
Mathematical Programming 23 (1982) 1-19
North-Holland Publishing Company

M O D I F I C A T I O N S A N D I M P L E M E N T A T I O N O F T H E

ELLIPSOID A L G O R I T H M FOR LINEAR P R O G R A M M I N G

Donald G O L D F A R B *

The City College, City University of New York, New York, U.S.A.

Michael J. TODD**

Cornell University, Ithaca, NY, U.S.A.

Received 19 February 1980
Revised manuscript received 17 February 1981

We give some modifications of the ellipsoid algorithm for linear programming and describe
a numerically stable implementation. We are concerned with practical problems where
user-supplied bounds can usually be provided. Our implementation allows constraint dropping
and updates bounds on the optimal value, and should be able to terminate with an indication
of infeasibility or with a provably good feasible solution in a moderate number of iterations.

Key words: Ellipsoid Algorithm, Linear Programming, Polynomial Boundedness,
Khachian's Method, Linear Inequalities.

1. Introduction

We are conce rned here with efficient implementa t ion o f the ellipsoid algori thm

for l inear p rogramming. This a lgori thm was first in t roduced by Yudin and

Nemirovsk i i [32] (see also Sho t ~ [27]) to solve convex opt imizat ion problems.

Yudin and Nemirovsk i i showed that if an a priori bound could be given for the

dis tance f rom an initial trial point to an opt imal solution, then a sequence {Ek} of

ellipsoids could be cons t ruc ted , each conta in ing an opt imal solution. T h e y

showed that the vo lume of the Ek'S decreased at a cer tain rate depending only

on the d imens ion n and not on the par t icular funct ions involved. Khach ian [14]

applied this a lgori thm to the solut ion of a sys tem of linear inequalities with integer

data. He showed ho w an a priori bound for the d is tance of a solut ion f rom the origin,

if a solut ion existed, could be der ived f rom the original data. He also essential ly

* The work of this author was supported in part by the U.S. Army Research Office under Grant
DAAG29-77-G-0114 and the National Science Foundation under Grant MCS-8006065.

** The work of this author was supported in part by the National Science Foundation under Grant
ECS-7921279.

~Those searching the literature are advised that Shot's name is frequently transliterated as ~or,
e.g., in Mathematical Reviews.

2 D. Goldfarb, M.J. Todd/The ellipsoid algorithm for LP

demonstrated that after slightly perturbing the right hand sides of the inequalities,
an a priori positive lower bound on the volume of the feasible region could also be
obtained. Combining these bounds with the rate at which the volumes of the Ek
were shrinking gave a polynomial bound for the number of iterations to
determine whether such a system of inequalities had a solution or not. Khachian
also discussed how such an algorithm could be implemented on a finite-precision
machine.

Gacs and Lovasz [7] expounded the algorithm in a rather simpler form and
gave proofs for the claims made in Khachian's paper. They showed precisely
how to obtain a solution to the original system of inequalities from one to the
perturbed system. They also stated explicitly one way in which linear programming
problems could be reduced to solving linear inequalities. Gacs and Lovasz assumed
in their proofs that exact arithmetic was used, though they noted that the results
remained true with slight modifications for finite precision.

The discovery of a polynomial algorithm for linear programming solved an
important theoretical question. Previously it had only been known that linear
programming (or, to be more precise, the feasibility problem for linear in-
equalities) was in the class NP of problems solvable in polynomial time by a
nondeterministic Turing machine. This class of problems includes some
notoriously hard combinatorial problems for which it is strongly suspected that
no (deterministic) algorithms terminating in less than an exponential number of
steps exist. However, it seemed clear that linear programming was much easier
than these hard problems. For one thing, linear programming was also in the
class co-NP of problems, and it was strongly suspected that NP A (co-NP) was
much smaller than NP, and consisted of much easier problems. Secondly, linear
programming is closely related to solving linear equations, for which polynomial
algorithms exist. Finally, Dantzig's well-known simplex algorithm performed
very well on almost all LP problems, although there were some for which it
required an exponential number of iterations [15].

The ellipsoid algorithm requires O(n2L) iterations, where n is the dimension, of
the problem and L the length of the input data in bits. Each iteration requires
O(mn + 2n 2) operations, where m is the number of inequalities in the system.
The presence of the factor L in the number of iterations is rather unsatisfactory.
Of course, it is understood that the size of the numbers involved must affect the
running time of the algorithm, but one might hope that the dependence would
only be through the time to perform the individual sums, products, etc. The L
appears in the iteration bound for two reasons: the initial ellipsoid E0 depends on
the a priori bound on the norm of a solution to the inequalities, which in turn
depends on L; and the algorithm can be terminated with an indication of
infeasibility only when the volume of Ek has shrunk to an amount smaller than
the a priori lower bound on the volume of the perturbed feasible set which also
depends on L.

This paper is concerned with an efficient and practical implementation of a

D. Goldfarb, M.J. Todd/The ellipsoid algorithm for LP 3

modification of the ellipsoid algorithm. We wish to solve

minimize c T x,
subjectto x E X = - { y E R " [a T y < - - [3 i , i = l , 2 m}. (1.1)

We do not wish to assume that the initial data is integer, and we will operate in
floating-point arithmetic. We cannot therefore provide a priori bounds based on
the data. Instead we will assume that the user can provide bounds on the
solution to (1.1), possibly in the form of upper and lower bounds on the
variables. Our algorithm need not be run until the volume of the ellipsoid Ek is
almost infinitesimal. Instead we will use bounds generated during its progress to
halt the algorithm when it has obtained a feasible solution provably close to an
optimal solution in objective function value.

The remainder of the paper is organized as follows. In Section 2 we discuss
the basic operation of the algorithm, the generation of a new ellipsoid E+ from a
previous one E and a 'cut' giving a half-space H, so that E+_~ E f3 H. We
describe how E+ can be obtained even if the center of E does not lie on the
bounding hyperplane of H (deeper cuts). We also show how bounds on linear
forms over E can be used to eliminate constraints that are not active at the
optimal solution. Finally we show how linear inequalities can sometimes be
combined (surrogate cuts) and a particular 'optimal' combination (best surrogate
cut) can be formed under certain conditions. Section 3 outlines our approach
towards incorporating the objective function in our algorithm. Since we work in
floating-point arithmetic (double-precision is recommended) it is important to use
methods guaranteeing numerical stability. Section 4 describes how our method
uses and updates a Cholesky factorization of a matrix determining the ellipsoid
at each iteration. Section 5 describes our algorithm and gives a theorem on the
number of iterations required for a certain degree of approximation. Finally in
Section 6 we suggest a method of dealing with problems with equality con-
straints. Most of our analysis (Sections 2-4) is applicable also to convex (not
necessarily differentiable) optimization when subgradients are available--see
[27].

We conclude this section with an attempt to put the ellipsoid algorithm in
some historical perspective. It is, in fact, a fairly natural outgrowth of a
substantial literature mainly concerned with subgradient methods for nonlinear
programming. These methods grew out of the relaxation method for linear
inequalities introduced by Agmon [1] and Motzkin and Schoenberg [17]. Agmon
demonstrated linear convergence of his method, by showing that each iterate
came closer by some fixed ratio to the set of feasible solutions. The similarity to
the ellipsoid algorithm is striking; a sequence of shrinking balls {Sk} centered at
the current iterates xk could be defined, each containing a feasible solution. The
differences were that no a priori bounds were given on So or the volume of the
feasible region and (most importantly) that the ratio of shrinkage depended on
the data of the original problem. (For details on this ratio, see [1, 11, 13, 28].) The

4 D, Goldfarb, M.J. Todd/The ellipsoid algorithm for LP

subgradient method for minimizing a convex, not necessarily differentiable
function was apparently first introduced by Shor]23], with important
refinements by Ermolev [5] and Polyak [19]. (A good selection of references to
this area appears in the bibliographies of [2] and of the proceedings containing
[21].) Later versions [20, 24] attained linear convergence rates for 'most' prob-
lems, but again the ratio depended on the particular function involved. Shor
[25, 26] seems to have been the first to observe that improvements could be
made by working in a transformed space. The idea is exactly that which leads
from the steepest descent algorithm (with linear convergence rate, the ratio
depending on the function) to Newton's method (with quadratic convergence for
smooth functions) and quasi-Newton algorithms (with superlinear convergence
for smooth functions). Shor [25] describes precisely the difficulty with the linear
convergence of his earlier method (see the discussion of 'essentially gully
functions' [25, p. 7]). He provides a modified algorithm based on shrinking
ellipsoids whose convergence rate depends on a ratio of two numbers M and N.
These numbers do depend on the function involved, but they are invariant with
respect to linear transformations. If the function is quadratic and strictly convex,
then M and N can be taken as 2 and Shor's method [25] in its limit becomes a
method of conjugate gradients--see [25, p. 14]. Yudin and Nemirovskii [31],
considering from a theoretical viewpoint the 'computational complexity' of
convex optimization, considered the method of centered cross-sections proposed
by Levin [16] and independently by Newman [18]; since this method is com-
putationally intractable, they introduced in [32] the modified method of centered
cross-sections, which is essentially the ellipsoid method, and noted that it was a
special case of Shor's methods in [25,26]. Finally, Shot [27] described the
ellipsoid method, giving the explicit formulae missing from [32]. The Soviet
research is surveyed in [21].

2. C u t s

Let /~ denote the unit ball in R ° {~[I]~1[-< 1} (all norms are Euclidean).
Consider a half-space which we will denote /-7/={~ E R"] ax~----a(fixfi)l/z}.
Note that the distance from the origin to the bounding hyperplane of/2/ is [~]. If

<--1, / ~ C / : / ; i f a > l , / ~ N / : / = 0 ; and i f - l < a - 1 , /~n/ : / is anonempty
slice of the unit ball. We assume now that - 1 < a < 1.

The point where ~x~ is minimized over/~ is -fi](tlTtl) l/z. Consider all possible
ellipsoids/~+ = {~ C R"] (~ - ~)v/]+~(2 - ~1) -< 1}, where ~l ~ R" is the center and
/~+ a positive definite symmetric matrix, which satisfy the two conditions:

(~) fiv~ is minimized over/~+ by -tl/(tlxfi)l/2;
(i]) /~+ N 0/S/=/~ n of/, where 0/7/ denotes the bounding hyperplane of/_7/.
It is easy to see from (]) and (i]) that/~+ has • as an eigenvector, that all other

eigenvectors have the same eigenvalue associated with them, and that ~ is a

D. Gold[arb, M.J. Todd/The ellipsoid algorithm for LP 5

multiple of d. Thus we may set -~1-~--ra/(aTa) 112, and /3+ = 8(1-o-ddT/dT~).

Conditions (~) and (i]) then imply that 3 = (1 - ~-)2(1 + a)/(1 + a -2~-) and o" =
2~-/(1 + a), so that varying r gives one degree of freedom. We will choose r to
minimize the volume of /~+. Since this volume is proportional to (det/~+)m=
(3"(1-o-)) 1/2 it is a simple matter of calculus to determine the ellipsoid of
minimum volume; we set ~ = (1 + ha)/(1 + n) and hence 3 = n2(1 - o~2)/(n 2 - 1)

and cr = 2(1 + na)/(n + 1)(1 + a). It can also be confirmed that if ~ - > - l / n ,

Now consider an affine transformation ~ x 0 + J ~ = x of R", with J a non-
singular n × n matrix. Under this transformation,/~ becomes the ellipsoid

E = {x @ R"[(x - xo)TB-I(X -- XO) <-- 1} (2.1)

where B = jjT. The halfspace H becomes the halfspace

H = {x E R"I aT(x - Xo) <- -a(aTBa)lJz}, (2.2)

where a = Y Tti (SO that aTBa = fiTfi).
We now find that aTx is minimized over E by Xo-Ba/(aTBa) 1/2, the image of

_fi/(fiXfi)t/2. We may again consider all ellipsoids

E+ = {x E R" I (x - x 1) T B + I (x - - X1) ~ 1} (2.3)

that satisfy

(i) aTx is minimized over E+ by xo-Ba l (aTBa) ~/2,
(2.4)

(i i) E+ N o H = E A oH.

These ellipsoids will be exactly the images of the ellipsoids/~+ satisfying (~) and
(i~). Since the transformation multiplies all volumes by the constant Idet Y[, the
choice of B , and xl to minimize the volume of E+ must be jff~+jT and x0 + J~ .
We thus obtain the following theorem.

T h e o r e m 2.1. Of all the ellipsoids of the form (2.3) that satisfy (2.4)(i) and (ii),
with E given by (2.1) and H by (2.2) where - 1 < c~ < 1, that with the smallest
volume is given by

Btl
xl = Xo- "r (aTBa)l/2, (2.5)

/ BaaTB~
B+ = 6 { B -

~ a-V-ffd-a / , \

where

(2.6)

The ratio of the volume of this E+ to that of E is

l + n ~ n 2 _ 2 (1 + n ~)
- n + l ' 8 = ~ (1 - c ~ 2) and cr (n + l) (l + a) " (2.7)

6 D. Goldfarb, M.J. Todd/The ellipsoid algorithm for LP

r (a) = (6 " (1 - or)) 1/2 = { n2 ~(n-1)/2 n o~2)(n_1)12(1
\ n - r ~ - 1 / n + 1 (1 - - ~) .

(2.8)

Moreover, r(a) is increasing for - 1 < a < - - l / n up to 1, and decreasing for

- l /n <- a < 1. For a >- - fin, the ellipsoid E+ given by (2.3), (2.5)-(2.7) contains

E fq H. For a = - l / n , E+ = E.

We will not give a complete proof of the theorem, since the analysis above

clearly indicates all the steps. The formulae (2.5)-(2.7) for the case a = 0 were
presented by Gacs and Lovasz [7] to describe the ellipsoid algorithm.

Several workers (including ourselves and Gacs and Lovasz) have obtained

independently the formulae above for a > 0. The case a < 0 has been alluded to

by Yudin and Nemirovskii [32].
Now suppose it is known that the polyhedron

X = {x E Rnl aTx <-/3i, i = 1 m} (2.9)

is contained in E, but the center x0 of E is not in X. We can define, for each i,

the number

T X ai = (ai o- /30/(aTBai) ~/2. (2.10)

Then ai > 0 for those constraints i violated at x0, and ai represents the (al-

gebraic) distance from x0 to the bounding hyperplane of the half-space H~ =
{x E R" I aTx -</3i} in the metric corresponding to the matrix B. The following

observation is crucial.

Proposition 2.2. I f a~ < - 1 , E C Hi and the ith inequality is inessential in defining

X. If ~i > 1, E fq Hi is empty and thus X is empty. If, for each - l[n <<- a~ < 1, we

determine the ellipsoid E~+ as in Theorem 2.1 using a~ and ai, then E~ has the
smallest volume when i is chosen to maximize ai. I f ai = 1, E A Hi degenerates to

a point.

It is also possible to choose some nonnegative combination of violated

inequalities to form the cut; examples show that in some cases a deeper cut will
result. We now make this precise.

Le t A be a matrix whose columns are those ai's with i ~ I, and let /~ be the
corresponding vector of /3i's. Then the inequality uTATx <--uTb holds for any
x ~ X and any u - - 0 . If a = Au and/3 = uTb, we want to choose u ->0 so that

a = (aTx0-/3) / (aTBa) 112 = uT(ATx0- /9)/(uTATB/~u)112 (2.11)

is maximized. Assume that A has full column rank; then a is maximized over all
u (not just nonnegative u's) by the vector

= (ATB~)-I(.4Tx0- /~), (2.12)

as a simple application of Lagrange multipliers verifies.

D. Goldfarb, M.J. Todd/The ellipsoid algorithm for LP 7

We call any cut ~lsing a = Au and/3 = uT/~ with u -> 0 a 'surrogate' cut; if a in

(2.12) is nonnegative, the resulting cut is called the 'best surrogate cut' (with
respect to I). Note that such a 'best surrogate cut' is valid and deepest of all cuts
implied by the constraints indexed by L

We now give sufficient conditions for ti in (2.12) to be nonnegative.

Theorem 2.3. Suppose X in (2.9) is nonempty and contained in E given by (2.1).

Suppose a~xo > /3i for each i E I and a Ti Baj <- 0 for each i¢ j, i, j ~ I. Then ~ given
in (2.12) is nonnegative.

Proof. Todd [28] has shown that if j , Tx--</~ is feasible, ATx0 > 6 and ATA has

nonpositive off-diagonal entries, then AT.4 is positive definite and has non-
negative inverse) Applying this result with A replaced by frA, where j j T = B,
we find that ATBj~ has nonnegative inverse. Since ATx0- 6 is positive, it follows

that ti in (2.12) is nonnegative.

Of course, computationally it is expensive to search for a large set I satisfying

the hypotheses of Theorem 2.3 or to solve a large linear system to obtain ti in
(2.12). However , it is easy to obtain ti if [I] = 2. Let us note another justification

for finding an index set I satisfying the hypotheses of Theorem 2.3. If we use a
cut based on a single ai, then x0 moves to xl = Xo- ABa~, for some h > 0. Since
a~Bai <- 0 for all j ¢ i in I, xl violates all inequalities indexed by I -- {i}, indeed by
more than x0. Using the formulae (2.6)-(2.7) we find that T a jB+ak < t3a~Bak <-- 0
for all j # k in I. Further, it can be shown that the constraint normals in A other
than ai are more obtuse in the new metric B+ than they are in the old metric B.

Hence successive additions of cuts, each based on a single aj, j E I, will worsen
all the remaining inequalities in I. It follows that at least [I[cuts will be
necessary to attain feasibility in all these constraints. On the other hand, the cut

based on a = Aa and 13 = arg, with ti as in (2.12), gives a point x~ satisfying all
these constraints, as is easily seen.

3. Objective function cuts

If ff is any point in the feasible region X = {x E R" [a~x <-/3~, i = 1 m} C E,
where the ellipsoid E is defined by (2.1), then an optimal solution to (1.1) must
tie in E A H0 where

Ho={X~Rn[cTx~7.}={xER"[cT(x--Xo)<--- -ao(CTBc)1/2} , (3.1)

ao = (cTxo -- ~)[(cTBc)1/2 (3.2)

2 Such a matrix is called a Stieltjes-matrix; e.g., see [29].

8 D. Ooldfarb, M.J. Todd/The ellipsoid algorithm for LP

and

= cT)c. (3.3)

As in the case of the inequality cuts corresponding to Hi, i = 1, . . . , m, we
would like to make a0 as large as possible by choosing)7 so that Z is as small as
possible. If Xo, the center of E, is feasible, then choosing ~ = x0 gives a = 0 and
H0 above yields a standard ellipsoid cut. Clearly, a deeper cut can be obtained

by moving from x0 in a direction s which is downhill with respect to z.
Specifically, let

Y~ = xo + Os (3.4)

where STC < 0 and 0 is a scalar ->0. For a particular downhill direction, s, the
deepest cut is obtained by choosing 0 as large as possible subject to the

restriction that ~ = 2(0) in (3.4) remains feasible. This gives

0 = rain {--(aTxo -- [3i)/aTs} >- 0 (3.5)
aTis>O

corresponding to the point where the ray {Y~ [Y~ = Xo + Os, 0 -> O} first violates one
of the feasibility constraints.

The natural choices for s are - c , the direction of steepest descent and - B c ,

the direction of steepest descent in the t ransformed space {~
R"[~ J - l (x - x0)}. Notice that the latter is a Newton-like direction and is the

direction along which the center of the new ellipsoid E+ lies. (See (2.5) with a
replaced by c and a by oz0.) Either of these directions may result in the deeper

cut. If we use the notation 0 = O(s) to indicate the dependence of 0 in (3.5) upon

the choice of s, we have that

and

fO(- -c)cTc Bc)(cTBc)I/2]
a0 = max[(cT1~c)1]2 , 0(--

= c T x 0 - Oo(cTBc)m= c T x 0 - max{O(--c)cTc, O(-Bc)cXBc}.
for the deeper of the cuts obtained by using s equal to - c or - B c .

Even deeper cuts can be obtained by projecting the direction s onto the
hyperplane (with normal a~) which first becomes violated at Xo + Os and moving
from that point in the direction Ps = s - a~(aTs)/(aTai) where P is a projection
operator, until a second constraint is violated. This process can be repeated until
the descent direction obtained is the zero vector. Several variations of this
approach are possible. A projection could be made only if the new direction
obtained is sufficiently downhill and the cosine of the angle between it and the
current direction is close enough to 1. Constraints could be dropped as well as
added, leading to a gradient projection type of approach [12, 22] and ultimately,
once a vertex is reached, to the ~imr~lex method. Finally we note that when

D. Goldfarb, M.J. Todd/The ellipsoid algorithm for LP 9

S = --C it is natural to use orthogonal projections but when s = - B c , a projection
weighted by the matrix B-- i .e . , P = I - BA(_4TB_4)-~.4 T, where A is the matrix

of active constraint normals--should be used.

4. Using the L D L T factorization

In order to use the cuts of Sections 2 and 3 to move from ellipsoid E to
ellipsoid E+, we must calculate Ba and (aTBa) 1/2 and use these to update the

matrix B and the center of the ellipsoid. However because of roundoff errors,

updating B directly can result in its no longer being positive definite. Con-
sequently, the computed quantity aTBa may become zero or negative causing
the ellipsoid algorithm to fail. Here we show how a factorization of B can be

used and updated so as to avoid these numerical problems.
Any positive definite matrix B can be written as

B = L D L T (4.1)

with L a lower triangular matrix with unit diagonal and D = diag(d~, ..., d,), a
diagonal matrix with positive diagonal (e.g., see [30]). Obtaining such a fac-
torization for an n × n matrix B requires in general about n316 additions and
multiplications. However , updating the factors L and D when B is modified by a

rank-one correction and scaled as in (2.6) requires only O(n 2) additions and
multiplications.

Given the factorization (4.1) and a E R" and/3 ~ R corresponding to some cut,

the computat ion of the center of the new ellipsoid, (2.5), becomes: compute

Cl = LXa, 7 = CITDd, v = Dd/T ~12 and w = L v (4.2)

and set

Xl = x 0 - ~'w (4.3)

where ~- is given by (2.7) with a = (aTxo--/3)/~/~12. Note that roundoff errors
cannot cause 3' to be nonpositive.

From (4.1) and (4.2) it follows that (2.6) can be written as

B+ = L [6 (D - o'vvT)]L T.

Therefore , to compute the factors L+ and D+ of B+ we need only compute the
factorization

D - o'/3/2 T ~--- /~/~_~T (4.4)

and set L+ = L/~ and D+ = ;~/3. Applying the algorithm of Gill, Murray and
Saunders given in [10, Section 5.2] to (4.4), we can compute the diagonal matrix
/3 = diag(ttl , d,) and the unit lower triangular matrix /~. = {~j}, where /~j =
viii,] < i, f rom the recurrence relation:

10 D. Goldfarb, M.J. Todd/The ellipsoid algorithm for LP

(i) set t,+~ = 1-¢rvTD-~v = 1 - - o r = \-n--+--l]\]---+~a]"

(ii) f o r j = n , n - 1 ,1 set

tj = tj+~ + ~ v ~ l d j ,

dj = d i t j+l / t j, (4.5)

~j = - ~rvJ(ditj+ l).

When a is very close to 1 so is cr and 1 -o r may be computed as zero.
However, if the last expression in (4.5)(i) is used to compute t,+l, then as long as
- 1 + t~ < a < 1 - p., where tz > 0 is the machine precision, t,+~ > 0 a n d /) and B+
will be positive definite. Because of the special form of/~, it is a simple matter to
show that the product L + = L/~ can be computed in n 2 + O(n) operations (e.g.,
see [9]). Consequently the updating of L and D can be accomplished in
n 2 + O (n) operations.

Several other O(n 2) methods exist for updating the factorization (4.1) and the
related Cholesky factorization B =/~/~T where /~ is lower triangular not neces-
sarily with unit diagonal elements, when B is modified by a rank-one term; e.g.,
see [3, 6, 8, 9, 10]. Because the rank-one term is subtracted rather than added to
B in (2.6), some of these methods can be numerically unstable. The method
detailed above, although extremely simple, is numerically stable.

Several authors have suggested using the factorization B = j jT instead of
(4.1); (e.g., Shor [27] uses B = KJJ T where K is a scalar). While such an approach
is certainly preferable to using B directly, it is not numerically stable. In
particular when J is updated round-off error may cause the new J to become
singular and subsequently I]jTall may be computed as zero.

We now make some comments concerning a product form of the algorithm.
Suppose the initial B, B0, is diagonal so that L0 is the identity. Then, after k
iterations we have Lk --/~/~2 "'"/~k, where/~j is the matrix constructed as in (4.5)
in the j th iteration. It is easy to see that computing /~iY or /~TY requires only
2 (n - 1) operations using only the vectors v °) and ~(J) generated at the jth
iteration. Thus the multiplications Lky and L~y require 2k(n - 1) operations.

Assuming that all matrices and vectors are dense (i.e., all dements are
nonzero), the total number of operations involving L during the first n iterations
is 2n 3 + O(n 2) whether L is updated or stored in product form. If fewer (more)
than n iterations are performed, then the product form is less (more) expensive
than the updating version. The product of the 3's times the spectral radius of B0
provides an upper bound Pk for the spectral radius of Bk. If B0 = p0I, and k < n,
then Pk is the spectral radius of Bk. Consequently, if n is large and a is close to
one on most iterations so that pk is small, it may be worthwhile resetting Bk to
pkI if the product form is used. (Note, however, that Ok can be larger than p0.)
Although this may increase the number of iterations required to find a solution, it
will decrease the work required per iteration. Also, if n is so large that L must

D. Goldfarb, M.J. Todd/The ellipsoid algorithm for LP 11

be stored on a secondary storage medium, then the product form has the

advantage that the L file need not be assessed for the updating step.
Another possibility is to avoid adding to the L file at some iterations. Indeed,

we may use formulae (2.5) and (2.6) with ~- = ct, 6 = 1 - a 2 and or = 0 to obtain

the next ellipsoid. In this case the metric is not changed and the volume is
reduced by a factor of (1 - az) "/2. Such a step can be used when a is sufficiently
large, say a >- l[n (the volume ratio is then <e-1/2~n+~)). With these choices of ~-,

and or we merely multiply D by 3; the L file is unchanged.
If at each iteration one wishes to use the 'deepest ' possible cut, then even if

surrogate cuts are not considered, one must still compute ai as defined by (2.10)
for all constraints i violated by x0 to determine the maximal ai. When there are
many such constraints the effort required to compute the quantities 3'i = a [B a i is
an order of magnitude greater than the work required for all other aspects of an
iteration of the ellipsoid algorithm. Thus, for a deepest cut ellipsoid algorithm to
be practicable, these computations must be avoided. Fortunately, each q/g can be

updated at a computational cost of n + O(1) operations; indeed, we have from
(2.6) and (4.2) that

3'[= aTB+a, = ,3(a[Bai - o r (a [B a) 2 / a T B a)) = ~(q/, - or(a~w)2). (4.6)

The accumulation of roundoff errors may eventually cause some of these yi to
be inaccurate and even become negative. However , as long as these are
computed afresh for effecting a cut or when terminating (some ai > 1), any
inaccuracy in the 7~'s cannot cause failure of the algorithm; it can only affect
which cuts are chosen.

To prevent any 3'i from becoming less than or equal to zero we can use the fact

that

Ti >- dt(i)a~,u,i) (4.7)

where a~,t(~) is the last nonzero component of a¿ and dl(~) is the corresponding
diagonal element of D. Thus, whenever (4.7) is violated, 7i can be computed
afresh from its definition.

5. The algorithm

We describe here a method to solve or approximately solve the linear
programming problem

minimize z = cXx,
subject to A Tx <-- b. (5.1)

The columns of A are denoted az, az am, and the entries of x and b are
~, ~z ~n and/31,/32 /3m, respectively. We use a0 as a synonym for c.

We first add bounds to all variables. It seems reasonable to suppose that

12 D. Goldfarb, M.J. Todd/The ellipsoid algorithm for LP

bounds l - x - u can be provided so that: (i) if (5.1) has a feasible solution, it has
a feasible solution satisfying l - x -< u; and (ii) if (5.1) has an optimal solution, it
has one satisfying I <- x <- u. We now choose a tolerance v > 0 and add to (5.1)
the 'artificial' bounds

f = l - v(u - I) <- x <- u + v(u - l) = a. (5.2)

We denote by (5.1)' the problem (5.1) with the bounds (5.2) adjoined. Note that,
by our assumptions, if problem (5.1)' is infeasible, then (5.1) is infeasible; and if
all optimal solutions to problem (5.1)' have ~i < li (or ~i > uj) for some i, then (5.1)
is unbounded. Finally, if (5.1)' has an optimal solution with ~ < ~i < aj for all j,
this optimal solution also solves (5.1). For notational purposes we write (5.2) in
the form aTx <- [3~, for i = m + 1, m + 2, ..., m + 2n.

It is easy to construct an ellipsoid E0 that contains {x E R" [/ - - x <- t~}. E0 is
given as in (2.1) with x 0 = (l + a)/2 and B = Bo=LoDoL~, where L0= I and
Do = diag(n(fil-I-1)2/4, ..., n (a , - / ,)2 /4) . Since the size of this initial ellipsoid
affects the performance of the algorithm, it may be worthwhile to perform some
preprocessing to improve the bounds l and u. For example, if aij is positive, we
may deduce that

~j <- ([3 , - ~ , a,klk-- ~ a,kuk)/a,j.
aij >0,k # j aii <0

A similar lower bound can be deduced if a~j is negative.
The algorithm constructs a sequence {E~} of ellipsoids. Ek is given by formula

(2.1) with xk replacing x0 and Bk replacing B. We maintain Bk in the factored
form Bk = LkDkL~, with Lk unit lower triangular and Dk diagonal. The updating
formulae of Sections 2 to 4 are used to proceed from iteration k to iteration
k + 1; for instance Bk+l will be given by B+ in (2.6), etc.

Our algorithm includes a bound MAXk on the maximum number of infeasible
iterations allowable. If such a bound is not imposed and the polyhedron
{x E R" [ATx <-- b} is not full-dimensional, the algorithm may never find a feasible
point and may even converge to an infeasible point. If (5,1) is infeasible, the
algorithm without this termination criterion may never detect infeasibility and
converge to an infeasible point. (For examples, see [4, Appendix C].) Theorem
5.1 below gives an indication of how MAXk might be chosen.

Clearly there are many ways to combine the ingredients of Sections 2 and 3.
Below we describe one possibility.

Initialization. Choose x0, B0, L0, Do and MAXk as described above. Choose
tolerances El> E2>0 for the objective function value. (The algorithm may
terminate with a feasible solution to (5.1) that comes within ~1 of the optimal
value of (5.1). It may also terminate with a feasible solution to (5.1)' that comes
within ~2 of the optimal value of (5.1)'; in this case, (5.1) may be unbounded.) Set
I~---I0 ---- {1, 2 m}, [*--~1 and ~--Ia - {m + 1, m + 2 , m + 2n}. (I0 and Ia
denote the index sets of the original constraints of (5.1) and the artificial bounds

D. Goldfarb, M.J. Todd/The ellipsoid algorithm for LP 13

(5.2) respectively. In the course of the algorithm f (_?) consists of those
constraints in Io (IA) deemed to be non-binding at optimal solutions while I
consists of all remaining constraints, i.e. I = (I0 U IA) ~ (f U [). For each i ~ I0 U
IA tO{0}, compute ~ = a T c (rli = + q for some j, for all i EIA) , and for each

T i E I t0 {0} compute 3'o~ a ~Boa~ as in (4.2). Set _z (-- CrXo - 3,~ 2,/3o ~ + ~ and k ~ 0.
(_z is a lower bound on the optimal value of z when the bounds (5.2) are added;
/30 is an upper bound.) If x0 is feasible, set g ~ X o a n d / 3 0 ~ c ~ < ~.

I teration k:

If k > MAXk and /30 = + % STOP; the feasible region is probably empty or
not full-dimensional.

1^112 Compute ski = aTxk --/3i and Olki ~- ~kilYki for all i C I U {0}.
If for any i E I, aki ~ 1, STOP; (5.1) is infeasible.
If for a n y i E / , a k i < - l , t r a n s f e r i f r o m l t o [i f i - - < m o r ~ i f i > m .

If [I (3 I01 = n go to Vertex if desired.
Case 1: Some a¢~, i E I is positive.

Choose p E I such that ako = max{a~ [i ~ I}.
If a~o > 0 and u = (ATLkDkL[_A)- I (ATxo- 6), where J~ = [ao, ap] and 6 ~ =
(/30,/3p), is defined and nonnegative, set a = Au and/3 = uTb to give the best
surrogate cut.

Otherwise, if ak0> akp set a ~ a o and/3~/3o; else set a~-ap and/3~/3p.
Go to Update.

Case 2: aki <-- 0 for all i ~ L

Compute Ski = a~Xk --/3i for all i E [tO if.
T T If any ski is positive, t ransfer i from [or ~ t o / , recompute 7k~ a ~ LkDkLk ai, set

. t 112 Otki = akil')/ki and go to Case 1,

Otherwise, set a ~ a o and calculate ti = LTa, 3' = drDa, v = D a / v ~2 and
w = Z v .

Compute

= min {Ski/Tli,~}, ~ = min {Ski/aTw, o~}.
i~lo: rti<O i~Io: aXiw<O

If 0 or ~ equals w, STOP; (5.1) is unbounded.
Otherwise, compute

0 = min {skil'oi,(}}, O = min {skda~w,~} .
iCIA: •i<O iCIA: aTw<O

Set a ~-max{ako, 0~o/71/2, ~} and / 3 0 4 - - ' c T x k - - ~ / l / 2 a .

If a = 0"00/T 1/2, set Y ~ - - X k - OC.

If a = 0, set ~'~--Xk--4)W.

Update:

Update Xk and Yki, i ~ I U {0}, and Dk and Lk as indicated in Section 4.

14 D. Gold[arb, M.J. Todd/The ellipsoid algorithm for LP

Convergence:
- - 1] 2 "l Set _z ~max{z , crxk+~ Tk+~,os.

If 130 > _Z + e~, proceed to iteration k + 1.
Else, compute rj = ~ - (big) 1/2 and fij = ~ + ,~,,,ch .k.V/2, where b~ is the jth diagonal

element of Bk, for j = 1 , n. lj and fij are lower and upper bounds for the
jth component of a point in Ek.
If, for some j, fj > u i or fij < li, then STOP; (5.1) is unbounded.
If, for all j, ~ < ~ and aj > fij, STOP; ~ is within e~ of the optimal value of

(5.1).
If /30 -<.z+ ~2, STOP. The feasible solution ~ to (5.1)' is within e2 of the

optimal value of (5.1)'. Either ~ is close to optimal for (5.1) or (5.1) is
unbounded.

Else, proceed to iteration k + 1.

Vertex:
If the a~, i E I N I0 are linearly dependent, return.
Otherwise, solve aTxk =/3~ for i ~ I A I0 to get 2.

If a~2 >/3~ for any i ~ [return; ~ is an infeasible vertex.
Else, solve ~eIn~0 h~ai = ao.

If any)t~ is positive, return; 2 is a nonoptimal vertex.
Otherwise, set g<---£ and STOP; ~ is an optimal solution to (5.1).

Remarks. (1) The assignment of a constraint to I, I, or T is tentative and
dynamic. Since Case 1 predominates, a tentative choice of I saves work at most
iterations at the possible cost of missing the most violated constraint.When a
(tentatively) feasible point Xk is found, Case 2 applies and the constraints in [U [
assumed to be nonbinding are tested for feasibility. Also, for simplicity we have
ignored the possibility that the constraint set of problem (5.1) may include lower
(or upper) bounds on some of the variables. If this is the case, artificial lower (or
upper) bounds for these variables should not be included in problem (5.1)' and
the tests in the Convergence section of the algorithm should be performed only
on the artificial bounds.

(2) It follows from Theorem 2.1 that each Ek contains all feasible points for
problem (5.1)' that satisfy cTx <--/3o; (i.e., all points x for which crx <- cTg if a
feasible solution ~ has been constructed, or CTX--< ~, otherwise). Hence, ter-
mination with some ak~ > 1 can only occur if a feasible ~ has not been found and
the constraints of (5.1)' are inconsistent. If termination occurs in routine Vertex,
then the vertex g computed is clearly optimal. If 0 or $ constructed in Case 2 is
+~ , (5.1) is unbounded since x k - 0c, 0 ~ , or x k - ~bw, ~ b ~ , remains feasible
and has objective function value tending to - ~ . Now consider termination in
Convergence. If 6 -> uj (or fij -< li), then all optimal solutions to (5.1)' have their
jth component between uj and ~ (or between ~ and Ij). By our assumption, this
implies that (5.1) is unbounded. If ~ < fi and fi~ < fij, then no optimal solution of

D. Goldfarb, M.J. Todd/The ellipsoid algorithm for LP 15

(5.1)' has any of these bounds active; thus optimal solutions are also optimal

solutions of (5.1). The other kind of termination in Convergence ([30 <- z + E2) is
unlikely to occur. Usually in this case Ek is thin in the 'c ' direction, while for
some j, Ek intersects x i = ~ and x i = li or xj = uj and xj = fii; hence it is fat in
some direction (one major axis has length at least v(uj - lj)). Termination in this
case corresponds generally to some constraint normal ai being almost parallel to
c. This situation is somewhat analogous to termination in the simplex method
with some reduced costs ~j less than some small tolerance e in absolute value.
For numerical reasons the test for optimality in the simplex method is usually

~ - - e for all j.
(3) We note that it is necessary to compute a square root of 7k~ only for the cut

actually made on each iteration since all tests performed on aki can be made on
the basis of a~i = s~/Tki and the sign of ski. Also for simplicity we have not
indicated where in the algorithm a fresh computation of 7k~ = a~Bkai is required
as this should be evident from our remarks in Section 4.

(4) If a is set equal to ak0 in Case 2, this means that the most recently used
objective function cut is deeper than one obtained by moving in either of the
directions - c or -Bkc . Although the same cut then gets used again, it is applied
to a new ellipsoid.

(5) We have described an 'all-primal' algorithm that modifies /30 and z based
only on feasible solutions. Gacs and Lovasz [7] suggest combining primal and
dual constraints with an inequality enforcing strong duality (C x <-bTy). The

latter approach increases the dimensionality to m + n and forces the feasible
region to have zero volume, so that perturbation is necessary for finite con-
ve rgence - - fo r details, see [7]. An alternative approach is by binary search. As
soon as/30 is reduced from +oo and a feasible solution ~ is constructed, we may
set /3 <--(130+ _z)12 and at tempt to find a feasible solution with cTx ~ [3. If a

feasible solution is found, [30 is lowered and the process continued. If the new
problem is infeasible, _z is increased (at least to the trial/3) and again the process
continues. Notice that without the infeasibility test of our algorithm, such an

approach would be very inefficient, since if fi was chosen too small, many
iterations would be necessary to show the problem infeasible. Binary search
should also incorporate sophisticated methods to update upper and lower bounds

on the optimal value. For example, if a feasible solution $ is found, then setting
/30'~--CT.~- "y1/2a, where 7 and a are determined as in Case 2 of our algorithm,

gives an upper bound that is less than or equal to CT~, which is itself less than or
equal to /3. Also, whether the problem corresponding to cTx <--fi is feasible or
not, the hyperplane {x] cTx = _~}, where /3 = c T x k - 7kO, tangent to the current
ellipsoid Ek at the kth iteration, furnishes a lower bound/3 for the optimal value
of z as long as ak0-< 1; if akO > 1, the current problem is infeasible and so/3 is a
lower bound.

We next give a theorem that bounds the number of iterations to attain a
certain accuracy when the feasible region is sufficiently 'fat'. We are not

16 D. Goldfarb, M.J. Todd/The ellipsoid algorithm for LP

concerned with a priori bounds on volumes derived from integer data A, b and
c; rather we take the practical viewpoint of user-supplied bounds.

Suppose we apply the algorithm to solve

minimize cTx, (5.3)
subject to A Tx <- b, 0 ~ x <~ u,

initializing as described below (5.2). Suppose also that it is known that the
feasible region of (5.3) is 'fat ' , so that there is some point 2 with aTE -----/3i- [la~ll)t,
i = 1 m and)t -< 2j <- uj -)t for some known positive)t.

Theorem 5.1. Suppose the algorithm is run for

k > - 2 n (n + 1)[i=~ ~ l o g u J n + ½ 1 o g n - 1 +log(l/~) +log(l/~)J
iterations, where rl < 1. Then it will have constructed a feasible solution ,2 with
cT'2<--Z*(1-- 'O)+~, where z* is the optimal value of (5.3) and 5.=
~ j>0 c, uj.

Proof. If ~ is the volume of the unit n-ball, then the volume of E0 is
/~ • (1-[7=1 uj)(~/n/2)", from the form of Do given above. As shown in Gacs and
Lovasz [7], the volume of the ellipsoid Ek is at most

e -k/2(n+l) ~ uj • (~/n/2)" • ~ - " . ~-~

times that of E0, i.e. at most (X~)"/~. Now the ball S of radius X around £ is
entirely within the feasible region of (5.3). Hence if no Case 2 iterations have
occurred, S, with volume ~"/~, would be contained in Ek, a contradiction. Thus
some feasible solution '2 has been generated, and Ek contains the set

T = {x E R n] A T x <- b, 0<-x <- u, cTx ~-~ cT'2}.

Now consider

S (a) = { x * + a (x - x *) l x E S } f o r 0 < a < - l ,

where x* is any optimal solution to (5.3). Clearly S(a) is feasible and its volume

is a")t"t*. Thus if a > n, S(a) ~: T, so that

cT'2 < Z*(1 -- a) + a max{cTx I x ~ S} -< z*(1 - a) + as-.

Hence cT'2 --< Z*(1 -- a~) + ~IZ as desired.
The theorem gives a worst-case bound; in particular, the volumes of the

ellipsoids shrink faster than at a geometric rate with ratio e -1/an+~ if deeper cuts
occur. The terms in the bound for k can be split into three groups. First,

2n(n + 1) log uj/n + ½ log n - 1

D. Goldfarb, M.J. Todd/The ellipsoid algorithm for LP 17

i terations reduce the volume to about that of the unit ball; this bound can be

reduced by obtaining tight upper bounds ui on the variables. Next , 2n(n +

1)log(I/A) iterations reduce the volume further to about A"~ and guarantee the

generat ion of a feasible solution. This bound is reduced if the feasible region is
fatter, e.g., by relaxing tolerances on the constraints. Finally, a further 2n(n +

1)log(1/~) iterations reduce the relative error in the object ive function to about

times its max imum va lue - - thus in the worst case about 2n z iterations reduce this

error by about a factor of e. Of course, these est imates are very crude since the

behavior of the iterations with respect to feasibility and object ive function

values is far f rom monotonic. However , they do give some indication of the

possible number of iterations for a certain accuracy in the solution.

6. Problems with equality constraints

A linear programming problem involving equality constraints, say

A x = b (6.1)

where A has dimension m × n and rank m, can be reduced to one involving only

n - m variables. To do this in a numerically stable way, let

where Q is an orthogonal matrix, i.e. Q r Q = I, and Q1 and Q2 have m and n - m

columns, respectively. The columns of Q2 and Q1 are respectively, orthogonal

bases for the linear subspace {x l A x = 0} and its orthogonal complement since

AQ2 = 0 and QTQ2 = 0. If we define y by

x = Qy = Q1yl + Q2y2,

then it follows f rom (6.1) and (6.2) that

b = A x = A Q y = RTyl

and the original problem has been reduced to one in n - m variables y2. Linear
forms such as aTx become dTy2 + v in terms of Yz where d = Q2Va, v = dXw, and

w = Qlyl = Q1R-Tb. Also, the bounds 0 --- x -< u become - w -< Q2y2 -< u - w, and
it is a simple mat ter to show that

Ily2[[z -< [lull z - Ilyl[[z and Ily~ll ~-< ~ max{(u, - wi) 2, w~}.

Finally, we point out that for problems of the form

minimize c T x,

subject to A T x > - b and x - > 0

18 D. Goldfarb, M.J. Todd/The ellipsoid algorithm for LP

w h e r e A T has d i m e n s i o n m × n w i t h m ~ n, it is p r e f e r a b l e to so lve the dua l if

b o u n d s o n the d u a l v a r i a b l e s c a n be o b t a i n e d .

Acknowledgment

W e are g r a t e f u l to Ph i l ip W o l f e fo r ca l l ing r e f e r e n c e [27] to o u r a t t e n t i o n .

References

[1] S. Agmon, "The relaxation method for linear inequalities", Canadian Journal of Mathematics 6
(1954) 382-392.

[21 M.L. Balinski and P. Wolfe, eds., Nondifferentiable optimization, Mathematical Programming
Study 3 (North-Holland, Amsterdam, 1975),

[31 J.M. Bennett, "Triangular factors of modified matrices", Numerische Mathematik 7 (1965)
217-221.

[4[R.G. Bland, D. Goldfarb and M.J. Todd, "The ellipsoid method: a survey", Technical Report
No. 476, School of Operations Research and Industrial Engineering, Cornell University, Ithaca,
New York (1980).

[5] Yu. M. Ermolev, "Methods of solution of nonlinear extremal problems", Kibernetika 2 (4)
(1966) 1-17. [Translated in: Cybernetics 2 (4) (1966), 1-14.1

[6] R. Fletcher and M.J.D. Powell, "On the modification of LDL v factorizations", Harwell Report
TP. 519 (1973).

[7] P. Gacs and L. Lovasz, "Khachiyan's algorithm for linear programming", Mathematical
Programming Study 14 (1981) 61-68.

[8] W.M, Gentleman, "Least squares computations by Givens transformations without square
roots", Research Report CSRR-2062, University of Waterloo, (Waterloo, Ontario, 1973).

[9] P.E. Gill, G.H. Golub, W. Murray and M.A. Saunders, "Methods for modifying matrix
factorizations", Mathematics of Computation 28 (1974) 505-535.

[10] P.E. Gill, W. Murray and M.A. Saunders, "Methods for computing and modifying the LDV
factors of a matrix", Mathematics of Computation 29 (1975) 1051-1077.

[11] J.-L. Goflin, "Acceleration in the relaxation method for linear inequalities and subgradient
optimization", Working Paper 79-10, Faculty of Management, McGill University, Montreal,
(Montreal, 1979).

[121 D. Goldfarb, "Extension of Davidon's variable metric method to maximization under linear
inequality and equality constraints", SIAM Journal on Applied Mathematics 17 (1969) 739-764.

[13] A.J. Hoffman, "On approximate solutions of systems of linear inequalities", Journal of
Research of the National Bureau of Standards 49 (1952) 263-265.

[14] L.G. Khachian, "A polynomial algorithm in linear programming", Doklady Akademiia Nauk
SSSR 244 (5) (1979) 1093-1096. [Translated in: Soviet Mathematics Doklady 20 (1) (1979)
191-194.]

[151 V. Klee and G.L. Minty, "How good is the simplex algorithm?" in: O. Shisha, ed., Inequalities
IH (Academic Press, New York, 1972) pp. 159-175.

[161 A. Yu. Levin, "An algorithm for the minimization of convex functions", Doklady Akademiia
Nauk SSSR 160 (1955).

[17] T. Motzkin and I.J. Schoenberg, "The relaxation method for linear inequalities", Canadian
Journal of Mathematics 6 (1954) 393-404.

[181 D.J. Newman, "Location of the maximum on unimodal surfaces", Journal of the Association
for Computing Machinery 12 (1965) 395-398.

[19] B.T. Polyak, "A general method for solving extremum problems", Doklady Akademiia Nauk
SSSR 174 (1967) 33-36. [Translated in: Soviet Mathematics Doklady 8 (1%7) 593-597.]

D. Goldfarb, M.J. Todd/The ellipsoid algorithm for LP 19

[20] B.T. Polyak, "Minimization of unsmooth functionals", Zurnal Vychisditel' noi Matematiki i
Matematicheskoi Fiziki 9 (1969) 509-521. [Translated in: USSR Computational Mathematics and
Mathematical Physics 9 (1969) 14-29.]

[21] B.T. Polyak, "Subgradient methods: a survey of Soviet research", in: C. Lemarechal and R.
Mifflin, eds., Nonsmooth optimization, IIASA proceedings volume 3 (Pergamon Press, Oxford,
1978).

[22] J.B. Rosen, "The gradient projection method for nonlinear programming, Part 1, Linear
constraints", Journal of the Society .for Industrial and Applied Mathematics 8 (1960) 181-217.

[23] N.Z. Shor, "On the structure of algorithms for the numerical solution of optimal planning and
design problems", Dissertation, Cybernetics Institute, Academy of Sciences of the Ukrainian
SSR (Kiev, 1964).

[24] N.Z. Shor, "The rate of convergence of the generalized gradient descent method", Kibernetika
4 (3) (1968) 98-99. [Translated in: Cybernetics 4 (3) (1968) 79-80.]

[25] N.Z. Shor, "Utilization of the operation of space dilatation in the minimization of convex
functions", Kibernetika 6 (1) (1970) 6-12. [Translated in: Cybernetics 6 (1) (1970) 7-15.]

[26] N.Z. Shor, "Convergence rate of the gradient descent method with dilatation of the space",
Kibernetika 6 (2) (1970) 80-85.]Translated in: Cybernetics 6 (2) (1970) 102-108.]

[27] N.Z. Shot, "Cut-off method with space extension in convex programming problems", Kiber-
netika 13 (1) (1977) 94-95. [Translated in: Cybernetics 13 (1) (1977) 94-96.]

[28] M.J. Todd, "Some remarks on the relaxation method for linear inequalities", Technical Report
419, School of Operations Research and Industrial Engineering, Cornell University, Ithaca, New
York (1979).

[29] R.S. Varga, Matrix iterative analysis (Prentice Hall, Englewood Cliffs, NJ, 1962).
[30] J.H. Wilkinson, The algebraic eigenvalue problem (Oxford University Press, London, 1965).
[31] D.B. Yudin and A.S. Nemirovskii, "A bound on the informational complexity of mathematical

programming problems", Ekonomika i Matematicheskie Metody 12 (1976) 128-142. [Translated in:
Matekon (Winter 1976-77) (M.E. Sharpe, Inc., White Plains, N.Y.).]

[32] D.B. Yudin and A.S. Nemirovskii, "Informational complexity and effective methods of solution
for convex extremal problems", Ekonomika i Matematicheskie Metody 12 (1976) 357-369.
[Translated in: Matekon (Spring 1977) (M.E. Sharpe, Inc., White Plains, N.Y.).]

