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In [2], Chvatal provided the tight worst case bound of the set covering greedy heuristic. We 
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I. Introduction 

The Set Cover ing  problem is notor ious ly  hard to solve and is, in fact,  

N P - c o m p l e t e  [5]. A good  heurist ic  algori thm that  gives a close approximat ion  to 

the op t imum is therefore  desirable.  In [2], Chvata l  found  the tight wors t  case 

bound  of  the g reedy  heurist ic c o m m o n l y  cons idered  in the literature. In this 

paper,  we invest igate the wors t  case behav ior  of  a general  class of  heurist ic 

algorithms. These  wors t  case bounds  are found  to be domina ted  by that  of  the 

greedy heuristic.  

We cons ider  the Set Cover ing  problem 

Min {cx I A x  >- e, x binary} (1) 

where  A = (a~ s) is m x n with a~ s = 0, 1 for  all i, j ;  e = (1 . . . . .  1 )  T is m x 1; x is n x 1 

and c ~ R" is 1 x n. For  notat ion purposes ,  we define 

M = {1 . . . . .  m} as the set of  row indices, 

N = {1 . . . . .  n} as the set of  co lumn indices,  

M s = { i ~ M l a i j = l } f o r e v e r y j ~ N ,  

and 
N i = { j E N  [ a i s = l }  for  e v e r y i E M .  

Any  feasible solution is said to be a cover .  Any  nonredundan t  cover  is said to be 

prime. If x s = 1 in a feasible solution to (1), variable j is said to cover  all rows 

i ~ M s. Wi thou t  loss of  generali ty,  we assume 

q > 0  a l l j E N ,  

M s # ~  all j E N, (2) 

N ~ : ~  a l l i E M r .  
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The worst  case per formance  is measured by the smallest  bound Q on the ratio 

Zheu/ Zop~, i.e., 

where Zheu and Zopt are the values of the heuristic and optimal solutions. Due to 

our assumptions in (2), there exists at least one feasible solution and Zopt > 0 

holds. The ratio Zheu/Zopt is well defined. 

2. Algorithm I 

The class of heuristic algorithms that we consider is a generalization of the 

greedy heuristic. In essence,  the heuristic sets a value of one variable at a time 

until a cover  is found. Each variable is evaluated according to its cost  and the 

number  of rows that it may cover.  We let Rr be the set of uncovered rows 

before the rth variable is chosen by the heuristic, S(x) be the support  of the 
cover  to be found and k,j be the number  of additional rows variable j can cover. 

We call this class of heuristics Algorithm I. 

Step O. Let  R1 = M, S(x) = 0 and r = 1. Go to Step 1. 

Step 1. If  Rr = ~, go to Step 2. Otherwise,  define k~j = IMj A R~[ for all j E n. 

Let  j* ~ N be such that 

f (c  r, ko,) = Min f(Q, kq). 
j~N 

In case of a tie, a fixed but arbitrary tie breaking rule is used. Set 

S(x)~-S(x)  u {j*} 
R~+I~--R~ --. Mi, 

r e - r+  1 

and go to Step 1. 

Step 2. Let  

1, j ~ S ( x ) ,  
xj = 0, otherwise 

and stop. 

A function f is used to evaluate the variables. A different function used will 
correspond to a different heuristic. For obvious reasons,  we require 

f(ci, O) a_+ ~. 

Otherwise,  we consider any f : R + ×  Z ~ R  where R + is the set of positive real 
numbers  representing cj and Z + is the set of positive integers representing kn. 

The greedy heuristic that Chvata] considered in [2] is a special case of 
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Algorithm I when f(cj, k, j)= cJkrj. The tight worst case bound that Chvatal 
derived is 

where 

Zhe~ < H (d) (3) 
Zopt - -  

H ( d ) = ~  1 and d = M a x l M j l .  
j= l  J j~N 

This bound is dependent on the maximum column sum of the nonzero 
coefficients. The function H ( d )  is, in turn, bounded by 1 + log d. Similar results 
for special classes of problems were obtained previously by Johnson [4] and 

Lovasz [6]. 
Any fixed but arbitary tie breaking rule may be used. The tie breaker may use 

any data that is available, including ej and krj. Without loss of generality, we assume 
that the tie breaking rule is different from the function f used so that if there 
exist jl, J2 ~ N with Jl ~ j2, either cj~ ~ cj2 o r  kr h ¢ krj2 but f(q~, k,,) = f ( % ,  k,~), the 
tie breaker will break the tie. When all rules fail, we allow breaking ties arbitrarily 
by the location of ones so that a variable can always be chosen. A good example 
will be to choose j~ if jl < j> 

In the next theorem, we show that the worst case performance of any 
heuristic in Algorithm I is dominated by that of the greedy heuristic. We also use 
the symbol -<, when used in 

f(¢h' krjl) <~ f ( ei2, kri2), 

to indicate either 

f(cja, k,~,) <f(cj2, Lj2) or f(cj~, k~a) = f(cjz, k,j:) 

but the tie breaker chooses jl. 

Theorem 1. A s s u m e  Algori thm I is used. There is no func t ion  f that gives a worst  
case bound strictly better than H ( d )  fo r  any d >- 1. 

Proof. By contradiction. Notice that the theorem is trivial when d = 1 as 
Zheu -> Zopt implies Zheu/Zopt > - H(1). We assume f is a function, when used in 
Algorithm I, that gives 

Zhe°<-Qa < H ( d )  for some d >-2. (4) 
Zopt 

We consider two cases. 
Case 1. We assume, for all d -> 2 and a > 0, 

st d)<s(oj, a,,j l . . . . .  d - 1  
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Le t  kj E {1, . . . ,  ]} for  j = 1 . . . . .  d be such that  

f / a d  d \ < ~ / a d  d )  k 1, ~ - / ,  ) - - I ~ - ,  = . . . .  j. (6) 

Cons ider  the problem 

ad d 
Min 

xj+y~-> 1, i = 1  . . . . .  d, 

xi, y i = 0 o r  1, j = l  . . . . .  d. 

F rom (6), xa is chosen  over  x, . . . . .  xa 1. If  kd# d, xd is also chosen  over  

Y, . . . . .  Ya. If  ka = d, Xd is identical  to y, .... , Ya excep t  fo r  the locat ion of  ones in 

the matrix. The tie b reaker  will fail but  we can a lways  rear range  the matrix so 
that  xa can be chosen  arbitrarily. In ei ther  case,  Xd is chosen  first. F rom (5) and 

(6), Xd-,, . . . ,  Xl are then chosen  sequential ly for  the solution xj = 1, Yi = 0 for  

i, j = 1 . . . . .  d. The  opt imal  solut ion is xj = 0, y~ = 1 for  i, j = 1 .... , d with 

#ad 
Zheu __ j-~l k~ ~ 1 
Zop t ad -> j = l j  as kj-<j. 

which cont radic ts  (4). 

Case 2. (5) does not  hold for  some d -> 2. 

Wi thou t  loss of  general i ty,  let d be the smallest  integer so that  (5) does not  
hold. We prove  by  induct ion on d. 

Subcase  2.1. d = 2. The negat ion of  (5) gives 

f (a ,  1) <--f(2a, 2) some a > O. (7) 

Le t  

{a, 
c = 2a, 

and cons ider  

Min 

s.t .  

if f (a ,  1) _< f(2a,  1), 
o therwise  (8) 

CXl + 2ax2 + 2ax3, 

xi + x3 >-1, j = 1 , 2 ,  

xi = 0 ,  1, j =  1 ,2 ,3 .  

F rom (7) and (8), the heurist ic  chooses  xl first. Then,  regardless of  which 
variable the heurist ic  chooses  next,  we have Zh~u = 2a + c. The optimal solution 
is X 1 = X 2 = O, X3 = 1 with 

Zheu_ 2a + c 3a 
> - -  = H ( 2 )  

Zoo t 2a - 2a 

which  cont radic ts  (4). 
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Subcase 2.2. d ~> 3. S i n c e  (5) h o l d s  f o r  d - 1 b u t  n o t  f o r  d, w e  h a v e  

f ( -q~-,d)>-f(a,p)  s o m e  a > 0 ,  s o m e p ~ { 1  . . . .  , d - l }  (9) 

and  

f(_h(dj-_: 1) d _ l ) ~ f ( h , j ) ,  a l l h > 0 ,  j = l  . . . . .  d - 2 .  (10) 

C l a i m  f(ad/p, d) >_f (a(d-  l ) / p ,  d -  1). If  p = d -  1 in (9), it  is t r iv ia l .  I f  p < 

d - 1, (9) a n d  u s i n g  j = p,  h = a in (10) g ive  

f ( ~ , d ) > -  f ( a , p ) > - f (  a ( d -  1 ) , d - 1 ) .  

L e t  c = ad/p and  (10) can  be  g e n e r a l i z e d  to  

/(c(df 1), a-1)<f(c,j)_ s o m e  c > 0, j = l ,  ... , d - 2 ,  d. ( /1 )  

L e t  kj ~ {1 . . . . .  j} f o r  all j = 1 . . . . .  d be  such  t ha t  

f(c(a__- 1) 1) 
\ kj , d - 

C o n s i d e r  the  p r o b l e m  

~-, c(d - 1) 
Min  

s.t.  x j + y i - > l ,  

w h e r e  

~ f ( C ( d k  l), d - 1 ) ,  k = 1 . . . .  , j .  (12) 

~kXd_l 4:- Xd 4- Yl ~ 1, 

xj, y~ = 0 o r l ,  i = 1  . . . . .  d - l , j = l  . . . . .  d 

1, if kd-l---- d -  1, 
h = 0, o t h e r w i s e .  

Subcase2.2. I.X = 0  and  kd l < d - 1 .  F r o m  (11) and  (12), xa is c h o s e n  first .  

F r o m  (12), Xd-~ is t h e n  c h o s e n  o v e r  xl  . . . . .  xa 2. S i n c e  all  y~'s h a v e  d - 1 o n e s  l e f t  
and  ka-i  < d - 1; 

c ( d -  l )  < f ( c ( d -  1) i (  - ,d-1)=f(c,d-1) 
and  xa-1 is c h o s e n  o v e r  yl . . . . .  Yd-~. F r o m  (11) and  (12), the  h e u r i s t i c  will  t hen  

c h o o s e  xd-2, . . . ,  Xl to  c o m p l e t e  the  s o l u t i o n .  

Subcase 2.2.2. F r o m  (12), xd is c h o s e n  o v e r  x~ . . . .  , xd-2 first .  A s  xa-~ has  c o s t  c, 

xe-~ is i d e n t i c a l  to  al l  y i ' s .  F r o m  (11) a n d  (12), Xd is a l so  c h o s e n  o v e r  

d-1 

- -  Xj + E cyi,  
i~l 

i = l  . . . . .  d - l  j = l  . . . . .  d, 

( e x c e p t  fo r  i = l ,  j = d)  
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Xd-1, Yb ... ,  Ya-l. From (12), xa-i is chosen over  Xl, .. . ,  xa-> Since xa-1 is identical 

to all yi's except  for the location of ones, all tie breaking rules will fail but we 

can always rearrange the matrix so that xa-1 is chosen arbitrarily. From (11) and 
(12), the heuristic will choose xa-2 . . . . .  x~ sequentially. 

In either case, the heuristic solution is xj = 1, yi = 0, j = 1 . . . . .  d, i = 1 . . . . .  d - 1. 

The optimal solution is x i = 0, yi = 1 for all i = 1 .... , d -  1, j = 1 .... , d with 

c(d - 1) 

Zheu __ j=l kj > 6 1 
g o p t -  c ( d - 1 )  -i=lfz5 ask j_<j  

which contradicts (4). 

The cover  obtained f rom Algorithm I is not necessari ly prime. It  is possible to 

implement  a simple procedure  to derive a prime cover  f rom the heuristic 

solution. See, for  example,  [1, 3]. The value of the prime cover  and consequently 

the worst  case behavior  may  improve.  The next  theorem shows that, with some 

general assumption on the tie breaking rule, the result  of Theorem 1 still holds. 

We assume that, if a tie exists, the tie breaking rule is based on q and k~ only 

so that the tie breaker  will work whenever  we have two variables jl ¢ j2 with 

q, ~ %. In case of a second tie, we allow breaking ties utilizing additional data 
that is available, including breaking ties arbitarily. 

Theorem 2. Assume a procedure is used to strengthen a solution from Algorithm 

I to prime. Assume further that the tie breaker is as previously described. There is 
no function f that gives a worst case bound strictly better than H (d). 

Proof. It  suffices to show that all heuristic solutions are prime. Notice first that, 

with the changes in the tie breaker ,  Algorithm I will give the same solutions for 

all counter  examples  in the proof  of Theorem 1. Since the heuristic solutions are 
prime except  for subcase 2.1, it suffices to consider Subcase 2.1 only. We have 
d = 2 and 

f(a,  1)-<f(2a, 2) for some a > 0 .  (13) 

Let  A = Min(a, 2 a ( H ( 2 ) -  Q2)) and consider 

3 
Min ~ qxj, 

i=l 

s . t .  xj+x3<-l, j = 1,2, 

xj = O, 1, j - -  1,2,3.  

Case 1. There exists 0 E ( -A,  zi/Q2) such that 

f (2a + 0, 1) -< f(2a,  1). (14) 
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L e t  

a, 

c~= 2a+O,  

c2 ~- 2a + O, 

if f (a,  1) <- f(2a + O, 1), 
o the rwise .  

C3~--- a. 

F r o m  (13), the  heur i s t i c  c h o o s e s  x~ first. F r o m  (14), x2 is p i cked  nex t  for  the p r ime  

c o v e r  xl = x2 = 1, x3 = 0. The  op t imal  so lu t ion  is x~ = x2 = 0. x3 = 1 wi th  

Zheu • 3 a + 0 ~aa 
Zopt - ~ 2 a  > H (2) - -> Q2 

which  c o n t r a d i c t s  (4). 
Case 2. F o r  all 0 E ( - A ,  A[Q2) 

f (2a + O, 1) -> f(2a, 1). (15) 

Subcase 2.1. The re  ex is t s  0 ~ ( - A ,  A/Q~) so tha t  

f (2a + O, 2) _> f (a ,  1). (13') 

Le t  
a, if f ( a ,  1) ~ f ( 2 a ,  1), 

c~-= 2a,  o the rwise .  

c2 = 20, 

c3 = 2a + 0. 

F r o m  ( lY)  and then  (15), the  heur i s t i c  c h o o s e s  x, and then  x2 for  the  p r ime  c o v e r  

x~ = x2 = 1, x3 -= 0. The  op t imal  so lu t ion  is x~ = x2 = 0, x3 = 1 wi th  

Zheu> 3a > 3 a  H(2)  - Q2 
- a H ( 2 )  - Q2 Zopt 2 a + 0  2 a + Q 2  lq- Q2 

which  c o n t r a d i c t s  (4). 

Subcase 2.2. f ( 2 a  + 0 , 2 ) ~ f ( a ,  1). This  is Case  1 in the  p r o o f  of T h e o r e m  

1. C o n s i d e r  

Min ( 2 a + O ) x l + a x a + a y l + a y 2 ,  

s.t. x j+yg>- - I  i = 1 , 2 ,  j = l , 2 ,  

xj, y~ = 0, 1. 

The  heur i s t i c  c h o o s e s  x2 a rb i t r a r i ly  and then  xl for  the  p r ime  c o v e r  xl = x2 = I, 

Y~ = Y2 = 0. The  op t ima l  so lu t ion  is y~ = y2 = 1, x~ ~ x2 = 0 wi th  

Z,eL~ _ 3a + 0 > H ( 2 ) -  A 
Zopt 2a ~aa = Q:  

which  c o n t r a d i c t s  (4). 
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3. Extensions of Algorithm I: Algorithm II. 

The worst  case bound for  Algorithm I is dependent  on the maximum column 
sum. We are then interested to find other heuristic algorithms that may give a 

bet ter  worst  case performance .  Algorithm II  is an extension of Algorithm I in 

that it chooses one variable at a time. The difference is in step 1 where the 

variable is chosen only f rom a subset  of all variables that are available. More 

specifically, a row is chosen first and the heuristic then chooses a variable with a 

nonzero coefficient in that row. Depending on the rule used in Step l(a) below, 

Algorithm II  can be computat ional ly more efficient. Since all rows must  be 

covered eventually,  Algorithm II  chooses one variable to cover  the row that is 

considered most  essential first. 

Step 0: Let  R1 = M,  S (x )  = 0, r = 1 and go to Step 1. 

Step 1. If  Rr = 0, go to step 2, Otherwise,  define krj = ]M i n Rrl. 
(a) Pick ir ERr .  

(b) Pick j* E Nir so that 

Set 

f(C?r, krj~) = Min f (q ,  kri). 
J~Nr 

S(x )~S(x )  u {j*} 
Rr+¢--Rr--. MSfjr 

r<---r + 1 

and go to Step 1. 

Step 2. Let  

1, i ~ S(x), 
xi = 0, otherwise. 

Different rules can be used to pick the row ir in Step l(a). A different rule will 
correspond to a different class of heuristic algorithms. Two specific rules are 

considered here. In the first rule, we pick a row of minimum cardinality so that a 

row with fewer  potential candidates to be chosen from is covered first. We call it 

Algorithm II.1. In the second rule, a penalty for choosing a wrong variable is 

computed:  The row with the largest penalty is chosen first. The penalty for every  

row is the difference between the two smallest  functional values. We call this 
Algorithm II.2. The details are outlined as follows. 

Algorithm II.1. Step l(a) [N,,I = Min~ERr TN, I. 

Algorithm 
(i) For 

(ii) For 

II.2. Step l(a) 

i E Rr such that INil = 1, define P( i )  = + ~. 
i ~ Rr such that ]N~[ > 2, define "i 

- -  1~, J~ E Ni such that 
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and 

P ick  i, by  

f(cji ,  krjl) <- f (c jb  k,q~) <- f ( c  i, k,~), 

P ( i) = f ( cj~, k,~) - f ( cji, k~il ). 

P(i~) = Max  P(i).  
i~R r 

I, J2} j ~ N, "-{j~ "' 

Theorem 3. Assume  f(cj, Li) = c r / k r j .  Regardless of  the rule used in Step l (a)  in 
Algorithm II ,  the worst case bound is 

Z •  <- dH(d )  

where H ( d )  = ~,~-i 1/j and d = MaxjeN IMjl. 

I f  either Algori thm II.1 or II .2 is used, the bound is tight. 

Proof. Le t  x* and ~ be the opt imal  and heur is t ic  solut ions r e spec t ive ly  and let 
S(x)  = {j ~ N I xj = 1}. Since x* mus t  be  feas ible ,  it cove r s  the  rows  i~, r = 1, . . . ,  k 

where  k -- IS(~)I. Then ,  there  exis ts  at least  one j(r) E S(x*)  so that  j(r) E Ni~ for  

eve ry  r. We  have  

and 

~ < c ~  r = l  . . . .  , k  
k~i*~ - k r j ( r )  

Zheu = CX = Cj~ ~ Cj(r) 
r~l r=l krj(r) 

j~s(x*) i kjr 

where  Sj = {r l j(r) = j}. 

kr, <-IM, I <- d 

Claim tha t  

r~Sj j~ l  J 

implies  Zheu--<d ~ c i 
j~S(x*) 

for  eve ry  j ~ S(x*).  

For  j E S(x*)  such that  

reSj rj i=1 1 

is trivial.  Suffice to cons ider  j E S(x*)  such tha t  IN] -> 2. Le t  rz, r2 ~ Sj with rl ~ r2. 
Wi thout  loss of  general i ty ,  rL < r2. F r o m  the definit ions of  Si and j(r), ir~, ir~ ~ Mj. 
Since it1 • Rr2, 

kr,j = IMj e Rr, I >-IMj A Rr2l- 1 = kr~ - 1. 

In general ,  kro# kr~3 for  all rl, r2@ Sj and r~ # r2. As krj E{1,  . . . ,  IMjl}, 
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Substitution yields 

j~S(x*) \r~Sj r~fi / 

<-- dH(d )  ~ cj 
i t S ( x * )  

= dH(d)Zovt. 

To show that the bound is tight, let Zh~u/Zopt <-- Qa < dH(d) .  Consider,  for  any 
d >- 2, c > e > 28 >0 ,  @ < ½ c ( d H ( d ) -  Qa)/Qa 

Min i cd a+~ a+2 i~ T xj + (c + 81x~+~ + J:,Y~ (c + E)yj + J=~Z ~zj, 

d 

s.t. x j + x d + ] + ~ y i - - > l ,  j = l  . . . . .  d, 
I = ] 

d + 2  

x j + ~ z j > - l ,  
i = 1  

xb Yi, zj = 0, 1. 

The rows and columns chosen are d, d - 1 . . . . .  1 and xe, xa-~, ..., x~ in that order. 

An optimal solution is x i = 0 ,  y i = 0 ,  j = l  . . . . .  d, Xd+l=l, Z ~ = I ,  z i = O j =  

2 . . . . .  d + 2. We have 

cd 
m z .a  

Zhe,_ i:~ J _ c d H ( d ) >  dH(d )  
Zopt c + 2 8  c + 2 8  l + d H ( d ) - Q d  

Qd 
for the contradiction. 

= Qd  

Theorem 4. Assume  either Algorithm II.1 or lI.2 is used. There is no function f 

that gives a worst case bound strictly better than H(d) ,  for  any d >>- 1. 

Proof. The proof  is the same as that of Theorem 1. The heuristic will choose a 

sequence of rows such that the same variables and, hence, the same solution in 
all counter  examples  are chosen. Notice that [Ni[ is the same for  all rows and if 
Algorithm II.1 is used, the rows can be chosen arbitrarily for the desired result. 

4. Conclusion 

Two general classes of heuristic algorithms were considered. They are easy to 
implement  as the variables are evaluated essentially on the cost  and the number  
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of rows that can be covered. The worst case performances of all heuristics are 

dominated by the function H ( d )  which, in turn, is bounded by 1 + log d and is 

dependent on problem size and distribution. A different approach would be 

needed in order to find a heuristic that gives a better worst case bound. From the 

proofs, the worst case bounds for different functions and, hence, heuristics are 

attained in different examples. A combination of some functions may improve 

the average performance. A computational study is available in [1]. 
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