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We give some modifications of the ellipsoid algorithm for linear programming and describe 
a numerically stable implementation. We are concerned with practical problems where 
user-supplied bounds can usually be provided. Our implementation allows constraint dropping 
and updates bounds on the optimal value, and should be able to terminate with an indication 
of infeasibility or with a provably good feasible solution in a moderate number of iterations. 
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1. Introduction 

We are conce rned  here with efficient implementa t ion  o f  the ellipsoid algori thm 

for  l inear p rogramming.  This a lgori thm was  first in t roduced  by  Yudin and 

Nemirovsk i i  [32] (see also Sho t  ~ [27]) to solve convex  opt imizat ion problems.  

Yudin  and Nemirovsk i i  showed  that  if an a priori bound  could be given for  the 

dis tance f rom an initial trial point  to an opt imal  solution,  then a sequence  {Ek} of 

ellipsoids could be cons t ruc ted ,  each conta in ing an opt imal  solution. T h e y  

showed  that  the vo lume of  the Ek'S decreased  at a cer tain rate depending  only  

on the d imens ion  n and not  on the par t icular  funct ions  involved.  Khach ian  [14] 

applied this a lgori thm to the solut ion of  a sys tem of  linear inequalities with integer 

data.  He  showed  ho w an a priori  bound  for  the d is tance  of  a solut ion f rom the origin, 

if a solut ion existed,  could be der ived f rom the original data.  He  also essential ly 
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demonstrated that after slightly perturbing the right hand sides of the inequalities, 
an a priori positive lower bound on the volume of the feasible region could also be 
obtained. Combining these bounds with the rate at which the volumes of the Ek 
were shrinking gave a polynomial bound for the number of iterations to 
determine whether such a system of inequalities had a solution or not. Khachian 
also discussed how such an algorithm could be implemented on a finite-precision 
machine. 

Gacs and Lovasz [7] expounded the algorithm in a rather simpler form and 
gave proofs for the claims made in Khachian's paper. They showed precisely 
how to obtain a solution to the original system of inequalities from one to the 
perturbed system. They also stated explicitly one way in which linear programming 
problems could be reduced to solving linear inequalities. Gacs and Lovasz assumed 
in their proofs that exact arithmetic was used, though they noted that the results 
remained true with slight modifications for finite precision. 

The discovery of a polynomial algorithm for linear programming solved an 
important theoretical question. Previously it had only been known that linear 
programming (or, to be more precise, the feasibility problem for linear in- 
equalities) was in the class NP of problems solvable in polynomial time by a 
nondeterministic Turing machine. This class of problems includes some 
notoriously hard combinatorial problems for which it is strongly suspected that 
no (deterministic) algorithms terminating in less than an exponential number of 
steps exist. However, it seemed clear that linear programming was much easier 
than these hard problems. For one thing, linear programming was also in the 
class co-NP of problems, and it was strongly suspected that NP A (co-NP) was 
much smaller than NP, and consisted of much easier problems. Secondly, linear 
programming is closely related to solving linear equations, for which polynomial 
algorithms exist. Finally, Dantzig's well-known simplex algorithm performed 
very well on almost all LP problems, although there were some for which it 
required an exponential number of iterations [15]. 

The ellipsoid algorithm requires O(n2L) iterations, where n is the dimension, of 
the problem and L the length of the input data in bits. Each iteration requires 
O(mn + 2n 2) operations, where m is the number of inequalities in the system. 
The presence of the factor L in the number of iterations is rather unsatisfactory. 
Of course, it is understood that the size of the numbers involved must affect the 
running time of the algorithm, but one might hope that the dependence would 
only be through the time to perform the individual sums, products, etc. The L 
appears in the iteration bound for two reasons: the initial ellipsoid E0 depends on 
the a priori bound on the norm of a solution to the inequalities, which in turn 
depends on L; and the algorithm can be terminated with an indication of 
infeasibility only when the volume of Ek has shrunk to an amount smaller than 
the a priori lower bound on the volume of the perturbed feasible set which also 
depends on L. 

This paper is concerned with an efficient and practical implementation of a 
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modification of the ellipsoid algorithm. We wish to solve 

minimize c T x, 
subjectto x E X = - { y E R " [ a T y < - - [ 3 i ,  i = l , 2  . . . . .  m}. (1.1) 

We do not wish to assume that the initial data is integer, and we will operate in 
floating-point arithmetic. We cannot therefore provide a priori bounds based on 
the data. Instead we will assume that the user can provide bounds on the 
solution to (1.1), possibly in the form of upper and lower bounds on the 
variables. Our algorithm need not be run until the volume of the ellipsoid Ek is 
almost infinitesimal. Instead we will use bounds generated during its progress to 
halt the algorithm when it has obtained a feasible solution provably close to an 
optimal solution in objective function value. 

The remainder of the paper is organized as follows. In Section 2 we discuss 
the basic operation of the algorithm, the generation of a new ellipsoid E+ from a 
previous one E and a 'cut' giving a half-space H, so that E+_~ E f3 H. We 
describe how E+ can be obtained even if the center of E does not lie on the 
bounding hyperplane of H (deeper cuts). We also show how bounds on linear 
forms over E can be used to eliminate constraints that are not active at the 
optimal solution. Finally we show how linear inequalities can sometimes be 
combined (surrogate cuts) and a particular 'optimal' combination (best surrogate 
cut) can be formed under certain conditions. Section 3 outlines our approach 
towards incorporating the objective function in our algorithm. Since we work in 
floating-point arithmetic (double-precision is recommended) it is important to use 
methods guaranteeing numerical stability. Section 4 describes how our method 
uses and updates a Cholesky factorization of a matrix determining the ellipsoid 
at each iteration. Section 5 describes our algorithm and gives a theorem on the 
number of iterations required for a certain degree of approximation. Finally in 
Section 6 we suggest a method of dealing with problems with equality con- 
straints. Most of our analysis (Sections 2-4) is applicable also to convex (not 
necessarily differentiable) optimization when subgradients are available--see 
[27]. 

We conclude this section with an attempt to put the ellipsoid algorithm in 
some historical perspective. It is, in fact, a fairly natural outgrowth of a 
substantial literature mainly concerned with subgradient methods for nonlinear 
programming. These methods grew out of the relaxation method for linear 
inequalities introduced by Agmon [1] and Motzkin and Schoenberg [17]. Agmon 
demonstrated linear convergence of his method, by showing that each iterate 
came closer by some fixed ratio to the set of feasible solutions. The similarity to 
the ellipsoid algorithm is striking; a sequence of shrinking balls {Sk} centered at 
the current iterates xk could be defined, each containing a feasible solution. The 
differences were that no a priori bounds were given on So or the volume of the 
feasible region and (most importantly) that the ratio of shrinkage depended on 
the data of the original problem. (For details on this ratio, see [1, 11, 13, 28].) The 
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subgradient method for minimizing a convex, not necessarily differentiable 
function was apparently first introduced by Shor ]23], with important 
refinements by Ermolev [5] and Polyak [19]. (A good selection of references to 
this area appears in the bibliographies of [2] and of the proceedings containing 
[21].) Later versions [20, 24] attained linear convergence rates for 'most' prob- 
lems, but again the ratio depended on the particular function involved. Shor 
[25, 26] seems to have been the first to observe that improvements could be 
made by working in a transformed space. The idea is exactly that which leads 
from the steepest descent algorithm (with linear convergence rate, the ratio 
depending on the function) to Newton's method (with quadratic convergence for 
smooth functions) and quasi-Newton algorithms (with superlinear convergence 
for smooth functions). Shor [25] describes precisely the difficulty with the linear 
convergence of his earlier method (see the discussion of 'essentially gully 
functions' [25, p. 7]). He provides a modified algorithm based on shrinking 
ellipsoids whose convergence rate depends on a ratio of two numbers M and N. 
These numbers do depend on the function involved, but they are invariant with 
respect to linear transformations. If the function is quadratic and strictly convex, 
then M and N can be taken as 2 and Shor's method [25] in its limit becomes a 
method of conjugate gradients--see [25, p. 14]. Yudin and Nemirovskii [31], 
considering from a theoretical viewpoint the 'computational complexity' of 
convex optimization, considered the method of centered cross-sections proposed 
by Levin [16] and independently by Newman [18]; since this method is com- 
putationally intractable, they introduced in [32] the modified method of centered 
cross-sections, which is essentially the ellipsoid method, and noted that it was a 
special case of Shor's methods in [25,26]. Finally, Shot [27] described the 
ellipsoid method, giving the explicit formulae missing from [32]. The Soviet 
research is surveyed in [21]. 

2.  C u t s  

Let /~ denote the unit ball in R ° {~[I]~1[-< 1} (all norms are Euclidean). 
Consider a half-space which we will denote /-7/={~ E R"] ax~----a(fixfi)l/z}. 
Note that the distance from the origin to the bounding hyperplane of/2/ is [~]. If 

<--1,  / ~ C / : / ; i f  a > l ,  / ~ N / : / = 0 ;  and i f - l < a - 1 ,  /~n/ : /  is anonempty  
slice of the unit ball. We assume now that - 1 < a < 1. 

The point where ~x~ is minimized over/~ is -fi](tlTtl) l/z. Consider all possible 
ellipsoids/~+ = {~ C R"] (~ - ~)v/]+~(2 - ~1) -< 1}, where ~l ~ R" is the center and 
/~+ a positive definite symmetric matrix, which satisfy the two conditions: 

(~) fiv~ is minimized over/~+ by -tl/(tlxfi)l/2; 
(i]) /~+ N 0/S/=/~ n of/, where 0/7/ denotes the bounding hyperplane of/_7/. 
It is easy to see from (]) and (i]) that/~+ has • as an eigenvector, that all other 

eigenvectors have the same eigenvalue associated with them, and that ~ is a 
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multiple of d. Thus we may set -~1-~--ra/(aTa) 112, and /3+ = 8(1-o-ddT/dT~). 

Conditions (~) and (i]) then imply that 3 = ( 1 -  ~-)2(1 + a)/(1 + a -2~- )  and o" = 
2~-/(1 + a), so that varying r gives one degree of freedom. We will choose r to 
minimize the volume of /~+. Since this volume is proportional to (det/~+)m= 
(3"(1-o-))  1/2 it is a simple matter of calculus to determine the ellipsoid of 
minimum volume; we set ~ = (1 + ha)/(1 + n) and hence 3 = n2(1 - o~2)/(n 2 -  1) 

and cr = 2(1 + na)/(n + 1)(1 + a). It can also be confirmed that if ~ - > - l / n ,  

Now consider an affine transformation ~ x 0 + J ~  = x  of R", with J a non- 
singular n × n matrix. Under this transformation,/~ becomes the ellipsoid 

E = {x @ R"[ (x - xo)TB-I(X -- XO) <-- 1} (2.1) 

where B = jjT. The halfspace H becomes the halfspace 

H = {x E R"I aT(x - Xo) <- -a(aTBa)lJz}, (2.2) 

where a = Y Tti (SO that aTBa = fiTfi). 
We now find that aTx is minimized over E by Xo-Ba/(aTBa)  1/2, the image of 

_fi/(fiXfi)t/2. We may again consider all ellipsoids 

E+ = {x E R" I (x - x 1 ) T B  + I ( x  - -  X1) ~ 1} (2.3) 

that satisfy 

(i) aTx is minimized over E+ by xo-Ba l (aTBa)  ~/2, 
(2.4) 

( i i )  E+ N o H  = E A oH. 

These ellipsoids will be exactly the images of the ellipsoids/~+ satisfying (~) and 
(i~). Since the transformation multiplies all volumes by the constant Idet Y[, the 
choice of B ,  and xl to minimize the volume of E+ must be jff~+jT and x0 + J~ .  
We thus obtain the following theorem. 

T h e o r e m  2.1. Of all the ellipsoids of the form (2.3) that satisfy (2.4)(i) and (ii), 
with E given by (2.1) and H by (2.2) where - 1  < c~ < 1, that with the smallest 
volume is given by 

Btl  
xl = Xo- "r (aTBa)l/2, (2.5) 

/ BaaTB~  
B+ = 6 { B  - 

~ a-V-ffd-a / ,  \ 

where 

(2.6) 

The ratio of the volume of this E+ to that of E is 

l + n ~  n 2 _ 2 ( 1 + n ~ )  
- n + l '  8 = ~ ( 1 - c ~  2) and cr ( n + l ) ( l + a ) "  (2.7) 
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r ( a )  = ( 6 " ( 1  - or)) 1/2 = { n2 ~(n-1)/2 n o~2)(n_1)12(1 
\ n - r ~ -  1 /  n + 1 (1 - - ~ ) .  

(2.8) 

Moreover, r(a) is increasing for - 1  < a < - - l / n  up to 1, and decreasing for 

- l /n <- a < 1. For a >- - fin, the ellipsoid E+ given by (2.3), (2.5)-(2.7) contains 

E fq H. For a = - l / n ,  E+ = E. 

We will not give a complete proof of the theorem, since the analysis above 

clearly indicates all the steps. The formulae (2.5)-(2.7) for the case a = 0 were 
presented by Gacs and Lovasz  [7] to describe the ellipsoid algorithm. 

Several workers (including ourselves and Gacs and Lovasz)  have obtained 

independently the formulae above for a > 0. The case a < 0 has been alluded to 

by Yudin and Nemirovskii  [32]. 
Now suppose it is known that the polyhedron 

X = {x E Rnl aTx <-/3i, i = 1 . . . . .  m} (2.9) 

is contained in E, but the center x0 of E is not in X. We can define, for each i, 

the number 

T X ai = (ai o- /30/(aTBai)  ~/2. (2.10) 

Then ai > 0  for those constraints i violated at x0, and ai represents the (al- 

gebraic) distance from x0 to the bounding hyperplane of the half-space H~ = 
{x E R" I aTx -</3i} in the metric corresponding to the matrix B. The following 

observation is crucial. 

Proposition 2.2. I f  a~ < - 1 ,  E C Hi and the ith inequality is inessential in defining 

X. If  ~i > 1, E fq Hi is empty and thus X is empty. If, for each - l[n <<- a~ < 1, we 

determine the ellipsoid E~+ as in Theorem 2.1 using a~ and ai, then E~ has the 
smallest volume when i is chosen to maximize ai. I f  ai = 1, E A Hi degenerates to 

a point. 

It is also possible to choose some nonnegative combination of violated 

inequalities to form the cut; examples show that in some cases a deeper  cut will 
result. We now make this precise. 

Le t  A be a matrix whose columns are those ai's with i ~ I, and let /~ be the 
corresponding vector  of /3i's. Then the inequality uTATx <--uTb holds for any 
x ~ X  and any u - - 0 .  If a = Au and/3  = uTb, we want to choose u ->0 so that 

a = (aTx0-/3) / (aTBa) 112 = uT(ATx0- /9)/(uTATB/~u)112 (2.11) 

is maximized. Assume that A has full column rank; then a is maximized over all 
u (not just nonnegative u's) by the vector  

= (ATB~)-I(.4Tx0- /~), (2.12) 

as a simple application of Lagrange multipliers verifies. 
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We call any cut ~lsing a = Au and/3 = uT/~ with u -> 0 a 'surrogate'  cut; if a in 

(2.12) is nonnegative, the resulting cut is called the 'best surrogate cut'  (with 
respect  to I). Note  that such a 'best surrogate cut'  is valid and deepest  of all cuts 
implied by the constraints indexed by L 

We now give sufficient conditions for ti in (2.12) to be nonnegative. 

Theorem 2.3. Suppose X in (2.9) is nonempty and contained in E given by (2.1). 

Suppose a~xo > /3i for each i E I and a Ti Baj <- 0 for each i¢  j, i, j ~ I. Then ~ given 
in (2.12) is nonnegative. 

Proof. Todd [28] has shown that if j ,  Tx--</~ is feasible, ATx0 > 6 and ATA has 

nonpositive off-diagonal entries, then AT.4 is positive definite and has non- 
negative inverse )  Applying this result with A replaced by frA, where j j T =  B, 
we find that ATBj~ has nonnegative inverse. Since ATx0- 6 is positive, it follows 

that ti in (2.12) is nonnegative. 

Of course, computationally it is expensive to search for a large set I satisfying 

the hypotheses of Theorem 2.3 or to solve a large linear system to obtain ti in 
(2.12). However ,  it is easy to obtain ti if [I] = 2. Let  us note another justification 

for finding an index set I satisfying the hypotheses of Theorem 2.3. If we use a 
cut based on a single ai, then x0 moves to xl = Xo- ABa~, for  some h > 0. Since 
a~Bai <- 0 for  all j ¢  i in I, xl violates all inequalities indexed by I -- {i}, indeed by 
more than x0. Using the formulae (2.6)-(2.7) we find that T a jB+ak < t3a~Bak <-- 0 
for  all j #  k in I. Further,  it can be shown that the constraint normals in A other 
than ai are more obtuse in the new metric B+ than they are in the old metric B. 

Hence successive additions of cuts, each based on a single aj, j E I, will worsen 
all the remaining inequalities in I. It follows that at least [I[ cuts will be 
necessary to attain feasibility in all these constraints. On the other hand, the cut 

based on a = Aa and 13 = arg, with ti as in (2.12), gives a point x~ satisfying all 
these constraints, as is easily seen. 

3. Objective function cuts 

If ff is any point in the feasible region X = {x E R" [ a~x <-/3~, i = 1 . . . . .  m} C E, 
where the ellipsoid E is defined by (2.1), then an optimal solution to (1.1) must 
tie in E A H0 where 

Ho={X~Rn[cTx~7.}={xER"[cT(x--Xo)<--- -ao(CTBc)1/2} ,  (3.1) 

ao = (cTxo -- ~)[(cTBc)1/2 (3.2) 

2 Such a matrix is called a Stieltjes-matrix; e.g., see [29]. 
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and 

= cT)c. (3.3) 

As in the case of the inequality cuts corresponding to Hi, i =  1, . . . ,  m, we 
would like to make a0 as large as possible by choosing )7 so that Z is as small as 
possible. If Xo, the center of E, is feasible, then choosing ~ = x0 gives a = 0 and 
H0 above yields a standard ellipsoid cut. Clearly, a deeper  cut can be obtained 

by moving from x0 in a direction s which is downhill with respect  to z. 
Specifically, let 

Y~ = xo + Os (3.4) 

where STC < 0  and 0 is a scalar ->0. For a particular downhill direction, s, the 
deepest  cut is obtained by choosing 0 as large as possible subject to the 

restriction that ~ = 2(0) in (3.4) remains feasible. This gives 

0 = rain {--(aTxo -- [3i)/aTs} >- 0 (3.5) 
aTis>O 

corresponding to the point where the ray {Y~ [Y~ = Xo + Os, 0 -> O} first violates one 
of the feasibility constraints. 

The natural choices for s are - c ,  the direction of steepest descent  and - B c ,  

the direction of steepest descent  in the t ransformed space {~ 
R"[ ~ J - l ( x -  x0)}. Notice that the latter is a Newton-like direction and is the 

direction along which the center of the new ellipsoid E+ lies. (See (2.5) with a 
replaced by c and a by oz0.) Either of these directions may result in the deeper  

cut. If we use the notation 0 = O(s) to indicate the dependence of 0 in (3.5) upon 

the choice of s, we have that 

and 

fO( - -c )cTc  Bc)(cTBc)I/2] 
a0 = max[  (cT1~c)1]2 , 0(-- 

= c T x 0 -  Oo(cTBc)m= c T x 0  - max{O(--c)cTc, O(-Bc)cXBc}. 
for the deeper of the cuts obtained by using s equal to - c  or - B c .  

Even deeper cuts can be obtained by projecting the direction s onto the 
hyperplane (with normal a~) which first becomes violated at Xo + Os and moving 
from that point in the direction Ps  = s - a~(aTs)/(aTai)  where P is a projection 
operator,  until a second constraint is violated. This process can be repeated until 
the descent  direction obtained is the zero vector. Several variations of this 
approach are possible. A projection could be made only if the new direction 
obtained is sufficiently downhill and the cosine of the angle between it and the 
current direction is close enough to 1. Constraints could be dropped as well as 
added, leading to a gradient projection type of approach [12, 22] and ultimately, 
once a vertex is reached, to the ~imr~lex method. Finally we note that when 
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S = --C it is natural to use orthogonal projections but when s = - B c ,  a projection 
weighted by the matrix B-- i .e . ,  P = I -  BA(_4TB_4)-~.4 T, where A is the matrix 

of active constraint normals--should  be used. 

4. Using the L D L  T factorization 

In order  to use the cuts of Sections 2 and 3 to move from ellipsoid E to 
ellipsoid E+, we must calculate Ba  and (aTBa)  1/2 and use these to update the 

matrix B and the center of the ellipsoid. However  because of roundoff errors, 

updating B directly can result in its no longer being positive definite. Con- 
sequently, the computed quantity aTBa may become zero or negative causing 
the ellipsoid algorithm to fail. Here we show how a factorization of B can be 

used and updated so as to avoid these numerical problems. 
Any positive definite matrix B can be written as 

B = L D L  T (4.1) 

with L a lower triangular matrix with unit diagonal and D = diag(d~, ..., d,), a 
diagonal matrix with positive diagonal (e.g., see [30]). Obtaining such a fac- 
torization for an n × n matrix B requires in general about n316 additions and 
multiplications. However ,  updating the factors L and D when B is modified by a 

rank-one correction and scaled as in (2.6) requires only O(n 2) additions and 
multiplications. 

Given the factorization (4.1) and a E R" and/3 ~ R corresponding to some cut, 

the computat ion of the center  of the new ellipsoid, (2.5), becomes: compute 

Cl = LXa, 7 = CITDd, v = Dd/T ~12 and w = L v  (4.2) 

and set 

Xl = x 0 -  ~'w (4.3) 

where ~- is given by (2.7) with a = (aTxo--/3)/~/~12. Note that roundoff errors 
cannot  cause 3' to be nonpositive. 

From (4.1) and (4.2) it follows that (2.6) can be written as 

B+ = L [ 6 ( D  - o'vvT)]L T. 

Therefore ,  to compute the factors L+ and D+ of B+ we need only compute the 
factorization 

D - o'/3/2 T ~--- /~/~_~T (4.4) 

and set L+ = L/~ and D+ = ;~/3. Applying the algorithm of Gill, Murray and 
Saunders given in [10, Section 5.2] to (4.4), we can compute the diagonal matrix 
/3 = diag(ttl .... , d,) and the unit lower triangular matrix /~. = {~j}, where /~j = 
viii, ] < i, f rom the recurrence relation: 
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(i) set t,+~ = 1-¢rvTD-~v = 1 - - o r  = \-n--+--l]\]---+~a]" 

(ii) f o r j = n , n - 1  .... ,1 set 

tj = tj+~ + ~ v ~ l d j ,  

dj = d i t j+l / t  j, (4.5) 

~j = - ~rvJ(  ditj+ l). 

When a is very close to 1 so is cr and 1 -o r  may be computed as zero. 
However,  if the last expression in (4.5)(i) is used to compute t,+l, then as long as 
- 1 + t~ < a < 1 - p., where tz > 0 is the machine precision, t,+~ > 0 a n d / )  and B+ 
will be positive definite. Because of the special form of/~, it is a simple matter to 
show that the product L + = L/~ can be computed in n 2 + O(n) operations (e.g., 
see [9]). Consequently the updating of L and D can be accomplished in 
n 2 + O ( n )  operations. 

Several other O(n 2) methods exist for updating the factorization (4.1) and the 
related Cholesky factorization B =/~/~T where /~ is lower triangular not neces- 
sarily with unit diagonal elements, when B is modified by a rank-one term; e.g., 
see [3, 6, 8, 9, 10]. Because the rank-one term is subtracted rather than added to 
B in (2.6), some of these methods can be numerically unstable. The method 
detailed above, although extremely simple, is numerically stable. 

Several authors have suggested using the factorization B = j jT instead of 
(4.1); (e.g., Shor [27] uses B = KJJ T where K is a scalar). While such an approach 
is certainly preferable to using B directly, it is not numerically stable. In 
particular when J is updated round-off error may cause the new J to become 
singular and subsequently I]jTall may be computed as zero. 

We now make some comments concerning a product form of the algorithm. 
Suppose the initial B, B0, is diagonal so that L0 is the identity. Then, after k 
iterations we have Lk --/~/~2 "'"/~k, where/~j is the matrix constructed as in (4.5) 
in the j th iteration. It is easy to see that computing /~iY or /~TY requires only 
2 ( n - 1 )  operations using only the vectors v °) and ~(J) generated at the jth 
iteration. Thus the multiplications Lky and L~y require 2k(n - 1) operations. 

Assuming that all matrices and vectors are dense (i.e., all dements  are 
nonzero), the total number of operations involving L during the first n iterations 
is 2n 3 + O(n 2) whether L is updated or stored in product form. If fewer (more) 
than n iterations are performed, then the product form is less (more) expensive 
than the updating version. The product of the 3's times the spectral radius of B0 
provides an upper bound Pk for the spectral radius of Bk. If B0 = p0I, and k < n, 
then Pk is the spectral radius of Bk. Consequently, if n is large and a is close to 
one on most iterations so that pk is small, it may be worthwhile resetting Bk to 
pkI if the product form is used. (Note, however, that Ok can be larger than p0.) 
Although this may increase the number of iterations required to find a solution, it 
will decrease the work required per iteration. Also, if n is so large that L must 
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be stored on a secondary storage medium, then the product  form has the 

advantage that the L file need not be assessed for the updating step. 
Another  possibility is to avoid adding to the L file at some iterations. Indeed, 

we may use formulae (2.5) and (2.6) with ~- = ct, 6 = 1 - a 2 and or = 0 to obtain 

the next  ellipsoid. In this case the metric is not changed and the volume is 
reduced by a factor  of (1 - az)  "/2. Such a step can be used when a is sufficiently 
large, say a >- l[n  (the volume ratio is then <e-1/2~n+~)). With these choices of ~-, 

and or we merely multiply D by 3; the L file is unchanged. 
If at each iteration one wishes to use the 'deepest '  possible cut, then even if 

surrogate cuts are not considered, one must still compute ai as defined by (2.10) 
for all constraints i violated by x0 to determine the maximal ai. When there are 
many such constraints the effort required to compute the quantities 3'i = a [ B a i  is 
an order of magnitude greater than the work required for all other aspects of an 
iteration of the ellipsoid algorithm. Thus, for  a deepest  cut ellipsoid algorithm to 
be practicable, these computations must be avoided. Fortunately,  each q/g can be 

updated at a computational cost of n + O(1) operations; indeed, we have from 
(2.6) and (4.2) that 

3'[ = aTB+a,  = ,3(a[Bai  - o r ( a [ B a ) 2 / a T B a ) )  = ~(q/, - or(a~w)2). (4.6) 

The accumulation of roundoff  errors may eventually cause some of these yi to 
be inaccurate and even become negative. However ,  as long as these are 
computed afresh for effecting a cut or when terminating (some ai > 1), any 
inaccuracy in the 7~'s cannot cause failure of the algorithm; it can only affect 
which cuts are chosen. 

To prevent  any 3'i from becoming less than or equal to zero we can use the fact 

that 

Ti >- dt(i)a~,u,i) (4.7) 

where a~,t(~) is the last nonzero component  of a¿ and dl(~) is the corresponding 
diagonal element of D. Thus, whenever  (4.7) is violated, 7i can be computed 
afresh from its definition. 

5. The algorithm 

We describe here a method to solve or approximately solve the linear 
programming problem 

minimize z = cXx, 
subject to A Tx <-- b. (5.1) 

The columns of A are denoted az, az . . . . .  am, and the entries of x and b are 
~,  ~z . . . . .  ~n and/31,/32 . . . . .  /3m, respectively. We use a0 as a synonym for c. 

We first add bounds to all variables. It seems reasonable to suppose that 
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bounds l - x - u can be provided so that: (i) if (5.1) has a feasible solution, it has 
a feasible solution satisfying l - x  -< u; and (ii) if (5.1) has an optimal solution, it 
has one satisfying I <- x <- u. We now choose a tolerance v > 0 and add to (5.1) 
the 'artificial' bounds 

f = l - v(u - I) <- x <- u + v(u - l) = a. (5.2) 

We denote by (5.1)' the problem (5.1) with the bounds (5.2) adjoined. Note that, 
by our assumptions, if problem (5.1)' is infeasible, then (5.1) is infeasible; and if 
all optimal solutions to problem (5.1)' have ~i < li (or ~i > uj) for some i, then (5.1) 
is unbounded. Finally, if (5.1)' has an optimal solution with ~ < ~i < aj for all j, 
this optimal solution also solves (5.1). For notational purposes we write (5.2) in 
the form aTx <- [3~, for i = m + 1, m + 2, ..., m + 2n. 

It is easy to construct an ellipsoid E0 that contains {x E R" [ / - -  x <- t~}. E0 is 
given as in (2.1) with x 0 = ( l +  a)/2 and B = Bo=LoDoL~,  where L0= I and 
Do = diag(n(fil-I-1)2/4, ..., n ( a , - / , )2 /4 ) .  Since the size of this initial ellipsoid 
affects the performance of the algorithm, it may be worthwhile to perform some 
preprocessing to improve the bounds l and u. For example, if aij is positive, we 
may deduce that 

~j <- ([3 , -  ~ ,  a,klk-- ~ a,kuk)/a,j. 
aij >0,k # j aii <0 

A similar lower bound can be deduced if a~j is negative. 
The algorithm constructs a sequence {E~} of ellipsoids. Ek is given by formula 

(2.1) with xk replacing x0 and Bk replacing B. We maintain Bk in the factored 
form Bk = LkDkL~, with Lk unit lower triangular and Dk diagonal. The updating 
formulae of Sections 2 to 4 are used to proceed from iteration k to iteration 
k + 1; for instance Bk+l will be given by B+ in (2.6), etc. 

Our algorithm includes a bound MAXk on the maximum number of infeasible 
iterations allowable. If such a bound is not imposed and the polyhedron 
{x E R" [ ATx <-- b} is not full-dimensional, the algorithm may never find a feasible 
point and may even converge to an infeasible point. If (5,1) is infeasible, the 
algorithm without this termination criterion may never detect infeasibility and 
converge to an infeasible point. (For examples, see [4, Appendix C].) Theorem 
5.1 below gives an indication of how MAXk might be chosen. 

Clearly there are many ways to combine the ingredients of Sections 2 and 3. 
Below we describe one possibility. 

Initialization. Choose x0, B0, L0, Do and MAXk as described above. Choose 
tolerances El> E2>0 for the objective function value. (The algorithm may 
terminate with a feasible solution to (5.1) that comes within ~1 of the optimal 
value of (5.1). It may also terminate with a feasible solution to (5.1)' that comes 
within ~2 of the optimal value of (5.1)'; in this case, (5.1) may be unbounded.) Set 
I~---I0 ---- {1, 2 . . . . .  m}, [*--~1 and ~--Ia - {m + 1, m + 2 .... , m + 2n}. (I0 and Ia 
denote the index sets of the original constraints of (5.1) and the artificial bounds 
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(5.2) respectively. In the course of the algorithm f (_?) consists of those 
constraints in Io (IA) deemed to be non-binding at optimal solutions while I 
consists of all remaining constraints, i.e. I = (I0 U IA) ~ ( f  U [). For  each i ~ I0 U 
IA tO{0}, compute ~ = a T c  (rli = + q  for  some j, for all i EIA) ,  and for each 

T i E I t0 {0} compute 3'o~ a ~Boa~ as in (4.2). Set _z (-- CrXo - 3,~ 2,/3o ~ + ~ and k ~ 0. 
(_z is a lower bound on the optimal value of z when the bounds (5.2) are added; 
/30 is an upper bound.) If x0 is feasible, set g ~ X o  a n d / 3 0 ~ c ~  < ~. 

I teration k: 

If k > MAXk and /30 = + %  STOP; the feasible region is probably empty or 
not full-dimensional. 

1^112 Compute ski = aTxk --/3i and Olki ~- ~kilYki for all i C I U {0}. 
If for  any i E I, aki ~ 1, STOP; (5.1) is infeasible. 
If for a n y i E / , a k i < - l ,  t r a n s f e r i f r o m l t o [ i f i - - < m  o r ~ i f i > m .  

If [I (3 I01 = n go to Vertex  if desired. 
Case  1: Some a¢~, i E I  is positive. 

Choose p E I such that ako = max{a~ [ i ~ I}. 
If a~o > 0 and u = (ATLkDkL[_A)- I (ATxo-  6), where J~ = [ao, ap] and 6 ~ = 
(/30,/3p), is defined and nonnegative, set a = Au and/3 = uTb to give the best  
surrogate cut. 

Otherwise, if ak0> akp set a ~ a o  and/3~/3o;  else set a~-ap and/3~/3p. 
Go to Update.  

Case 2: aki <-- 0 for  all i ~ L 

Compute Ski  = a~Xk --/3i for all i E [ tO if. 
T T If any ski is positive, t ransfer  i from [ or ~ t o / ,  recompute 7k~ a ~ LkDkLk ai, set 

. t 112 Otki = akil')/ki and go to Case  1, 

Otherwise, set a ~ a o  and calculate ti = LTa, 3' = drDa,  v = D a / v  ~2 and 
w = Z v .  

Compute 

= min {Ski/Tli,~}, ~ = min {Ski/aTw, o~}. 
i~lo: rti<O i~Io: aXiw<O 

If 0 or ~ equals w, STOP; (5.1) is unbounded.  
Otherwise, compute 

0 = min {skil'oi,(}}, O = min {skda~w,~} .  
iCIA: •i<O iCIA: aTw<O 

Set a ~-max{ako, 0~o/71/2, ~} and / 3 0 4 - - ' c T x k  - -  ~ / l / 2 a .  

If a = 0"00/T 1/2, set Y ~ - - X k -  OC. 

If a = 0, set ~'~--Xk--4)W. 

Update:  

Update Xk and Yki, i ~ I U {0}, and Dk and Lk as indicated in Section 4. 
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Convergence: 
- -  1 ] 2  "l Set _z ~max{z ,  crxk+~ Tk+~,os. 

If 130 > _Z + e~, proceed to iteration k + 1. 
Else, compute rj = ~ -  (big) 1/2 and fij = ~ + ,~,,,ch .k.V/2, where b~ is the jth diagonal 

element of Bk, for j = 1 .... , n. lj and fij are lower and upper bounds for the 
jth component  of a point in Ek. 
If, for some j, fj > u i or fij < li, then STOP; (5.1) is unbounded.  
If, for all j, ~ < ~ and aj > fij, STOP; ~ is within e~ of the optimal value of 

(5.1). 
If /30 -<.z+ ~2, STOP. The feasible solution ~ to (5.1)' is within e2 of the 

optimal value of (5.1)'. Either ~ is close to optimal for (5.1) or (5.1) is 
unbounded. 

Else, proceed to iteration k + 1. 

Vertex: 
If the a~, i E I N I0 are linearly dependent,  return. 
Otherwise, solve aTxk =/3~ for i ~ I A I0 to get 2. 

If a~2 >/3~ for any i ~ [ return; ~ is an infeasible vertex. 
Else, solve ~eIn~0 h~ai = ao. 

If any )t~ is positive, return; 2 is a nonoptimal vertex. 
Otherwise, set g<---£ and STOP; ~ is an optimal solution to (5.1). 

Remarks. (1) The assignment of a constraint to I, I, or T is tentative and 
dynamic. Since Case 1 predominates,  a tentative choice of I saves work at most 
iterations at the possible cost of missing the most violated constraint.When a 
(tentatively) feasible point Xk is found, Case 2 applies and the constraints in [ U [ 
assumed to be nonbinding are tested for feasibility. Also, for simplicity we have 
ignored the possibility that the constraint set of problem (5.1) may include lower 
(or upper) bounds on some of the variables. If this is the case, artificial lower (or 
upper) bounds for these variables should not be included in problem (5.1)' and 
the tests in the Convergence section of the algorithm should be performed only 
on the artificial bounds. 

(2) It follows from Theorem 2.1 that each Ek contains all feasible points for 
problem (5.1)' that satisfy cTx <--/3o; (i.e., all points x for which crx <- cTg if a 
feasible solution ~ has been constructed, or CTX--< ~, otherwise). Hence,  ter- 
mination with some ak~ > 1 can only occur if a feasible ~ has not been found and 
the constraints of (5.1)' are inconsistent. If termination occurs in routine Vertex, 
then the vertex g computed is clearly optimal. If 0 or $ constructed in Case 2 is 
+~ ,  (5.1) is unbounded since x k -  0c, 0 ~ ,  or x k -  ~bw, ~ b ~ ,  remains feasible 
and has objective function value tending to - ~ .  Now consider termination in 
Convergence. If 6 -> uj (or fij -< li), then all optimal solutions to (5.1)' have their 
jth component  between uj and ~ (or between ~ and Ij). By our assumption, this 
implies that (5.1) is unbounded. If ~ < fi and fi~ < fij, then no optimal solution of 
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(5.1)' has any of these bounds active; thus optimal solutions are also optimal 

solutions of (5.1). The other kind of termination in Convergence ([30 <- z + E2) is 
unlikely to occur. Usually in this case Ek is thin in the 'c '  direction, while for  
some j, Ek intersects x i = ~ and x i = li or xj = uj and xj = fii; hence it is fat in 
some direction (one major axis has length at least v(uj - lj)). Termination in this 
case corresponds generally to some constraint normal ai being almost parallel to 
c. This situation is somewhat analogous to termination in the simplex method 
with some reduced costs ~j less than some small tolerance e in absolute value. 
For  numerical reasons the test for  optimality in the simplex method is usually 

~ - - e  for  all j. 
(3) We note that it is necessary to compute a square root  of 7k~ only for the cut 

actually made on each iteration since all tests performed on aki can be made on 
the basis of a~i = s~/Tki and the sign of ski. Also for simplicity we have not 
indicated where in the algorithm a fresh computation of 7k~ = a~Bkai is required 
as this should be evident from our remarks in Section 4. 

(4) If a is set equal to ak0 in Case 2, this means that the most recently used 
objective function cut is deeper  than one obtained by moving in either of the 
directions - c  or -Bkc .  Although the same cut then gets used again, it is applied 
to a new ellipsoid. 

(5) We have described an 'all-primal' algorithm that modifies /30 and z based 
only on feasible solutions. Gacs and Lovasz  [7] suggest combining primal and 
dual constraints with an inequality enforcing strong duality ( C x  <-bTy). The 

latter approach increases the dimensionality to m + n and forces the feasible 
region to have zero volume, so that perturbation is necessary for finite con- 
ve rgence - - fo r  details, see [7]. An alternative approach is by binary search. As 
soon as/30 is reduced from +oo and a feasible solution ~ is constructed,  we may 
set /3 <--(130+ _z)12 and at tempt to find a feasible solution with cTx ~ [3. If  a 

feasible solution is found, [30 is lowered and the process continued. If the new 
problem is infeasible, _z is increased (at least to the trial/3) and again the process 
continues. Notice that without the infeasibility test of our algorithm, such an 

approach would be very inefficient, since if fi was chosen too small, many 
iterations would be necessary to show the problem infeasible. Binary search 
should also incorporate sophisticated methods to update upper and lower bounds 

on the optimal value. For  example, if a feasible solution $ is found, then setting 
/30'~--CT.~- "y1/2a, where 7 and a are determined as in Case 2 of our algorithm, 

gives an upper bound that is less than or equal to CT~, which is itself less than or 
equal to /3. Also, whether  the problem corresponding to cTx <--fi is feasible or 
not, the hyperplane {x ] cTx = _~}, where /3 = c T x k -  7kO, tangent to the current 
ellipsoid Ek at the kth iteration, furnishes a lower bound/3 for the optimal value 
of z as long as ak0-< 1; if akO > 1, the current  problem is infeasible and so/3 is a 
lower bound. 

We next  give a theorem that bounds the number of iterations to attain a 
certain accuracy when the feasible region is sufficiently 'fat'. We are not 
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concerned with a priori bounds on volumes derived from integer data A, b and 
c; rather we take the practical viewpoint of user-supplied bounds. 

Suppose we apply the algorithm to solve 

minimize cTx, (5.3) 
subject to A Tx <- b, 0 ~ x <~ u, 

initializing as described below (5.2). Suppose also that it is known that the 
feasible region of (5.3) is 'fat ' ,  so that there is some point 2 with aTE -----/3i- [la~ll)t, 
i = 1 . . . . .  m and )t -< 2j <- uj - )t for some known positive )t. 

Theorem 5.1. Suppose the algorithm is run for  

k > - 2 n ( n +  1)[i=~ ~ l o g u J n + ½ 1 o g n - 1  +log(l/~) +log(l/~)J 
iterations, where rl < 1. Then it will have constructed a feasible solution ,2 with 
cT'2<--Z*(1-- 'O)+~, where z* is the optimal value of (5.3) and 5.= 
~ j>0  c, uj. 

Proof. If ~ is the volume of the unit n-ball, then the volume of E0 is 
/~ • (1-[7=1 uj)(~/n/2)", from the form of Do given above. As shown in Gacs and 
Lovasz  [7], the volume of the ellipsoid Ek is at most 

e -k/2(n+l) ~ uj • (~/n/2)" • ~ - " .  ~-~ 

times that of E0, i.e. at most (X~)"/~. Now the ball S of radius X around £ is 
entirely within the feasible region of (5.3). Hence if no Case 2 iterations have 
occurred, S, with volume ~"/~, would be contained in Ek, a contradiction. Thus 
some feasible solution '2 has been generated, and Ek contains the set 

T = {x E R n ] A T x  <- b, 0<-x <- u, cTx ~-~ cT'2}. 

Now consider 

S ( a ) = { x * + a ( x - x * ) l x E S }  f o r 0 < a < - l ,  

where x* is any optimal solution to (5.3). Clearly S(a )  is feasible and its volume 

is a")t"t*. Thus if a > n, S(a)  ~: T, so that 

cT'2 < Z*(1 -- a)  + a max{cTx I x ~ S} -< z*(1 - a)  + as-. 

Hence  cT'2 --< Z*(1 -- a~) + ~IZ as desired. 
The theorem gives a worst-case bound; in particular, the volumes of the 

ellipsoids shrink faster than at a geometric rate with ratio e -1/an+~ if deeper  cuts 
occur. The terms in the bound for k can be split into three groups. First, 

2n(n + 1) log uj/n + ½ log n - 1 
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i terations reduce the volume to about  that of  the unit ball; this bound can be 

reduced by  obtaining tight upper  bounds ui on the variables. Next ,  2n(n  + 

1)log(I/A) iterations reduce the volume further  to about  A"~ and guarantee the 

generat ion of a feasible solution. This bound is reduced if the feasible region is 
fatter,  e.g., by  relaxing tolerances on the constraints.  Finally, a further  2n(n  + 

1)log(1/~) iterations reduce the relative error in the object ive function to about  

times its max imum va lue - - thus  in the worst  case about  2n z iterations reduce this 

error by  about  a factor  of  e. Of course,  these est imates are very crude since the 

behavior  of the iterations with respect  to feasibility and object ive function 

values is far  f rom monotonic.  However ,  they do give some indication of the 

possible number  of iterations for  a certain accuracy  in the solution. 

6. Problems with equality constraints 

A linear programming problem involving equality constraints,  say 

A x  = b (6.1) 

where  A has dimension m × n and rank m, can be reduced to one involving only 

n - m variables. To do this in a numerically stable way,  let 

where Q is an orthogonal matrix, i.e. Q r Q  = I, and Q1 and Q2 have m and n - m 

columns,  respectively.  The columns of Q2 and Q1 are respectively,  orthogonal 

bases for  the linear subspace {x l A x  = 0} and its orthogonal complement  since 

AQ2 = 0 and QTQ2 = 0. If  we define y by  

x = Qy = Q1yl + Q2y2, 

then it follows f rom (6.1) and (6.2) that 

b = A x  = A Q y  = RTyl  

and the original problem has been reduced to one in n - m variables y2. Linear  
forms  such as aTx become dTy2 + v in terms of Yz where d = Q2Va, v = dXw, and 

w = Qlyl = Q1R-Tb. Also, the bounds 0 --- x -< u become - w  -< Q2y2 -< u - w, and 
it is a simple mat ter  to show that 

Ily2[[ z -< [lull z -  Ilyl[[ z and Ily~ll ~-< ~ max{(u, - wi) 2, w~}. 

Finally, we point out that for  problems of the form 

minimize c T x, 

subject  to A T x > - b  and x - > 0  
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w h e r e  A T has  d i m e n s i o n  m × n w i t h  m ~ n, it is p r e f e r a b l e  to so lve  the  dua l  if 

b o u n d s  o n  the  d u a l  v a r i a b l e s  c a n  be  o b t a i n e d .  
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