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In [2], Chvatal provided the tight worst case bound of the set covering greedy heuristic. We
considered a general class of greedy type set covering heuristics. Their worst case bounds are
dominated by that of the greedy heuristic.
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1. Introduction

The Set Covering problem is notoriously hard to solve and is, in fact,
NP-complete[5]. A good heuristic algorithm that gives a close approximation to
the optimum is therefore desirable. In [2], Chvatal found the tight worst case
bound of the greedy heuristic commonly considered in the literature. In this
paper, we investigate the worst case behavior of a general class of heuristic
algorithms. These worst case bounds are found to be dominated by that of the
greedy heuristic.

We consider the Set Covering problem

Min {cx | Ax = e, x binary} (1
where A= (ay)ismxn witha;=0,1forall i,j;e=(1, ..., Dlism x1;x is nx1
and ¢ €R" is 1 X n. For notation purposes, we define

M =1{1,..., m}as the set of row indices,

N ={1,..., n} as the set of column indices,

M, ={i €M | a;=1}for every jEN,
and
N, ={EN [ai,-= 1} for every i€ M.

Any feasible solution is said to be a cover. Any nonredundant cover is said to be
prime. If x; =1 in a feasible solution to (1), variable j is said to cover all rows
i € M;. Without loss of generality, we assume

¢;>0 alljEN,

M;#@8 alljEN, 2)

N#@ allieM.
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The worst case performance is measured by the smallest bound Q on the ratio
Zheulzopt’ i-e-’

_Zh_eug

Zopt
where Zy, and Z,, are the values of the heuristic and optimal solutions. Due to
our assumptions in (2), there exists at least one feasible solution and Z,, >0
holds. The ratio Zye,/Z,, 1s well defined.

2. Algorithm I

The class of heuristic algorithms that we consider is a generalization of the
greedy heuristic. In essence, the heuristic sets a value of one variable at a time
until a cover is found. Each variable is evaluated according to its cost and the
number of rows that it may cover. We let R, be the set of uncovered rows
before the rth variable is chosen by the heuristic, S(x) be the support of the
cover to be found and k,; be the number of additional rows variable j can cover.
We call this class of heuristics Algorithm I.

Step 0. Let Ry=M, S(x)=@ and r = 1. Go to Step 1.
Step 1. If R, =@, go to Step 2. Otherwise, define k; = |[M; N R,| for all j € n.
Let j* & N be such that

f(ep, kye) = Min f(c;, ky).
JEN

In case of a tie, a fixed but arbitrary tie breaking rule is used. Set
S(x)=S(x) U {j*}
R,+1*‘Rr ~ j*
rer+1

and go to Step 1.
Step 2. Let

,:{1, i€ S(x),
P10, otherwise
and stop.

A function f is used to evaluate the variables. A different function used will
correspond to a different heuristic. For obvious reasons, we require

f(ci’ O) é+ 0.

Otherwise, we consider any f:R*xZ—>R where R" is the set of positive real
numbers representing ¢; and Z7 is the set of positive integers representing k.
The greedy heuristic that Chvatal considered in [2] is a special case of
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Algorithm I when f(c;, k;) = ¢i/k,;. The tight worst case bound that Chvatal
derived is

Zhau
Zopt = H(d) 3)

where
d

H(d) = 2 l and d= Max |1\/I,|
] jEN

j=1

This bound is dependent on the maximum column sum of the nonzero
coefficients. The function H(d) is, in turn, bounded by 1+ log d. Similar results
for special classes of problems were obtained previously by Johnson [4] and
Lovasz [6]. '

Any fixed but arbitary tie breaking rule may be used. The tie breaker may use
any data that is available, including c¢; and k,;.. Without loss of generality, we assume
that the tie breaking rule is different from the function f used so that if there
exist ji, , € N with j; # j,, either ¢; # ¢;, or k;, # ks, but f(c;, ks) = f(cj, ki), the
tie breaker will break the tie. When all rules fail, we allow breaking ties arbitrarily
by the location of ones so that a variable can always be chosen. A good example
will be to choose j; if ji <j».

In the next theorem, we show that the worst case performance of any
heuristic in Algorithm I is dominated by that of the greedy heuristic. We also use
the symbol =, when used in

fcips k) = f(cps kriy),
to indicate either

F(jps ki) <flep, ki) o1 f(Cjp, Ki)) = F(Co ki)
but the tie breaker chooses j;.

Theorem 1. Assume Algorithm 1is used. There is no function f that gives a worst
case bound strictly better than H(d) for any d = 1.

Proof. By contradiction. Notice that the theorem is trivial when d=1 as
Zhew = Zope implies Zye/Zop = H(1). We assume f is a function, when used in
Algorithm I, that gives

%@ =Qu<H(d) for some d=2. @)

opt

We consider two cases.
Case 1. We assume, for all d =2 and a >0,

f(aj—.d,d>sf(a,j) allj=1,...d—-1. (5)
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Let k;€{1,...,j} for j=1,..., d be such that
f(%,d>_f(ad d) k=1,..j ©)
i

Consider the problem
d d
Min > ﬂx,- +> ay,
= ki =1
x]‘+yi21, i=1,...,d,
x,y;=0o0rl, j=1,...,d

From (6), x; is chosen over xi,...,Xxs 1. If ks#d,x; is also chosen over
Yis ..., Yoo If kg =d, x; is identical to yy, ..., ys except for the location of ones in
the matrix. The tie breaker will fail but we can always rearrange the matrix so
that x;, can be chosen arbitrarily. In either case, x, is chosen first. From (5) and

(6), x4-1,...,x; are then chosen sequentially for the solution x;=1,y;=0 for
i,j=1,...,d. The optimal solution is x; =0, yy=1for i,j=1,...,d with
{{ ad
Zheu ——‘—Ll k Z as kj = ]
Zopt

which contradicts (4).

Case 2. (5) does not hold for some d = 2.

Without loss of generality, let d be the smallest integer so that (5) does not
hold. We prove by induction on d.

Subcase 2.1. d = 2. The negation of (5) gives

f(a, ) =f(2a,2) some a >0. (7

Let ]
c= {a, if f(a, 1) =f(2a, 1),

2a, otherwise ®)
and consider
Min c¢x;+2ax,+ 2axs,
s.t. xtx3=1, j=1,2,
x=0,1, i=1,2,3

From (7) and (8), the heuristic chooses x; first. Then, regardless of which
variable the heuristic chooses next, we have Z,., = 2a + ¢. The optimal solution
is x;=x,=0,x;=1 with

Zha _2a+c

Zow 20 2a =H®

which contradicts (4).
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Subcase 2.2. d = 3. Since (5) holds for d — 1 but not for d, we have

f(%id)zf(a,p) some a >0, somep€E{l,..,d—1} ©)
and
f<h(d 1)d_1><f(hj) all k>0, j=1,..,d-2. (10)

Claim f(ad/p,d)=f(a(d —D/p,d—1). If p=d—1in (9), it is trivial. If p <
d-1,(9) and using j = p, h = a in (10) give

15 d)=fap = (ML a 1),

Let ¢ = ad/p and (10) can be generalized to

f(c(dJ 1)d—1><f(c i) somec>0, j=1,...d—2.4d. (11)
Let k;€{l,...,j}forall j=1,...,d be such that
cd-1 cd-1) - ;
f< e 1>sf< —d 1) k=1, ] (12)
Consider the problem
. d —1)
Min E . x,+z cvi,
s.t. x,—+yi21, i=1,...,d=-1j=1,..,d,

(except fori=1,j=4d)
AXg-1+ Xg+yi= 1,
x;, yi=0orl, i=1,..,d-1,j=1..,d

where

/\z{l, if kyi=d—1,
0, otherwise.

Subcase 2.2.1. A =0 and k,_,<d—1. From (11) and (12), x; is chosen first.
From (12), x4-; is then chosen over x,, ..., X4—2. Since all y;’s have d — 1 ones left
and kg <d — 1,

D ) (Y0 ) e

and x4-y is chosen over yi,..., ys-i. From (11) and (12), the heuristic will then
choose x4-, ..., X; to complete the solution.

Subcase 2.2.2. From (12), x4 is chosen over xy, ..., x4_, first. As x,_, has cost c,
X4-, is identical to all y’s. From (11) and (12), x, is also chosen over
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Xd—1, V1 - 5 Ya—1. From (12), x4-; is chosen over xy, ..., X4-2. Since x4_; is identical
to all y;’s except for the location of ones, all tie breaking rules will fail but we
can always rearrange the matrix so that x,;_, is chosen arbitrarily. From (11) and
(12), the heuristic will choose x4, ... , X; sequentially.

In either case, the heuristic solutionis ;= 1,y,=0,j=1,...,d,i=1,...,d - L.
The optimal solution is x; =0, y;=1foralli=1,...,d—=1,j=1,..,d with
dcd-1)

2z
Zhew -1k

d
i 1
=1 7 = : 1
Zo~ cd-1 =X k=]
which contradicts (4).

The cover obtained from Algorithm I is not necessarily prime. It is possible to
implement a simple procedure to derive a prime cover from the heuristic
solution. See, for example, {1, 3]. The value of the prime cover and consequently
the worst case behavior may improve. The next theorem shows that, with some
general assumption on the tie breaking rule, the result of Theorem 1 still holds.

We assume that, if a tie exists, the tie breaking rule is based on ¢; and k,; only
so that the tie breaker will work whenever we have two variables j;, # j, with
cj, # ¢;,- In case of a second tie, we allow breaking ties utilizing additional data
that is available, including breaking ties arbitarily.

Theorem 2. Assume a procedure is used to strengthen a solution from Algorithm
I to prime. Assume further that the tie breaker is as previously described. There is
no function f that gives a worst case bound strictly better than H(d).

Proof. It suffices to show that all heuristic solutions are prime. Notice first that,
with the changes in the tie breaker, Algorithm I will give the same solutions for
all counter examples in the proof of Theorem 1. Since the heuristic solutions are
prime except for subcase 2.1, it suffices to consider Subcase 2.1 only. We have
d =2 and

fla,1)=f(a,2) for some a>0. (13)
Let A = Min(a, 2a(H (2) — ,)) and consider
3
Min > cx;,
=
s.t. Xj+X3SI, ] =1, 2,
Xj=0,1, j=1,2,3.

Case 1. There exists § € (—A, A/Q,) such that
fQRa+6,1)=f(2a,l). (19)
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Let
. :{a, if fla, D=fQCa+0,1),
" 12a + 6, otherwise.
c,=2a+0,
C3 = d.

From (13), the heuristic chooses x, first. From (14), x; is picked next for the prime
cover x; = X, = 1, x3 = 0. The optimal solution is x; = x,= 0. x3=1 with

%2304‘9

A
Zopt 2a o H(2)—%Z Q2

which contradicts (4).
Case 2. For all 9 €(—A, A/Q»)

fa+6,1)=f(Q2a,l). (15)
Subcase 2.1. There exists § € (—A, A/Q») so that
fQQa+6,2) = f(a, 1). (13")

Let
o = {a, if f(a, 1) =fQ2a, 1),
! 2a, otherwise.
¢, =2a,

c;=2a+0.

From (13’) and then (15), the heuristic chooses x; and then x, for the prime cover
x; = X, = 1, x3= 0. The optimal solution is x; = x,= 0, x3= 1 with

Zhew. 3a 3a H(2) _
Zo 2av0 5 A HO-Q
QZ Q2

which contradicts (4).

Subcase 2.2. f(2a+6,2)={f(a,1). This is Case 1 in the proof of Theorem
1. Consider

Min (2a + 8)x;+ ax;+ ay+ ay,,
st. ;+y=l i=1,2,j=12,
xj'v yi = 07 1

The heuristic chooses x, arbitrarily and then x; for the prime cover x;= x; = 1,
y1= y,=0. The optimal solution is y;=y,=1, xi= x2=0 with

@:30‘*‘9

4 _
Zopt 2(1 >H(2)__2_C;_Q2

which contradicts (4).
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3. Extensions of Algorithm I: Algorithm IL

The worst case bound for Algorithm I is dependent on the maximum column
sum. We are then interested to find other heuristic algorithms that may give a
better worst case performance. Algorithm II is an extension of Algorithm I in
that it chooses one variable at a time. The difference is in step 1 where the
variable is chosen only from a subset of all variables that are available. More
specifically, a row is chosen first and the heuristic then chooses a variable with a
nonzero coefficient in that row. Depending on the rule used in Step 1(a) below,
Algorithm II can be computationally more efficient. Since all rows must be
covered eventually, Algorithm II chooses one variable to cover the row that is
considered most essential first.

Step 0. Let Ri=M, S(x)=0, r=1 and go to Step 1.

Step 1. If R, =@, go to step 2. Otherwise, define k; = |M; N R,|.
(a) Pick i, €R..

(b) Pick j* € N; so that

fleps kgy) = Min f(e;, ki)
_y‘EEN,vr

Set S(x)-S(x) U {j3}

Rr+1(-Rr\ mr

rer+1

and go to Step 1.
Step 2. Let

O s

0, otherwise.

Different rules can be used to pick the row i, in Step 1(a). A different rule will
correspond to a different class of heuristic algorithms. Two specific rules are
considered here. In the first rule, we pick a row of minimum cardinality so that a
row with fewer potential candidates to be chosen from is covered first. We call it
Algorithm IL.1. In the second rule, a penalty for choosing a wrong variable is
computed. The row with the largest penalty is chosen first. The penalty for every
row is the difference between the two smallest functional values. We call this
Algorithm II.2. The details are outlined as follows.

Algorithm IL.1. Step 1(a) [N; | = Min;cg,

Ni.

Algorithm I1.2. Step 1(a)
(i) For i € R, such that |[N;| =1, define P(i) = + .
(ii) For i € R, such that |[N;| = 2, define ji, ji € N; such that
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f(cj{a kfj{) = f(cji" kﬂi) Sf(C]', kﬁ)’ ] € Ni \{Jis ]é}

and
P(i) = f(cy, kyp) — f(ciis kip)
Pick i, by
P(i,) = Max P(i).
i€R,

Theorem 3. Assume f(c;, k) = c./k,. Regardless of the rule used in Step 1(a) in
Algorithm 11, the worst case bound is

Zheu
opt

where H(d) = YL, 1/j and d = Max;en |M;l.
If either Algorithm I1.1 or I1.2 is used, the bound is tight.

=dH(d)

Proof. Let x* and X be the optimal and heuristic solutions respectively and let
Sx)y={j€EN I x; = 1}. Since x* must be feasible, it covers the rows i, r=1, ..., k
where k = [S(X)|. Then, there exists at least one j(r) € S(x*) so that j(r) €N, for
every r. We have

and

where S; = {r | j(n =i}

kiz<|Mpj=d implies Zp,=d > cf(Z 7<L>
JES(x®) res; Kr}
Claim that

1 d
2= 2]
res; j=1
For j € S(x*) such that
1 4L
1Si=1, X 7(_,52’
resS; Fj =1]

is trivial. Suffice to consider j € S(x*) such that |S;| =2. Let r;, , € S; with r # r».
Without loss of generality, ry < r,. From the definitions of S; and j(r), i,,, i, € M;.
Since i, € R,,,

kei=IM;N R, =|IMNR,|~1=k,;~ 1

n_.g,_..

for every j € S(x*).

In general, k,;# k,; for all ri, € Sj and r, # r.. As k; €41, ..., IM;l},
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- = H(d).

iA
e ]

A
'MQ-
‘—-\H

Substitution yields

1
Zheu =d F)
. JES(x*) res; Krj

<dH(d) ¥ ¢

JES(x*)

= dH(d)Z.

To show that the bound is tight, let Z../Z,, = Q; < dH(d). Consider, for any
d=2,¢>e>28>0,8 <ic(dH(d)— Q4)/Qq

d d+2 d+2

Min > ]d x,+(c+8)xd+1+2 (c+e)y,+2 8z;,

j=1

s.t. x,-+xd+1+2 yi=1, j=1,..,d,
i=j
d+2

X + Z Z; = 1,
i=1
Xj, ¥is Zj = 0, 1.

The rows and columns chosenare d,d ~ 1, ..., 1 and x4, x4-4, ..., X In that order.
An optimal solution is x;=0, y,=0, j=1,....d,x4=1, z1=1, z=0j=
2,...,d+2. We have

dcd
Zhew _ -1 j _cdH(d) _ dH(d) -0
Zow c+28 c+26 |4 4H(d) = Qu ¢

Q

for the contradiction.

Theorem 4. Assume either Algorithm 11.1 or 11.2 is used. There is no function f
that gives a worst case bound strictly better than H(d), for any d = 1.

Proof. The proof is the same as that of Theorem 1. The heuristic will choose a
sequence of rows such that the same variables and, hence, the same solution in
all counter examples are chosen. Notice that [N;] is the same for all rows and if
Algorithm I1.1 is used, the rows can be chosen arbitrarily for the desired result.

4. Conclusion

Two general classes of heuristic algorithms were considered. They are easy to
implement as the variables are evaluated essentially on the cost and the number
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of rows that can be covered. The worst case performances of all heuristics are
dominated by the function H(d) which, in turn, is bounded by 1+1logd and is
dependent on problem size and distribution. A different approach would be
needed in order to find a heuristic that gives a better worst case bound. From the
proofs, the worst case bounds for different functions and, hence, heuristics are
attained in different examples. A combination of some functions may improve
the average performance. A computational study is available in [1].
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