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The concern is with solving as linear or convex quadratic programs special cases of the 
optimal containment and meet problems. The optimal containment or meet problem is that of 
finding the smallest scale of a set for which some translation contains a set or meets each 
element in a collection of sets, respectively. These sets are unions or intersections of cells 
where a cell is either a closed polyhedral convex set or a closed solid ball. 
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1. Introduction 

By a cell we mean either a nonempty closed polyhedral convex set (not 
necessarily bounded or solid) or a nonempty closed solid ball. Our concern is 
with solving as linear or convex quadratic programs special cases of the 

following two problems. 

Optimal containment problem (OCP). Le t  ~f be a finite union of cells and ~ a 
fn i te  intersection of cells. Find the smallest positive scale s ~  of 0~ for which 

some translate s ~  + t contains ~f. 

~infimum s, 
O C P J  s,t 

l s ub j ec t  to s°~ + t _D ~f, s > O .  

Optimal meet problem (OMP). Let  ~f and ~q for q = 1 . . . . .  p, be each an 
intersection of cells. Find the smallest positive scale s~f of ~f for  which some 

translate s ~ +  t meets every  ~/q for q = 1 . . . . .  p. 

~infimum 
OMP~ s, t 

I.subject to 

87 

( s ~  + t) n % e O, q = l  . . . . .  p ,  s > 0 .  
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Fig. 1. OCP. 
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Fig. 2. OMP. 

The general OCP and OMP are well beyond our reach but serve as useful 
overviews. Depending upon the composit ion of the ~f's and ~d's as unions and 

intersections of cells and the representat ion of the cells we can or cannot  
formulate the problems as linear or convex quadratic programs. 

Our initial interest in OCP and OMP originated with 'engineering design' 
through interior solution concepts for convex sets, see van der Vet [9] and 
Director and Hachtel  [1]; also see Eaves and Freund [2]. 

2. Preliminaries 

Most of the notation we use is standard. Le t  R" be n-dimensional Euclidean 
space. By HI we mean the Euclidean norm. Le t  x • y and x o y represent  inner 
and outer products,  respectively. Let  e = (1, 1 . . . . .  1) where its length is dictated 
by context.  For  the empty set, 0, define inf 0 = + o~ as usual, but define sup 0 = 0 
for the purposes of this presentation. By a convex program we mean a program 
of the form 

p lmin imum f ( x )  

Lsubject to gi(x)<-O, i =  I . . . . .  m, 
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where all f, gl are convex functions, and m is finite. If, in addition, each gi is 
affine, f ( x ) =  x Q x  + q . x ,  and Q is positive semi-definite, then we call P a 
quadratic program. Furthermore,  if Q is zero, then we call P a linear program. 

Let  N be a set in R ". We denote by tng(N) the smallest vector subspace of R" 
for which some translate contains ~. We denote by rec(Y) the recession set of 
Y, that is, the set 

{z ~ R" [ 3 x ~ ~ such that x + az  ~ 3f for any a -> 0}. 

We also make use of the following variation of Farkas '  lemma. 

Lemma. Suppose  that  the sys t em o f  inequalities 

A x < _ b  

has a solut ion and that  every solution satisfies cx <-d. Then there exists  h >-0 
such that  h A  = c and hb <_ d. 

The manner in which cells are represented is crucial to our formulations. We 
assume all cells are in R n. We define an H-cell to be a cell of the form 

{x l A x  <- b} 

as it is represented by half-spaces; it is assumed (A, b) is given. A cell of the 
form 

{x I x  = Uh + V/x: eh = 1,h _>0,/x >-0} 

is defined to be a W-cell as it is a weighting of points; it is assumed (U, V) is 

given. Of course, every  H-cell can be represented as a W-cell and vice versa. 
However ,  we shall suppose, and typically rightly so, that the computational 
burden of the conversion is prohibitive, see Mattheiss and Rubin [8] for H to W. 
Thus we shall regard H- and W-cells as quite distinct. A B-cell is defined to be 

the ball 
(x [lie - xll 

it is assumed that the center c and radius r -> 0 are given. 
Let  ~ be a cell, and let s > 0 be a scale of ~f and t a translate. If ~ is an 

H-cell, {x ]Ax <- b}, then s~f + t = {x ]Ax <- bs + At} .  If ~f is a B-cell, {x I]]c - 
x ] ] -  r}, s~  + t = {x ] ]](sc + t) - x]l <- sr}. And if ~ is a W-cell, {x I x = Uh + Vtz, 
eh = 1, h >- O,/z _> 0}, then 

s ~ +  t = {x [x  = ( s U +  t o e)h + V~x, eh = 1, h - 0 ,  m->0} 

or equivalently 

s3g + t = { x [ x  = t +  UA + Vtx, eh = s, h _>0,/x >--0}. 

To describe special cases of OCP and OMP we shall use notation as, for 
example, (HB1, WB=) which denotes that ~f is composed of any finite number of 
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H-cells and one B-cell, and that ~ or each ~q are composed of any number of 
W-cells and B-cells but all B-cells have the same radius. If B is not subscripted 
by ' =  ' or '1', then any finite number may be employed and the radii may vary. 
Thus, again, for example, (HWB, HWB) describes the most general case of OMP 
or OCP. 

Consider the following three programs wherein the vectors wi are given and 
fixed. 

Iv1 = infimum 
(Ol)~ s,t 

L subject to 

S~ 

Hwi - (sc + t)]l + d ~ sr, i = 1  . . . . .  m .  

Iv2 = infimum f, 
(Q2) ~ f, x 

( subject to IIwi-xllZ<-f,  i = l , . . . , m .  

[ v3 = infimum 

(Q3) t a, x 

/ subject to 

x " x - a ,  

wi • wi - 2wi • x + a <-0, i = 1  . . . .  , m .  

Assuming r is non-zero, we show that solving any one yields solutions to the 
other two. Le t  X/- denote nonnegative square root. 

Equiva lence  o f  (Q1) and (Q2): If (L i) and (s, t) are feasible for  (Q1) with 
< s (respectively: g _< s), then (~ ~) = ((gr - d) z, Yc + [) and (f, x) = ((sr - d) 2, 

sc + t) are feasible for  (Q2) with [ < f  (respectively: f - < f ) .  If 0 ~, X) and (f, x) are 
feasible for  (Q2) with f < f (respectively: f -< f) ,  then (g, t) = ((X/f + d)lr, Y, - go) 

and (s, t) = ((X/-f + d)lr, x - sc)  are feasible for (QI) with ~ < s (respectively: 
Y-<s). 

Equiva lence  o f  (Q2) and (Q3): If 0 ~, ~) and (f, x) are feasible for (Q2) with 

[ < f (respectively: [ -<  f) ,  then (& ~) = (~.  ~ - f, •) and (a, x) = (x • x - f, x) are 
feasible for  (Q3) with ~ • ~ - d = [ <  x • x - a = f (respectively: x • x - a = [_< 

x . x - a  = f ) .  If (d ,y)  and (a ,x )  are feasible for  (Q3) with y - ~ - 8 < x - x - a  
(respectively: :?. :? - ~ -< x • x - a), then (/~ 2?) = (y .  y - a, ~) and (f, x) = 
(x • x - a, x) are feasible for (Q2) with [ = x • x - a < f = x • x - a (respectively: 

[ = X . ~ , - d < _ f = x . x - a ) .  

We thus have the following result which shall be used in our study of OCP 
and OMP. 

Lemma 2.1 (Equivalence of (Q1) and (Q3)). For  r non-zero  

(i) I f  (s, t) is feas ib le  or opt imal  f o r  (Q1), then 

(a, x )  = ((sc + t ) .  (sc + t) - (sr - d)  2, sc + t) 

is feasible  or opt imal  f o r  (Q3), respectively. 
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(ii) If  (a, x) is feasible or optimal for (Q3), then 

(s, t) = ((d + ~ . x -  a)/r, x - ( d  + X/x . x - a)c/r) 

is feasible or optimal for (Q1), respectively. 

Consequently (Q1) can be solved via the quadratic program (Q3). Note that 
(Q3), and hence (Q1), always has a unique optimal solution. 

3. The optimal containment problem (OCP) 

Let ~f be a finite union of cells and ~1 be a finite intersection of cells. The 
optimal containment problem can be written as: 

o r  a s  

Zl = supremum s, 
OCP 1 s, t 

subject  to s~f + t C_ ~/, 

[ z2 = infimum s, 
OCP2 ~ s, t 

[ subjec t  to ~ c  s~d + t, 

s > 0  

s > O .  

Our first results concern the equivalence of OCP1 and OCP2. 

Lemma 3.1 (Equivalence of OCPI  and OCP2). 
(i) (Solutions) (s, t) is a feasible or optimal solution to OCP1 if and only if 

(l/s, - t / s )  is a feasible or optimal solution to OCP2. 
(ii) (Feasibility) The following are equivalent: 

(a) OCP 1 is feasible; 
(b) OCP2 is feasible; 
(c) tngOf) C_ tng(OJ) and recOf) C_ rec(~) .  

(iii) (Attainment) The following are equivalent: 
(a) 0 < z l < + ~ ;  
(b) 0 < z 2 < + ~ ;  
(c) OCP1 has an optimum; 
(d) OCP2 has an optimum. 

(iv) (Non-attainment) The following are equivalent: 
(a) zl = + ~; 
(b) z2 = 0; 
(c) ;T + t C rec(~)  for some translate t. 

For a specific realization of OCP1 or OCP2, ~f and ~ will be given in the 
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forms 

where He.) = {x I A¢.)x <- b~0}, W~.) = {x I x = UoA + V¢0/z , eA = l, A ~ O,/x -> 0}, and 
B~.) = {x [ IIq.)- xll -< r¢o}, For a given set H~.)= {x I A¢.lx <- bo)}, we define a(0 to be 
the column vector whose qth component  is the (Euclidean) norm of the qth row 
of A(.). 

We begin with case (HWB, H) of OCP which corresponds to cr = 0 and ~- = 0, 
that is, ~T is a union of any finite number of H-, W-, and B-cells and ~ is an 
intersection of H-cells. 

Case  (HWB, H) o f  OCP is a l inear program 

We treat the optimal containment problem (HWB, H) through OCP2. The 
formulation as a linear program is 

z ~  = minimum 
s, t, A 

subject  to 

S, 

AhkAh = Ak, h E a, k E p, 

Ahkbh ~ bkS + Akt, h E c~, k @ p, 

Ak Ui <~ bkS + Akt , i C [3, k ~ p, 

AkVi <-0, i ~ fi, k E p ,  

AkCi + akri <-- bkS + Akt, J ~ 3', k E p, 
A h k ~ O ,  h ~ a , k ~ p ,  
s>_O. 

Note that case (B1, H) of OCP, a special case of (HWB, H), is the well-known 
problem of finding the largest ball inscribed in an H-cell and has been part of the 
folklore of linear programming for over a decade. 

Case  (W, HW) o f  OCP is a l inear program 

Formulated through OCP1, we have: 

z j  : maximum 
s, t, A, 7r, 0 

subject  to s Ui + t o e = UiAil + Vt~ru, 

E = VlO~l, 

Ak(sUi  + t o e) <_ bk ° e, 

Ak(V/) ~ O, 

eAit = e, A~t >~ O, rr/t ~ O, ~/~ ~> O, 

8 ~ 0 .  

i ~ , l E c r ,  

i E f l ,  k E p ,  

i ~ f l ,  k E p ,  

i ~ fl, l E cr, 
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Case (B1, B=) o f  OCP is a quadratic  program 

Let (c, r) be the given center and radius of the ball ~. Treating the optimal 
containment problem through OCP1, we have: 

zl = maximum s, 
s,t 

subject to Ilcm - (sc + t)ll + sr <- rm, m @ ~, 

s>_0. 

If N #  ~, i.e., the intersection of the Bm is not empty, then the constraint s -> 0 is 
superfluous, and can be dropped. Since all rm are equal, the above program is seen 
to be an instance of (Q1) and hence can be solved via the quadratic program 
(Q3). Note that if the optimal solution to the program (Q3) returns a negative 
value of s, then ~ = ~. A variation of this problem was first shown to be a 
quadratic program by Gale [4]. 

Case (B=, B~) of  OCP is a quadratic  program 

Here we let (c, r) be the given center and radius of the ball 0~. Formulated 
through OCP2, the optimal containment problem is written as 

Z 2 = m i n i m u m  

s, t 

subject to tlcj - ( sc  + t)ll + rs ~ sr, j ~ 3", 

s>_O. 

Note that the constraint s -> 0 is superfluous, and can be omitted. As this program 
is a realization of (Q1), it is solvable as the quadratic program (Q3) for r > 0. 

The special case of (B=,B1) where all r i = 0 is the problem of finding the 
smallest ball covering the points q, j E 3' and has been treated by Elzinga and 
Hearn [3] and Kuhn [7]. 

The case (W, B1) o f  OCP is a quadratic  program 
(W, Bj) of OCP is a special case of (B=, Bl) just discussed when rec(N)= {~J} 

(else OCP is infeasible), since all Vi = 0 and each column of the Ui can be 
considered as the center of a B-cell with radius zero. Thus (W, B0 of OCP is 
solvable through the quadratic program (Q3). 

Other cases o f  OCP 
Cases (WB, HB) and (W, HWB) of OCP can be formulated as convex pro- 

grams using the logic already employed; however, we have been unable to 
formulate either case as a quadratic or linear program. As regards all other cases 
of OCP, we are convinced that their formulation as a convex program, much less 
a quadratic or linear program, cannot be accomplished. The reason for this is 
that the problem of testing ~ C_ ~, where either (i) ~ is an H-cell and og is a 
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W-cell, (ii) 3f is an H-cell and ~/ is a B-cell, or (iii) ~o is a B-cell and ~ is a 
W-cell, appears to be intractable without conversion of the polyhedra from 

H-cell to W-cell or vice versa. 

4. The Optimal Meet Problem (OMP) 

Let ~f and Oq, q = 1 . . . . .  p, each be a finite intersection of cells. The optimal 
meet problem can be written as: 

(vl = infis,mtum 

OMP1 / subject to 

S~ 

(s~f + t) N °2Jq ¢ 0, 
s > 0  

q = 1 , . . . ,p ,  

o r  

OMP2 

vz= supremum s, 
S, t 

subject to ~ n (S~Jq + t) ¢ 0, 
s>O.  

q = l  . . . . .  p, 

The following result concern the equivalence of OMPI and OMP2. 

Lemma 4.1 (Equivalence of OMP1 and OMP2). 
(i) (Solutions) (s, t) is a feasible or optimal solution to OMP1 if and only if 

(1/s, - t /s) is a feasible or opt imal  solution to OMP2. 
(ii) (Feasibility) The following are equivalent: 

(a) OMP1 is feasible; 
(b) OMP2 is feasible; 
(c) For some translate t, (t + tng(W)) n ~q ¢ 0, q = 1 . . . . .  p. 

(iii) (Attainment) The fol lowing are equivalent: 
(a) 0 < v l < ~ ;  
(b) 0 <  v2<o~; 
(c) OMP1 has an opt imum ; 
(d) OMP2 has an optimum. 

(iv) (Non-attainment) The fol lowing are equivalent: 
(a) vl = 0; 
(b) v2 = + ~; 
(c) For some translate t, (rec(W) + t) N % ¢ 0, q = 1 . . . . .  p. 

For a specific realization of OMP 1 or OMP2, ~f and ~q will be given in the 
form: 

t .  k q ~ p  a q "'" laEcr q " m . ~ q  q ~ 
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where H(,), W(,) and B(.~ are as in Section 3. Our solvable cases are as follows. 

Case (HW, HW) of  OMP is a l inear program 

Treated through OMP1, case (HW, HW) is the linear program: 

v j -~ minimum 
s, t, x, h, /x 

subject to AhXq <-- bhS + Aht, 

AkqX o <-- bk¢ 

Xq = t + UiAiq q- Vi[.Liq , 

gala = s, Aiq ~ O, ~.t~iq ~ O, 

eAtq = 1, hjq >- O, tztq >- O, 

s>__O. 

h ~ a , q = l  . . . . .  p, 

k q ~ p q ,  q =  l . . . . .  p, 

i ~ f l ,  q =  l , . . . , p ,  

lq ~ ~rq, q = l . . . .  , p,  

i ~ f l ,  q =  l , . . . , p ,  

/o ~ O'q,q = 1 . . . . .  P, 

Case  (B1, B=) of  OMP is a quadrat ic  program 
This is the case where each O~q is a ball of given center Cq and radius rq with 

rl . . . . .  rp -> 0. Let  ~f be the ball with center c and positive radius r, and we 

proceed through OMP 1. The formulation is 

vl --- minimum s, 
S,t 

subject to I l ce - ( sc+ t ) l l<- - s r+rq ,  q = l . . . . .  p. 

s_>O. 

If N~=I °~o = 0  (otherwise OMP does not attain its minimum), then the con- 
straint s >--0 is superfluous and can be omitted. Furthermore,  since all rq are 
equal, the above program is an instance of (Q1) and hence can be solved via the 

quadratic program (Q3). 

Other  cases o f  OMP 
Note that the most general case of OMP, namely (HWB, HWB),  can be 

formulated as a convex program using the logic employed herein. However ,  we 
have been unable to formulate any case of OMP other than the above two cases 

as a quadratic or linear program. 

5.  R e m a r k  

Our final remark concerns the interrelated issues of computational complexity,  
the conversion of H- to W-cells and vice versa, and our division of problems 
solvable as quadratic or linear programs from other convex programs. In [5] and 
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[6], it is shown that linear and (convex) quadratic programs are solvable in 
polynomial time. The conversion of an H- to W-cell, or vice versa, is an 
exponential problem. To see this, consider the sets ~& {x ~ Illxll=-< 1} and 

{x R ° I Ilxll, -< 1}. as an H-ce l l ,  can  be represented by 2n halfspaces, but 
as a W-cell it requires the enumeration of at least 2 n (extreme) points. ~,  as a 
W-cell, can be represented by 2n (extreme) points, but as an H-cell it requires 
the enumeration of at least 2" halfspaces. We thus see that our distinction of 
H-cells and W-cells as different entities is consistent from the standpoint of the 
solvability of the quadratic and linear programs contained herein. 
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