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This and a companion paper consider how current implementations of the simplex method 
may be adapted to better solve linear programs that have a staged, or 'staircase', structure• 
The present paper looks at 'inversion' routines within the simplex method, particularly those 
for sparse triangular factorization of a basis by Gaussian elimination and for solution of 
triangular linear systems. The ~ucceeding paper examines 'pricing' routines. Both papers 
describe extensive (though preliminary) computational experience, and can point to some 
quite promising results. 
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I. Introduction 

S t a i r c a s e - s t r u c t u r e d  l inear  p r o g r a m s  (LPs )  have  b e e n  s tud ied  a b o u t  as long as 

l inear  p r o g r a m m i n g  i tself .  T h e y  t yp i ca l l y  a r i se  in e c o n o m i c  p lann ing  ove r  t ime:  

ac t iv i t ies  xt = (xtl . . . . .  xt,) are  run  in a ser ies  of  p e r i o d s  t = 1, . . . ,  T, s u b j e c t  to 

cons t r a in t s  tha t  l ink ac t iv i t ies  in a d j a c e n t  pe r iods .  The  resu l t ing  L P s ,  in the i r  

s imp le s t  fo rm,  have  a s t ruc tu re  l ike  this:  

maximize C l X l  • c2x2  q- c 3 x  3 + . . .  + CT_IXT_  1 -'l- CTXT, 

s u b j e c t  to  AllXl  = bl, 

A21xI + A22x2 = b2, 

A32x2 + A33x3 = b3, 

• AT, T-lXT-I + Ar, rXr = br, 

X1, ... , X T ~ O •  

The  s u b m a t r i c e s  of  coeff ic ients ,  A ,  and  At+l,t, fo rm the  ' s t a i r case ' •  

In  the  i n f a n c y  of  c o m p u t e r s  this  so r t  of  s t r u c t u r e d  p r o b l e m  was  a t t r a c t i ve  

b e c a u s e  i t  s e e m e d  to offer  a hope  of  so lv ing  p r a c t i c a l  L P s  in a r e a s o n a b l e  

a m o u n t  of  t ime.  Thus  in 1949 Dan tz ig  [7] o b s e r v e d  that :  

" . . .  while the general mathematical problem is concerned with maximization of a linear form of 
nonnegative variables subject to a system of linear equalities, in the linear programming case 
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one finds by observing the above [staircase] system that the grand matrix of coefficients is 
composed mostly of blocks of zeroes except for submatrices along and just off the ~diagonal'. 
Thus any good computational technique for solving programs would probably take advantage of 
this fact." 

At the time of this quotation, computers  were primitive; the simplex method 

could be costly and t ime-consuming even for small problems of general struc- 

ture. Hence  staircase-structured LPs  were of interest  not only for their ap- 
plications, but for  the possibility that much faster  versions of the simplex 

method could be devised to solve them. 
Staircase linear programs are of no less interest  today. Along with economic 

planning, they have found applications in product ion scheduling, inventory,  

t ransportat ion,  control, and design of multistage structures [34, 38]. Yet  a recent  

survey [22] observes  that: 

"the 'staircase' model, in which similar sets of variables and constraints are replicated many 
times, seems no more tractable today than when its importance was recognized over 20 years 
ago . . . .  Today we know only how to solve it as we would any linear programming problem; but 
this type of problem requires more work to solve than does the average problem of the same size. 
However, there should be some way to take advantage of its simple structure." 

Thus the situation has been reversed.  The general simplex method is now 

impressively fast  rather than impossibly slow, while staircase LPs  are a trou- 

b lesomely hard case rather  than a promisingly easy one. 

1.1. Proposed methods for staircase LPs 

There has certainly been no shortage of a t tempts  to solve staircase LPs  more 

efficiently. Although the simplex method has usually been involved in some 

guise, individual proposals  have varied considerably.  The essential  ideas of these 
proposals  may  be classified in four  broad areas: 

Compact basis methods employ a special representat ion of the basis or basis 

inverse in conjunction with a more or less standard simplex method.  This 
approach was first suggested by Dantzig [8, 10], and early variations were 

employed by Hees te rman  and Sandee [27] and Saigal [52]. More recent  compact-  

basis schemes have  been worked out by Dantzig [11], Wollmer [58], Marsten and 
Shepardson [41], Perold and Dantzig [48], Propoi  and Kr ivonozhko  [49], Biss- 
chop and Meeraus  [5], and Loute  [33]. 

Nested decomposition methods  apply the Dantz ig-Wolfe  decomposi t ion prin- 
ciple to generate a series of sub-problems at each period. This approach was 

suggested by  Dantzig and Wolfe in their original paper  on decomposi t ion [12], 
and has been extended or modified by Cobb and Cord [6], Glassey [23, 24], and 
Ho  and Manne [35]. 

Transformation methods start  with a simpler LP  that can be solved easily, 
and work  toward a solution of the original staircase LP.  Varied proposals  in this 
class are f rom Grinold [26], Aonuma [1], and Marsten and Shepardson [41]. 
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Continuous methods deal with a multi-period LP in continuous rather than 
discrete time. Fundamentals of a simplex method for continuous-time linear 
programming have been proposed by Perold [47]. 

Ho and Loute have reported promising experiments with their methods [33], 
but computational experience with most proposals is negligible. At present no 
method has been shown to be more effective than the general simplex method in 
solving a wide variety of large staircase problems. 

1.2. Adaptat ion of the simplex method to staircase LPs 

In contrast to proposals for staircase methods, proposals for improving the 
general simplex method have been quite successful. The simplex method has 
consequently developed into an amalgam of fairly sophisticated algorithms, 
many of which are objects of study in their own right and are not normally 
thought of in connection with linear programming. As a result, the simplex 
method has become more and more a specialist's domain. 

It is therefore not surprising that study of staircase LPs has tended to diverge 
from study of the simplex method. Staircase linear programming, typified by the 
above-listed papers, has sought staircase methods to replace the original simplex 
method; in the mean time new, better simplex techniques have emerged for 
general linear programming, but have not been applied to special structures such 
as staircases. 

This paper and its successor [20] seek to reverse the trend; they are concerned 
with adapting the modern simplex method to solve staircase LPs more 
efficiently. Each paper looks at a set of algorithms within the simplex method: 
this one deals with 'inversion' of the basismmore accurately, solution of linear 
systems by Gaussian elimination--and the succeeding one considers partial 
pricing. 

Both papers describe extensive, although preliminary, computational 
experience. The results are quite promising: a staircase-adapted simplex method 
sometimes performs considerably better than the general method~ yet on a range 
of large problems it is never significantly worse. Moreover, it is possible to 
identify several promising opportunities for further improvement. 

1.3. Outline of this paper 

The first two sections below develop the terminology and properties employed 
in studying linear systems that arise from staircase linear programs. Section 2 
covers staircase LPs and pertinent features of staircase linear systems. Section 3 
looks at the particular kinds of linear systems that must be solved in the simplex 
method. 

The following sections examine how the simplex method might better solve 
linear systems for staircase LPs. Section 4 describes sparse triangular fac- 
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torization of a staircase basis matrix, and Section 5 examines in detail various 
staircase solution algorithms for triangular systems. 

Finally, Section 6 presents the results of preliminary but substantial com- 
putational experiments on a set of practical test problems. Detailed timings are 
employed in this section to compare staircase and non-staircase versions of a 
simplex-method code; an informal comparison with a commercially-distributed 
LP code is also reported. Implications of these experiments for future im- 
plementations are discussed briefly in Section 7's concluding remarks. 

2. Staircase linear programs 

Staircase linear programs share two simple characteristics: their variables fall 
into some sequence of disjoint groups, and their constraints relate only variables 
within adjacent groups. Usually the sequence of groups corresponds to a 
sequence of times, so that variables of a group represent activities during one 
time period. Constraints thus indicate how activities of one period are related to 
activities of the next. 

A variable of period t will be called a period-t variable. By analogy, a 
constraint that involves variables of period t but not of later periods will be 
referred to as a constraint of period t, or as a period-t constraint. 

Typically some period-t constraints involve only variables of period t, while 
others relate variables of periods t and t - 1 ;  the latter are said to be linking 
constraints, whereas the former are non-linking. Analogously, period-t variables 
that appear in constraints of period t and t + 1 are linking variables, whereas 
variables that appear only in the constraints of period t are non-linking. 

2.1. Staircase LPs of higher orders 

A more general approach says that a staircase linear program is of order p if 
its constraints relate variables that are at most p periods apart. The preceding 
definitions thus characterize staircase LPs of order one. Higher-order staircase 
LPs are not uncommon in complex applications (for example, modeling energy 
systems [46]). 

This paper is predominantly concerned with first-order staircase LPs, which 
have the most specialized structure and are consequently most amenable to 
special techniques. The adjective 'first-order' will therefore generally be omitted. 
Nevertheless, many techniques in this paper are essentially applicable to higher- 
order staircases as well, with appropriate modifications that will be pointed out 
as the exposition proceeds. 

Higher-order staircase LPs can also be made into first-order ones, in either of 
two ways. First, pth-order equations can be transformed to equivalent first-order 
ones by adding certain variables and constraints. This yields a larger first-order 
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LP that has the same number of periods. Second, every p periods of the 
pth-order  LP may simply be aggregated as one period. The result is a first-order 
staircase LP of the same size but having only about l ip as many periods. The 
first method is most practical when the LP is nearly first-order to begin with, 
while the  second may be feasible when the number of periods is large relative to p. 

2.2. Staircase matrices 

The matrix of constraint coefficients of a staircase linear program is a 
staircase matrix. Its nonzero elements are confined to certain submatrices 
centered roughly on and just off the diagonal: 

. . . . . . . . . . . . .  7 

A22 

A32 A33 

A43 A44 

i A54 A55 
L . . . . . . . . . .  

Formally, a staircase s t ruc ture  for an m x n matrix A is defined as follows. 
Partition the rows into T disjoint subsets, and the columns into T disjoint 
subsets, so that the matrix is partitioned into T 2 submatrices, or 'blocks': 

[ all elements in the ith row partition ] 
Aij = Land jth column partition of A , i, j = 1 . . . . .  T. 

A is lower staircase (as drawn above) if Aij = 0 except  for i = j and i = j + 1. A is 
upper staircase if A~j = 0 except  for i =  j and i =  j - 1 .  Any upper-staircase 
matrix may be permuted to lower-staircase form by reversing the order of the 
periods [17, 19]. Hence it suffices to consider matrices A that have a specified 

lower-staircase structure, and hereafter  'staircase' will be used synonymously 
with 'lower staircase'. 

By analogy with staircase linear programs, rows in the ith partition of a 
staircase matrix A are called period-i rows, and columns in the j th partition are 
called period-j columns. If a period-i row has nonzero elements in blocks Ai,i-1 
and A,,  it is a linking row; if it has non-zeroes only in A, it is a non-linking row. 
Similarly, a period-j column that has nonzeroes in Ajj and A~+1,j is a linking 
column, whereas one that has nonzeroes in A~j only is a non-linking column. 

If a period-i row is entirely zero within A,, that row may be moved back to 
period i - 1  without disrupting the staircase structure; analogously, a period-j 
column that is all-zero within Ajj may be moved to period j + 1. Nothing is lost, 
therefore,  in assuming that the diagonal blocks Art have no all-zero rows or 
columns; A is then said to be in standard staircase form [17, 19]. Hencefor th  it 
will be assumed that all staircase LPs  have a constraint matrix A in this standard 



R. Fourer/ Solving staircase LPs : Inversion 279 

form. (The trivial case in which A has an all-zero row or column is thus ruled 

out.) 
Following [17, 19], the period-i rows may be permuted to put the linking rows 

first, and the period-j columns may be permuted to put the linking columns last. 

Then A has the reduced form: 

] A21 ] A22 

] "~32 A33 I 

A44 

The reduced block ~i.t,t ~ is just the intersection of the period-t linking rows and 
the per iod- ( t -  1) linking columns. 

If the linking rows of every period i are switched to period i - 1, then A gains 
an alternative row-upper-staircase form: 

. . . .  7 

Switching the linking columns of period j to period j + 1 gives a different, 
column-upper-staircase form. Thus a staircase A in reduced standard form 
embodies three staircases--lower, row-upper, and column-upper--each cor- 
responding to a different choice of where the periods begin and end. 

2.3. Staircase bases 

Any basis B of a staircase linear program necessarily inherits a staircase 
structure from the constraint matrix A; B's staircase blocks, Bt, H and Btt, may 
be taken to be the sub-blocks of At,t-~ and A ,  that contain only the basic 
columns. If A has a reduced form,/~t,t-~ may likewise be taken as the basic part 
of At,t+ 

The inherited staircase of B need not be in standard or reduced form, even 
though A is. Specifically, either B,  or/~t~t-~ may be zero along some linking row 
i, if it happens that, in Art or At, t-l, all the nonzeroes along row i are in non-basic 
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columns. In this event  B may be returned to reduced standard form by  reassign- 

ing certain rows and columns. Any linking row that is zero in B ,  becomes  a 
non-linking row in period t - 1; in the process ,  some linking columns of period 

t - 1 may become non-linking. Any linking row that is zero in Bt,t-1 becomes  a 
non-linking row. 

It  is generally most  convenient  to deal with B in its inherited staircase form, 

whether  standard, reduced or neither. However ,  bet ter  results may be achieved 

by using B ' s  reduced standard form instead, especially as it has fewer  linking 

rows and columns and hence a tighter structure. This issue is considered further  

in Section 5. 

Hencefor th  Bn and Bt, t-i (or Bt,t-l) will represent  the blocks of B ' s  chosen 

staircase form, whether  inherited or reduced standard. The number  of rows in 
period i will be denoted m~, and the number  of columns in period j will be nj; the 

respect ive numbers  of linking rows and columns will be rh~ and rlj. For the 

row-upper-s ta i rcase form, the number  of rows in period i will be m ~, and for the 
column-upper-s ta i rcase form the number  of columns in period j will be n t. 
Necessar i ly  E m~ = E m i = E nj = E n i = m, and tfii ~< mi, hj ~ nj. 

2.4. Balance  constraints  and square sub-s taircases  

If the staircase LP has a special dynamic Leont ief  structure [9], then in each 
period the number  of basic columns must  exactly equal the number  of rows: 

nt = m t  for all t, and all blocks B ,  are square. This is not the case  in general, 

however .  A basis B of an arbitrary staircase LP may have n~ > m t  for some 
periods t and nt < mt for others. 

Since the basis is nonsingular, however ,  it must  obey the 'balance constraints '  

developed in [17, 19]. In summary ,  these restrict  the excess of basic columns 
over  rows in each period, individually and cumulatively,  as folows: 

0 <~ ~ (rti -- mi) ~ min(rht+l, tit), t = 1 . . . . .  T - 1, 
1 

t 

-min(rhs, tis 1) ~< 2 (ni - m~) ~< min(th,+l, ti,), s, t = 2 . . . . .  T - 1, 
s 

T 

-rain(tits, tis_L) ~< ~ (ni - m~) ~< 0, s = 2 . . . . .  T. 
s 

In words, the cumulat ive imbalance between rows and basic columns in periods 

s through t is bounded by the smaller dimension of ]~s., i and the smaller 
dimension of /~t+l,t. Hence  these constraints are quite strict when there are 
relatively few linking rows or columns. 

The first constraint  above may also be written as the following three in- 

equalities: 

t t t ~ < ~  . t 2 
Ea,  1>Em,, E . ,  m', m,. 

I 1 1 1 1 1 
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These say that the first t periods of the lower staircase cannot  have more rows 

than columns, while the first t periods of the associated row-upper  or column- 

upper  staircase cannot  have more columns than rows. 
All three of these relations are equalities when t = T, since B is square. It can 

also happen that equality is achieved for some t < T. For example,  if ~ ]  m~ = 

~ I  ni, B must  look something like this: 

- - - ]  . . . . .  7 

,, 

. . . . . .  mi = hi. 

The rows and columns of periods 1 through t f rom a square sub-staircase,  as do 

the rows and columns of periods t + 1 through T;  they are linked only by 
nonzero elements  in the off-diagonal block /~t+l,t. In a similar way an equality 

~ ni = ~ ]  m ~ implies a pair of square sub-staircases within the row-upper  
staircase form, and ~ ]  n i = Y~ rn~ implies the same for  the column-upper  form. 

Generally,  B may  exhibit any or all of these three kinds of equalities, and each 

may  hold for  several  values of t < T. If  p different such equalities hold, then B 

breaks  into p + 1 disjoint square sub-staircases of various kinds. The presence  or 
absence of sub-staircases will be of importance  to several of the techniques 

described fur ther  on in this paper.  

3. Solving linear systems in the simplex method 

In solving linear programs by the simplex method,  a great deal of computat ional  

effort is devoted to ' inverting the basis ' .  More precisely, at each iteration the 

simplex method solves a linear system in B and a linear system in B T, where B is an 

m x m basis matrix of columns f rom the constraint  matrix A. Different realizations 

of the simplex method may  const ruct  and use these two linear systems in different 

ways (see [25] for example)  but no practical version of the method avoids solving 
some system in B and some in B v. 

The preferred approach  to solving linear sys tems in B and BT----especially when 
B is very sparse and possibly ill-conditioned, as in the case of staircase L P s - - i s  
based on Gaussian elimination. Fundamental ly ,  this approach computes  a fac- 
torization of the form 

B = L U  

where L is lower-triangular and U is upper-triangular.  (See [4, 50] for compar isons  
with other approaches.)  
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This section begins by reviewing aspects of L U  computation, organization, and 
updating. It then looks more closely at the work of solving (fully or partially) the 
triangular system involving L or U, as efficient solution of these systems will be a 
key to more efficient handling of staircase LPs. 

3.1. Compu t ing  an L U  fac tor i za t ion  o f  the basis 

For the sake of concreteness,  denote the two linear systems of the simplex 

method by 

By = a, 

B~r~r = f ,  

where the right-hand-side constants a and f are appropriately chosen. Since the 
order of variables and equations is arbitrary, the rows and columns of B may be 
permuted in any way in the course of solving these systems. In other words, for any 

permutation matrices P and Q, it suffices to solve 

( p B Q T ) ( Q y )  = (Pa) ,  

(QBTpT)(p~r)  = (Of), 

which may be viewed as systems in the permuted matrix P B Q  T and its transpose. 
Given a factorization P B Q  T = LU, the above systems reduce to 

L ( U [ Q y ] )  = [Pa], 

UT(LT[p~r]) = [Of]. 

The system in B is thus t ransformed to two much easier systems: a lower-triangular 
one in L and an upper-triangular one in U. Likewise, the system in B T is 
t ransformed to a lower-triangular one in U T and an upper-triangular one in L T. 

The 'hard' part of solving By = a or BT~ = f  is thus the computation of 

P B Q  T = L U  by Gaussian elimination. The essential operations of this computation 

are defined by the following recursion: 

[3(1~ = p B Q  T, 

[3~k+1~ _ q -/3}~-/3}~13~//3~ ~, i , j = k + l  . . . . .  m ; k = l  . . . . .  m - l ,  

of which L and U are a by-product:  

Lik o(k)~,~(k) ) = p i k  l p k k ,  i = k ,  . . .  , m 

k =  1, m. 
Uk~=/3~, j k, ,m  .... 

The 'pivot'  values/3~ k~ are critical to this procedure.  An L U  factorization exists if 
and only if all pivots are nonzero,  and is numerically stable only if all pivots are 
sufficiently large in magnitude, both absolutely and relative to other elements of 
]3 (k) 

Practical Gaussian elimination thus looks for permutations P and QT such that 
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P B Q  T has an acceptably large series of pivots. Generally, any initial choice of P 
and Q--the initial 'pivot selection'--may have to be modified as the recursion is 
carried out, in order to produce acceptable values of/3~k). Such a modification-- 
so-called 'dynamic pivot selection'--may be made at any step k without affecting 
the computations at preceding steps. 

Choice of P and Q also strongly affects the sparsity of nonzero elements in 
the resulting L and U, as have been shown both theoretically and experimentally 
[13, 15]. A good choice of pivots can assure that the number of nonzeroes in L 
and U is not much greater than the number in B, without sacrificing numerical 
stability; it is this property that makes L U  factorization preferable in linear 
programming, where B is typically less than 1% dense. Section 4 will consider 
both initial and dynamic pivot selections that are particularly useful for sparse 
staircase LPs. 

3.2. Organizing the L U  factorization of  the basis 

The defining recursion of Gaussian elimination does not entirely fix the order 
in which the operations are carried out. Consequently there is some leeway in 
choosing the order in which the elements of L and U are computed and stored. 
In practice, this order is most strongly influenced by the way that storage is 
arranged. 

The specifics of the simplex method greatly favor storage of the coefficient 
matrix A by column. Consequently, LP storage schemes invariably make it easy 
to retrieve the nonzero elements of any column of A; retrieving the elements of 
a row of A is much more difficult. Since any basis B is just a subset of the 
columns of A, it inherits A's storage scheme and has the same retrieval 
properties. 

Because B is stored column-wise, Gaussian elimination for linear program- 
ming is most often arranged so that it processes only one column of B at a time. 
In outline, this form of elimination proceeds as follows: 

FACTOR-BY-COLUMN: 
1: S E T L = U = L  
2: REPEAT for each column bg of BQ T, k = 1 . . . . .  m : 

2.1: SOLVE Lx  = Pbk for x, 
2.2: SET Uik = xi for i = 1 . . . . .  k, 
2.3: SET Lik = xi/xk for i = k + 1 .... , m. 

This algorithm produces both L and U one column at a time, and both are 
normally stored column-wise just as B is. It is quite straightforward to design an 
efficient and stable version that takes advantage of the sparsity of B, L and U. 
(Practical implementations also avoid performing any explicit divisions in 
recording L. However, the subsequent discussion assumes, for purposes of 
clarity, that the divisions are actually carried out.) 
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An alternative organization, employed by Reid [50, 51], follows the defining 
recursion much more closely. Its outline is as follows: 

FACTOR-BY-ROW-AND-COLUMN: 
1: SET BETA = PBQ T. 
2: R E P E A T  for k = 1 . . . . .  m: 

2.1: SET Lik = BETAik/BETAkk for i = k . . . . .  m, 
2.2: SET Ukj = BETAkj for j = k .... , m, 

2.3: SET BETAij = BETA~ i - BETAik BETAkj/BETAkk for all i, j 

= k + l  .... ,m.  

Here L is again produced by column but U is produced by row; in Reid's 
implementation, L is stored column-wise like B and U is stored so that it may 

be accessed readily by row or by column. Implementation of this arrangement is 
somewhat complex, requiring careful use of storage-management routines. 

Choice of an elimination method and a storage scheme for L and U are 
important to staircase LPs in two respects. First, the storage scheme determines 

how linear systems involving L and U are solved (as explained later on in this 
section) and so influences the extent  of savings to be expected in solving these 
systems for staircase LPs  (Section 5). Second, different storage schemes are 
apprpriate to different methods for sparse staircase elimination (Section 4). 

3.3. Updating the L U  factorization of the basis 

Typically a full L U  factorization as described above is computed only every 
50-100 iterations. At intervening iterations it is efficient to simply update the 

factorization, because the simplex method changes B by only one column at 

each iteration. 
In general terms, an updating scheme starts with a factorization PoBoQ~ = 

LoUo and derives, after l iterations, some factorization of PIBtQT as a product  of 
'simple' matrices. For example, Benichou et al. [4] discuss a factorization of the 
form PoB~Q'~ = LoUoE1E2 ... Et in which each Ei differs from the identity in only 

one column. 
For  staircase applications, however,  the most appealing update scheme is of 

the kind originated by Bartels and Golub [2,3]. In essence, Bartels-Golub 
updates determine a factorization of the form 

PoB~Q T = L0(P TL ~)(P ~L2) ... (pTL,) U,. 

The rows of Bl are permuted like those of B0, but the columns may be 
rearranged. The factors of the permuted B are the original lower-triangular 

P ~Li, and a modified matrix L0, l additional permuted lower-triangular matrices T 
upper-triangular matrix Ut. Numerous  detailed update schemes have been built 
on this idea, including those of Forrest  and Tomlin [16], Reid [50, 51], Saunders 
[53, 54], and Gay [21]. 
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A common  feature of Bar te ls -Golub updates  is that L1 . . . . .  Ll all differ f rom 

the identity in fairly few elements,  while Ut is not greatly changed f rom U0. 

Thus the bulk of the work  of solving a linear system, at any iteration, consists of 
solving one lower-triangular system and one upper-tr iangular  system. Moreover ,  

for a system in BI the work always begins with solution of a system in L0, and 

always ends with solution of a system (in Uj) that is like a system in U0. 

Analogously,  for a system in BT the work always begins with solution of a 

system (in U~) that is like a system in U~, and always ends with solution of a 

sys tem in L~. 

Thus little will be lost in the sequel by simply imagining the basis to be 

factored P B Q  T= L U  at each iteration. The complications introduced by updat- 

i n g - t h e  insertion of simple factors  be tween L and U, and the modification of 

U- -w i l l  be mentioned only in the few instances where they make a difference. 

3.4. Solv ing tr iangular  l inear s y s t ems  

Linear  systems in triangular form are solved by a simple, familiar, and 

numerically stable process  of substitution. For a lower-triangular system L x  = r, 

this process  works forward in L f rom Lll to Lmm and produces the solution 

vector  one value at a time in the forward order xl . . . . .  X,n. For an upper-tr iangular 

sys tem LTx = r, on the other hand, substitution works backward  f rom Lm~ to LH 

and produces the solution in the backward  order x . . . . . .  x~. In an analogous 

fashion, solving an upper-tr iangular system in U also involves a backward  
substitution, whereas  solving a lower-triangular system in U T involves a forward 
substitution. 

Following Saunders '  terminology [55] a forward substitution will hencefor th  
be referred to as an FTRAN,  and a backward substitution as a BTRAN.  Solving 

a sys tem in L will be called an F T R A N L ,  and solving a system in L x will be 

called a B T R A N L ;  solving a system in U will be a B T R A N U  and solving a 
sys tem in U T will be an F T R A N U .  Thus, for example,  to solve B y  = a given 

P B Q  T= L U ,  one applies an F T R A N L  and then a B T R A N U  to Pa, producing Qy 

in the order (Qy) . . . . .  , (Qy)I. To solve BT~r = f, one applies an F T R A N U  and 
then a B T R A N L  to Qf,  producing P~r in the order (P~-)m .... , (P1r)l.* 

Even though BTRANs  and F T R A N s  are simple in concept ,  they involve many 

operat ions for a large LP and may  comprise  a substantial proport ion of the work 
in the simplex method.  Two circumstances  are crucial in determining the 
expense of a B T R A N  or F T R A N  routine for a given L or U: the storage 
organization of L or U, and the sparsity of the solution vector.  

For purposes  of illustration, suppose that the nonzero elements  of a lower- 
triangular L are available in column-wise order. The essentials of an F T R A N L  

* This terminology is at variance with the traditional use of FTRAN and BTRAN to describe the 
solution of systems in B and B x, respectively [16, 45]. In particular, the meanings of FTRANU and 
BTRANU in this paper are exactly the reverse of their meanings in the ~vork of Benichou et al. [4]. 
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routine to solve L x  = r are as follows: 

F T R A N L :  

R E P E A T  FOR j FROM 1 TO m: 

SET xj = r J L i j ,  

R E P E A T  FOR i FROM j + 1 TO m W H E R E  L~j# O: 

SET r~ = r~ - L~jxj. 

If  rj = 0 at the j th pass through the outer R E P E A T  loop, then also xj = 0, and the 
inner loop merely adds zero to various elements of r. Hence  the j th pass is 

superfluous when xj = 0. Moreover ,  if it happens that rl . . . . .  rp-i are all zero, then 
the main loop does no work until pass p. A more efficient routine is thus as 

follows: 

F T R A N L :  

1: R E P E A T  (SET xp = 0) FOR p FROM 1 U N T I L  rp~ 0. 

2: R E P E A T  FOR j FROM p TO m: 

I F r j = 0 : S E T x j = 0 ,  

ELSE:  SET xj -- r j /L j i ,  

R E P E A T  FOR i FROM j + 1 TO m W H E R E  Lij¢ 0: 
SET r~ = ri - L~jxj. 

Step 1 is especially valuable when rl . . . . .  rp_l are known beforehand to be zero. 

The efficiency of step 2 depends on how sparse x turns out to be. If  L and r are 

both sparse to begin with then x may well be fairly sparse. 

The situation for L T is quite different. Since L is stored column-wise,  L x is 

effectively stored row-wise,  and a B T R A N L  routine for solving L T x  = r must  

proceed as follows: 

BTRANL:  

R E P E A T  FOR j FROM m TO 1: 
R E P E A T  FOR i FROM m TO j + 1 W H E R E  L~j# 0: 

SET rj = r j -  L~jx~, 

SET xj = r j /L j j .  

Here  the j th pass cannot  be avoided by knowing rj = 0, since ri is continually 

modified within the inner R E P E A T  loop and xj is not determined until af ter  the 
inner loop is completed.  The only substantial economy from sparsity of r (or x) 
would be in knowing that a l l  of r~ . . . . .  r,+l are zero; then x . . . . . .  Xp+l are also all 
zero and the outer loop may be started with j = p. 

The key difference in the above examples  (and their analogues for U) is in 
their storage organization. Briefly, column-wise organization is preferable  to 
row-wise organization in taking advantage of zeroes within the right-hand-side 
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and solution vectors. Thus if L and U are both stored by column (the most 

common arrangement), then zeroes benefit systems in B = L U  much more than 
systems in B T= UTL T. If there is also some access to U by row (as in the case 

with certain updating methods), then zeroes may also be taken into account in 
the FTRANU routines for solving systems in B T. 

The practical significance of the above remarks necessarily depends on the 
actual sparsity of the pertinent vectors. For systems of the form By = a, the 
vector a is always a column of the very sparse LP coefficient matrix A, and so 
FTRANL and BTRANU can indeed take advantage of considerable sparsity. 
For systems of the form BTTr = f the situation is more involved (see Section 6), 

but generally BTRANL is most likely to suffer by being unable to take ad- 
vantage of zeroes. These observations will be amplified in considering staircase 

LPs, whose sparsity structure is especially well defined. 

3.5. Partially solving triangular linear systems 

One consequence of the preceding analysis is that the solution to By = a or 
BTTr = f is ultimately computed one element at a time, regardless of how L and 

U are stored. The vector y is produced by BTRANU in the order 
(Qy)m . . . . .  (Qy)I, and the vector ~r is produced by BTRANL in the order 
(PTr) . . . . . .  (PTr)l. 

BTRANL or BTRANU may therefore be terminated prematurely if only part of 
y or ~r needs to be computed. Such a partial solution has two potential uses: 
when the rest of the vector is already known (to be zero, for instance) and when 

only a portion of the vector is required at the present iteration. 
Nevertheless, for general LPs there is little to be gained from trying to 

compute partial solutions, owing to the presence of the permutations P and Q. 
There is no efficient way, for example, to tell whether (Qy)j . . . . .  (Qy)l will all be 
zero for some j, or to predict which element of P~r will be needed. Section 5 will 

show, however, that partial solutions can offer economies in solving staircase 
LPs, provided P and Q are chosen to reflect the staircase structure. 

4. Sparse elimination of staircase bases 

The staircase matrices encountered in linear programming are sparse in two 
senses; they have many blocks that are all-zero, and they have a low proportion 
of nonzero elements (typically 2-26%) within the remaining blocks. Thus stair- 
case bases are prime candicates for the techniques of sparse Gaussian elimina- 
tion. In essence, these techniques try to choose permutations P and Q and to 
factor P B Q  T= L U  so that the triangular matrices L and U are nearly as sparse 
as B. 

Staircase sparse-elimination techniques use the staircase structure of B to 
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guide the choice of P and Q. Two families of such techniques have been 
proposed [17]; one is based on the 'bump-and-spike' sparse-elimination methods 
common in linear programming, and the other employs popular 'merit' methods 
of sparse elimination. 

This section summarizes the direct effects--on speed, storage, and L U  spar- 
sity--of substituting staircase sparse-elimination techniques for standard ones in 
the simplex method. Bump-and-spike and merit techniques first are considered 
separately, then are briefly compared. Section 5 subsequently shows how 
staircase elimination techniques lead to additional efficiencies in the FTRAN and 
BTRAN routines. 

4.1. Bump -and -spike techniques 

The bump-and-spike methods originated by Hellerman and Rarick [28,29] 
exemplify a 'global' approach to sparse elimination. They look for an overall 
permutation of B to a form that should have a naturally sparse LU fac- 
torization. An entire permutation is determined in advance of any numerical 
computations; during the numerical elimination stage, the permutation is 
modified only if an unacceptable pivot value is encountered. 

As their name suggests, bump-and-spike techniques employ a two-stage pro- 
cedure: 

(1) The bump-finding phase determines an essentially unique permutation of 
B to a block-triangular form that has as many diagonal blocks ('bumps') as 
possible. (The block-triangular form somewhat resembles staircase form, but all 
its diagonal blocks Btt are square and any sub-diagonal block may contain nonzero 
elements.) 

(2) The spikerfinding phase tries to permute each block larger than 2 × 2 to a 
form that is entirely lower-triangular except for a small number of 'spike' 
columns that extend above the diagonal. This permutation is commonly entrus- 
ted to a heuristic algorithm known as P3 (the Preassigned Pivot Procedure). 

Permuted in this way, B has a good structure for sparse Gaussian elimination. 
Creation of new nonzero elements in L and U--the 'fill-in'--is confined to the 
relatively few spike columns, while the remaining 'triangle' columns of B are 
essentially unaffected. Furthermore, elimination of a given spike column can 
cause fill-in only within subsequent columns of the same bump. 

A proposed staircase bump-and-spike technique [17] dispenses with step (1) 
above by substituting a known staircase form for the block-triangular form. Step 
(2) then applies the P3 spike-finding heuristic to the diagonal blocks Bt~ of the 
staircase, with appropriate modifications to handle blocks that are not square or 
that are rank-deficient. Rows of period 1 are thus assigned pivot elements first, 
followed by rows of period 2, period 3, and so forth through period T. The major 
difference is in the handling of columns. As explained in Section 2, a nonsingular 
staircase matrix always has at least as many columns as rows in the first t 
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periods; thus it is generally not possible to assign a pivot element from the block 
Btt to every period-t column. Leftover columns from period t must be assigned 
pivot elements in rows of later periods; since these columns necessarily extend 
above the diagonal, they are referred to as 'interperiod spikes', in contrast to the 
'intraperiod spikes' within B. that are found by P3. 

The effect of this procedure (described in much more detail in [17]) is to 
permute the staircase so as to 'square off' its diagonal blocks while reducing it to 

a nearly lower-triangular form: 

Fill-in is still confined to the spikes; elimination of a spike column can cause 
fill-in only within intraperiod spikes of the same block or within interperiod 
spikes of the same or preceding periods. The number of interperiod spikes is 
closely related to the cumulative excess of columns over rows, which is limited 
by the balance constraints of Section 2; thus there should be relatively few 
interperiod spikes and fill-in should be reasonably limited. 

Computational experiments in [17] suggest that the standard and staircase 
bump-and-spike techniques are roughly competitive. They tend to produce 
comparable numbers of spikes, and the fill-in due to either technique is seldom 
much more than twice the fill-in due to the other. However, each technique does 
appear to be superior in certain situations. 

Standard bump-and-spike seems invariably better when all bumps are small 
and most are 1 z 1. P3 is then applied cheaply to a few blocks, whereas the 
staircase technique must still apply P3 to every diagonal block of the staircase. 
The standard technique's spikes tend to be smaller than the staircase technique's 
interperiod spikes, and so the former fill in less; fill-in within L tends to be about 
the same, but the standard technique produces a notably sparser U. In addition, 
the standard technique produces fewer spikes that have unacceptable pivot 
values, and so wastes less time in modifying the chosen permutation. 

Staircase bump-and-spike appears to have the advantage, however, when 
there are one or two very large block-triangular bumps that comprise a third or 
more of the rows and columns of B. Standard P3 is highly inefficient in 
processing these large bumps, whereas staircase P3 only needs to process the 
staircase blocks. In such situations the two techniques yield comparable fill-in 
within U, while the staircase technique yields a sparser L. Moreover, in some 
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cases the staircase technique produces substantially fewer spikes that have 
unacceptable pivots. 

Both of these bump-and-spike techniques are designed for column-wise 
organization, and normally use the FACTOR-BY-COLUMN elimination routine 
of Section 3. Unacceptable pivot elements are handled by 'swapping' the pivot 
column with a later spike (an operation in which BTRANL figures as a 
subroutine). Storage for either technique need not exceed that required to hold B 
and the spike columns of L and U. 

4.2. Meri t  techniques 

'Merit' methods, as first proposed for linear programming by Markowitz [40], 
typify a 'local' approach to sparse elimination. They dynamically select the kth 
pivot element from within/3 (~ so as to guarantee relatively little fill-in of nonzero 
elements in computing /3 (k÷l~. For a sparse B, this myopic optimization of 
individual pivot elements tends to produce a sparse L and U overall, as 
computational experiments have confirmed [15]. 

Methods of this sort rely on a 'merit function that estimates--for each 
nonzero element of/3(k~--the fill-in that would result if that element were chosen 
as pivot. The kth pivot element is selected to minimize this merit function over 
all nonzero elements of/3(k~ that meet certain numerical requirements. Practical 
merit functions are generally computed from two simpler sets of values: rl k~, the 
number of nonzeroes in row i of /3 (k~, and cl ~, the number of nonzeroes in 
column ] of/3 (k~. Markowitz originally suggested, for example, that the merit of 
3 (k~ be computed as (r! k~- 1)(cl k~- 1), which has proved both effective and ii 
efficient to implement [14, 15]. 

Proposed staircase merit techniques [17] restrict minimization of the merit 
function to roughly one period of/3(k~ at a time. As a consequence, both the rows 
and columns of B are assigned pivot elements in period order. Fill-in is thereby 
limited to a small part of/3(k~--roughly two periods or less--while the remainder 

of/3(~ is just the same as B. 
Staircase merit techniques should tend to produce a denser L and U than 

standard merit techniques, since the former minimize the merit function over a 
much smaller set of potential pivot elements. However, experiments in [17] 
suggest that the staircase techniques are not unreasonably inferior. In the worst 
test case the staircase merit technique produced about twice the fill-in (47% 
versus 22%); in some cases it did nearly as well as the standard technique, 
however, and in one case it was distinctly better. 

Staircase merit techniques offer a clear economy, moreover, in carrying out 
the elimination. They confine all of the work of the kth elimination step-- 
minimizing the merit function, computing/3(k÷o from /3 (k~, and updating ,~-(k~ and 
clk~--to the rows and columns of one or two periods. By contrast, the standard 
technique must deal with the entire /3(k~ at each elimination step. 
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Potential savings in storage are even greater. Merit techniques normally use 
the FACTOR-BY-ROW-AND-COLUMN algorithm of Section 3, since both 
rows and columns are dynamically permuted in selecting the pivot element. 
However, staircase merit elimination relies on only the one or two periods of 
BETA that differ from B, whereas standard merit elimination needs all of BETA. 
As a consequenc e, staircase merit techniques may be able to use simpler or more 
economical storage strategies than the standard techniques. As an example, 
under the standard techniques BETA shrinks only as L and U grow, and some 
sort of dynamic storage allocation is generally required to hold all three in 
available storage. Under the staircase techniques, by contrast, the active part of 
BETA stays small and fairly constant in size, and might well be kept in a fixed 
work area. 

4.3. Comparison of bump-and-spike and merit techniques 

There is no clear choice between bump-and-spike and merit techniques for 
sparse LU factorization, whether standard or staircase. Evidence of [17] sug- 
gests that each family of techniques offers the lowest fill-in for certain LP bases; 
additionally, each family is sensitive to the nature and availability of storage. To 
further complicate matters, particular LU updating schemes are designed for 
each family: for example, Saunders' scheme [53, 54] for bump-and-spike, Reid's 
[50, 51] for merit. These update schemes also have varying sparsity and storage 
characteristics. 

Staircase bump-and-spike techniques do have one evident advantage: they 
apply just as well to higher-order staircase LPs (as defined in Section 2) as to 
first-order ones. Staircase merit techniques could also be adapted to handle 
higher-order staircases, but the extent of fill-in within/3 (k) would be greater and 
hence the savings over comparable standard techniques would be less. 

On the other hand, staircase merit techniques are easily designed to ensure 
that all rows within a given square sub-staircase (Section 2) are assigned pivot 
elements on columns within that square sub-staircase. This 'respect' for sub- 
staircases--both lower and upper--may prove advantageous to BTRAN and 
FTRAN routines as discussed in Section 5. By contrast, staircase bump-and- 
spike techniques normally respect just sub-staircases of the lower-staircase 
structure; they can be made to respect upper sub-staircases only with some 
additional difficulty. 

5. Solving staircase linear systems 

The staircase elimination techniques discussed above have a significance to 
linear programming that goes beyond their different ways of computing B = LU. 
Both families of staircase techniques also make it possible to design specialized 
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BTRAN and FTRAN procedures for staircase LPs.  These specialized pro- 
cedures can contribute greatly to the efficiency of the simplex method, as the 
experiments in Section 6 will demonstrate.  

For the purposes of BTRAN and FTRAN, the most important property of 

staircase elimination techniques is that they pass B's  staircase structure on to L 
and U. Thus this section begins with a careful discussion of the period ordering 
of L and U. Thereaf ter  each solution p r o c e d u r e - - F T R A N L ,  BTRANU,  
FTRANU,  B T R A N L - - i s  taken up in turn. 

5.1. Period partitions of L and U 

Suppose that a factorization PBQ T= L U  has been determined as described in 

Section 3. In terms of this factorization and the staircase constraint matrix A, 
the following indices may be defined for each period t -- 1 .... , T: 

At = first row of PB whose corresponding row of A is in period t or later. 

/xt = first column of BQ x that is a column of A from period t or later. 

Necessarily )tt ~<)tt+l and /xt ~</xt+l for any choice of P, B and QT. Thus 

{)tl,..., AT} and {/xl . . . . .  /XT} partition the rows and columns, respectively, of 
PBQ T by period. Since the rows of PBQ T correspond to the rows of L, the At 

values can also be thought of as partitioning L;  analogously, the /xt values 

partition U. 
In general these partitions are not particularly significant, as the )tt and /xt 

values all tend to be small. In an extreme (but not unusual) case, for example, if 

the first row of PB is a per iod-T row, then ,~ . . . . .  ) tW = 1. 
If the factorization PBQ T-- L U  is determined by one of the staircase elimina- 

tion techniques, however,  the )tt and /xt values must approximate the original 
staircase partitioning of B. This fact is clearest in the simple case where a 
staircase technique, from either family, is applied to the staircase structure that 
B inherits from A. These techniques all construct  P so that PB preserves the 

staircase row ordering; hence they ensure ~tt = ~ t-~ m; + 1. The merit techniques 

also construct  Q so that BQ T preserves the staircase column ordering, and 
consequently they also ensure/xt = ~ - 1  nj + 1. For simple bump-and-spike tech- 
niques /xt = )t~; more sophisticated versions give/xt = At + the number of all-zero 

rows in Btt. 
The situation is slightly more complicated if, as suggested in Section 2, B is put in 

reduced standard staircase form before the staircase elimination is carried out. 
Some rows of B that correspond to period-t rows of A may then be treated as if they 
are in period t -  1. As a consequence,  At need only satisfy ~ - 2  mg+ 1 ~ At <~ 

~-~ m~ + 1. Thus a modification of the inherited staircase form to reduced standard 
form will tend to produce smaller At values and a less regular )t-partition (although 
the /x-partition will be unaffected). The )tt values will still be quite well-spaced, 
however,  particularly if the periods are small and numerous.  



R. Fourer[ Solving staircase LPs : Inversion 293 

A further complication is introduced when B's  factorization is updated by the 

Bartels-Golub methods described in Section 3. P, L and hence the )t-partition 
are unchanged; Q and U are modified, however,  and hence the /z-partition is 
altered. For example, the simplest update methods always delete one column of 
Bt-1Q~-I and add a new column at the end to produce BtQ T. All/xt values greater 

than the index of the deleted column are consequently decreased by 1, and the 

/x-partition is thus slowly degraded. Nevertheless,  degradation should not be 
severe for large LPs  with the usual 50-100 updates between refactorizations. 

The situation is more involved in the case of sophisticated updates that add the 
new column before  the end of Bl-z; the resulting degradation of the /x-partition 
should be no worse, however,  provided some care is taken in choosing where to 

add the new column. 
Staircase elimination techniques thus yield ht and /xt values that significantly 

partition L and U by period. It remains to use these values to reduce the work 

of solving systems in L and U. 

5.2. S ta i rcase  F T R A N L  

At each iteration F T R A N L  solves a system like Lv = P a ,  where a is a 

column of A. If a is from period t, then it is zero on rows of periods 1 through 

t - 1. Consequently,  

(Pa)i  = 0 for all i = 1, . . . ,  ht-1, 

and so the main loop of F T R A N L  may begin at index At as explained in Section 

3. 
In brief, when F T R A N L  transforms a period-t column it can start at period t 

in L, rather than at the beginning of L. The resultant savings should be modest,  
however,  since F T R A N L  already handles zeroes efficiently. 

Further savings may be possible when using an elimination technique that 

respects square sub-staircases in the upper-staircase structures (Section 4). If 
there are p upper sub-staircases, then L consists of p separate triangles: 

. . . . . . . . .  - ]  

I I 
I I 

[ 

The system L v  = Pa thus decomposes into p independent  triangular subsystems, 
one for each upper sub-staircase. Consequently,  it is only necessary to solve the 
one or two triangular subsystems on whose rows a is nonzero;  the other 
subsystems must have solutions that are all-zero. Savings through this scheme 
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would depend on the number of upper sub-staircases, and would probably be 
small since F T R A N L  is efficient to begin with; the extra logic involved in 

keeping track of the upper sub-staircases may sometimes be more trouble than it 

is worth. 

5.3. Staircase B T R A N U  

At each iteration BTRANU solves a system like U ( Q y ) =  w, where w is a 

solution vector produced by F T R A N L  plus update transformations.  Generally 
nothing is known in advance about the position of zeroes in w even for staircase 

problems, although BTRANU may take advantage of individual zeroes in its 

usual efficient way. 
A small saving is possible, however,  if the location of (lower) square sub- 

staircases in B is known. Suppose, for example, that B has a sub-staircase at 
period t (that is, ~tj mi = ~tl ni). The system By = a may therefore be permuted 

and partitioned as 

B(m y(1H ra(,,1 

where B (11) is the initial t-period square sub-staircase block. Suppose also that 

the column a is from any period s > t. By definition, its subvector  a (l) is zero; 

hence necessarily y(~) is also zero. 
In other words, under the above circumstances y; = 0 whenever  the ]th column 

of B is from periods 1 through t. For any particular permutation Q, therefore,  

( Q y ) j = 0  for a l l j = l  . . . . .  /~ t -1 .  

Consequently the main loop of BTRANU,  which computes (Qy)j in the order 
j = m, ..., 1, can stop after the #tth pass; the remainder of the solution is zero. 
The savings in this instance should be modest,  since BTRANU handles zeroes 

efficiently in any case. 

5.4. Staircase F T R A N U  

FTRANU solves a system like U %  = Of  at each iteration, where the vector  f 
is commonly chosen in one of three ways: 

(1) In phase 1 of the simplex method, f contains a - 1  corresponding to each 

infeasible basic variable, and zeroes elsewhere. 
(2) In phase 2, if the objective function is not included in B, then f is the 

vector  of objective coefficients that correspond to the basic variables. 
(3) In phase 2, if the objective function is included in B, then f contains one 

+1 and zeroes elsewhere. 

In any of these cases, it may be possible to determine that f is zero in all 
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columns of the first t periods of the basis. It then follows that 

(Qf)j = 0 for all j = 1 . . . . .  /zt - 1, 

and hence the main loop of F T R A N U  may begin at/zt. 
This situation is analogous to the one for F T R A N L  above: when FTRANU 

transforms an f that is zero prior to period t, it can start at period t in U rather 
than at t h e  beginning of U. However ,  the potential savings are greater for  

F T R A N U  than for F T R A N L  (assuming U is stored in the usual column-wise 
fashion) because FTRANU cannot  normally benefit from zeroes in f. The actual 
savings in F T R A N U  depend highly on how f is handled. Gains are most likely in 
case (1) above, where f tends to have many zeroes;  savings in case (2) will be 
slight unless the objective has some special form. In case (3), FTRANU can be 
avoided en t i re ly- -even  for non-staircase L P s - - b y  placing the objective row last 
in PBQT; thus staircase FTRANU may have no work to save. 

Staircase F T R A N U  might also take advantage of lower sub-staircases to avoid 

computing values that 'must be zero; the situation is analyzed just as for 
F T R A N L  above. Any savings would depend upon finding sub-staircases in 

which f is all-zero, and so the costs of finding such sub-staircases would have to 
be weighed against any benefits. 

5.5. Staircase BTRANL 

B T R A N L  produces a 'price vector ' ,  ~r, at each iteration by solving L~(PTr)= 
w, where w is the product  of F T R A N U  and any update transformations.  The 
simplex method then uses ~- to compute the reduced cost 

dj = cj - 7raj 

for any nonbasic variable xj (with cost cj and coefficient column ai). If xj is from 

period t, aj must be all-zero except  on the constraints of periods t and t + 1; 
hence only the elements of ~r from these periods are needed to compute 7raj. 
Consequently only a portion of ~r may be needed at a given iteration i f - -by  use 

of 'partial pr ic ing ' - -only a subset of the d i values are computed. (Numerous 
partial-pricing schemes appropriate to staircase LPs  are discussed in [20].) 

Suppose, therefore,  that the current  iteration needs only elements of 7r for 
periods t and later. Since BTTr = f, elements of ~r correspond in period to rows 
of B ; elements of PTr thus correspond to rows of PB. To produce 7r for periods t 
and later, therefore,  it suffices to compute 

(P~r)i for all i = At . . . . .  m. 

These are exactly the first m -  ht + 1 elements produced,  in reverse order, by 
BTRANL.  Hence  exactly the desired part of 7r is computed by running 
B T R A N L  until it completes the ht-pass of the main loop; the rest of BTRANL 
may be skipped. (Consult [20] for a more extensive discussion of this idea, 
including consideration of restarting BTRANL.)  
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Further savings might be achieved by trying to compute even smaller portions 
of ~r. Specifically, ~r might be computed within one upper-sub-staircase in- 
dependently of the others. Such an arrangement would necessarily be complex, 
however, and its value is uncertain. 

5.6. Adaptat ions for  higher-order staircases 

Most of the above methods are equally valid for higher-order staircases as 
described in Section 2, provided that some form of staircase Gaussian elimina- 
tion is employed to assure good values of h~ and/zt. However, any savings due 
to upper-sub-staircases in FTRANL and BTRANL are likely to be lost. 

6. Computational experience 

This section reports initial computational experiments with some of the 
preceding ideas. The results indicate that staircase adaptation of the simplex 
method does make a significant difference: generally much less time is spent in 
certain routines, while more time is spent in others. Overall the staircase runs 
were measurably faster, and in one case the savings were quite substantial. 
Moreover, it appears there is significant room for improvement in subsequent 
implementations. 

For the test runs an existing LP code, MINOS [44,55], was modified to 
recognize staircase structure and to optionally apply some of the staircase 
techniques of Sections 4 and 5. Each test LP could then be solved twice--once 
with the staircase features turned off, once with them on--and the results could 
be meaningfully compared. Details of the test code and of the experimental 
setup are given in Appendix A. 

MINOS employs a bump-and-spike factorization with Saunders' updating 
technique. Consequently a staircase bump-and-spike technique was implemented 
in the test version, and all test results bear directly only upon bump-and-spike 
methods. Nevertheless, from certain results one may make favorable specula- 
tions about the expected performance of staircase merit techniques, as indicated 
further below. 

To keep the presentation compact, only short tables of results are presented 
here. Graphs of more extensive test data are collected in a technical report [18]. 

6.1. Overall results 

Seven medium-to-large-scale linear programs were used in the tests. All are 
from applications, and are of dissimilar structures (aside from being staircase). 
Their gross dimensions (including objectives and right-hand sides) are given in 
Table 1. The 'iterations' column gives the number of iterations required by a 
standard version of MINOS to reach optimality from an all-slack starting basis. 
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Table 1 

Nonzero 
Periods Rows Columns values Iterations 

SCAGR25 25 472 500 2208 1058 
SCRS8 16 491 1169 4106 862 
SCSD8 39 398 2750 11349 2047 
SCFXM2 8 661 914 5466 1012 
SCTAP2 10 1101 1880 13815 1174 
PILOT 9 723 2789 9291 >2000 
BP1 6 822 1571 11414 >2000 

For the sake of economy, PILOT and BP1 were tested on runs of 1000 and 750 
iterations, respectively, starting from advanced bases. The other problems were 
tested on runs to optimality from all-slack starts. Additional information about 
the test LPs is collected in Appendix B. 

Raw results from the test runs, standardized to seconds per 1000 iterations, 
were as given in Table 2. Savings were substantial for PILOT, and respectable 
for SCSD8. For the others the gross difference between the standard and 
staircase techniques was small, though the latter performed worse only on BP1. 

It is misleading to consider only these totals, however. When the times are 
broken down by function, it becomes evident that gains in some areas tend to be 
offset by losses in others. The staircase techniques have an edge in simplex 
pricing and pivoting, but are usually slightly behind in updating the L U  fac- 
torization; they range from much faster to somewhat slower in pivot selection 
for Gaussian elimination, but are almost always slower in computing the L and 
U factors. Miscellaneous routines consume a good 10-20% of the time, much of 
which could be saved in practical (rather than test) circumstances. 

Thus considerably more is to be learned by examining the times of individual 
routines and functions. The following subsections consider first the simplex- 
iteration routines, and then the LU-factorization ones. 

Table 2 

Total time 

Standard Staircase % change 

SCAGR25 29.7 27.9 - 6% 
SCRS8 33.9 31.5 - 7% 
SCSD8 43.2 37.8 -13% 
SCFXM2 43.4 42.2 - 3% 
SCTAP2 67.2 67.1 0% 
PILOT 155.7 106.4 -32% 
BP1 181.8 189.7 + 4% 
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6.2. I terat ing  routines 

The simplex method spends a majority of its time in tasks that are repeated at 

each iteration: choosing a column to enter the basis (pricing), determining which 

column leaves the basis (pivoting), and revising the basis factorization accord- 

ingly (updating). The LP code's  'iterating' routines carry out these tasks. 

For the test problems, total time spent in the iterating routines--again,  

normalized to seconds per thousand iterations--is given in Table 3. Here the 

results are somewhat more striking, with savings of 10-20% in four of the seven 

tests. 

A further breakdown of 

far is in BTRANL,  which 

every instance. There is a 

these timings reveals that the greatest difference by 

is significantly faster with the staircase version in 

corresponding, but smaller, efficiency in FTRANL.  

The normalized figures for these two routines are given in Table 4. Roughly the 

savings are 30-50% in B T R A N L  and 20-40% in FTRANL.  

There is a small but noticeable tendency of the staircase version to run slower 

in B T R A N U  and FTRANU.  Most likely this behavior is a consequence of the 

L U  factorization: the staircase bump-and-spike elimination tends to yield a 

denser U. 

Some of the difference in BTRAN and FTRAN timings should be due to the 

Table 3 

Iterating time 

Standard Staircase % change 

SCAGR25 24.6 22.2 - 10% 
SCRS8 28.1 23.8 -15% 
SCSD8 34.2 30.5 -11% 
SCFXM2 33.2 32.5 - 2% 
SCTAP2 56.9 54.3 - 5% 
PILOT 108.0 86.3 -20% 
BP1 136.6 146.1 + 7% 

Table 4 

FTRANL BTRANL 

Standard Staircase % change Standard Staircase % change 

SCAGR25 2.7 1.9 -29% 6.7 3.5 -48% 
SCRS8 2.4 1.5 -36% 5.7 3.4 -41% 
SCSD8 3.9 2.9 -25% 8.2 4.7 -42% 
SCFXM2 2.6 1.9 -28% 7.8 5.4 -32% 
SCTAP2 3.3 2.6 -21% 9.2 6.6 -28% 
PILOT 13.0 8.0 -38% 22.9 12.7 -45% 
BP 1 14.8 12.6 - 15% 32.5 26.9 - 17% 
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Table 5 

Time saved 
by staircase 

FTRAN, BTRAN % saving 

SCAGR25 4.9 15% 
SCRS8 4.1 12% 
SCSD8 5.2 12% 
SCFXM2 4.4 9% 
SCTAP2 4.4 6% 
PILOT 13.4 11% 
BP1 3.5 2% 

methods of Section 5. However ,  the efficiency of these methods cannot  be told 
from the above data, which also reflect differing L and U densities. To get 
around this problem, a separate set of runs was made, employing the staircase 
L U  factorization but not Section 5's enhancements.  Table 5 gives the 
differences (per 1000 iterations) between runs with and without these enhance- 

ments: The efficiencies in FTRAN and BTRAN cut total running times 9-15% in 
most cases; the savings would be more pronounced as a percentage of iterating 
time only. Predictably,  LPs  of many periods tended to show the greatest 
differences. 

Comparable savings should be realized if staircase bump-and-spike elimina- 

tion techniques are replaced by staircase merit techniques, since the methods of 
Section 5 apply equally well to either. Hence merit techniques may well be 
superior for LPs  such as SCAGR25 and SCFXM2 whose staircase fac- 
tor izat ions--as  reported in [17]--are notably denser under bump-and-spike. 

The one sour note in the three tables above is BP1, for which the staircase 
iterating routines seem to perform rather poorly. On closer examination, 
however,  this is not entirely surprising, as BP1 differs significantly from the 
other LPs.  Whereas the others are first-order staircases (or, in the case of PILOT,  
very nearly first-order), BP1 has a large number of nonzeroes below the 
staircase; its form is in fact closer to dual-angular. BPI ' s  bases consequently 
tend to be unbalanced. Hence the staircase technique produces considerably 
more spikes, and a much denser U factor. The result: much more time spent in 
F T R A N U  and BTRANU,  offsetting any gains in F T R A N L  and BTRANL.  

It thus appears that a good staircase form is essential to success of the 
staircase techniques. BP l 's  staircase araangement was deduced from fairly scant 
information, and is evidently inadequate. A better staircase form may exist, but 
but a better  knowledge of the underlying model may be necessary to find it. 

6.3. Factorizing routines 

At intervals of typically 50-100 iterations a fresh factorization of the basis is 
computed by a separate set of routines. For  bump-and-spike techniques, these 
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Factorizing time 

Standard Staircase % change 

SCAGR25 1.4 1.6 +15% 
SCRS8 l, 1 1.4 +22% 
SCSD8 2.7 1.6 - 3 9 %  
SCFXM2 1.9 2.8 +47% 
SCTAP2 1.7 3.0 +80% 
PILOT 32.8 9.7 - 7 0 %  
BP1 27.9 26.1 - 6% 

'factorizing' routines fall into two classes: ones that select a pivot order, and 
ones that compute the L and U factors. 

For the test problems, total time in factorizing routines--normalized to 
seconds per 10 refactorizations--is given in Table 6. The outcomes appear to 
vary wildly. However, they are the consequence of a few simple patterns which 
are revealed by looking at the pivot-selection routines and LU-computation 
routines separately. 

Pivot selection involves a routine for the P3 heuristic, a block-triangulariza- 
tion routine (for the standard technique only), and main routines to call these 
and record the selected pivots. The staircase technique's main routine seems to 
run usually somewhat longer, probably because it is more complicated. The 
other routines' normalized times are summarized in Table 7. The behavior of P3 
is clearly critical. P3 is quite fast when bumps are small; but it begins to slow 
down when bump size passes 100, and it is extremely inefficient on bumps of 
size 400 or 500. PILOT, the worst case here, spends 16% of its total running time 
in P3 alone! By extrapolation, it seems likely that P3 will be prohibitively slow 
for large bumps. Thus a staircase bump-and-spike technique (or else an efficient 
merit technique) may be essential for larger versions of models like SCSD8 and 
PILOT. 

The main LU computation routines employ FTRANL and BTRANL as 

Table 7 

Standard Staircase 
Median size of 

P3 B L K  A Total P3 largest bump 

SCAGR25 0.4 0.2 0.6 0.2 45 
SCRS8 0.2 0.2 0.4 0.2 28 
SCSD8 1.1 0.4 1.5 0.2 114 
SCFXM2 0.2 0.5 0.7 0.8 36 
SCTAP2 0.0 0.5 0.5 0.7 1 
P ILOT 20.4 1.0 21.4 2.4 533 
BP1 13.1 2.0 15.1 3.8 408 
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Table 8 

Standard LU Staircase LU 

Main FTRANL BTRANL Swaps Main FTRANL BTRANL Swaps 

SCAGR25 0.2 0.0 0.0 3 0.6 0.1 0.1 20 
SCRS8 0.2 0.0 0.0 1 0.4 0.1 0.1 11 
SCSD8 0.4 0.1 0.0 6 0.5 0.1 0.1 11 
SCFXM2 0.5 0.1 0.0 2 1.0 0.2 0.1 8 
SCTAP2 0.2 0.0 0.0 0 0.7 0.1 0.4 19 
PILOT 3.3 3.8 2.4 27 3.2 1.8 0.8 16 
BP1 3.7 3.8 2.4 28 6.4 5.8 7.2 49 

subroutines. F T R A N L  solves for the next  column of L and U (as described in 

Section 3), and B T R A N L  solves for row k of /3 (k) when a column interchange 

( 'spike swap')  is necessi tated by an unacceptable  pivot  element. The test 

problems gave the normalized results of Table 8 (where ' swaps '  is the maximum 

number  of swapped spikes per factorization).  These times are sensitive to the 

numbers  of spike swaps,  since each swap requires another  B T R A N L  and 

F T R A N L  plus extra work in the main routine. Exper ience with P I L O T  and 
other LPs  [17] suggests that the staircase technique may  generally require fewer  

swaps when the block-triangular bumps  are big (as for P ILOT)  and the staircase 

is well-balanced (unlike BP l 's).  However ,  the staircase technique seems to need 

more swaps when the block-triangular form has relatively small bumps.  

Again the data suggest that staircase merit  techniques might be preferable  for 

the small-bump staircase LPs.  An efficient implementat ion of merit-function 
minimization [14, 51] need incur only a small extra cost  in rejecting any unac- 

ceptably small pivot  element. 

6.4. Compar i son  with a commercia l  code 

Product ion runs of the P I L O T  model were frequently made on the same 

computer  as used for  the above tests. These runs employed a commercial ly-  

marketed  machine-language LP c o d e - - t h e  W H I Z A R D  simplex routine of MPS 

I I I  [43]--which incorporated a bump-and-spike factorization scheme. Various 
system parameters  were set f rom experience to yield fast  P I L O T  runs. 

For comparison,  therefore,  W H I Z A R D  was run 1000 iterations f rom the same 
starting basis as used above with MINOS.  The running times were as follows: 

MINOS,  standard 155.7 sec, 

MPS I I I / W H I Z A R D  114.7 sec, 

MINOS,  staircase 106.4 sec. 

MINOS did require considerably more storage, primarily because its storage 
scheme for the U factor  could not efficiently accommoda te  a large number  of 
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spikes. U could probably be stored more compactly, however, without 
significant effect upon the MINOS timings. 

Nothing very definite can be inferred from these figures, since MINOS and 
MPS III-WHIZARD differ in many ways. They employ different scaling tech- 
niques, factorization routines, and refactorization frequencies; moreover, 
WHIZARD uses multiple pricing while MINOS does not. Nevertheless, it is 
encouraging that staircase MINOS can be compared at all with a fast com- 
mercial LP system. At the least, one may conclude that the timings throughout 
this section are probably fairly realistic. 

7. Conclusions 

The preceding experimental evidence clearly bears out one hypothesis of this 
paper: that the inversion routines of the simplex method may be adapted to 
handle staircase LPs more efficiently. Are these staircase efficiencies sufficiently 
general and substantial to be of practical significance? There is reason to believe 
that they are, but a conclusive answer must await two further sorts of evidence. 

First, it must be determined whether all inversion routines can be improved 
together by staircase adaptations, or whether improvements in some routines 
can merely be traded off against degradations of others. Several trade-offs are 
evident in the experiments of Section 6; most seriously, staircase efficiencies in 
FTRAN and BTRAN routines require staircase sparse-elimination techniques 
that are sometimes slower and yield a denser factorization (than standard 
techniques). This trade-off may well be eliminated, however--as suggested 
previously--by taking a fresh look at the merit elimination techniques, which 
have been overshadowed by the bump-and-spike techniques in simplex-method 
implementations. Staircase merit techniques have neither the great storage 
requirements of standard merit techniques nor the large-spike problems of 
staircase bump-and-spike techniques; hence they may permit efficiencies in 
solution routines without introducing great inefficiencies into the factorization 

routines. 
Second, it will be important to determine whether staircase savings grow with 

increased LP size and difficulty. Section 6's experiments suggest a favorable 
trend, in which staircase savings tend to be least for the small and 'easy' LPs 
and to be greatest for large and 'hard' ones that are most expensive to begin 
with. This trend is particularly clear in certain routines; for example, the 
staircase P3 heuristic is highly advantageous for difficult bases with large 
block-triangular bumps, and the staircase BTRAN and FTRAN routines have 
the greatest edge when the number of periods is large. 

It thus seems reasonable to hope to achieve the broader goal of this paper: 
solving staircase linear programs at meaningfully lower cost. Experiments here 
have shown the possibility of savings in the inversion routines alone; the 
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companion paper [20] will show a potential for equally great savings through 

specialized staircase pricing techniques. 
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Appendix A: Details of computational tests 

A.1. Comput ing  env ironment  

All computational experiments were performed on the Triplex system [57] at 
the Stanford Linear Accelerator Center, Stanford University. The Triplex com- 
prised three computers linked together: one IBM 360/91, and two IBM 370]168s. 
Runs were submitted as batch jobs in a virtual-machine environment, under the 
control of IBM systems OS/VS2, OS/MVT and ASP. 

Test runs employed a specially-modified set of linear-programming routines 
from the MINOS system [44, 55]. MINOS is written in standard FORTRAN. For 
timed runs, MINOS was complied with the IBM FORTRAN IV (H extended, 
enhanced) compiler, version 1.1.0, at optimization level 3 [36]. 

A.2. Timings 

All running-time statistics are based on 'CPU second' totals for individual job 
steps as reported by the operating system. To promote consistency all timed jobs 
were run on the Triplex computer designated 'system A', and jobs whose timings 
would be compared were run at about the same time. Informal experiments 
indicated roughly a 1% variation in timings due to varying system loads. 

More detailed timings employed PROGLOOK [37], which takes frequent 
samples of a running program to estimate the proportion of time spent in each 
subroutine. To determine the actual time in seconds for each subroutine, every 
timed job was run twice--once without PROGLOOK to measure total CPU 
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seconds, and once with P R O G L O O K  to estimate each subroutine's proportion" 
of the total. P R O G L O O K  estimates were based on at least 2300 samples per job. 

A.3. M I N O S  linear-programming evnironment 

MINOS was set up for test runs according to the defaults indicated in [44], 
with the exception of the items listed below. 

Scaling. All test runs of SCRS8, SCFXM2, P ILOT and BP1 employed scaled 
versions of these problems. In every case the scaling was determined by the 
following geometric-mean procedure (in which A denotes the coefficient matrix 
exclusive of objective and right-hand side): 

SET P0 = maximum ratio of magnitudes of any two nonzero elements in 
the same column of A. 

R E P E A T  for k = 1, 2, 3 .... : 
DIVIDE each row i of A, and its corresponding right-hand-side value, 

by [(mini [A~jl)(max j IAd)] 1/2, taking the minimum over all nonzero 
elements in row i. 

DIVIDE each column j of A, and its corresponding coefficient in the 

objective,  by [(mini IAijl)(max~ I&l)] 1/2, taking the minimum over  all 
nonzero elements in column j. 

SET Ok = maximum ratio of magnitudes of any two nonzero elements 
in the same column of A, as scaled. 

U N T I L  Ok ~> (0.9)Ok-1. 

The maximum-column-ratio criterion, Ok, was employed because MINOS uses a 

related criterion to determine the acceptability of pivot values in L U  fac- 
torization. 

Starting basis. All LPs  except  P ILOT and BP1 were solved with crash option 
0 of MINOS; the initial basis was composed entirely of unit vectors,  and all 
nonbasic variables were placed at zero. P ILOT and BP1 were run from initial 
bases that had been reached and saved in previous MINOS runs. 

Termination. All LPs  except  P ILOT and BP1 were run until an optimal 
solution was found. P ILOT and BP1 were run for 1000 and 750 iterations, 
respectively. 

Pricing. Except  for SCTAP2, the partial-pricing scheme of MINOS was 
employed,  with one important change: the arbitrary partitioning of the columns 
normally defined by MINOS for partial pricing was replaced by the natural 
staircase partitioning. Thus the periods of the staircase were priced one at a time 
in a cyclic fashion. 

Pricing for SCTAP2 was similar except  that the incoming column was chosen 
from the latest possible period. (This choice was known to produce a relatively 
small number of iterations from an all-unit-vector start.) 

Refactorization frequency. MINOS was instructed to refactorize the basis (by 
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performing a fresh Gaussian elimination) every 50 iterations, except for BP1 
(every 75) and PILOT (every 90). 

Tolerances. The ' L U  ROW TOL' for MINOS was set to 10 -4. All other 
tolerances were left at their default values. 

A.4. Modifications to M I N O S  

All runs described in this paper were made with a special test version of 
MINOS. This version retained MINOS' routines for standard bump-and-spike 
elimination, and added new routines to implement a version of staircase bump- 
and-spike elimination. Routines for solving linear systems were also modified to 

take advantage of the staircase pivot order. Control routines were adjusted 
appropriately. 

New subroutines in the test version are described briefly as follows: 

SP3--an adaptation of the P3 heuristic to find a bump-and-spike structure in 
non-square or rank-deficient blocks, as proposed in [17]. This routine is a 
modification of the MINOS subroutine P3. 

SP4--main routine for the staircase bump-and-spike pivot-selection technique 
of [17]; sorts the staircase basis into reduced form, and calls SP3 once for each 
staircase diagonal block. 

DSPSPK--spike-display routine; prints a graphical summary of the basis 
bump-and-spike structure found by P4 (for the standard technique) or SP4 (for 
the staircase technique). 

STAIR--a staircase analyzer. Given an initial partition of the rows by period, 
this routine permutes the constraint matrix to a reduced standard staircase form 
and stores the staircase partitions in arrays that are read by subsequent routines. 
STAIR is called once at the beginning of every run. 

SCALE--implementation of the geometric-mean scaling scheme described 
above; called optionally at the beginning of a run. 

UPDBAL--updating routine for cumulative-balance counts: after each itera- 
tion, revises an array that records the cumulative excess of columns over rows 
at each period of the staircase basis. (This array is used to find square 
sub-staircases.) 

In addition the test version incorporates the following substantial modifi- 
cations to MINOS subroutines: 

FACTOR efficiently handles a pivot order from either the standard or stair- 
case technique, and finds the partitions At and /~t (defined in Section 5) for the 
staircase technique. 

FTRANL, BTRANL, FTRANU and BTRANU incorporate ideas of Section 5 
in a uniform way. FTRANL and FTRANU can begin at a specified L or U 
transformation, and BTRANL and BTRANU can stop at a specified trans- 
formation. BTRANL can also be restarted at a point where it previously 
stopped. 
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LPITN determines a starting point for FTRANL and a stopping point for 
BTRANU :when the staircase technique is used. (No attempt is made to 
prematurely stop FTRANL, however.) 

SETPI, for the staircase technique, determines a starting point for FTRANU 
and a stopping point for BTRANL when it is first called at an iteration. When 
subsequently called at the same iteration it determines restarting and stopping 
points for BTRANL. (No attempt is made to prematurely stop FTRANU, 
however, or to stop or start BTRANL based on square sub-staircases.) 

PRICE incorporates the staircase-oriented partial-pricing methods described 
in Section A.3. When these methods are used with the staircase factorization 
technique, PRICE also keeps track of how much of the price vector it requires, 
and calls SETPI accordingly. 

SPECS2 determines whether the standard or staircase technique will be used 
in a particular run, according to instructions in the SPECS input file. 

Other subroutines were modified as necessary to accommodate these changes. 

A.5.  M P S  I I I  l inear p r o g r a m m i n g  env i ronment  

For purposes of comparison the PILOT test problem was also run on the MPS 
III system [43], as explained in Section 6. 

The MPS III run employed the WHIZARD linear-programming routines of 
version 8915 of MPS III. The run used the same starting basis as the MINOS 
runs for PILOT, and was terminated after 1000 iterations like the MINOS runs. 
Exact CPU timings were 0.56 seconds in the compiler step and 114.18 seconds in 
the executor step. 

The control program for the MPS III run was as follows: 

WHIZFREQ 

PROGRAM 
INITIALZ 
XPROC = XPROC + 6000 
XCLOCKSW = 0 
XINVERT = 1 
XFREQINV = 90 
XFREQLGO = 1 
XFREQ1 = 1000 
MVADR (XDOFREQ1, TIME) 
MOVE (XDATA, 'PILOT.WE') 
CONVERT ('FILE', 'INPUT') 
SETUP ('BOUND', 'BOUND', 'MAX', 'SCALE') 
MOVE (XOBJ, 'OBJ') 
MOVE (XRHS, 'RHSIDE') 
INSERT ('FILE', 'PUNCHI') 
DC (250) 
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WHIZCAL 

TIME 

DC (4) 
WHIZARD ('FREQ', WHIZFREQ, 'SCALE', WHIZSCAL) 
PUNCH ('FILE', 'PUNCHI ' )  
EXIT 
PEND 

Appendix B: Test problems 

The linear programs used in the computational experiments of Section 6 are 
described in greater detail below. Comparative summaries and statistics appear 
first, followed by detailed statistical descriptions of the LPs'  staircase structures. 

All of these linear programs are available from the author in computer- 
readable MPS format, on cards or tape. SCAGR25, SCRS8, SCSD8, SCFXM2 
and SCTAP2 are also available as part of a larger set of staircase LPs distributed 
by Ho and Loute [34]. 

B.1. Origins o f  the test  L P s  

SCAGR25 is a planning model for expansion of a large dairy farm, developed 
by Swart, Smith and Holderby [56]. 

SCRS8 is derived from a model of the United States' options for a transition 
from oil and gas to synthetic fuels. It was constructed by Ho [31] based on a 
model by Manne [39]. 

SCSD8 models the minimal-weight design of multi-stage trusses under a single 
loading condition, as described by Ho [30]. This is the only staircase test 
problem (for this paper) in which the stages do not represent periods of time. 

SCFXM2 is described by Ho and Loute [34] as an extension of a real-world 
problem in production scheduling. 

SCTAP2 optimizes the dynamic flow over a traffic network in which con- 
gestion is modeled explicitly by the flow equations. This LP was formulated by 
Merchant and Nemhauser [42] and further studied by Ho [32]. (The LP is 
distributed with 11 potential objective rows; the objective named OBJZZZZZ 
was used in all tests for this paper. All statistics below omit the other ten 
objectives.) 

PILOT is derived from a welfare equilibrium model of the United States' 
energy supply, energy demand, and economic growth, documented by Parikh 
[46]. The LP was supplied by the Systems Optimization Laboratory of the 
Department of Operations Research, Stanford University. 

BP1 was developed by British Petroleum, London; the details of its origins are 
unknown to the present author. The LP was supplied via the Systems Optimiza- 
tion Laboratory of the Department of Operations Research, Stanford University. 
(The structure of this LP is approximately dual-angular, with 6 main diagonal 
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blocks and about 400 coupling variables. For the experiments described in this 
paper it was treated as a 6-period staircase problem with some elements below 
the first-order staircase.) 

B.2. Summary statistics 

Tables 9 and 10 describe the matrix A of constraint coefficients for each test 
problem, exclusive of any objective or right-hand-side vectors. Thus the num- 
bers of constraints and nonzero coefficients are somewhat smaller than the 
values given in Section 6. The 'density' is the proportion of nonzero elements in 
A. 

The 'unscaled' values refer to the test problems as originally received; the 
'scaled' values were computed after application of the scaling procedure des- 
cribed in Appendix A. 'Max elem' and 'min elem' are the largest and smallest 
magnitudes, respectively, among the nonzero elements of A. The 'largest col 

Table 9 

Constraints Nonzero 

Eq Ineq Total Variables a coefficients Density 

SCAGR25 300 171 471 500 1554 0.66% 
SCRS8 384 106 490 1169 3182 0.56% 
SCSD8 397 - -  397 2750 8584 0.79% 
SCFXM2 374 286 660 914 5183 0.86% 
SCTAP2 470 620 1090 1880 6714 0.33% 
PILOT 583 139 722 2789 9126 0.45% 
BPI 516 305 821 1571 10400 0.81% 

aPILOT has 80 free 
variables. Otherwise, 
nonnegative. 

Table 10 

variables, 296 upper-bounded variables, and 79 fixed 
all variables in all problems are required only to be 

Unscaled Scaled 

Largest Largest 
Max Min col Max Min col 
elem elem ratio elem elem ratio 

SCAGR25" 9.3 2.0" 10 -1 1.9" 10 ~ - -  - -  - -  
SCRS8 3.9" 102 1.0" 10 -3 4.5" 10 3 4.0 2.5'  10 I 1.6" 10 I 

SCSD8 a 1.0 2.4- 10 -1 4.0 - -  - -  - -  
SCFXM2 1.3 " 10 2 5.0" 10 -4 1.3" 105 1.1 " 101 8.7' 10 2 1.3" 102 
SCTAP2 a 8.0.101 1.0 8.0.101 - -  - -  - -  
PILOT 4.8. 104 1.4-10 4 7.0" 106 2.0"101 4.9.10 2 4.2" 102 
BP1 2.4. 10 2 2 . 0 '  10 -4 1.7" 105 1.3" 101 7.6" 10 -2 1.7" 102 

aNot scaled prior to test runs. 
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ratio' is the greatest ratio of any two nonzero magnitudes in the same column 
of A. 

B.3. Staircase-structure statistics 

Tables 11-17 describe the staircase structures of the individual test problems. 
In each table the line for period t refers to the objective and constraint 
coefficients for the period-t variables; where successive periods are identical in 

structure their entries have been combined. 

Table 11 
SCAGR25 

Diagonal blocks Off-diagonal blocks 
Obj. 

Period Rows Cols. Elems. Dens. Rows Cols. Elems. Dens. elems. 

1 18 20 45 13% 8 7 17 30% 19 
2-24 19 20 46 12% 8 7 17 30% 19 
25 16 20 43 13% 19 

1146 12% 408 30% 475 

Table 12 
SCRS8 

Diagonal blocks Off-diagonal blocks 
Obj. 

Period Rows Cols. Elems. Dens. Rows Cols. Elems. Dens. elems. 

1 28 37 65 6% 25 22 29 5% 18 
2 28 38 69 6% 25 22 29 5% 19 
3-5 31 76 181 8% 25 22 29 5% 55 
6-8 32 79 192 8% 25 22 29 5% 58 
9 31 79 189 8% 25 22 29 5% 58 
10-12 31 80 190 8% 25 22 29 5% 59 
13-15 30 80 186 8% 25 22 29 5% 59 
16 31 70 177 8% 59 

2747 8% 435 5% 847 

Table 13 
SCSD8 

Period 

Diagonal blocks Off-diagonal blocks 
Obj. 

Rows Cols. Elems. Dens. Rows Cols. Elems. Dens. elems. 

1-38 l0 70 130 19% 10 50 90 18% 70 
39 17 90 224 15% 90 

5164 18% 3420 18% 2750 
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Table 14 
SCFXM2 

R. Pourer/Solving staircase LPs : Inuersion 

Period 

Diagonal blocks Off-diagonal blocks 

Rows Co!s. Elems. Dens. Rows Cols. Elems. Dens. 
Obj. 

elems. 

1 92 114 679 6% 9 57 61 12% 13 
2 82 99 434 5% 9 35 35 11% 4 
3 66 126 300 4% 5 33 33 20% 1 
4 90 118 1047 10% 5 5 5 20% 5 
5 92 114 679 6% 9 57 61 12% 13 
6 82 99 434 5% 9 35 35 11% 4 
7 66 126 300 4% 5 33 33 20% 1 
8 90 118 1047 10% 5 

4920 7% 263 13% 46 

Table 15 
SCTAP2 

Period 

Diagonal blocks Off-diagonal blocks 

Rows Cols. Elems. Dens. Rows Cols. Elems. Dens. 
Obj. 

elems. 

1-9 109 188 423 2% 62 138 276 3% 141 
10 109 188 423 2% 141 

4230 2% 2484 3% 1410 

TabLe 16 
PILOT 

Period 

Diagonal blocks Off-diagonal blocks 

Rows Cols. Elems. Dens. Rows Cols. Elems. Dens. 

Sub-stair 
blocks 

Elems. Dens. 
Obj. 

elems. 

1 84 343 686 2% 31 74 105 5% 
2 90 345 1079 3% 34 76 111 4% 
3 90 343 1073 3% 34 74 109 4% 
4 90 343 1073 3% 34 74 109 4% 
5 90 343 1073 3% 34 74 109 4% 
6 90 343 1073 3% 34 74 109 4% 
7 90 343 1073 3% 32 74 107 5% 
8 87 341 1060 4% 4 19 19 25% 
9 11 45 113 23% 

18 
8 
5 
5 
5 
3 
1 

0% 
0% 
0% 
0% 
0% 
0% 
0% 

10 
10 
10 
10 
10 
10 
10 
10 
12 

8303 3% 778 4% 45 0% 92 
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Table 17 
BP1 

Sub-stair 
Diagonal blocks Off-diagonal blocks blocks 

Obj. 
Period Rows Cols. Elems. Dens. Rows Cols. Elems. Dens. Elems. Dens. elems. 

1 111 227 1400 6% 3 60 3 2% 163 0% 138 
2 151 353 2175 4% 62 108 112 2% 142 0% 149 
3 113 321 964 3% 92 232 346 2% 494 1% 270 
4 170 295 2178 4% 51 14 11 2% 4 0% 74 
5 134 198 1315 5% 111 2 2 1% 40 
6 142 177 1091 4% 56 

9123 4% 474 2% 803 0% 727 

In  each case the cons t r a in t  matr ix  A has b e e n  put  in r educed  s tandard  form as 

desc r ibed  in Sec t ion  2. 'Diagonal  b locks '  refers  to the s ta i rcase b locks  Au, 

'off-diagonal  b locks '  to the b locks  At÷l,t, and ' sub-s ta i r  b locks '  (when present )  to 

the b locks  At.2,t . . . . .  Ar, t. The given densi t ies  are the percen tages  of n o n z e r o  

e lements  in the r e l evan t  blocks.  
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