
Mathematical Programming 23 (1982) 274-313.
North-Holland Publishing Company

S O L V I N G S T A I R C A S E L I N E A R P R O G R A M S B Y T H E

SIMPLEX METHOD, 1: I N V E R S I O N

R o b e r t F O U R E R

Department of Industrial Engineering and Management Sciences, Northwestern University,
Evanston, IL 60201, U.S.A.

Received 29 January 1980
Revised Manuscript received 17 September 1981

This and a companion paper consider how current implementations of the simplex method
may be adapted to better solve linear programs that have a staged, or 'staircase', structure•
The present paper looks at 'inversion' routines within the simplex method, particularly those
for sparse triangular factorization of a basis by Gaussian elimination and for solution of
triangular linear systems. The ~ucceeding paper examines 'pricing' routines. Both papers
describe extensive (though preliminary) computational experience, and can point to some
quite promising results.

Key words: Large-Scale Optimization, Linear Programming, Staircase Linear Programs,
Simplex Method.

I. Introduction

S t a i r c a s e - s t r u c t u r e d l inear p r o g r a m s (LPs) have b e e n s tud ied a b o u t as long as

l inear p r o g r a m m i n g i tself . T h e y t yp i ca l l y a r i se in e c o n o m i c p lann ing ove r t ime:

ac t iv i t ies xt = (xtl xt,) are run in a ser ies of p e r i o d s t = 1, . . . , T, s u b j e c t to

cons t r a in t s tha t l ink ac t iv i t ies in a d j a c e n t pe r iods . The resu l t ing L P s , in the i r

s imp le s t fo rm, have a s t ruc tu re l ike this:

maximize C l X l • c2x2 q- c 3 x 3 + . . . + CT_IXT_ 1 -'l- CTXT,

s u b j e c t to AllXl = bl,

A21xI + A22x2 = b2,

A32x2 + A33x3 = b3,

• AT, T-lXT-I + Ar, rXr = br,

X1, ... , X T ~ O •

The s u b m a t r i c e s of coeff ic ients , A , and At+l,t, fo rm the ' s t a i r case ' •

In the i n f a n c y of c o m p u t e r s this so r t of s t r u c t u r e d p r o b l e m was a t t r a c t i ve

b e c a u s e i t s e e m e d to offer a hope of so lv ing p r a c t i c a l L P s in a r e a s o n a b l e

a m o u n t of t ime. Thus in 1949 Dan tz ig [7] o b s e r v e d that :

" . . . while the general mathematical problem is concerned with maximization of a linear form of
nonnegative variables subject to a system of linear equalities, in the linear programming case

R. Fourer[Solving staircase LPs: Inversion 275

one finds by observing the above [staircase] system that the grand matrix of coefficients is
composed mostly of blocks of zeroes except for submatrices along and just off the ~diagonal'.
Thus any good computational technique for solving programs would probably take advantage of
this fact."

At the time of this quotation, computers were primitive; the simplex method

could be costly and t ime-consuming even for small problems of general struc-

ture. Hence staircase-structured LPs were of interest not only for their ap-
plications, but for the possibility that much faster versions of the simplex

method could be devised to solve them.
Staircase linear programs are of no less interest today. Along with economic

planning, they have found applications in product ion scheduling, inventory,

t ransportat ion, control, and design of multistage structures [34, 38]. Yet a recent

survey [22] observes that:

"the 'staircase' model, in which similar sets of variables and constraints are replicated many
times, seems no more tractable today than when its importance was recognized over 20 years
ago Today we know only how to solve it as we would any linear programming problem; but
this type of problem requires more work to solve than does the average problem of the same size.
However, there should be some way to take advantage of its simple structure."

Thus the situation has been reversed. The general simplex method is now

impressively fast rather than impossibly slow, while staircase LPs are a trou-

b lesomely hard case rather than a promisingly easy one.

1.1. Proposed methods for staircase LPs

There has certainly been no shortage of a t tempts to solve staircase LPs more

efficiently. Although the simplex method has usually been involved in some

guise, individual proposals have varied considerably. The essential ideas of these
proposals may be classified in four broad areas:

Compact basis methods employ a special representat ion of the basis or basis

inverse in conjunction with a more or less standard simplex method. This
approach was first suggested by Dantzig [8, 10], and early variations were

employed by Hees te rman and Sandee [27] and Saigal [52]. More recent compact-

basis schemes have been worked out by Dantzig [11], Wollmer [58], Marsten and
Shepardson [41], Perold and Dantzig [48], Propoi and Kr ivonozhko [49], Biss-
chop and Meeraus [5], and Loute [33].

Nested decomposition methods apply the Dantz ig-Wolfe decomposi t ion prin-
ciple to generate a series of sub-problems at each period. This approach was

suggested by Dantzig and Wolfe in their original paper on decomposi t ion [12],
and has been extended or modified by Cobb and Cord [6], Glassey [23, 24], and
Ho and Manne [35].

Transformation methods start with a simpler LP that can be solved easily,
and work toward a solution of the original staircase LP. Varied proposals in this
class are f rom Grinold [26], Aonuma [1], and Marsten and Shepardson [41].

276 R. Fourer/ Solving staircase LPs: Inversion

Continuous methods deal with a multi-period LP in continuous rather than
discrete time. Fundamentals of a simplex method for continuous-time linear
programming have been proposed by Perold [47].

Ho and Loute have reported promising experiments with their methods [33],
but computational experience with most proposals is negligible. At present no
method has been shown to be more effective than the general simplex method in
solving a wide variety of large staircase problems.

1.2. Adaptat ion of the simplex method to staircase LPs

In contrast to proposals for staircase methods, proposals for improving the
general simplex method have been quite successful. The simplex method has
consequently developed into an amalgam of fairly sophisticated algorithms,
many of which are objects of study in their own right and are not normally
thought of in connection with linear programming. As a result, the simplex
method has become more and more a specialist's domain.

It is therefore not surprising that study of staircase LPs has tended to diverge
from study of the simplex method. Staircase linear programming, typified by the
above-listed papers, has sought staircase methods to replace the original simplex
method; in the mean time new, better simplex techniques have emerged for
general linear programming, but have not been applied to special structures such
as staircases.

This paper and its successor [20] seek to reverse the trend; they are concerned
with adapting the modern simplex method to solve staircase LPs more
efficiently. Each paper looks at a set of algorithms within the simplex method:
this one deals with 'inversion' of the basismmore accurately, solution of linear
systems by Gaussian elimination--and the succeeding one considers partial
pricing.

Both papers describe extensive, although preliminary, computational
experience. The results are quite promising: a staircase-adapted simplex method
sometimes performs considerably better than the general method~ yet on a range
of large problems it is never significantly worse. Moreover, it is possible to
identify several promising opportunities for further improvement.

1.3. Outline of this paper

The first two sections below develop the terminology and properties employed
in studying linear systems that arise from staircase linear programs. Section 2
covers staircase LPs and pertinent features of staircase linear systems. Section 3
looks at the particular kinds of linear systems that must be solved in the simplex
method.

The following sections examine how the simplex method might better solve
linear systems for staircase LPs. Section 4 describes sparse triangular fac-

R. Fourer/ Solving staircase LPs: Inversion 277

torization of a staircase basis matrix, and Section 5 examines in detail various
staircase solution algorithms for triangular systems.

Finally, Section 6 presents the results of preliminary but substantial com-
putational experiments on a set of practical test problems. Detailed timings are
employed in this section to compare staircase and non-staircase versions of a
simplex-method code; an informal comparison with a commercially-distributed
LP code is also reported. Implications of these experiments for future im-
plementations are discussed briefly in Section 7's concluding remarks.

2. Staircase linear programs

Staircase linear programs share two simple characteristics: their variables fall
into some sequence of disjoint groups, and their constraints relate only variables
within adjacent groups. Usually the sequence of groups corresponds to a
sequence of times, so that variables of a group represent activities during one
time period. Constraints thus indicate how activities of one period are related to
activities of the next.

A variable of period t will be called a period-t variable. By analogy, a
constraint that involves variables of period t but not of later periods will be
referred to as a constraint of period t, or as a period-t constraint.

Typically some period-t constraints involve only variables of period t, while
others relate variables of periods t and t - 1 ; the latter are said to be linking
constraints, whereas the former are non-linking. Analogously, period-t variables
that appear in constraints of period t and t + 1 are linking variables, whereas
variables that appear only in the constraints of period t are non-linking.

2.1. Staircase LPs of higher orders

A more general approach says that a staircase linear program is of order p if
its constraints relate variables that are at most p periods apart. The preceding
definitions thus characterize staircase LPs of order one. Higher-order staircase
LPs are not uncommon in complex applications (for example, modeling energy
systems [46]).

This paper is predominantly concerned with first-order staircase LPs, which
have the most specialized structure and are consequently most amenable to
special techniques. The adjective 'first-order' will therefore generally be omitted.
Nevertheless, many techniques in this paper are essentially applicable to higher-
order staircases as well, with appropriate modifications that will be pointed out
as the exposition proceeds.

Higher-order staircase LPs can also be made into first-order ones, in either of
two ways. First, pth-order equations can be transformed to equivalent first-order
ones by adding certain variables and constraints. This yields a larger first-order

278 R. Fourer/ Solving staircase LPs: Inversion

LP that has the same number of periods. Second, every p periods of the
pth-order LP may simply be aggregated as one period. The result is a first-order
staircase LP of the same size but having only about l ip as many periods. The
first method is most practical when the LP is nearly first-order to begin with,
while the second may be feasible when the number of periods is large relative to p.

2.2. Staircase matrices

The matrix of constraint coefficients of a staircase linear program is a
staircase matrix. Its nonzero elements are confined to certain submatrices
centered roughly on and just off the diagonal:

. 7

A22

A32 A33

A43 A44

i A54 A55
L

Formally, a staircase s t ruc ture for an m x n matrix A is defined as follows.
Partition the rows into T disjoint subsets, and the columns into T disjoint
subsets, so that the matrix is partitioned into T 2 submatrices, or 'blocks':

[all elements in the ith row partition]
Aij = Land jth column partition of A , i, j = 1 T.

A is lower staircase (as drawn above) if Aij = 0 except for i = j and i = j + 1. A is
upper staircase if A~j = 0 except for i = j and i = j - 1 . Any upper-staircase
matrix may be permuted to lower-staircase form by reversing the order of the
periods [17, 19]. Hence it suffices to consider matrices A that have a specified

lower-staircase structure, and hereafter 'staircase' will be used synonymously
with 'lower staircase'.

By analogy with staircase linear programs, rows in the ith partition of a
staircase matrix A are called period-i rows, and columns in the j th partition are
called period-j columns. If a period-i row has nonzero elements in blocks Ai,i-1
and A,, it is a linking row; if it has non-zeroes only in A, it is a non-linking row.
Similarly, a period-j column that has nonzeroes in Ajj and A~+1,j is a linking
column, whereas one that has nonzeroes in A~j only is a non-linking column.

If a period-i row is entirely zero within A,, that row may be moved back to
period i - 1 without disrupting the staircase structure; analogously, a period-j
column that is all-zero within Ajj may be moved to period j + 1. Nothing is lost,
therefore, in assuming that the diagonal blocks Art have no all-zero rows or
columns; A is then said to be in standard staircase form [17, 19]. Hencefor th it
will be assumed that all staircase LPs have a constraint matrix A in this standard

R. Fourer/ Solving staircase LPs : Inversion 279

form. (The trivial case in which A has an all-zero row or column is thus ruled

out.)
Following [17, 19], the period-i rows may be permuted to put the linking rows

first, and the period-j columns may be permuted to put the linking columns last.

Then A has the reduced form:

] A21] A22

] "~32 A33 I

A44

The reduced block ~i.t,t ~ is just the intersection of the period-t linking rows and
the per iod- (t - 1) linking columns.

If the linking rows of every period i are switched to period i - 1, then A gains
an alternative row-upper-staircase form:

. . . . 7

Switching the linking columns of period j to period j + 1 gives a different,
column-upper-staircase form. Thus a staircase A in reduced standard form
embodies three staircases--lower, row-upper, and column-upper--each cor-
responding to a different choice of where the periods begin and end.

2.3. Staircase bases

Any basis B of a staircase linear program necessarily inherits a staircase
structure from the constraint matrix A; B's staircase blocks, Bt, H and Btt, may
be taken to be the sub-blocks of At,t-~ and A , that contain only the basic
columns. If A has a reduced form,/~t,t-~ may likewise be taken as the basic part
of At,t+

The inherited staircase of B need not be in standard or reduced form, even
though A is. Specifically, either B, or/~t~t-~ may be zero along some linking row
i, if it happens that, in Art or At, t-l, all the nonzeroes along row i are in non-basic

280 R. Fourer] Solving staircase LPs : Inversion

columns. In this event B may be returned to reduced standard form by reassign-

ing certain rows and columns. Any linking row that is zero in B , becomes a
non-linking row in period t - 1; in the process , some linking columns of period

t - 1 may become non-linking. Any linking row that is zero in Bt,t-1 becomes a
non-linking row.

It is generally most convenient to deal with B in its inherited staircase form,

whether standard, reduced or neither. However , bet ter results may be achieved

by using B ' s reduced standard form instead, especially as it has fewer linking

rows and columns and hence a tighter structure. This issue is considered further

in Section 5.

Hencefor th Bn and Bt, t-i (or Bt,t-l) will represent the blocks of B ' s chosen

staircase form, whether inherited or reduced standard. The number of rows in
period i will be denoted m~, and the number of columns in period j will be nj; the

respect ive numbers of linking rows and columns will be rh~ and rlj. For the

row-upper-s ta i rcase form, the number of rows in period i will be m ~, and for the
column-upper-s ta i rcase form the number of columns in period j will be n t.
Necessar i ly E m~ = E m i = E nj = E n i = m, and tfii ~< mi, hj ~ nj.

2.4. Balance constraints and square sub-s taircases

If the staircase LP has a special dynamic Leont ief structure [9], then in each
period the number of basic columns must exactly equal the number of rows:

nt = m t for all t, and all blocks B , are square. This is not the case in general,

however . A basis B of an arbitrary staircase LP may have n~ > m t for some
periods t and nt < mt for others.

Since the basis is nonsingular, however , it must obey the 'balance constraints '

developed in [17, 19]. In summary , these restrict the excess of basic columns
over rows in each period, individually and cumulatively, as folows:

0 <~ ~ (rti -- mi) ~ min(rht+l, tit), t = 1 T - 1,
1

t

-min(rhs, tis 1) ~< 2 (ni - m~) ~< min(th,+l, ti,), s, t = 2 T - 1,
s

T

-rain(tits, tis_L) ~< ~ (ni - m~) ~< 0, s = 2 T.
s

In words, the cumulat ive imbalance between rows and basic columns in periods

s through t is bounded by the smaller dimension of]~s., i and the smaller
dimension of /~t+l,t. Hence these constraints are quite strict when there are
relatively few linking rows or columns.

The first constraint above may also be written as the following three in-

equalities:

t t t ~ < ~ . t 2
Ea, 1>Em,, E . , m', m,.

I 1 1 1 1 1

R. Fourer/ Solving staircase LPs: Inversion 281

These say that the first t periods of the lower staircase cannot have more rows

than columns, while the first t periods of the associated row-upper or column-

upper staircase cannot have more columns than rows.
All three of these relations are equalities when t = T, since B is square. It can

also happen that equality is achieved for some t < T. For example, if ~] m~ =

~ I ni, B must look something like this:

- - -] 7

,,

. mi = hi.

The rows and columns of periods 1 through t f rom a square sub-staircase, as do

the rows and columns of periods t + 1 through T; they are linked only by
nonzero elements in the off-diagonal block /~t+l,t. In a similar way an equality

~ ni = ~] m ~ implies a pair of square sub-staircases within the row-upper
staircase form, and ~] n i = Y~ rn~ implies the same for the column-upper form.

Generally, B may exhibit any or all of these three kinds of equalities, and each

may hold for several values of t < T. If p different such equalities hold, then B

breaks into p + 1 disjoint square sub-staircases of various kinds. The presence or
absence of sub-staircases will be of importance to several of the techniques

described fur ther on in this paper.

3. Solving linear systems in the simplex method

In solving linear programs by the simplex method, a great deal of computat ional

effort is devoted to ' inverting the basis ' . More precisely, at each iteration the

simplex method solves a linear system in B and a linear system in B T, where B is an

m x m basis matrix of columns f rom the constraint matrix A. Different realizations

of the simplex method may const ruct and use these two linear systems in different

ways (see [25] for example) but no practical version of the method avoids solving
some system in B and some in B v.

The preferred approach to solving linear sys tems in B and BT----especially when
B is very sparse and possibly ill-conditioned, as in the case of staircase L P s - - i s
based on Gaussian elimination. Fundamental ly , this approach computes a fac-
torization of the form

B = L U

where L is lower-triangular and U is upper-triangular. (See [4, 50] for compar isons
with other approaches.)

282 R. Fourer/ Solving staircase LPs: Inversion

This section begins by reviewing aspects of L U computation, organization, and
updating. It then looks more closely at the work of solving (fully or partially) the
triangular system involving L or U, as efficient solution of these systems will be a
key to more efficient handling of staircase LPs.

3.1. Compu t ing an L U fac tor i za t ion o f the basis

For the sake of concreteness, denote the two linear systems of the simplex

method by

By = a,

B~r~r = f ,

where the right-hand-side constants a and f are appropriately chosen. Since the
order of variables and equations is arbitrary, the rows and columns of B may be
permuted in any way in the course of solving these systems. In other words, for any

permutation matrices P and Q, it suffices to solve

(p B Q T) (Q y) = (Pa) ,

(QBTpT)(p~r) = (Of),

which may be viewed as systems in the permuted matrix P B Q T and its transpose.
Given a factorization P B Q T = LU, the above systems reduce to

L (U [Q y]) = [Pa],

UT(LT[p~r]) = [Of].

The system in B is thus t ransformed to two much easier systems: a lower-triangular
one in L and an upper-triangular one in U. Likewise, the system in B T is
t ransformed to a lower-triangular one in U T and an upper-triangular one in L T.

The 'hard' part of solving By = a or BT~ = f is thus the computation of

P B Q T = L U by Gaussian elimination. The essential operations of this computation

are defined by the following recursion:

[3(1~ = p B Q T,

[3~k+1~ _ q -/3}~-/3}~13~//3~ ~, i , j = k + l m ; k = l m - l ,

of which L and U are a by-product:

Lik o(k)~,~(k)) = p i k l p k k , i = k , . . . , m

k = 1, m.
Uk~=/3~, j k, ,m

The 'pivot' values/3~ k~ are critical to this procedure. An L U factorization exists if
and only if all pivots are nonzero, and is numerically stable only if all pivots are
sufficiently large in magnitude, both absolutely and relative to other elements of
]3 (k)

Practical Gaussian elimination thus looks for permutations P and QT such that

R. Fourer/ Solving staircase LPs : Inversion 283

P B Q T has an acceptably large series of pivots. Generally, any initial choice of P
and Q--the initial 'pivot selection'--may have to be modified as the recursion is
carried out, in order to produce acceptable values of/3~k). Such a modification--
so-called 'dynamic pivot selection'--may be made at any step k without affecting
the computations at preceding steps.

Choice of P and Q also strongly affects the sparsity of nonzero elements in
the resulting L and U, as have been shown both theoretically and experimentally
[13, 15]. A good choice of pivots can assure that the number of nonzeroes in L
and U is not much greater than the number in B, without sacrificing numerical
stability; it is this property that makes L U factorization preferable in linear
programming, where B is typically less than 1% dense. Section 4 will consider
both initial and dynamic pivot selections that are particularly useful for sparse
staircase LPs.

3.2. Organizing the L U factorization of the basis

The defining recursion of Gaussian elimination does not entirely fix the order
in which the operations are carried out. Consequently there is some leeway in
choosing the order in which the elements of L and U are computed and stored.
In practice, this order is most strongly influenced by the way that storage is
arranged.

The specifics of the simplex method greatly favor storage of the coefficient
matrix A by column. Consequently, LP storage schemes invariably make it easy
to retrieve the nonzero elements of any column of A; retrieving the elements of
a row of A is much more difficult. Since any basis B is just a subset of the
columns of A, it inherits A's storage scheme and has the same retrieval
properties.

Because B is stored column-wise, Gaussian elimination for linear program-
ming is most often arranged so that it processes only one column of B at a time.
In outline, this form of elimination proceeds as follows:

FACTOR-BY-COLUMN:
1: S E T L = U = L
2: REPEAT for each column bg of BQ T, k = 1 m :

2.1: SOLVE Lx = Pbk for x,
2.2: SET Uik = xi for i = 1 k,
2.3: SET Lik = xi/xk for i = k + 1 , m.

This algorithm produces both L and U one column at a time, and both are
normally stored column-wise just as B is. It is quite straightforward to design an
efficient and stable version that takes advantage of the sparsity of B, L and U.
(Practical implementations also avoid performing any explicit divisions in
recording L. However, the subsequent discussion assumes, for purposes of
clarity, that the divisions are actually carried out.)

284 R. Fourer/ Solving staircase LPs: Inversion

An alternative organization, employed by Reid [50, 51], follows the defining
recursion much more closely. Its outline is as follows:

FACTOR-BY-ROW-AND-COLUMN:
1: SET BETA = PBQ T.
2: R E P E A T for k = 1 m:

2.1: SET Lik = BETAik/BETAkk for i = k m,
2.2: SET Ukj = BETAkj for j = k , m,

2.3: SET BETAij = BETA~ i - BETAik BETAkj/BETAkk for all i, j

= k + l ,m.

Here L is again produced by column but U is produced by row; in Reid's
implementation, L is stored column-wise like B and U is stored so that it may

be accessed readily by row or by column. Implementation of this arrangement is
somewhat complex, requiring careful use of storage-management routines.

Choice of an elimination method and a storage scheme for L and U are
important to staircase LPs in two respects. First, the storage scheme determines

how linear systems involving L and U are solved (as explained later on in this
section) and so influences the extent of savings to be expected in solving these
systems for staircase LPs (Section 5). Second, different storage schemes are
apprpriate to different methods for sparse staircase elimination (Section 4).

3.3. Updating the L U factorization of the basis

Typically a full L U factorization as described above is computed only every
50-100 iterations. At intervening iterations it is efficient to simply update the

factorization, because the simplex method changes B by only one column at

each iteration.
In general terms, an updating scheme starts with a factorization PoBoQ~ =

LoUo and derives, after l iterations, some factorization of PIBtQT as a product of
'simple' matrices. For example, Benichou et al. [4] discuss a factorization of the
form PoB~Q'~ = LoUoE1E2 ... Et in which each Ei differs from the identity in only

one column.
For staircase applications, however, the most appealing update scheme is of

the kind originated by Bartels and Golub [2,3]. In essence, Bartels-Golub
updates determine a factorization of the form

PoB~Q T = L0(P TL ~)(P ~L2) ... (pTL,) U,.

The rows of Bl are permuted like those of B0, but the columns may be
rearranged. The factors of the permuted B are the original lower-triangular

P ~Li, and a modified matrix L0, l additional permuted lower-triangular matrices T
upper-triangular matrix Ut. Numerous detailed update schemes have been built
on this idea, including those of Forrest and Tomlin [16], Reid [50, 51], Saunders
[53, 54], and Gay [21].

R. Fourer/ Solving staircase LPs : Inversion 285

A common feature of Bar te ls -Golub updates is that L1 Ll all differ f rom

the identity in fairly few elements, while Ut is not greatly changed f rom U0.

Thus the bulk of the work of solving a linear system, at any iteration, consists of
solving one lower-triangular system and one upper-tr iangular system. Moreover ,

for a system in BI the work always begins with solution of a system in L0, and

always ends with solution of a system (in Uj) that is like a system in U0.

Analogously, for a system in BT the work always begins with solution of a

system (in U~) that is like a system in U~, and always ends with solution of a

sys tem in L~.

Thus little will be lost in the sequel by simply imagining the basis to be

factored P B Q T= L U at each iteration. The complications introduced by updat-

i n g - t h e insertion of simple factors be tween L and U, and the modification of

U- -w i l l be mentioned only in the few instances where they make a difference.

3.4. Solv ing tr iangular l inear s y s t ems

Linear systems in triangular form are solved by a simple, familiar, and

numerically stable process of substitution. For a lower-triangular system L x = r,

this process works forward in L f rom Lll to Lmm and produces the solution

vector one value at a time in the forward order xl X,n. For an upper-tr iangular

sys tem LTx = r, on the other hand, substitution works backward f rom Lm~ to LH

and produces the solution in the backward order x x~. In an analogous

fashion, solving an upper-tr iangular system in U also involves a backward
substitution, whereas solving a lower-triangular system in U T involves a forward
substitution.

Following Saunders ' terminology [55] a forward substitution will hencefor th
be referred to as an FTRAN, and a backward substitution as a BTRAN. Solving

a sys tem in L will be called an F T R A N L , and solving a system in L x will be

called a B T R A N L ; solving a system in U will be a B T R A N U and solving a
sys tem in U T will be an F T R A N U . Thus, for example, to solve B y = a given

P B Q T= L U , one applies an F T R A N L and then a B T R A N U to Pa, producing Qy

in the order (Qy) , (Qy)I. To solve BT~r = f, one applies an F T R A N U and
then a B T R A N L to Qf, producing P~r in the order (P~-)m , (P1r)l.*

Even though BTRANs and F T R A N s are simple in concept , they involve many

operat ions for a large LP and may comprise a substantial proport ion of the work
in the simplex method. Two circumstances are crucial in determining the
expense of a B T R A N or F T R A N routine for a given L or U: the storage
organization of L or U, and the sparsity of the solution vector.

For purposes of illustration, suppose that the nonzero elements of a lower-
triangular L are available in column-wise order. The essentials of an F T R A N L

* This terminology is at variance with the traditional use of FTRAN and BTRAN to describe the
solution of systems in B and B x, respectively [16, 45]. In particular, the meanings of FTRANU and
BTRANU in this paper are exactly the reverse of their meanings in the ~vork of Benichou et al. [4].

286 R. Fourer / Solv ing s taircase L P s : Invers ion

routine to solve L x = r are as follows:

F T R A N L :

R E P E A T FOR j FROM 1 TO m:

SET xj = r J L i j ,

R E P E A T FOR i FROM j + 1 TO m W H E R E L~j# O:

SET r~ = r~ - L~jxj.

If rj = 0 at the j th pass through the outer R E P E A T loop, then also xj = 0, and the
inner loop merely adds zero to various elements of r. Hence the j th pass is

superfluous when xj = 0. Moreover , if it happens that rl rp-i are all zero, then
the main loop does no work until pass p. A more efficient routine is thus as

follows:

F T R A N L :

1: R E P E A T (SET xp = 0) FOR p FROM 1 U N T I L rp~ 0.

2: R E P E A T FOR j FROM p TO m:

I F r j = 0 : S E T x j = 0 ,

ELSE: SET xj -- r j /L j i ,

R E P E A T FOR i FROM j + 1 TO m W H E R E Lij¢ 0:
SET r~ = ri - L~jxj.

Step 1 is especially valuable when rl rp_l are known beforehand to be zero.

The efficiency of step 2 depends on how sparse x turns out to be. If L and r are

both sparse to begin with then x may well be fairly sparse.

The situation for L T is quite different. Since L is stored column-wise, L x is

effectively stored row-wise, and a B T R A N L routine for solving L T x = r must

proceed as follows:

BTRANL:

R E P E A T FOR j FROM m TO 1:
R E P E A T FOR i FROM m TO j + 1 W H E R E L~j# 0:

SET rj = r j - L~jx~,

SET xj = r j /L j j .

Here the j th pass cannot be avoided by knowing rj = 0, since ri is continually

modified within the inner R E P E A T loop and xj is not determined until af ter the
inner loop is completed. The only substantial economy from sparsity of r (or x)
would be in knowing that a l l of r~ r,+l are zero; then x Xp+l are also all
zero and the outer loop may be started with j = p.

The key difference in the above examples (and their analogues for U) is in
their storage organization. Briefly, column-wise organization is preferable to
row-wise organization in taking advantage of zeroes within the right-hand-side

R. Fourer/ Solving staircase LPs : Inversion 287

and solution vectors. Thus if L and U are both stored by column (the most

common arrangement), then zeroes benefit systems in B = L U much more than
systems in B T= UTL T. If there is also some access to U by row (as in the case

with certain updating methods), then zeroes may also be taken into account in
the FTRANU routines for solving systems in B T.

The practical significance of the above remarks necessarily depends on the
actual sparsity of the pertinent vectors. For systems of the form By = a, the
vector a is always a column of the very sparse LP coefficient matrix A, and so
FTRANL and BTRANU can indeed take advantage of considerable sparsity.
For systems of the form BTTr = f the situation is more involved (see Section 6),

but generally BTRANL is most likely to suffer by being unable to take ad-
vantage of zeroes. These observations will be amplified in considering staircase

LPs, whose sparsity structure is especially well defined.

3.5. Partially solving triangular linear systems

One consequence of the preceding analysis is that the solution to By = a or
BTTr = f is ultimately computed one element at a time, regardless of how L and

U are stored. The vector y is produced by BTRANU in the order
(Qy)m (Qy)I, and the vector ~r is produced by BTRANL in the order
(PTr) (PTr)l.

BTRANL or BTRANU may therefore be terminated prematurely if only part of
y or ~r needs to be computed. Such a partial solution has two potential uses:
when the rest of the vector is already known (to be zero, for instance) and when

only a portion of the vector is required at the present iteration.
Nevertheless, for general LPs there is little to be gained from trying to

compute partial solutions, owing to the presence of the permutations P and Q.
There is no efficient way, for example, to tell whether (Qy)j (Qy)l will all be
zero for some j, or to predict which element of P~r will be needed. Section 5 will

show, however, that partial solutions can offer economies in solving staircase
LPs, provided P and Q are chosen to reflect the staircase structure.

4. Sparse elimination of staircase bases

The staircase matrices encountered in linear programming are sparse in two
senses; they have many blocks that are all-zero, and they have a low proportion
of nonzero elements (typically 2-26%) within the remaining blocks. Thus stair-
case bases are prime candicates for the techniques of sparse Gaussian elimina-
tion. In essence, these techniques try to choose permutations P and Q and to
factor P B Q T= L U so that the triangular matrices L and U are nearly as sparse
as B.

Staircase sparse-elimination techniques use the staircase structure of B to

288 R. Fourer/ Solving staircase LPs: Inversion

guide the choice of P and Q. Two families of such techniques have been
proposed [17]; one is based on the 'bump-and-spike' sparse-elimination methods
common in linear programming, and the other employs popular 'merit' methods
of sparse elimination.

This section summarizes the direct effects--on speed, storage, and L U spar-
sity--of substituting staircase sparse-elimination techniques for standard ones in
the simplex method. Bump-and-spike and merit techniques first are considered
separately, then are briefly compared. Section 5 subsequently shows how
staircase elimination techniques lead to additional efficiencies in the FTRAN and
BTRAN routines.

4.1. Bump -and -spike techniques

The bump-and-spike methods originated by Hellerman and Rarick [28,29]
exemplify a 'global' approach to sparse elimination. They look for an overall
permutation of B to a form that should have a naturally sparse LU fac-
torization. An entire permutation is determined in advance of any numerical
computations; during the numerical elimination stage, the permutation is
modified only if an unacceptable pivot value is encountered.

As their name suggests, bump-and-spike techniques employ a two-stage pro-
cedure:

(1) The bump-finding phase determines an essentially unique permutation of
B to a block-triangular form that has as many diagonal blocks ('bumps') as
possible. (The block-triangular form somewhat resembles staircase form, but all
its diagonal blocks Btt are square and any sub-diagonal block may contain nonzero
elements.)

(2) The spikerfinding phase tries to permute each block larger than 2 × 2 to a
form that is entirely lower-triangular except for a small number of 'spike'
columns that extend above the diagonal. This permutation is commonly entrus-
ted to a heuristic algorithm known as P3 (the Preassigned Pivot Procedure).

Permuted in this way, B has a good structure for sparse Gaussian elimination.
Creation of new nonzero elements in L and U--the 'fill-in'--is confined to the
relatively few spike columns, while the remaining 'triangle' columns of B are
essentially unaffected. Furthermore, elimination of a given spike column can
cause fill-in only within subsequent columns of the same bump.

A proposed staircase bump-and-spike technique [17] dispenses with step (1)
above by substituting a known staircase form for the block-triangular form. Step
(2) then applies the P3 spike-finding heuristic to the diagonal blocks Bt~ of the
staircase, with appropriate modifications to handle blocks that are not square or
that are rank-deficient. Rows of period 1 are thus assigned pivot elements first,
followed by rows of period 2, period 3, and so forth through period T. The major
difference is in the handling of columns. As explained in Section 2, a nonsingular
staircase matrix always has at least as many columns as rows in the first t

R. Fourer/ Solving staircase LPs : Inversion 289

periods; thus it is generally not possible to assign a pivot element from the block
Btt to every period-t column. Leftover columns from period t must be assigned
pivot elements in rows of later periods; since these columns necessarily extend
above the diagonal, they are referred to as 'interperiod spikes', in contrast to the
'intraperiod spikes' within B. that are found by P3.

The effect of this procedure (described in much more detail in [17]) is to
permute the staircase so as to 'square off' its diagonal blocks while reducing it to

a nearly lower-triangular form:

Fill-in is still confined to the spikes; elimination of a spike column can cause
fill-in only within intraperiod spikes of the same block or within interperiod
spikes of the same or preceding periods. The number of interperiod spikes is
closely related to the cumulative excess of columns over rows, which is limited
by the balance constraints of Section 2; thus there should be relatively few
interperiod spikes and fill-in should be reasonably limited.

Computational experiments in [17] suggest that the standard and staircase
bump-and-spike techniques are roughly competitive. They tend to produce
comparable numbers of spikes, and the fill-in due to either technique is seldom
much more than twice the fill-in due to the other. However, each technique does
appear to be superior in certain situations.

Standard bump-and-spike seems invariably better when all bumps are small
and most are 1 z 1. P3 is then applied cheaply to a few blocks, whereas the
staircase technique must still apply P3 to every diagonal block of the staircase.
The standard technique's spikes tend to be smaller than the staircase technique's
interperiod spikes, and so the former fill in less; fill-in within L tends to be about
the same, but the standard technique produces a notably sparser U. In addition,
the standard technique produces fewer spikes that have unacceptable pivot
values, and so wastes less time in modifying the chosen permutation.

Staircase bump-and-spike appears to have the advantage, however, when
there are one or two very large block-triangular bumps that comprise a third or
more of the rows and columns of B. Standard P3 is highly inefficient in
processing these large bumps, whereas staircase P3 only needs to process the
staircase blocks. In such situations the two techniques yield comparable fill-in
within U, while the staircase technique yields a sparser L. Moreover, in some

290 R. Fourer/ Solving staircase LPs: Inversion

cases the staircase technique produces substantially fewer spikes that have
unacceptable pivots.

Both of these bump-and-spike techniques are designed for column-wise
organization, and normally use the FACTOR-BY-COLUMN elimination routine
of Section 3. Unacceptable pivot elements are handled by 'swapping' the pivot
column with a later spike (an operation in which BTRANL figures as a
subroutine). Storage for either technique need not exceed that required to hold B
and the spike columns of L and U.

4.2. Meri t techniques

'Merit' methods, as first proposed for linear programming by Markowitz [40],
typify a 'local' approach to sparse elimination. They dynamically select the kth
pivot element from within/3 (~ so as to guarantee relatively little fill-in of nonzero
elements in computing /3 (k÷l~. For a sparse B, this myopic optimization of
individual pivot elements tends to produce a sparse L and U overall, as
computational experiments have confirmed [15].

Methods of this sort rely on a 'merit function that estimates--for each
nonzero element of/3(k~--the fill-in that would result if that element were chosen
as pivot. The kth pivot element is selected to minimize this merit function over
all nonzero elements of/3(k~ that meet certain numerical requirements. Practical
merit functions are generally computed from two simpler sets of values: rl k~, the
number of nonzeroes in row i of /3 (k~, and cl ~, the number of nonzeroes in
column] of/3 (k~. Markowitz originally suggested, for example, that the merit of
3 (k~ be computed as (r! k~- 1)(cl k~- 1), which has proved both effective and ii
efficient to implement [14, 15].

Proposed staircase merit techniques [17] restrict minimization of the merit
function to roughly one period of/3(k~ at a time. As a consequence, both the rows
and columns of B are assigned pivot elements in period order. Fill-in is thereby
limited to a small part of/3(k~--roughly two periods or less--while the remainder

of/3(~ is just the same as B.
Staircase merit techniques should tend to produce a denser L and U than

standard merit techniques, since the former minimize the merit function over a
much smaller set of potential pivot elements. However, experiments in [17]
suggest that the staircase techniques are not unreasonably inferior. In the worst
test case the staircase merit technique produced about twice the fill-in (47%
versus 22%); in some cases it did nearly as well as the standard technique,
however, and in one case it was distinctly better.

Staircase merit techniques offer a clear economy, moreover, in carrying out
the elimination. They confine all of the work of the kth elimination step--
minimizing the merit function, computing/3(k÷o from /3 (k~, and updating ,~-(k~ and
clk~--to the rows and columns of one or two periods. By contrast, the standard
technique must deal with the entire /3(k~ at each elimination step.

R. Fourer/ Solving staircase LPs: Inversion 291

Potential savings in storage are even greater. Merit techniques normally use
the FACTOR-BY-ROW-AND-COLUMN algorithm of Section 3, since both
rows and columns are dynamically permuted in selecting the pivot element.
However, staircase merit elimination relies on only the one or two periods of
BETA that differ from B, whereas standard merit elimination needs all of BETA.
As a consequenc e, staircase merit techniques may be able to use simpler or more
economical storage strategies than the standard techniques. As an example,
under the standard techniques BETA shrinks only as L and U grow, and some
sort of dynamic storage allocation is generally required to hold all three in
available storage. Under the staircase techniques, by contrast, the active part of
BETA stays small and fairly constant in size, and might well be kept in a fixed
work area.

4.3. Comparison of bump-and-spike and merit techniques

There is no clear choice between bump-and-spike and merit techniques for
sparse LU factorization, whether standard or staircase. Evidence of [17] sug-
gests that each family of techniques offers the lowest fill-in for certain LP bases;
additionally, each family is sensitive to the nature and availability of storage. To
further complicate matters, particular LU updating schemes are designed for
each family: for example, Saunders' scheme [53, 54] for bump-and-spike, Reid's
[50, 51] for merit. These update schemes also have varying sparsity and storage
characteristics.

Staircase bump-and-spike techniques do have one evident advantage: they
apply just as well to higher-order staircase LPs (as defined in Section 2) as to
first-order ones. Staircase merit techniques could also be adapted to handle
higher-order staircases, but the extent of fill-in within/3 (k) would be greater and
hence the savings over comparable standard techniques would be less.

On the other hand, staircase merit techniques are easily designed to ensure
that all rows within a given square sub-staircase (Section 2) are assigned pivot
elements on columns within that square sub-staircase. This 'respect' for sub-
staircases--both lower and upper--may prove advantageous to BTRAN and
FTRAN routines as discussed in Section 5. By contrast, staircase bump-and-
spike techniques normally respect just sub-staircases of the lower-staircase
structure; they can be made to respect upper sub-staircases only with some
additional difficulty.

5. Solving staircase linear systems

The staircase elimination techniques discussed above have a significance to
linear programming that goes beyond their different ways of computing B = LU.
Both families of staircase techniques also make it possible to design specialized

292 R. Fourer/ Solving staircase LPs : Inversion

BTRAN and FTRAN procedures for staircase LPs. These specialized pro-
cedures can contribute greatly to the efficiency of the simplex method, as the
experiments in Section 6 will demonstrate.

For the purposes of BTRAN and FTRAN, the most important property of

staircase elimination techniques is that they pass B's staircase structure on to L
and U. Thus this section begins with a careful discussion of the period ordering
of L and U. Thereaf ter each solution p r o c e d u r e - - F T R A N L , BTRANU,
FTRANU, B T R A N L - - i s taken up in turn.

5.1. Period partitions of L and U

Suppose that a factorization PBQ T= L U has been determined as described in

Section 3. In terms of this factorization and the staircase constraint matrix A,
the following indices may be defined for each period t -- 1 , T:

At = first row of PB whose corresponding row of A is in period t or later.

/xt = first column of BQ x that is a column of A from period t or later.

Necessarily)tt ~<)tt+l and /xt ~</xt+l for any choice of P, B and QT. Thus

{)tl,..., AT} and {/xl /XT} partition the rows and columns, respectively, of
PBQ T by period. Since the rows of PBQ T correspond to the rows of L, the At

values can also be thought of as partitioning L; analogously, the /xt values

partition U.
In general these partitions are not particularly significant, as the)tt and /xt

values all tend to be small. In an extreme (but not unusual) case, for example, if

the first row of PB is a per iod-T row, then ,~) tW = 1.
If the factorization PBQ T-- L U is determined by one of the staircase elimina-

tion techniques, however, the)tt and /xt values must approximate the original
staircase partitioning of B. This fact is clearest in the simple case where a
staircase technique, from either family, is applied to the staircase structure that
B inherits from A. These techniques all construct P so that PB preserves the

staircase row ordering; hence they ensure ~tt = ~ t-~ m; + 1. The merit techniques

also construct Q so that BQ T preserves the staircase column ordering, and
consequently they also ensure/xt = ~ - 1 nj + 1. For simple bump-and-spike tech-
niques /xt =)t~; more sophisticated versions give/xt = At + the number of all-zero

rows in Btt.
The situation is slightly more complicated if, as suggested in Section 2, B is put in

reduced standard staircase form before the staircase elimination is carried out.
Some rows of B that correspond to period-t rows of A may then be treated as if they
are in period t - 1. As a consequence, At need only satisfy ~ - 2 mg+ 1 ~ At <~

~-~ m~ + 1. Thus a modification of the inherited staircase form to reduced standard
form will tend to produce smaller At values and a less regular)t-partition (although
the /x-partition will be unaffected). The)tt values will still be quite well-spaced,
however, particularly if the periods are small and numerous.

R. Fourer[Solving staircase LPs : Inversion 293

A further complication is introduced when B's factorization is updated by the

Bartels-Golub methods described in Section 3. P, L and hence the)t-partition
are unchanged; Q and U are modified, however, and hence the /z-partition is
altered. For example, the simplest update methods always delete one column of
Bt-1Q~-I and add a new column at the end to produce BtQ T. All/xt values greater

than the index of the deleted column are consequently decreased by 1, and the

/x-partition is thus slowly degraded. Nevertheless, degradation should not be
severe for large LPs with the usual 50-100 updates between refactorizations.

The situation is more involved in the case of sophisticated updates that add the
new column before the end of Bl-z; the resulting degradation of the /x-partition
should be no worse, however, provided some care is taken in choosing where to

add the new column.
Staircase elimination techniques thus yield ht and /xt values that significantly

partition L and U by period. It remains to use these values to reduce the work

of solving systems in L and U.

5.2. S ta i rcase F T R A N L

At each iteration F T R A N L solves a system like Lv = P a , where a is a

column of A. If a is from period t, then it is zero on rows of periods 1 through

t - 1. Consequently,

(Pa)i = 0 for all i = 1, . . . , ht-1,

and so the main loop of F T R A N L may begin at index At as explained in Section

3.
In brief, when F T R A N L transforms a period-t column it can start at period t

in L, rather than at the beginning of L. The resultant savings should be modest,
however, since F T R A N L already handles zeroes efficiently.

Further savings may be possible when using an elimination technique that

respects square sub-staircases in the upper-staircase structures (Section 4). If
there are p upper sub-staircases, then L consists of p separate triangles:

. -]

I I
I I

[

The system L v = Pa thus decomposes into p independent triangular subsystems,
one for each upper sub-staircase. Consequently, it is only necessary to solve the
one or two triangular subsystems on whose rows a is nonzero; the other
subsystems must have solutions that are all-zero. Savings through this scheme

294 R. Fourer] Solving staircase LPs : Inversion

would depend on the number of upper sub-staircases, and would probably be
small since F T R A N L is efficient to begin with; the extra logic involved in

keeping track of the upper sub-staircases may sometimes be more trouble than it

is worth.

5.3. Staircase B T R A N U

At each iteration BTRANU solves a system like U (Q y) = w, where w is a

solution vector produced by F T R A N L plus update transformations. Generally
nothing is known in advance about the position of zeroes in w even for staircase

problems, although BTRANU may take advantage of individual zeroes in its

usual efficient way.
A small saving is possible, however, if the location of (lower) square sub-

staircases in B is known. Suppose, for example, that B has a sub-staircase at
period t (that is, ~tj mi = ~tl ni). The system By = a may therefore be permuted

and partitioned as

B(m y(1H ra(,,1

where B (11) is the initial t-period square sub-staircase block. Suppose also that

the column a is from any period s > t. By definition, its subvector a (l) is zero;

hence necessarily y(~) is also zero.
In other words, under the above circumstances y; = 0 whenever the]th column

of B is from periods 1 through t. For any particular permutation Q, therefore,

(Q y) j = 0 for a l l j = l /~ t -1 .

Consequently the main loop of BTRANU, which computes (Qy)j in the order
j = m, ..., 1, can stop after the #tth pass; the remainder of the solution is zero.
The savings in this instance should be modest, since BTRANU handles zeroes

efficiently in any case.

5.4. Staircase F T R A N U

FTRANU solves a system like U % = Of at each iteration, where the vector f
is commonly chosen in one of three ways:

(1) In phase 1 of the simplex method, f contains a - 1 corresponding to each

infeasible basic variable, and zeroes elsewhere.
(2) In phase 2, if the objective function is not included in B, then f is the

vector of objective coefficients that correspond to the basic variables.
(3) In phase 2, if the objective function is included in B, then f contains one

+1 and zeroes elsewhere.

In any of these cases, it may be possible to determine that f is zero in all

R. Fourer/ Solving staircase LPs: Inversion 295

columns of the first t periods of the basis. It then follows that

(Qf)j = 0 for all j = 1 /zt - 1,

and hence the main loop of F T R A N U may begin at/zt.
This situation is analogous to the one for F T R A N L above: when FTRANU

transforms an f that is zero prior to period t, it can start at period t in U rather
than at t h e beginning of U. However , the potential savings are greater for

F T R A N U than for F T R A N L (assuming U is stored in the usual column-wise
fashion) because FTRANU cannot normally benefit from zeroes in f. The actual
savings in F T R A N U depend highly on how f is handled. Gains are most likely in
case (1) above, where f tends to have many zeroes; savings in case (2) will be
slight unless the objective has some special form. In case (3), FTRANU can be
avoided en t i re ly- -even for non-staircase L P s - - b y placing the objective row last
in PBQT; thus staircase FTRANU may have no work to save.

Staircase F T R A N U might also take advantage of lower sub-staircases to avoid

computing values that 'must be zero; the situation is analyzed just as for
F T R A N L above. Any savings would depend upon finding sub-staircases in

which f is all-zero, and so the costs of finding such sub-staircases would have to
be weighed against any benefits.

5.5. Staircase BTRANL

B T R A N L produces a 'price vector ' , ~r, at each iteration by solving L~(PTr)=
w, where w is the product of F T R A N U and any update transformations. The
simplex method then uses ~- to compute the reduced cost

dj = cj - 7raj

for any nonbasic variable xj (with cost cj and coefficient column ai). If xj is from

period t, aj must be all-zero except on the constraints of periods t and t + 1;
hence only the elements of ~r from these periods are needed to compute 7raj.
Consequently only a portion of ~r may be needed at a given iteration i f - -by use

of 'partial pr ic ing ' - -only a subset of the d i values are computed. (Numerous
partial-pricing schemes appropriate to staircase LPs are discussed in [20].)

Suppose, therefore, that the current iteration needs only elements of 7r for
periods t and later. Since BTTr = f, elements of ~r correspond in period to rows
of B ; elements of PTr thus correspond to rows of PB. To produce 7r for periods t
and later, therefore, it suffices to compute

(P~r)i for all i = At m.

These are exactly the first m - ht + 1 elements produced, in reverse order, by
BTRANL. Hence exactly the desired part of 7r is computed by running
B T R A N L until it completes the ht-pass of the main loop; the rest of BTRANL
may be skipped. (Consult [20] for a more extensive discussion of this idea,
including consideration of restarting BTRANL.)

296 R. Fourer/ Solving staircase LPs : Inversion

Further savings might be achieved by trying to compute even smaller portions
of ~r. Specifically, ~r might be computed within one upper-sub-staircase in-
dependently of the others. Such an arrangement would necessarily be complex,
however, and its value is uncertain.

5.6. Adaptat ions for higher-order staircases

Most of the above methods are equally valid for higher-order staircases as
described in Section 2, provided that some form of staircase Gaussian elimina-
tion is employed to assure good values of h~ and/zt. However, any savings due
to upper-sub-staircases in FTRANL and BTRANL are likely to be lost.

6. Computational experience

This section reports initial computational experiments with some of the
preceding ideas. The results indicate that staircase adaptation of the simplex
method does make a significant difference: generally much less time is spent in
certain routines, while more time is spent in others. Overall the staircase runs
were measurably faster, and in one case the savings were quite substantial.
Moreover, it appears there is significant room for improvement in subsequent
implementations.

For the test runs an existing LP code, MINOS [44,55], was modified to
recognize staircase structure and to optionally apply some of the staircase
techniques of Sections 4 and 5. Each test LP could then be solved twice--once
with the staircase features turned off, once with them on--and the results could
be meaningfully compared. Details of the test code and of the experimental
setup are given in Appendix A.

MINOS employs a bump-and-spike factorization with Saunders' updating
technique. Consequently a staircase bump-and-spike technique was implemented
in the test version, and all test results bear directly only upon bump-and-spike
methods. Nevertheless, from certain results one may make favorable specula-
tions about the expected performance of staircase merit techniques, as indicated
further below.

To keep the presentation compact, only short tables of results are presented
here. Graphs of more extensive test data are collected in a technical report [18].

6.1. Overall results

Seven medium-to-large-scale linear programs were used in the tests. All are
from applications, and are of dissimilar structures (aside from being staircase).
Their gross dimensions (including objectives and right-hand sides) are given in
Table 1. The 'iterations' column gives the number of iterations required by a
standard version of MINOS to reach optimality from an all-slack starting basis.

R. Fourer/ Solving staircase LPs: Inversion 297

Table 1

Nonzero
Periods Rows Columns values Iterations

SCAGR25 25 472 500 2208 1058
SCRS8 16 491 1169 4106 862
SCSD8 39 398 2750 11349 2047
SCFXM2 8 661 914 5466 1012
SCTAP2 10 1101 1880 13815 1174
PILOT 9 723 2789 9291 >2000
BP1 6 822 1571 11414 >2000

For the sake of economy, PILOT and BP1 were tested on runs of 1000 and 750
iterations, respectively, starting from advanced bases. The other problems were
tested on runs to optimality from all-slack starts. Additional information about
the test LPs is collected in Appendix B.

Raw results from the test runs, standardized to seconds per 1000 iterations,
were as given in Table 2. Savings were substantial for PILOT, and respectable
for SCSD8. For the others the gross difference between the standard and
staircase techniques was small, though the latter performed worse only on BP1.

It is misleading to consider only these totals, however. When the times are
broken down by function, it becomes evident that gains in some areas tend to be
offset by losses in others. The staircase techniques have an edge in simplex
pricing and pivoting, but are usually slightly behind in updating the L U fac-
torization; they range from much faster to somewhat slower in pivot selection
for Gaussian elimination, but are almost always slower in computing the L and
U factors. Miscellaneous routines consume a good 10-20% of the time, much of
which could be saved in practical (rather than test) circumstances.

Thus considerably more is to be learned by examining the times of individual
routines and functions. The following subsections consider first the simplex-
iteration routines, and then the LU-factorization ones.

Table 2

Total time

Standard Staircase % change

SCAGR25 29.7 27.9 - 6%
SCRS8 33.9 31.5 - 7%
SCSD8 43.2 37.8 -13%
SCFXM2 43.4 42.2 - 3%
SCTAP2 67.2 67.1 0%
PILOT 155.7 106.4 -32%
BP1 181.8 189.7 + 4%

298 R. Fourer/ Solving staircase LPs : Inversion

6.2. I terat ing routines

The simplex method spends a majority of its time in tasks that are repeated at

each iteration: choosing a column to enter the basis (pricing), determining which

column leaves the basis (pivoting), and revising the basis factorization accord-

ingly (updating). The LP code's 'iterating' routines carry out these tasks.

For the test problems, total time spent in the iterating routines--again,

normalized to seconds per thousand iterations--is given in Table 3. Here the

results are somewhat more striking, with savings of 10-20% in four of the seven

tests.

A further breakdown of

far is in BTRANL, which

every instance. There is a

these timings reveals that the greatest difference by

is significantly faster with the staircase version in

corresponding, but smaller, efficiency in FTRANL.

The normalized figures for these two routines are given in Table 4. Roughly the

savings are 30-50% in B T R A N L and 20-40% in FTRANL.

There is a small but noticeable tendency of the staircase version to run slower

in B T R A N U and FTRANU. Most likely this behavior is a consequence of the

L U factorization: the staircase bump-and-spike elimination tends to yield a

denser U.

Some of the difference in BTRAN and FTRAN timings should be due to the

Table 3

Iterating time

Standard Staircase % change

SCAGR25 24.6 22.2 - 10%
SCRS8 28.1 23.8 -15%
SCSD8 34.2 30.5 -11%
SCFXM2 33.2 32.5 - 2%
SCTAP2 56.9 54.3 - 5%
PILOT 108.0 86.3 -20%
BP1 136.6 146.1 + 7%

Table 4

FTRANL BTRANL

Standard Staircase % change Standard Staircase % change

SCAGR25 2.7 1.9 -29% 6.7 3.5 -48%
SCRS8 2.4 1.5 -36% 5.7 3.4 -41%
SCSD8 3.9 2.9 -25% 8.2 4.7 -42%
SCFXM2 2.6 1.9 -28% 7.8 5.4 -32%
SCTAP2 3.3 2.6 -21% 9.2 6.6 -28%
PILOT 13.0 8.0 -38% 22.9 12.7 -45%
BP 1 14.8 12.6 - 15% 32.5 26.9 - 17%

R. Fourer/ Solving staircase LPs: Inversion 299

Table 5

Time saved
by staircase

FTRAN, BTRAN % saving

SCAGR25 4.9 15%
SCRS8 4.1 12%
SCSD8 5.2 12%
SCFXM2 4.4 9%
SCTAP2 4.4 6%
PILOT 13.4 11%
BP1 3.5 2%

methods of Section 5. However , the efficiency of these methods cannot be told
from the above data, which also reflect differing L and U densities. To get
around this problem, a separate set of runs was made, employing the staircase
L U factorization but not Section 5's enhancements. Table 5 gives the
differences (per 1000 iterations) between runs with and without these enhance-

ments: The efficiencies in FTRAN and BTRAN cut total running times 9-15% in
most cases; the savings would be more pronounced as a percentage of iterating
time only. Predictably, LPs of many periods tended to show the greatest
differences.

Comparable savings should be realized if staircase bump-and-spike elimina-

tion techniques are replaced by staircase merit techniques, since the methods of
Section 5 apply equally well to either. Hence merit techniques may well be
superior for LPs such as SCAGR25 and SCFXM2 whose staircase fac-
tor izat ions--as reported in [17]--are notably denser under bump-and-spike.

The one sour note in the three tables above is BP1, for which the staircase
iterating routines seem to perform rather poorly. On closer examination,
however, this is not entirely surprising, as BP1 differs significantly from the
other LPs. Whereas the others are first-order staircases (or, in the case of PILOT,
very nearly first-order), BP1 has a large number of nonzeroes below the
staircase; its form is in fact closer to dual-angular. BPI ' s bases consequently
tend to be unbalanced. Hence the staircase technique produces considerably
more spikes, and a much denser U factor. The result: much more time spent in
F T R A N U and BTRANU, offsetting any gains in F T R A N L and BTRANL.

It thus appears that a good staircase form is essential to success of the
staircase techniques. BP l 's staircase araangement was deduced from fairly scant
information, and is evidently inadequate. A better staircase form may exist, but
but a better knowledge of the underlying model may be necessary to find it.

6.3. Factorizing routines

At intervals of typically 50-100 iterations a fresh factorization of the basis is
computed by a separate set of routines. For bump-and-spike techniques, these

300

Table 6

R. Fourer/ Solving staircase LPs : Inversion

Factorizing time

Standard Staircase % change

SCAGR25 1.4 1.6 +15%
SCRS8 l, 1 1.4 +22%
SCSD8 2.7 1.6 - 3 9 %
SCFXM2 1.9 2.8 +47%
SCTAP2 1.7 3.0 +80%
PILOT 32.8 9.7 - 7 0 %
BP1 27.9 26.1 - 6%

'factorizing' routines fall into two classes: ones that select a pivot order, and
ones that compute the L and U factors.

For the test problems, total time in factorizing routines--normalized to
seconds per 10 refactorizations--is given in Table 6. The outcomes appear to
vary wildly. However, they are the consequence of a few simple patterns which
are revealed by looking at the pivot-selection routines and LU-computation
routines separately.

Pivot selection involves a routine for the P3 heuristic, a block-triangulariza-
tion routine (for the standard technique only), and main routines to call these
and record the selected pivots. The staircase technique's main routine seems to
run usually somewhat longer, probably because it is more complicated. The
other routines' normalized times are summarized in Table 7. The behavior of P3
is clearly critical. P3 is quite fast when bumps are small; but it begins to slow
down when bump size passes 100, and it is extremely inefficient on bumps of
size 400 or 500. PILOT, the worst case here, spends 16% of its total running time
in P3 alone! By extrapolation, it seems likely that P3 will be prohibitively slow
for large bumps. Thus a staircase bump-and-spike technique (or else an efficient
merit technique) may be essential for larger versions of models like SCSD8 and
PILOT.

The main LU computation routines employ FTRANL and BTRANL as

Table 7

Standard Staircase
Median size of

P3 B L K A Total P3 largest bump

SCAGR25 0.4 0.2 0.6 0.2 45
SCRS8 0.2 0.2 0.4 0.2 28
SCSD8 1.1 0.4 1.5 0.2 114
SCFXM2 0.2 0.5 0.7 0.8 36
SCTAP2 0.0 0.5 0.5 0.7 1
P ILOT 20.4 1.0 21.4 2.4 533
BP1 13.1 2.0 15.1 3.8 408

R. Fourer/ Solving staircase LPs: Inversion 301

Table 8

Standard LU Staircase LU

Main FTRANL BTRANL Swaps Main FTRANL BTRANL Swaps

SCAGR25 0.2 0.0 0.0 3 0.6 0.1 0.1 20
SCRS8 0.2 0.0 0.0 1 0.4 0.1 0.1 11
SCSD8 0.4 0.1 0.0 6 0.5 0.1 0.1 11
SCFXM2 0.5 0.1 0.0 2 1.0 0.2 0.1 8
SCTAP2 0.2 0.0 0.0 0 0.7 0.1 0.4 19
PILOT 3.3 3.8 2.4 27 3.2 1.8 0.8 16
BP1 3.7 3.8 2.4 28 6.4 5.8 7.2 49

subroutines. F T R A N L solves for the next column of L and U (as described in

Section 3), and B T R A N L solves for row k of /3 (k) when a column interchange

('spike swap') is necessi tated by an unacceptable pivot element. The test

problems gave the normalized results of Table 8 (where ' swaps ' is the maximum

number of swapped spikes per factorization). These times are sensitive to the

numbers of spike swaps, since each swap requires another B T R A N L and

F T R A N L plus extra work in the main routine. Exper ience with P I L O T and
other LPs [17] suggests that the staircase technique may generally require fewer

swaps when the block-triangular bumps are big (as for P ILOT) and the staircase

is well-balanced (unlike BP l 's). However , the staircase technique seems to need

more swaps when the block-triangular form has relatively small bumps.

Again the data suggest that staircase merit techniques might be preferable for

the small-bump staircase LPs. An efficient implementat ion of merit-function
minimization [14, 51] need incur only a small extra cost in rejecting any unac-

ceptably small pivot element.

6.4. Compar i son with a commercia l code

Product ion runs of the P I L O T model were frequently made on the same

computer as used for the above tests. These runs employed a commercial ly-

marketed machine-language LP c o d e - - t h e W H I Z A R D simplex routine of MPS

I I I [43]--which incorporated a bump-and-spike factorization scheme. Various
system parameters were set f rom experience to yield fast P I L O T runs.

For comparison, therefore, W H I Z A R D was run 1000 iterations f rom the same
starting basis as used above with MINOS. The running times were as follows:

MINOS, standard 155.7 sec,

MPS I I I / W H I Z A R D 114.7 sec,

MINOS, staircase 106.4 sec.

MINOS did require considerably more storage, primarily because its storage
scheme for the U factor could not efficiently accommoda te a large number of

302 R. Fourer/ Solving staircase LPs : Inversion

spikes. U could probably be stored more compactly, however, without
significant effect upon the MINOS timings.

Nothing very definite can be inferred from these figures, since MINOS and
MPS III-WHIZARD differ in many ways. They employ different scaling tech-
niques, factorization routines, and refactorization frequencies; moreover,
WHIZARD uses multiple pricing while MINOS does not. Nevertheless, it is
encouraging that staircase MINOS can be compared at all with a fast com-
mercial LP system. At the least, one may conclude that the timings throughout
this section are probably fairly realistic.

7. Conclusions

The preceding experimental evidence clearly bears out one hypothesis of this
paper: that the inversion routines of the simplex method may be adapted to
handle staircase LPs more efficiently. Are these staircase efficiencies sufficiently
general and substantial to be of practical significance? There is reason to believe
that they are, but a conclusive answer must await two further sorts of evidence.

First, it must be determined whether all inversion routines can be improved
together by staircase adaptations, or whether improvements in some routines
can merely be traded off against degradations of others. Several trade-offs are
evident in the experiments of Section 6; most seriously, staircase efficiencies in
FTRAN and BTRAN routines require staircase sparse-elimination techniques
that are sometimes slower and yield a denser factorization (than standard
techniques). This trade-off may well be eliminated, however--as suggested
previously--by taking a fresh look at the merit elimination techniques, which
have been overshadowed by the bump-and-spike techniques in simplex-method
implementations. Staircase merit techniques have neither the great storage
requirements of standard merit techniques nor the large-spike problems of
staircase bump-and-spike techniques; hence they may permit efficiencies in
solution routines without introducing great inefficiencies into the factorization

routines.
Second, it will be important to determine whether staircase savings grow with

increased LP size and difficulty. Section 6's experiments suggest a favorable
trend, in which staircase savings tend to be least for the small and 'easy' LPs
and to be greatest for large and 'hard' ones that are most expensive to begin
with. This trend is particularly clear in certain routines; for example, the
staircase P3 heuristic is highly advantageous for difficult bases with large
block-triangular bumps, and the staircase BTRAN and FTRAN routines have
the greatest edge when the number of periods is large.

It thus seems reasonable to hope to achieve the broader goal of this paper:
solving staircase linear programs at meaningfully lower cost. Experiments here
have shown the possibility of savings in the inversion routines alone; the

R. Fourer/ Solving staircase LPs : Inversion 303

companion paper [20] will show a potential for equally great savings through

specialized staircase pricing techniques.

Acknowledgments

Thanks are due to Professor George Dantzig for supporting this research and
to Dr. Michael Saunders for his numerous suggestions and his close reading of

an early draft.
This research was carried out at the Systems Optimization Laboratory of the

Department of Operations Research, Stanford University, and at the Stanford
Office of the National Bureau of Economic Research. Financial support was
provided in part through the Systems Optimization Laboratory by Department
of Energy contract DE-AS03-76-SF00326 PA# DE-AT03-76-ER72018, by Office
of Naval Research contract N00014-75-C-0267, and by National Science Foun-
dation grants MCS76-20019 A01 and ENG77-06761.

Appendix A: Details of computational tests

A.1. Comput ing env ironment

All computational experiments were performed on the Triplex system [57] at
the Stanford Linear Accelerator Center, Stanford University. The Triplex com-
prised three computers linked together: one IBM 360/91, and two IBM 370]168s.
Runs were submitted as batch jobs in a virtual-machine environment, under the
control of IBM systems OS/VS2, OS/MVT and ASP.

Test runs employed a specially-modified set of linear-programming routines
from the MINOS system [44, 55]. MINOS is written in standard FORTRAN. For
timed runs, MINOS was complied with the IBM FORTRAN IV (H extended,
enhanced) compiler, version 1.1.0, at optimization level 3 [36].

A.2. Timings

All running-time statistics are based on 'CPU second' totals for individual job
steps as reported by the operating system. To promote consistency all timed jobs
were run on the Triplex computer designated 'system A', and jobs whose timings
would be compared were run at about the same time. Informal experiments
indicated roughly a 1% variation in timings due to varying system loads.

More detailed timings employed PROGLOOK [37], which takes frequent
samples of a running program to estimate the proportion of time spent in each
subroutine. To determine the actual time in seconds for each subroutine, every
timed job was run twice--once without PROGLOOK to measure total CPU

304 R. Fourer/ Solving staircase LPs : Inversion

seconds, and once with P R O G L O O K to estimate each subroutine's proportion"
of the total. P R O G L O O K estimates were based on at least 2300 samples per job.

A.3. M I N O S linear-programming evnironment

MINOS was set up for test runs according to the defaults indicated in [44],
with the exception of the items listed below.

Scaling. All test runs of SCRS8, SCFXM2, P ILOT and BP1 employed scaled
versions of these problems. In every case the scaling was determined by the
following geometric-mean procedure (in which A denotes the coefficient matrix
exclusive of objective and right-hand side):

SET P0 = maximum ratio of magnitudes of any two nonzero elements in
the same column of A.

R E P E A T for k = 1, 2, 3 :
DIVIDE each row i of A, and its corresponding right-hand-side value,

by [(mini [A~jl)(max j IAd)] 1/2, taking the minimum over all nonzero
elements in row i.

DIVIDE each column j of A, and its corresponding coefficient in the

objective, by [(mini IAijl)(max~ I&l)] 1/2, taking the minimum over all
nonzero elements in column j.

SET Ok = maximum ratio of magnitudes of any two nonzero elements
in the same column of A, as scaled.

U N T I L Ok ~> (0.9)Ok-1.

The maximum-column-ratio criterion, Ok, was employed because MINOS uses a

related criterion to determine the acceptability of pivot values in L U fac-
torization.

Starting basis. All LPs except P ILOT and BP1 were solved with crash option
0 of MINOS; the initial basis was composed entirely of unit vectors, and all
nonbasic variables were placed at zero. P ILOT and BP1 were run from initial
bases that had been reached and saved in previous MINOS runs.

Termination. All LPs except P ILOT and BP1 were run until an optimal
solution was found. P ILOT and BP1 were run for 1000 and 750 iterations,
respectively.

Pricing. Except for SCTAP2, the partial-pricing scheme of MINOS was
employed, with one important change: the arbitrary partitioning of the columns
normally defined by MINOS for partial pricing was replaced by the natural
staircase partitioning. Thus the periods of the staircase were priced one at a time
in a cyclic fashion.

Pricing for SCTAP2 was similar except that the incoming column was chosen
from the latest possible period. (This choice was known to produce a relatively
small number of iterations from an all-unit-vector start.)

Refactorization frequency. MINOS was instructed to refactorize the basis (by

R. Fourer/ Solving staircase LPs: Inversion 305

performing a fresh Gaussian elimination) every 50 iterations, except for BP1
(every 75) and PILOT (every 90).

Tolerances. The ' L U ROW TOL' for MINOS was set to 10 -4. All other
tolerances were left at their default values.

A.4. Modifications to M I N O S

All runs described in this paper were made with a special test version of
MINOS. This version retained MINOS' routines for standard bump-and-spike
elimination, and added new routines to implement a version of staircase bump-
and-spike elimination. Routines for solving linear systems were also modified to

take advantage of the staircase pivot order. Control routines were adjusted
appropriately.

New subroutines in the test version are described briefly as follows:

SP3--an adaptation of the P3 heuristic to find a bump-and-spike structure in
non-square or rank-deficient blocks, as proposed in [17]. This routine is a
modification of the MINOS subroutine P3.

SP4--main routine for the staircase bump-and-spike pivot-selection technique
of [17]; sorts the staircase basis into reduced form, and calls SP3 once for each
staircase diagonal block.

DSPSPK--spike-display routine; prints a graphical summary of the basis
bump-and-spike structure found by P4 (for the standard technique) or SP4 (for
the staircase technique).

STAIR--a staircase analyzer. Given an initial partition of the rows by period,
this routine permutes the constraint matrix to a reduced standard staircase form
and stores the staircase partitions in arrays that are read by subsequent routines.
STAIR is called once at the beginning of every run.

SCALE--implementation of the geometric-mean scaling scheme described
above; called optionally at the beginning of a run.

UPDBAL--updating routine for cumulative-balance counts: after each itera-
tion, revises an array that records the cumulative excess of columns over rows
at each period of the staircase basis. (This array is used to find square
sub-staircases.)

In addition the test version incorporates the following substantial modifi-
cations to MINOS subroutines:

FACTOR efficiently handles a pivot order from either the standard or stair-
case technique, and finds the partitions At and /~t (defined in Section 5) for the
staircase technique.

FTRANL, BTRANL, FTRANU and BTRANU incorporate ideas of Section 5
in a uniform way. FTRANL and FTRANU can begin at a specified L or U
transformation, and BTRANL and BTRANU can stop at a specified trans-
formation. BTRANL can also be restarted at a point where it previously
stopped.

306 R. Fourerl Solving staircase LPs : Inversion

LPITN determines a starting point for FTRANL and a stopping point for
BTRANU :when the staircase technique is used. (No attempt is made to
prematurely stop FTRANL, however.)

SETPI, for the staircase technique, determines a starting point for FTRANU
and a stopping point for BTRANL when it is first called at an iteration. When
subsequently called at the same iteration it determines restarting and stopping
points for BTRANL. (No attempt is made to prematurely stop FTRANU,
however, or to stop or start BTRANL based on square sub-staircases.)

PRICE incorporates the staircase-oriented partial-pricing methods described
in Section A.3. When these methods are used with the staircase factorization
technique, PRICE also keeps track of how much of the price vector it requires,
and calls SETPI accordingly.

SPECS2 determines whether the standard or staircase technique will be used
in a particular run, according to instructions in the SPECS input file.

Other subroutines were modified as necessary to accommodate these changes.

A.5. M P S I I I l inear p r o g r a m m i n g env i ronment

For purposes of comparison the PILOT test problem was also run on the MPS
III system [43], as explained in Section 6.

The MPS III run employed the WHIZARD linear-programming routines of
version 8915 of MPS III. The run used the same starting basis as the MINOS
runs for PILOT, and was terminated after 1000 iterations like the MINOS runs.
Exact CPU timings were 0.56 seconds in the compiler step and 114.18 seconds in
the executor step.

The control program for the MPS III run was as follows:

WHIZFREQ

PROGRAM
INITIALZ
XPROC = XPROC + 6000
XCLOCKSW = 0
XINVERT = 1
XFREQINV = 90
XFREQLGO = 1
XFREQ1 = 1000
MVADR (XDOFREQ1, TIME)
MOVE (XDATA, 'PILOT.WE')
CONVERT ('FILE', 'INPUT')
SETUP ('BOUND', 'BOUND', 'MAX', 'SCALE')
MOVE (XOBJ, 'OBJ')
MOVE (XRHS, 'RHSIDE')
INSERT ('FILE', 'PUNCHI')
DC (250)

R. Fourer/ Solving staircase LPs : Inversion 307

WHIZCAL

TIME

DC (4)
WHIZARD ('FREQ', WHIZFREQ, 'SCALE', WHIZSCAL)
PUNCH ('FILE', 'PUNCHI ')
EXIT
PEND

Appendix B: Test problems

The linear programs used in the computational experiments of Section 6 are
described in greater detail below. Comparative summaries and statistics appear
first, followed by detailed statistical descriptions of the LPs' staircase structures.

All of these linear programs are available from the author in computer-
readable MPS format, on cards or tape. SCAGR25, SCRS8, SCSD8, SCFXM2
and SCTAP2 are also available as part of a larger set of staircase LPs distributed
by Ho and Loute [34].

B.1. Origins o f the test L P s

SCAGR25 is a planning model for expansion of a large dairy farm, developed
by Swart, Smith and Holderby [56].

SCRS8 is derived from a model of the United States' options for a transition
from oil and gas to synthetic fuels. It was constructed by Ho [31] based on a
model by Manne [39].

SCSD8 models the minimal-weight design of multi-stage trusses under a single
loading condition, as described by Ho [30]. This is the only staircase test
problem (for this paper) in which the stages do not represent periods of time.

SCFXM2 is described by Ho and Loute [34] as an extension of a real-world
problem in production scheduling.

SCTAP2 optimizes the dynamic flow over a traffic network in which con-
gestion is modeled explicitly by the flow equations. This LP was formulated by
Merchant and Nemhauser [42] and further studied by Ho [32]. (The LP is
distributed with 11 potential objective rows; the objective named OBJZZZZZ
was used in all tests for this paper. All statistics below omit the other ten
objectives.)

PILOT is derived from a welfare equilibrium model of the United States'
energy supply, energy demand, and economic growth, documented by Parikh
[46]. The LP was supplied by the Systems Optimization Laboratory of the
Department of Operations Research, Stanford University.

BP1 was developed by British Petroleum, London; the details of its origins are
unknown to the present author. The LP was supplied via the Systems Optimiza-
tion Laboratory of the Department of Operations Research, Stanford University.
(The structure of this LP is approximately dual-angular, with 6 main diagonal

308 R. Fourer/ Solving staircase LPs: Inversion

blocks and about 400 coupling variables. For the experiments described in this
paper it was treated as a 6-period staircase problem with some elements below
the first-order staircase.)

B.2. Summary statistics

Tables 9 and 10 describe the matrix A of constraint coefficients for each test
problem, exclusive of any objective or right-hand-side vectors. Thus the num-
bers of constraints and nonzero coefficients are somewhat smaller than the
values given in Section 6. The 'density' is the proportion of nonzero elements in
A.

The 'unscaled' values refer to the test problems as originally received; the
'scaled' values were computed after application of the scaling procedure des-
cribed in Appendix A. 'Max elem' and 'min elem' are the largest and smallest
magnitudes, respectively, among the nonzero elements of A. The 'largest col

Table 9

Constraints Nonzero

Eq Ineq Total Variables a coefficients Density

SCAGR25 300 171 471 500 1554 0.66%
SCRS8 384 106 490 1169 3182 0.56%
SCSD8 397 - - 397 2750 8584 0.79%
SCFXM2 374 286 660 914 5183 0.86%
SCTAP2 470 620 1090 1880 6714 0.33%
PILOT 583 139 722 2789 9126 0.45%
BPI 516 305 821 1571 10400 0.81%

aPILOT has 80 free
variables. Otherwise,
nonnegative.

Table 10

variables, 296 upper-bounded variables, and 79 fixed
all variables in all problems are required only to be

Unscaled Scaled

Largest Largest
Max Min col Max Min col
elem elem ratio elem elem ratio

SCAGR25" 9.3 2.0" 10 -1 1.9" 10 ~ - - - - - -
SCRS8 3.9" 102 1.0" 10 -3 4.5" 10 3 4.0 2.5' 10 I 1.6" 10 I

SCSD8 a 1.0 2.4- 10 -1 4.0 - - - - - -
SCFXM2 1.3 " 10 2 5.0" 10 -4 1.3" 105 1.1 " 101 8.7' 10 2 1.3" 102
SCTAP2 a 8.0.101 1.0 8.0.101 - - - - - -
PILOT 4.8. 104 1.4-10 4 7.0" 106 2.0"101 4.9.10 2 4.2" 102
BP1 2.4. 10 2 2 . 0 ' 10 -4 1.7" 105 1.3" 101 7.6" 10 -2 1.7" 102

aNot scaled prior to test runs.

R. Fourer/ Solving staircase LPs: Inversion 309

ratio' is the greatest ratio of any two nonzero magnitudes in the same column
of A.

B.3. Staircase-structure statistics

Tables 11-17 describe the staircase structures of the individual test problems.
In each table the line for period t refers to the objective and constraint
coefficients for the period-t variables; where successive periods are identical in

structure their entries have been combined.

Table 11
SCAGR25

Diagonal blocks Off-diagonal blocks
Obj.

Period Rows Cols. Elems. Dens. Rows Cols. Elems. Dens. elems.

1 18 20 45 13% 8 7 17 30% 19
2-24 19 20 46 12% 8 7 17 30% 19
25 16 20 43 13% 19

1146 12% 408 30% 475

Table 12
SCRS8

Diagonal blocks Off-diagonal blocks
Obj.

Period Rows Cols. Elems. Dens. Rows Cols. Elems. Dens. elems.

1 28 37 65 6% 25 22 29 5% 18
2 28 38 69 6% 25 22 29 5% 19
3-5 31 76 181 8% 25 22 29 5% 55
6-8 32 79 192 8% 25 22 29 5% 58
9 31 79 189 8% 25 22 29 5% 58
10-12 31 80 190 8% 25 22 29 5% 59
13-15 30 80 186 8% 25 22 29 5% 59
16 31 70 177 8% 59

2747 8% 435 5% 847

Table 13
SCSD8

Period

Diagonal blocks Off-diagonal blocks
Obj.

Rows Cols. Elems. Dens. Rows Cols. Elems. Dens. elems.

1-38 l0 70 130 19% 10 50 90 18% 70
39 17 90 224 15% 90

5164 18% 3420 18% 2750

310

Table 14
SCFXM2

R. Pourer/Solving staircase LPs : Inuersion

Period

Diagonal blocks Off-diagonal blocks

Rows Co!s. Elems. Dens. Rows Cols. Elems. Dens.
Obj.

elems.

1 92 114 679 6% 9 57 61 12% 13
2 82 99 434 5% 9 35 35 11% 4
3 66 126 300 4% 5 33 33 20% 1
4 90 118 1047 10% 5 5 5 20% 5
5 92 114 679 6% 9 57 61 12% 13
6 82 99 434 5% 9 35 35 11% 4
7 66 126 300 4% 5 33 33 20% 1
8 90 118 1047 10% 5

4920 7% 263 13% 46

Table 15
SCTAP2

Period

Diagonal blocks Off-diagonal blocks

Rows Cols. Elems. Dens. Rows Cols. Elems. Dens.
Obj.

elems.

1-9 109 188 423 2% 62 138 276 3% 141
10 109 188 423 2% 141

4230 2% 2484 3% 1410

TabLe 16
PILOT

Period

Diagonal blocks Off-diagonal blocks

Rows Cols. Elems. Dens. Rows Cols. Elems. Dens.

Sub-stair
blocks

Elems. Dens.
Obj.

elems.

1 84 343 686 2% 31 74 105 5%
2 90 345 1079 3% 34 76 111 4%
3 90 343 1073 3% 34 74 109 4%
4 90 343 1073 3% 34 74 109 4%
5 90 343 1073 3% 34 74 109 4%
6 90 343 1073 3% 34 74 109 4%
7 90 343 1073 3% 32 74 107 5%
8 87 341 1060 4% 4 19 19 25%
9 11 45 113 23%

18
8
5
5
5
3
1

0%
0%
0%
0%
0%
0%
0%

10
10
10
10
10
10
10
10
12

8303 3% 778 4% 45 0% 92

R. Fourer/ Solving staircase LPs: Inversion 311

Table 17
BP1

Sub-stair
Diagonal blocks Off-diagonal blocks blocks

Obj.
Period Rows Cols. Elems. Dens. Rows Cols. Elems. Dens. Elems. Dens. elems.

1 111 227 1400 6% 3 60 3 2% 163 0% 138
2 151 353 2175 4% 62 108 112 2% 142 0% 149
3 113 321 964 3% 92 232 346 2% 494 1% 270
4 170 295 2178 4% 51 14 11 2% 4 0% 74
5 134 198 1315 5% 111 2 2 1% 40
6 142 177 1091 4% 56

9123 4% 474 2% 803 0% 727

In each case the cons t r a in t matr ix A has b e e n put in r educed s tandard form as

desc r ibed in Sec t ion 2. 'Diagonal b locks ' refers to the s ta i rcase b locks Au,

'off-diagonal b locks ' to the b locks At÷l,t, and ' sub-s ta i r b locks ' (when present) to

the b locks At.2,t Ar, t. The given densi t ies are the percen tages of n o n z e r o

e lements in the r e l evan t blocks.

References

[1] T. Aonuma, "A two-level algorithm for two-stage linear programs", Journal of the Operations
Research Society of Japan 21 (1978) 171-187.

[2] R.H. Bartels, "A stabilization of the simplex method", Numerische Mathematik 16 (1971)
414-434.

[3] R.H. Bartels and G.H. Golub, "The simplex method of linear programming using LU decom-
position", Communications of the ACM 12 (1969) 266-268.

[4] M. Benichou et al., "The efficient solution of large-scale linear programming problems--Some
algorithmic techniques and computational results", Mathematical Programming 13 (1977) 280-
322.

[5] J. Bisschop and A. Meeraus, "Matrix augmentation and structure preservation in linearly
constrained control problems", Mathematical Programming 18 (1980) 7-15.

[6] R.H. Cobb and J. Cord, "Decomposition approaches for solving linked problems", in: H.W.
Kuhn, ed., Proceedings o/the Princeton symposium on mathematical programming (Princeton
University Press, Princeton, N J, 1970) pp. 37-49.

[7] G.B. Dantzig, "Programming of interdependent activities, II: mathematical model",
Econometrica 17 0949) 200-211.

[8] G.B. Dantzig, "Upper bounds, secondary constraints and block triangularity in linear pro-
gramming", Econometrica 23 (1955) 174-183.

[9] G.B. Dantzig, "Optimal solution of a dynamic Leontief model with substitution", Econometrica
23 0955) 295-302.

[10] G.B. Dantzig, "Compact basis triangularization for the simplex method", in: R.L. Graves and P.
Wolfe, eds., Recent advances in mathematical programming (McGraw-Hill, New York, 1963)
pp. 125-132.

[11] G.B. Dantzig, "Solving staircase linear programs by a nested block-angular method", Technical
Report 73-1, Department of Operations Research, Stanford University, Stanford, CA (1973).

[12] G.B. Dantzig and P. Wolfe, "Decomposition principle for linear programs", Operations
Research 8 (1960) 101-111.

312 R. Fourer/ Solving staircase LPs : In version

[13] I.S. Duff, "On the number of nonzeroes added when Gaussian elimination is performed on
sparse random matrices", Mathematics of Computation 28 (1974) 219-230.

[14] I.S. Duff, "Practical comparisons of codes for the solution of sparse linear systems", in: I.S.
Duff and G.W. Stewart, eds., Sparse matrix proceedings 1978 (Society for Industrial and
Applied Mathematics, Philadelphia, PA, 1979) pp. 107-134.

[15] I.S. Duff and J.K. Reid, "A comparison of sparsity orderings for obtaining a pivotal sequence in
Gaussian elimination", Journal of the Institute of Mathematics and its Applications 14 (1974)
281-291.

[16] J.J.H. Forrest and J.A. Tomlin, "Updated triangular factors of the basis to maintain sparsity in
the product form simplex method", Mathematical Programming 2 (1972) 263-278.

[17] R. Fourer, "Sparse Gaussian elimination of staircase linear systems", Technical Report SOL
79-17, Systems Optimization Laboratory, Department of Operations Research, Stanford Uni-
versity, Stanford, CA (1979).

[18] R. Fourer, "Solving staircase linear programs by the simplex method, 1: inversion", Technical
Report SOL 79-18, Systems Optimization Laboratory, Department of Operations Research,
Stanford University, Stanford, CA (1979); reprinted in: G.B. Dantzig, M.A.H. Dempster and
M.J. Kallio eds., Large-scale linear programming 1 (International Institute for Applied Systems
Analysis, Laxenburg, 1981) pp. 179-259.

[19] R. Fourer, "Staircase matrices", Technical Report, Department of Industrial Engineering and
Management Sciences, Northwestern University, Evanston, IL (1980).

[20] R. Fourer, "Solving staircase linear programs by the simplex method, 2: pricing", Mathematical
Programming 24 (1982) to appear.

[21] D.M. Gay, "On combining the schemes of Reid and Saunders for sparse LP bases", in: I.S. Duff
and G.W. Stewart, eds., Sparse matrix proceedings 1978 (Society for Industrial and Applied
Mathematics, Philadelphia, PA, 1979) pp. 313-334.

[22] C.W. Gear et al., "Numerical computation: its nature and research directions", SIGNUM
Newsletter (Association for Computing Machinery, New York, 1979).

[23] C.R. Glassey, "Dynamic linear programs for production scheduling", Operations Research 19
(1971) 45-56.

[24] C.R. Glassey, "Nested decomposition and multi-stage linear programs", Management Science
20 (1973) 282-292.

[25] D. Goldfarb, "On the Bartels-Golub decomposition for linear programming bases", Mathema-
tical Programming 13 (1977) 292-292.

[26] R.C. Grinold, "Steepest ascent for large-scale linear programs", SIAM Review 14 (1972)
447464.

[27] A.R.G. Heesterman and J. Sandee, "Special simplex algorithm for linked problems", Manage-
ment Science 11 (1965) 4204-428.

[28] E. Hellerman and D. Rarick, "Reinversion with the preassigned pivot procedure", Mathematical
Programming 1 (1971) 195-216.

[29] E. Hellerman and D.C. Rarick, "The partitioned preassigned pivot procedure (p4),,, in: D.J.
Rose and R.A. Willoughby, eds., Sparse matrices and their applications (Plenum Press, New
York, 1972) pp. 67-76.

[30] J.K. Ho, "Optimal design of multi-stage structures: a nested decomposition approach", Com-
puters and Structures 5 (1975) 249-255.

[31] J.K. Ho, "Nested decomposition of a dynamic energy model", Management Science 23 (1977)
1022-1026.

[32] J.K. Ho, "A successive linear optimization approach to the dynamic traffic assignment prob-
lem", Transportation Science 14 (1980) 295-305.

[33] J.K. Ho and E. Loute, "A comparative study of two methods for staircase linear programs",
ACM Transactions on Mathematical Software 6 (1980) 17-30.

[34] J.K. Ho and E. Loute, "A set of staircase linear programming test problems", Mathematical
Programming 20 (19gl) 245-250.

[35] J.K. Ho and A.S. Manne, "Nested decomposition for dynamic models", Mathematical Pro-
gramming 6 (1974) 121-140.

[36] "IBM OS FORTRAN IV (H extended) compiler programmer's guide", No. SC28-6852, Inter-
national Business Machines Corporation (New York, 1974).

R. Fourer/ Solving staircase LPs: In version 313

[37] R. Johnson and T. Johnston, "PROGLOOK user's guide", User Note 33, SLAC Computing
Services, Stanford Linear Accelerator Center, Stanford, CA (1976).

[38] O.B.G. Madsen, "Solution of LP-problems with staircase structure", Research Report 26, The
Institute of Mathematical Statistics, Lyngby (1977).

[39] A.S. Manne, "U.S. options for a transition from oil and gas to synthetic fuels", Discussion
Paper 26D, Public Policy Program, Kennedy School of Government, Harvard University,
Cambridge, MA (1975).

[40] H.M. Markowitz, "The elimination form of the inverse and its application to linear program-
ming", Management Science 3 (1957) 255-269.

[41] R.E. Marsten and F. Shepardson, "A double basis simplex method for linear programs with
complicating variables", Technical Report 531, Department of Management Information Sys-
tems, University of Arizona, Tucson, AZ (1978).

[42] D.K. Merchant and G.L. Nemhauser, "A model and an algorithm for the dynamic traffic
assignment problems", Transportation Science 12 (1978) 183-199.

[43] "MPS III mathematical programming system: user manual", Ketron Inc., Arlington, VA (1975).
[44] B.A. Murtagh and M.A. Saunders, "MINOS: a large-scale nonlinear programming system (for

problems with linear constraints): user's guide", Technical Report SOL 77-9, Systems Opti-
mization Laboratory, Department of Operations Research, Stanford University, Stanford, CA
(1977).

[45] W. Orchard-Hays, Advanced linear-programming computing techniques (McGraw-Hill, New
York, 1968).

[46] S.C. Parikh, "A welfare equilibrium model (WEM) of energy supply, energy demand, and
economic growth", Technical Report SOL 79-3, Systems Optimization Laboratory, Department
of Operations Research, Stanford University, Stanford, CA (1979).

[47] A.F. Perold, "Fundamentals of a continuous time simplex method", Technical Report SOL 78-26,
Systems Optimization Laboratory, Department of Operations Research, Stanford University,
Stanford, CA (1978).

[48] A.F. Perold and G.B. Dantzig, "A basis factorization method for block triangular linear
programs", in: I.S. Duff and G.W. Stewart, eds., Sparse matrix proceedings 1978 (Society for
Industrial and Applied Mathematics, Philadelphia, PA, 1979) pp. 283-312.

[49] A. Propoi and V. Krivonozhko, "The simplex method for dynamic linear programs", Report
RR-78-14, International Institute for Applied Systems Analysis, Laxenburg (1978).

[50] J.K. Reid, "A sparsity-exploiting variant of the Bartels-Golub decomposition for linear pro-
gramming bases", Report CSS 20, Computer Science and Systems Division, A.E.R.E., Harwell
(1975).

[51] J.K. Reid, "Fortran subroutines for handling sparse linear programming bases", Report AERE-
R8269, Computer Science and Systems Division, A.E.R.E., Harwell (1976).

[52] R. Saigal, "Block-triangularization of multi-stage linear programs", Report ORC 66-9, Opera-
tions Research Center, University of California, Berkeley, CA (1966).

[53] M.A. Saunders, "The complexity of LU updating in the simplex method", in: R.S. Anderssen
and R.P. Brent, eds., The complexity of computational problem solving (Queensland University
Press, Brisbane, Qld., 1975) pp. 214-230.

[54] M.A. Saunders, "A fast, stable implementation of the simplex method using Bartels-Golub
updating", in: J.R. Bunch and D.J. Rose, eds., Sparse matrix computations (Academic Press,
New York, 1976) pp. 213-226.

[55] M.A. Saunders,. "MINOS system manual", Technical Report SOL 77-31, Systems Optimization
Laboratory, Department of Operations Research, Stanford University, Stanford, CA (1977).

[56] W. Swart, C. Smith and T. Holderby, "Expansion planning for a large dairy farm", in: H.M.
Salkin and J. Saha, eds., Studies in linear programming (American Elsevier, New York, 1975) pp.
163-182.

[57] I. Vinson, "Triplex user's guide", User Note 99, SLAC Computing Services, Stanford Linear
Accelerator Center, Stanford, CA (1978).

[58] R.D. Wollmer, "A substitute inverse for the basis of a staircase structure linear program",
Mathematics of Operations Research 2 (1977) 230-239.

