 
M a k d i s i and S e e d (1977) to bring this concept to the level of  common 
application. Subsequently, work has been done to compute the 
displacement of blocks and slopes subjected to strong motions by C h a n g 
et al. (1984) and L i n e t  al. (1986). T h u n and H a r r i s (1981) computed the 
displacement of a rock fill dam when subjected to earthquake load utilising 
this concept. 

In the present paper, the displacements of a rock wedge when 
subjected to earthquake loading has been computed utilising the above 
concept of N e w m a r k and the limit equilibrium analysis utilising the work 
presented by H o e k and B r a y  (1977). The exciting force induced by the 
seismic acceleration is compared with the remaining resistance against 
sliding obtained by the static limit equilibrium analysis. If the exciting 
force is greater than the resistance, the relative acceleration is integrated 
twice to compute the displacements. 

Mechanisms of Sliding 

The concept of N e w m a r k  (1965) of computing the permanent 
displacements of a body on an inclined plane due to seismic forces allows 
the factor of  safety to drop below unity as this state exists for only a very 
short while. During an earthquake, two possible reasons may cause the loss 
of stability of the body. 

Firstly the time dependent earthquake forces together with the static 
forces may bring down the factor of safety below one for a short while. In 
other words, earthquake forces may decrease the resisting force and 
increase the driving force in such a way that ultimately the factor of safety 
drops below unity and sliding starts. But the stable condition will be 
regained immediately after the earthquake if the engineering properties of  
the rock wedge on the failure planes are not altered due to sliding. The 
described procedure may happen several times or very often during an 
earthquake. 

Secondly, if by the earthquake load effects the pore pressure in the 
sliding planes of the wedge increases, strength characteristics of the sliding 
plane will get reduced possibly inducing the wedge to slide even under 
static conditions. In such a situation, till the excess pore pressure generated 
is not sufficiently dissipated, the factor of safety even after the earthquake 
will not rise to its pre-earthquake value. This latter problem being basically 
a static one it is not considered in this paper. 



Computation of the Seismic Stability of Rock Wedges 111 

It is assumed that, 

1) sliding planes exist or develop during the earthquake, 
2) the wedge slides as a rigid body, 
3) the strength characteristics of the sliding plane do not change along 

with the displacements or velocity of the wedge. 

The first two assumptions hold quite well for a sliding rock wedge. The 
inclined intersecting planes of joints or fissures in the rock forming the 
boundaries of the wedge -- with or without tension crack -- are the 
potential surfaces over which the wedge slides down. The behaviour of the 
wedge as a rigid body is also not far from reality. Hence this assumption will 
often be a good engineering approach. However, the validity of the third 
assumption is mooted on the ground that what actually happens to the 
strength characteristics of the sliding planes when the wedge starts sliding is 
not uniquely defined. The problem is very complicated as more often than 
not gaugy material is present on the sliding planes. A lot of theoretical and 
experimental work has .been done but still more is desirable to understand 
the complicated behaviour. Coefficients of dynamic friction have been eval- 
uated by S i j i n g  etal. (1981) on the basis of laboratory experiments. 
However, for easy application of the results in this paper strength character- 
istics are assumed to be constant. Changes of the values of the friction angle 
or the cohesion in the sliding planes during the earthquake can be 
considered by varying these parameters in following calculations. 

The limit equilibrium analysis of a rock wedge has been delt with by 
H o ek and B r a y  (1977) in great details. Hence in this paper, the conven- 
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Fig. 1. Schematic diagram of (a) a block subjected to horizontal acceleration, (b) a block 
subjected to vertical acceleration 
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tional way of determining the factor of safety for static conditions is not 
further outlined. The relevant equations may be found in the above 
mentioned reference. 

From limit equilibrium analysis, the factor of safety FS is calculated as 
the ratio of the resisting force (RF) and the driving force (DF). 

RF 
FS = DF (1) 

The remaining resisting force against sliding (RS) is obtained as the 
difference between the total resisting force and the driving force 

RS = R F -  Dr. (2) 

Sliding of the wedge starts, if RS becomes negative i. e. DF is higher in 
magnitude than RF. 

Sliding Due to Earthquake 

Fig. 1 a shows a block of weight W resting on a plane inclined at an 
angle cr The friction between the surface of the block and the plane is char- 
acterized by the friction angle 4- The block is subjected to a horizontal 
acceleration ah which induces a force of magnitude (W/g) ah cos c~ in the 
direction of motion. This force increases the static driving force Wsin c~. 
The component (W/g) ah sin c~ tan q5 acts opposite to the direction of static 
resisting force Wcos cctan q~ hence effectively reducing it. From Fig. 1 b one 
can see that the positive vertical acceleration av acts opposite to the gravity 
g and therefore the component of force (W/g)av sin c~ due to vertical accel- 
eration is directed opposite to the static driving force Wsin c~. Furthermore 
the component (W/g)av cos ~ t an~  acts opposite to the direction of the 
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/ S [ o p e  Face 
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Fig. 2. Schematic diagram of a wedge 
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static resisting force Wcos o( tan r Hence both static forces effectively are 
reduced by the vertical seismic forces. 

The total remaining resisting force T R S ( 7 )  due to horizontal and 
vertical accelerations ah and av in addition to the static loads at any instant 
of  time Tis given by 

r R S  (7 3 = RS~, + RS.~  (7) ,  (3) 
where 

RS,  t = RF~, -  DF,,, 

RFs~ = Wcos oc tan r 

DFst = Wsin c~ 

and RS+n (7) = RFayn (7) - DFay, (7) .  (4) 

The subscript st corresponds to static forces whereas by the subscript dyn 
seismic forces are indicated. 

Fig. 2 shows schematically a rock wedge, which is formed by two 
inclined planes A and B and has a tension crack in the upper slope face. 
The wedge slides down along the intersecting line CD at an angle 0r with 
the horizontal. Here after the angle cr denotes the dip of  the line of  inter- 
section CD. 

For the wedge with two different frictional characteristics CA and CB on 
the intersecting planes A and B the dynamic resisting force is calculated by 

RFay,(7) = --(ah(T)  since+ av(7) cos a') (I/VA tan CA + WstanC~)/g.  (5) 

Similarly, the dynamic driving force is obtained from 

OF+n ( 7) = ( ah ( T) cos cr - av ( T) sin cc) ( I/VA + Ws ) /  g, (6) 
where 

WA and We 

CA and r 
RS~t 

are the weight of  the wedge on the plane A and B respec- 
tively, 
are the friction angles of  plane A and B respectively, 
is the remaining resisting force due to static loads including 
the cohesion, anchor forces, water pressure etc., 
is the total seismic induced force. 

The dynamic limiting equilibrium now is obtained if 

TRS  (7) = RF, t + RFdy, (7) - (DFst + DFay, (7)) = 0. (7) 

Sliding starts at that moment of  time T at which TRS (7) becomes less than 
zero. 

It is obvious and has been shown from a lot of  computations, that the 
effect of  the vertical acceleration is not as pronounced as that of the hori- 
zontal one. The reason is that the vertical acceleration reduces or increases 
both the driving and the resisting forces at the same time which on its own 
does not effect the stability of  the wedge. A positive horizontal acceleration 
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however reduces the resisting force but increases the driving force. As a 
result in combination of both seismic components and the gravity the net 
effect of the horizontal acceleration is much more pronounced for destabi- 
lizing the wedge as compared to the vertical acceleration as has also been 
shown by K o b a y a s h i  (1984). Thus if one neglects the vertical acceler- 
ation specially if it is considerably smaller than the horizontal one and 
takes into account only the horizontal acceleration, the analysis of the 
slope does not suffer from too much of error. 

Computation of Displacement 

For the computation of displacements the acceleration-time-history 
must be available in discretised form. Since the time-history is considered 
to be linear within one time step, the discretisation must be dense enough 
to describe the true acceleration variation with sufficient accuracy for the 
highest relevant frequency. This means that the time steps should be in the 
order of a tenth of the shortest high amplitude vibration period. 

The dynamic portions of the resisting and the driving forces are then 
calculated by Eqs. (5) and (6) at the end of each time step and from Eq. (7) 
TRS (T) is computed. Sliding can start only if RSdy, < 0.0. However, as long 
as TRS (T) remains positive sliding does not occur because the magnitude 
of the sum of the seismic induced forces (RF+, (T) - DF~yn (T)) is less than 
the static remaining resisting force (RSst-DFst). Once T R S ( T ) =  0 the 
wedge is at the state of dynamic limiting equilibrium. Sliding starts if the 
seismic induced force RS+, becomes greater than RSs, in magnitude. The 
precise time of initiation of sliding To --  if not falling at the end of a time 
step --  is computed by linear interpolation. The relative acceleration of the 
wedge ar(Tn) at the end of any time step n is now calculated from the 
absolute magnitude of TRS (T,) divided by the mass m = W/g of the wedge. 

Since RSs ,=-RSdy , (To)  at the stage of limiting equilibrium, the 
relative acceleration a~ of the sliding wedge at any instant of time T, within 
the time duration of  sliding is given by 

ar (T,) = (ah (T,) -- ah (To)) ( W J W ( s i n  c~tan ~A + COS CO) 

+ W J W ( s i n  c~tan ~B + cos ~c)) 

+ (av(Tn) - av(To)) (WJW(cosc~tan~A -- sin o~) (8) 

+ WJW(cos  cctan ~R-  sin o~). 

where ah (TO) is the critical acceleration acr because any acceleration beyond 
this value will cause sliding of the wedge if the vertical component of accel- 
eration is neglected. 

Relative velocity v~ increases as long as a~ (T,) remains positive and 
decreases as soon as a~(T) becomes negative and comes to zero at that 
moment  when the integral of  a~(T) becomes zero. The relative 
displacement increases during the total duration of sliding and obtains a 
finite magnitude when the relative velocity becomes zero. 
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As the linear variation of acceleration is assumed within one time step, 
the relative acceleration between the boundaries of the time step is given 
by the following expression: 

a, ( T , + 0 -  G(T.)  
a~(O = a~(T,) + t, (9) 

where 8 t 

To is the time point of  initiation of sliding, 
8t  is the uniform time interval between T. and T.+I, 
t is the time elapsed since the previous time step 0 < t < St. 

These quantities are schematically shown in Fig. 3. 

ar[ m/s 2 ] 

at{t} ~ \ - ! R S .  \ / ~ -  \ / r n  ayn 

T o Time 

Tn-1 Tn Tn+l 

Fig, 3. Schematic diagram of static and dynamic resistance 

First integration of the relative acceleration gives the relative velocity 
and integrating again the relative velocity the displacement is computed. 
The integration to obtain the cumulative relative velocity vr (T,+I) from the 
piecewise linear acceleration is performed by 

v,(T~+~) = v,(T.) + (a.(T.)  + a~(T,+~)) 8 t / 2  (lo) 

and the cumulative relative displacement Sr (T,+ 0 is then calculated from 

Sr (/'~n+l) = sr(Tn) q- Pr(Tn) ~l  q- [2G(T.)  + a ~ ( L + a ) ] - -  
~ t  2 

(11) 
6 

Hence, the cumulative displacement is computed at the end of  every time 
step. This integration is performed as long as the relative velocity is not 
equal to zero. 

The above mentioned concept is schematically shown below in Fig. 4 
with a simple rectangular acceleration function. Though theoretically it is 
not impossible to have the uphill movement of the wedge, but this problem 
is of  no practical interest. Hence it has not been considered in this paper. 
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Fig. 4. Schematic diagram for computation of displacement 

Description of the Program 

For comput ing  the factor of  safety and the displacements ,  a computer  
program has been  deve loped  which  is capable of  analys ing the stability of  
a rock wedge under the fo l lowing  condit ions:  
- -  tens ion  crack in the upper s lope face, 
- -  water pressure on the intersecting planes,  
- -  water pressure on  the plane of  the tens ion crack, 
- -  dead weight  surcharge, 
- -  anchor  forces, 
- -  seismic loads.  
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All the above different situations can be analysed independently or in any 
combination with each other. For all the above cases the program 
computes the conventional factor of  safety and calculates the displacement 
of  the wedge with time when subjected to earthquake load. The program 
also computes the anchor forces, their dip and dip directions required to 
raise the factor of  safety to the desired level if the computed factor of 
safety is less than the desired one. This calculation is always performed 
independently of  the presence of  seismic forces. The normal output of  the 
program provides a short summary of  the results but optionally a long 
output can be obtained which comprises of  all intermediate results of the 
computation. For dynamic calculations results at every time step can be 
printed. The program also computes the induced stress in the anchors due 
to displacements and checks against their failure due to overstressing. The 
program is in Fortran language and the size is such that it can run on any 
PC. 

Model Examples 

Since the static stability analysis is a routine task nowadays, in the 
following two examples effects of  seismic forces are presented. 

Example 1 

In the first example for simplicity sinusoidal acceleration of maximum 
magnitude of 0.3 g with half cycle of  0.4 sec was fed in the computer for a 
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Fig. 5. The wedge considered in model examples 
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wedge with a tension crack in the upper slope face but without water in the 
crack. The geometrical situation of the wedge and the resisting parameters 
are shown in Fig. 5. The horizontal acceleration-time-history ah (T), the 
computed seismic induced force RSay, (T), remaining static resisting force 
against sliding RSst, the relative velocity Vr, and the cumulative relative 
displacement s~ with time are presented in Fig. 6. 

From Fig. 6 one can see that till the exciting force reaches the point I 
the wedge does not slide, as till that time the exciting force remains less 
than the resistance against sliding. Beyond point I up to the point II the 
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exciting force is greater than the resistance against sliding and thereby it 
induces the wedge to slide. Beyond the point II up to the point III though 
the exciting force is less than the resistance but the velocity of sliding is 
greater than zero as a result displacement continues. Beyond the point III 
velocity is zero and the displacement has a constant value. This state 
presists up to the point IV as between III and IV exciting force always 
remains less than the resistance. From point IV onwards the same process 
is repeated as that of  point I. 

Example 2 

For rigorous computation actual earthquake data obtained from Friuli 
Earthquake of May 1976, Italy, at Codroipo (CNEN-ENEL,  1976) in the 
digitised form up to 18 sec was fed in the computer. The accelerogram of 
the N-S horizontal component  is presented in Fig. 7. For better demon- 
stration of the seismic effects, in this example the acceleration has been 
multiplied by a factor of  10. The same rock wedge considered in the 
example 1, shown in the Fig. 5 has been used here. Several possible condi- 
tions of  the wedge have been considered: (1) Wedge without tension crack 
(TC) in the upper  slope face -- with or without water in the intersecting 
planes and with or without stabilising anchors. (2) In the second case a 
wedge with TC in the upper slope and the same conditions with respect to 
water pressure and anchor forces as before has been analysed. The 
magnitude of  total anchor forces was 18000 kN with dip of  11 ~ and dip 
direction of  350 ~ . For all the above cases the conventional factor of safety 
by limit equilibrium analysis as well as the maximum displacements, when 
subjected to the above mentioned earthquake, have been computed. 
Results are summarized in Table 1 presenting 
--  factor of  safety FS, 
--  static resisting force RSst  , 

- -  final displacement &, 
--  critical acceleration act. 

The wedge is subjected to (1) internal forces, which are induced by 
gravity and seismic acceleration and therefore depend on the mass of  the 
wedge and to (2) external forces, which are due to cohesion in the inter- 

032 Friu[i Earthquake 0 6 - M a y - ? 6  20H00M15S Recorded at Codroipo 
c~n 

.g 
N - S  

0 2 4 �9 6 8 10 12 1/+ 16 18 

Time [ sec ] 

Fig. 7. Acceleration time history used in model example 2 
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secting planes, water  pressure and anchor  forces. External  forces are inde- 
penden t  of  the wedge mass. 

Table 1 shows the results for the wedge without  a tension crack and 
with a tension crack separately. The different cases of  external forces may  
be taken f rom the table. 

Table 1. Results of  Model Example 2 

Wedge without crack Wedge with crack 

FS RSst acr Sr FS RSst acr s r 
(kN) (m/s 2) (m • 10 -2) (kN) (m/s 2) (m • 10 -2) 

No cohesion 
No anchor 1.169 15 081 0.0836 3039.3 1.169 10 926 0.0836 3039.3 
No water 

No cohesion 
No anchor 1.132 11 808 0.0655 4633.4 1.131 8 538 0.0653 4639.8 
5% water 

No cohesion * 
Anchor 1.427 35 756 0.1983 64.6 1.535 31 602 0.2419 39.51 
No water (1.169) + (15 076) + (443.2) + 

Cohesion 
No anchor 1.825 73 758 0.4090 1.03 1.709 45 936 0.3516 4.87 
No water 

Cohesion 
No anchor 1.569 50 852 0.2820 20.54 1.436 29 215 0.2236 52.7 
35 % water 

Cohesion 
Anchor 2.128 94 434 0.5237 0.01 2.128 66 610 0.5098 0.02 
No water 

Cohesion 
Anchor 1.855 71 527 0.3966 1,45 1.813 49 891 0.3818 2.23 
35 % water 

* Anchors failed resulting loss of static stability after 13.98 sec. 
+ Due to failure of anchor the new factor of safety, the new resistance against sliding and the 

total relative displacement. 

Attent ion of  the reader  is drawn for the very high magni tude  of  
relative displacements  o f  the order  of  tens of  meters in the first two cases of  
the table. These magni tudes  of  movemen t  if interpreted in physical  terms 
loose all their meaning  as all the assumptions  are violated and reader may  
find the wedge totally out of  contact  f rom the intersecting planes. But still, 
these results have been included to show the effect o f  various physical  
parameters  inf luencing the displacements.  The magni tude  of  total 
d isplacement  acceptable wi thout  causing any damage  or failure comes 
f rom the engineering judgement  on the limit o f  tolerance.  Hence,  it is 
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obvious that it can not be prefixed for general use. Therefore neither the 
model presented, nor the program described in this paper have been 
provided with inbuilt check to terminate computation beyond a limiting 
magnitude of displacement. 

If  no cohesion in the intersecting planes was considered to exist only 
5 % of the total water pressure was applied to avoid instability under static 
loads. 

In the cases without any external forces the resisting static forces and 
the dynamic forces are both proportional to the mass of  the wedge thus 
yielding the same FS and ultimate displacement for the wedge with and 
without tension crack. Although the resisting static forces are smaller for 
the wedge with crack due to the reduced weight the critical acceleration 
act= ah(T0) remains the same because of the proportionally reduced 
seismic forces. Thus if act has the same value the double integration of  
ar (T) with respect to time must yield the same displacement. 

Since the seismic forces are proportional to the mass of  the wedge the 
ratio of  RS,/aor is always constant for a given wedge independently of  the 
presence of  the external forces. 

The resisting static forces are influenced by the external forces, e. g. 
are reduced due to water pressure and are increased by the presence of  
cohesion in the planes and of  anchor forces. In this analysis the anchor 
forces have been assumed to be the same for both types of wedges, e. g. 
they increase RS,, by an amount of  20 675 kN. Their effect is to increase the 
critical acceleration at both the wedges but more at the wedge with crack. 
This leads to a greater effect in reducing the ultimate displacement at this 
wedge. 

The inverse effect may be observed due to water pressure but in this 
case it has to be considered that at the wedge with crack the water pressure 
does not only act on the remaining part of  the intersecting planes but also 
on the face of the crack. Therefore the forces due to water pressure are not 
constant but dependent  on the geometry, position of  the crack and 
percentage of  filling. 

The effect of  the cohesion is principally the same as that of  anchor 
forces. However  due to the presence of  the crack the area of the inter- 
secting planes reduces more than the volume of the wedge. Therefore the 
forces induced by the cohesion reduce more than proportional to the 
weight of the wedge. Thus the gain in act is smaller at the wedge with 
tension crack then at the wedge without TC. 

Any decrease of  the critical acceleration does lead to larger displace- 
ments not only due to the increased ar (T) but also due to the fact that the 
transient instability occurs more often during the total duration of  the 
earthquake. 

Neither the FS nor RS, t nor ao~ can be used directly for deducing the 
actual magnitude of  displacement. However, these numbers for a given 
wedge provide some indication on the expected magnitude of dis- 
placement. For different wedges FS and RSs, are not comparable as may be 
seen from Table 1. Almost equal values of  FS and RSst for two different 
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wedges result in quite different magnitude of displacement. However, if the 
critical acceleration is equal for different wedges they will also have equal 
amounts of displacement. 

The judgement if a given acceleration-time-history has to be 
considered as dangerous to the stability of the wedge should not be based 
on a chosen value of the factor of safety but on the engineering decision 
about a tolerable displacement. Without any doubt displacements of 
several meters lead to a total disintegration and catastrophic failure of the 

wedge.  On the other hand small displacements of the order of a few 
centimeters may be acceptable depending on the site conditions. However 
if the displacements are neither very large nor very small the engineering 
judgement becomes more critical and more emphasis has to be given to 
determine precisely the geological conditions and the engineering prop- 
erties of the rock mass. Special care has to be taken to the limit of tolerance 
of the displacement concerning the anchors if present in the wedge. 

Critical Acceleration 

As it is not always possible for a practical engineer to go for rigorous 
dynamic analysis to evaluate the stability of the wedge under seismic 
forces, the calculation of the critical acceleration can provide an estimate 
of the risk of sliding. The approach is based on the assumption that the 
vertical acceleration can be neglected. From the Eqs. (3) to (6) TRS(T) 
becomes equal to 

TRS(T)  = - (W/g)  ah sinc~tanqb- (W/g) ah COS ~q- RSs,, (12) 

where ~b is the average friction angle. 
From this Eq. (12) one gets 

ao. = RSs,/((W/g) (cos cr -t- sin cctan qS)). (13) 

Fig. 8 shows a plot of acr/(RSs/(W/g)) vs cc with the variation of ~. From 
the conventional limit equilibrium analysis the value of RSs, and the weight 
of the wedge Wis known. The sliding angle and the friction angle ~ are as 
well available. Hence very quickly from Fig. 8 one can estimate the critical 
acceleration. This identifies the acceleration in the given time-history 
above which the wedge will start sliding or conversely one can estimate the 
magnitude of critical acceleration below which no permanent displacement 
of the wedge takes place. Thus for a practical engineer, for quick evalu- 
ation, it becomes a very handy tool. 

If the friction angle ~b is quite different on the plane A and B, the 
average ~b may lead to erroneous determination of act. Hence for more 
precise determination of acr, the Eq. (13) is further modified as 

RSst 
ac~ = (14) 

(WA/g) (COS O: + sin ~ tan (~A) + (Wig)(COS C~ + sin a~tan ~b~)" 
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F ig .  8. P l o t  o f  c r i t i c a l  a c c e l e r a t i o n  

Concluding Remarks 

The concept of N e w m a r k  for computing the permanent 
displacement under seismic condition and the limit equilibrium analysis 
have been put together in this paper to evaluate the performance of a rock 
wedge under different conditions. 

The maximum computed displacement of the wedge when compared 
with the limit of tolerance of deformability of the structure directly resting 
on the wedge or situated on the adjoining area of the wedge will give the 
slope design engineer a tool to decide on the safety and stability of the 
structure. If it is necessary to reduce the permanent displacement of 
the wedge by improving the resistance against sliding by conventional 
engineering means, their effect can quickly be evaluated independently or 
in combination with each other by the computer program described in this 
paper. 

From the field data coupled with the results obtained by limit equi- 
librium analysis, the critical acceleration can very quickly be determined 
which will give a first hand information about the seismic stability of the 
wedge without going into the details of the seismic calculations. 

Allowing the factor of safety to go below one for a finite duration of 
time and taking decision on the basis of displacements is a well calculated 
risk which a design engineer may like to take depending on the situations. 
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I, II, 
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Notations 

Following notations are used in the text presented here. 

Inclined intersecting planes 
Geometric points on the intersection of A and B 
Critical acceleration 
Horizontal acceleration 
Vertical acceleration 
Relative acceleration of the wedge 
Driving force 
Dynamic driving force 
Static driving force 
Factor of safety 
Acceleration due to gravity 
Mass of the wedge 
Resisting force 
Dynamic resisting force 
Static resisting force 
Remaining resisting force against sliding 
Total seismic induced force 
Remaining static resisting force against sliding 
Cumulative relative displacement of the wedge 
Total remaining resisting force against sliding 
Relative velocity of the wedge 
Weight of the wedge 
Weight of the wedge in the plane A and B 
Dip of line of intersection of the planes A and B 
Average friction angle 
Friction angle of plane A and B 
Points in the curve shown in Fig. 6 

Acknowledgement 

The work presented here has been done while the first author was 
working as a visiting scientist at the LGA - Grundbauinstitut. Authors 
acknowledge the valuable suggestions given by Dr. E. G a r t u n g  of LGA. 
The visiting programme has been financed by the DAAD at Bonn, FRG. 

R e f e r e n c e s  

C h a n g, C. J., et al. (1984): Seismic Displacement in Slopes by Limit Analysis. 
Journal of Geotechnical Engineering, ASCE, Vol. 110, No. 7, 800--874. 

Commissione CNEN-ENEL per lo studio dei problemi sismici connessieon la 
realizzazione di impianti nucleari (1976): Strong Motion Earth Quake Acceler- 
ograms Digitised and Ploted Data from the Friuli, Italy, earthquake of May 6, 1976. 

Hock,  E., and Bray, J. W. (1977): Rock Slope Engineering. Revised second 
edition. Institution of Mining and Metallurgy, London. 



Computation of the Seismic Stability of Rock Wedges 125 

K o b a y a s h i, Y. (1984): Back Analysis of Several Earthquake Induced Slope 
Failures on the Izu Peninsula, Japan. Proceedings of the Eighth World Conference 
on Earthquake Engineering. Vol. III, 405--412. 

L i n, J. S., et al. (1986): Earthquake Induces Displacements of Sliding Blocks. 
Journal of Geotechnical Engineering, ASCE, Vol. 112, No. 1, 44--59. 

M a k d i s i, F. I., and S e e d, H. B. (1977): A Simplified Procedure for Esti- 
mating Earthquake Induces Deformations in Dams and Embankments. University 
of California, Berkeley, Earthquake Engineering Research Centre, Report No. 
77/79. 

N e w m a r k ,  N. M. (1965): Effects of Earthquakes on Dams and Embank- 
ments. Geotechnique 15, No. 2, 139--160. 

S a r m a ,  S. K. (1975): Seismic Stability of Earth Dams and Embankments. 
Geotechnique 25, No. 4, 743--761. 

S i j i ng ,  W., et al. (1981): On the Dynamic Stability of Block Sliding on Rock 
Slopes. Proceedings of International Conference on Recent Advances in Geotech- 
nical Earthquake Engineering and Soil Dynamics. Vol. 1, 431--434, St. Louis, 
Missouri. 

V o n t h u n ,  J. L., and H a r r i s ,  C. W. (1981): Estimation of Displacement of 
Rockfill Dams due to Seismic Shaking. Proceedings of International Conference on 
Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. Vol. 
1, 417--423, St. Louis, Missouri. 


