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A class of algorithms is proposed for solving linear programming problems (with m inequality constraints) 
by following the central path using linear extrapolation with a special adaptive choice of steplengths. 
The latter is based on explicit results concerning the convergence behaviour of Newton's method to 
compute points on the central path x(r), r> O, and this allows to estimate the complexity, i.e. the total 
number N =  N(R, 6) of steps needed to go from an initial point x(R) to a final point x(6), R >  6>0 ,  
by an integral of the local "weighted curvature" of the (primal-dual) path. Here, the central curve is 
parametrized with the logarithmic penalty parameter r$0. It is shown that for large classes of problems 
the complexity integral, i.e. the numbe~ of steps N, is not greater than const m ~ log(R~6), where c~ <1 
e.g. a = ¼ or a = ~ (note that a = ½ gives the complexity of zero order methods). We also provide a lower 
bound for the complexity showing that for some problems the above estimation can hold only for c~ ~> ½. 

As a byproduct, many analytical and structural properties of the primal-dual central path are obtained: 
there are, for instance, close relations between the weighted curvature and the logarithmic derivatives 
of the slack variables; the dependence of these quantities on the parameter r is described. Also, related 
results hold for a family of weighted trajectories, into which the central path can be embedded. 

1. Introduction 

I n  t h i s  p a p e r  we  c o n t i n u e  o u r  s t u d y  (21)  o f  t h e  c o m p l e x i t y  o f  s u i t a b l y  c o n s t r u c t e d  

l i n e a r  (i.e. f irst  o r d e r )  e x t r a p o l a t i o n  a l g o r i t h m s  fo r  t h e  s o l u t i o n  o f  l i n e a r  p r o g r a m s  

b a s e d  o n  f o l l o w i n g  t h e  " c e n t r a l  p a t h "  a s s o c i a t e d  to  t h e s e  p r o g r a m s .  W e  s h a l l  

c o n s i d e r  l i n e a r  p r o g r a m s  ( r e g a r d e d  h e r e  as t h e  " p r i m a l "  o n e s )  

( ~ )  min{cTxlAVx<~b,  x c R n } = : A * ,  

w h e r e  c c ~n, b = ( b l , . . . ,  bm)Tc R m a n d  A := ( a l ,  • • . ,  am) is a n  n x m - m a t r i x  w i t h  

c o l u m n s  ai. T h e n  t h e  d u a l  p r o b l e m  to  ( ~ )  is 

(@) min{bVl.~[c+Al.~=O, t z>~O}=-A *. 

By 

:= { x l A V x  <~ b} (1.1)  

we  d e n o t e  t h e  f e a s i b l e  se t  o f  ( ~ ) ,  b y  P °  := { x l A T x  < b} i ts  i n t e r i o r  a n d  b y  s = s (x )  := 

b - AVx t h e  v e c t o r  o f  s l a c k - v a r i a b l e s  b e l o n g i n g  to  x. F u r t h e r ,  fo r  v e c t o r s  u, v c W" 
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we use the notat ion u o v for the vector with components  uivi, i = 1, 2 , . . . ,  m, and 

U or also [u]  for the diagonal  matrix with elements ui. Similarly, we write u 2 := u o u, 

and u -1 for the vector with u -~ o u = e := (1, 1 , . . . ,  1) v. 

We assume, that c # 0, rank A = n and P is such that for some finite value o f  • > 3,*, 

P~ := PC~{xlcTx<~,~} (1.2) 

has a bounded  interior P~ # 0. Then the mapping  s(x)~--~x is one-to-one. 

By Y{'0 we denote  the class of  linear programs ( ~ )  satisfying these conditions. We 

shall consider  several specific subclasses Y{ of  Y{o below, showing that the worst 

case behaviour  o f  the p roposed  algori thm over these classes can be estimated based 

on the specific properties of  Y{. We say that a part icular  constant  is a universal 

constant  for a given class Y{ of  problems if it depends only on the class Y{, but not  

on the problems in this class. We are mainly interested in the worst case, i.e. 

guaranteed behaviour  and the "asympto t ica l"  case where m ~ ,  n - + ~  (while 

m ~< const n). 

The central path for the problem ( ~ )  is defined as the solution x =  x(r )~  P°, 
r > 0, o f  the system of  equations 

rn 
e(r ,x)  :=c+ 2 a, r i = l b i - a [ x  0, r > 0 .  (1.3) 

For  each r > 0 ,  x(r) is the unique maximizer  in PA, where A := r+cTx(r),  of  the 

funct ion 

r n  ) l/(rn+l) 
~ a ( x ) : =  ( A - c V x )  H (b i -aTx )  , (1.4) 

i=1 

which is concave on P~. x(r) is called the "center"  o f  (the "inequali ty system" 

specifying) PA. See [18, 20, 21] for addit ional  motivations of  using these centers in 

solving more general convex and semiinfinite opt imizat ion problems. 

We now introduce the dual variables /x = /x ( r )  > 0  with /xi ( r )= r / ( b i - a [ x ( r ) ) ,  
i = 1, . . . ,  m. The pair  (x(r), p.(r)) is the unique positive solution of  the primal-dual 
central path equat ions 

c+Atx =0 ,  (1.5) 

Ix ° ( b -  Arx)  = re. (1.6) 

Here and below we consider  - -  when we speak about  the pr imal -dua l  central path 

(x(r), tx(r)) - -  only those solutions o f  (1.5)-(1.6) for which both  factors in (1.6) 

are positive. 
In the basic algori thm proposed  below we use, in an alternating fashion, tangential  

moves with an adaptively and explicitly chosen (tangential) stepsize as predictors,  

and recentering steps to reach (a nearest point  of) the central path by means o f  

Newton ' s  me thod  used as a corrector.  Based on an explicit knowledge of  the 
convergence b ehaviour  of  Newton ' s  method  applied to equat ions ( 1.3 ) or ( 1.5 )-  ( 1.6), 
we are able to choose  the tangential  stepsize in the predictor  phase in a simple 
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constructive way, namely as the largest possible step so as to get back (sufficiently 

close) to the central path by universally bounded number of  Newton steps in the 

ensuing corrector phase. The precise description of the proposed algorithms is given 

below. 
In order to motivate the choice of  algorithms of the above type - -  for other 

"interior point" algorithms, see [1, 11, 12, 13, 24] - -  let us make the following 
remarks. First of all the proposed algorithms have a sound theoretical basis, their 
worst and average case behaviour can be analyzed using classical analysis even for 
cases, where the optimal (primal or dual) solutions are degenerate. As far as we 
know no such comparable theory is known for the affine scaling type methods in 
common use, which proceed in a profitable direction almost as far as possible 
without leaving the interior of the feasible domain and therefore allow the iterates 
to come very close to the boundary. As path following methods stay away from the 
boundary they seem to be more stable, performing with perhaps less average speed 
but with a high reliability on all problems. Our computational experience with an 
implementation of the algorithm analysed here (but with an option allowing moves 
to the boundary and switching off recentering) indicates (see [14]) that such 
algorithms are at least comparable with the standard methods, also as far as the 
efficiency is concerned. The behaviour of non-path-following methods seems to be 
less uniform and predictable and, even if they are relatively fast in general, they 
can be quite slow in some cases. Of course the idea of "occasional" recentering has 
been around from the beginning after centers and affine scaling have been introduced. 

We believe that the real advantage of a continual recentering will be even more 
significant when we turn to higher order extrapolation methods, see below. The 
motivation to study first order path following methods in more detail was the 
surprisingly rich structure of the curvature functions of the central path. 

Our algorithms also allow "large steps", namely when a natural and explicitiy 
computable quantity, the weighted curvature of the extrapolated path, at the given 

point is small. A return to the central path has the advantage that, even if we work 
in either the primal or dual space, on the central path both primal and dual variables 
become known: thus they can be used for computing a primal, a dual or a primal-dual 
steplength for the next step; there is also the possibility to use "weighted" centers 
and corresponding trajectories with adaptively chosen weights maintaining dual 
feasible solutions without exact recentering, see [25] and below. 

We measure the complexity of our algorithms by means of the number N =  
N(R, 6), R > 6 > 0, of extrapolation steps needed by the method to reach from a 
given R =: r0 the smaller value 6, 

R = r o >  r l >  r 2 >  • • . ~ ~>~ r N. 

This is justified, as in each step rk-~ rk+l one has to solve only a finite number of 
sets of linear equations for finding the tangential direction ~(rk) and the ensuing 
Newton steps used for recentering, and this number is bounded by a universal 
constant independent of the problem ~ E Y(o. 
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We do not go here into the details of implementation, e.g. the problem of the 
optimal choice of constants regulating the step size in the extrapolation phase, or 
that of the required accuracy of reaching the central path in the corrector phase, 
or the way the linear equations in each step are solved (cg-method using sparse 
Cholesky factorizations as preconditioners), even though all this is quite important 
for the fine tuning of the algorithms and their numerical efficiency (see [14]). 

We would like to stress however that we are not only interested in algorithms 
with a good theoretical complexity but also with a good practical performance. At 
present we have a fairly complete theory of analysing the complexity of a primal-dual 
path following method (Algorithm 1 below). We shall present two further algorithms, 
in which at each step either a primal or a dual extrapolation step is made: while in 
a worst case sense for the class Yfo these algorithms are not essentially better than 
Algorithm 1 we think, that in "most"  cases they will provide an acceleration. On 
the test set of 25 Netlib programs of increasing size including several ones with 
m + n/> 2500 already a rather preliminary tuning of some parameters yielded an 
algorithm, which was in the average on large problems comparable in speed with 
the last version of the wellknown simplex package M~NOS 5.3 in the same environment 
(see [13, 14]). The number of basic extrapolation steps was mostly less than those 
reported for implementations of other interior point methods (see [1, 12, 13]). The 
method needed about 2.5 Newton steps per basic iteration and about 5 cg-steps per 
Newton step, but (so far) also about 1.5 frech refactorizations of a large positive 

definite matrix per basic iteration, a number, which can be presumably be reduced 
at the expense of a higher number of cg-steps. We mention these preliminary results 
in order to correct the often expressed opinion that algorithms which try to follow 
the central path have only theoretical interest. 

Even though the proposed linear extrapolation algorithms perform surprisingly 
well when compared to higher order polynomial extrapolation (see [9]), we believe, 
that nonpolynomial extrapolation methods of higher order will provide a further 
acceleration. A more accurate higher order extrapolation could be constructed, 
based on the following idea: use as an extrapolating curve at a point x(rk) the more 
easily computable central path of a smaller linear program obtained by restricting 
the original linear program to the subspace generated by the first k derivatives of 
the path x ( . )  at rk. In the paper [20] this idea is shown to work nicely for the 
problem of minimizing a quadratic function over an ellipsoid. 

An important tool for estimating the complexity of the algorithms considered 
here is an integral I (R,  fi, ~) ) ,  of  a (weighted) curvature along the section [8, R] 
of the central path, by which we can rigorously bound the number N(R ,  6, ~ )  of 
iterations needed to reach one endpoint of this section from the other when 
solving ~. 

The basic arguments for the derivation of such estimates of the form 

N ( R ,  6 ,~)<~I(R ,  6,~)<~constm~(~C~log(R/8) for all ~ c Y{ (1.7) 

for various classes Y{ of programs, with an a(Y{) <½, have been derived in [21]. 
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In order to explain why the algorithms under study often perform even much 
better than (1.7) would suggest we mention that often (especially in the asymptotical 
case m~ n --> oo) better estimates can be obtained for many linear semiinfinite problems 
and for smooth convex nonlinear problems, e.g. for generalised quadratic problems, 
where all constraints and the objective function are convex quadratic. The estimates 
developed here essentially remain valid, but sometimes, e.g. with semiinfinite linear 
or quadratic programs, rn can be replaced by n in (1.7)) (see [16, 18]). Note also 
that a convex quadratic constraint can be replaced (with good accuracy) by a large 
number of linear constraints (see [18], where the choice of the "proper" weights 
for the constraints is studied for semiinfinite programs), so that the corresponding 
central paths are approximately the same. 

We derive new relationships and estimates, which add to the understanding of 
the rich structure of central paths, and which we exploit for the construction of new 
path-following algorithms. Some of the results were already stated in [21]. The 
exposition in this paper, however, is self contained. 

2. Descr ipt ion  of  the a lgor i thms  

We begin with a short summary of some important global convergence properties 
of Newton's method for computing a central point close to a strictly (primally 
and/or  dually) feasible point. In order to describe Newton's method, i.e. the corrector 
steps of the proposed algorithm, we invoke the following observation of Roos and 
Vial [17] (earlier convergence domains of this type have been proposed and used 
in a complexity analysis for zero order path following methods, among others in 
[11]). Consider the least squares problem, where 0 < / x c R  m satisfies (1.5) and p~ 
and r > 0 are fixed, 

inf l lL°(b-Arz)  I 
- e =: •d(/Z, r). (2.1) 
r 

Let its optimal solution be denoted by z*, and let 

tx': = 2/z l s ( z . ) o  ix 2. (2.2) 
r 

Then also /z' satisfies (1.5). If in addition ~d(/x, r) < 1, then z* is a strictly feasible 
solution of ~, and by [17], ~ ' >  0 is a strictly feasible solution of (9)  satisfying 

5d(/z', r) <~ ~d(/z, r) 2. (2.3) 

In fact, /x' is the result of one Newton step (started from/x)  for the computation 
of the dual center tx(r) = k -  LTr/(r), 

~o(r) := arg min ~ log(ki-/~rl)  k - LV~ > 0 (2.4) 
r i 
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where /x = k -  LYe, ~ ¢ ~ m - ,  is a parametr izat ion o f  all /z f rom the dual feasible 

set {~ I A/~ + c = 0,/z ~> 0} by means o f  an (m - n) x m-matrix L = (11 , . . . ,  Ira) o f  rank 

m - n  with A L  T= O. Note  also, that  with l := -Lb ,  

{S -= b -- A T x  Ix  C R n } = {S I Ls+ l= 0}. 

Therefore the roles of  ( ~ )  and ( 9 )  can be interchanged in the above arguments  of  

[17] by just replacing A, b, c by L, k and l, respectively. Thus for any x c P°, that 

is s = s(x) = b - AZx > 0 solves Ls + 1 = 0, the Newton  iteration x ~ x '  for the solution 

o f  the system (1.3) can be obtained f rom the solut ion/z* o f  the least squares problem 

6p(X,r):=inf{ I ~ ° ( b - A T x )  2 Ai ~ } e + c = 0 (2.5) 
r 

by the formula  

S 2 o /~*  
s' = 2s - - - ,  (2.6) 

r 

in the following way: As s'  again solves Ls'+ l = 0, it has the form s '  = s(x') = b - AVx ' 
for a vector x '  c ~n which is the unique solution of  the equat ions 

b,-a,xT , = 2 ( b , _ a T x ) _ ( b , _ a T x )  2 - ,  i = l , 2 , . . . , m .  
r 

As before, 6p(x, r) < 1 implies the strict feasibility o f  x '  for ( ~ ) ,  s' = s(x') > 0, and 

6p(x', r) <~ 6p(X, r) 2, which again describes a region of  global quandrat ic  convergence 

o f  Newton ' s  method.  Of  course we know that 

a; 

where 

T 
aia i 

Hp(x) := i-,  ~ (b , -  aTx) 2" 

Similarly we define 

Ha(n):=E(kj_lTn) 2 and H ( x , ~ ) : = H p ® H a .  (2.8) 

Another  domain  D~ of  superlinear convergence for Newton ' s  method - -  say for 

the primal problem - -  can be obtained as follows: 

D r := {z Ill z - x( r )  II Hp<~> ~< y}. (2.9) 

Here y is a universal constant,  and as usual for any positive definite matrix H, II u [I H 
denotes the no rm II u 1[ ~ := (uTHu) 1/2 (see [9] for a detailed analysis of  the superlinear,  

resp. quadrat ic  convergence o f  Newton ' s  method in the domain  (2.9)). 
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Algorithm 1. Let 0 < ao < 1 be a fixed constant and suppose that we have already 
computed the values of x(rk) and ix(rk) together with the derivatives ic(rk) and 
fi(r~). Define the vector-valued linear extrapolants 

xk(r) := x(rk) + Yc(rk)(r -- rk) ~ ~", 

ixk(r) := ix (rk) + t2(rk)(r -- rk) ~ ~ ,  

and compute rk+~ as the largest solution r (with r < rk) of the equation 

# k ( r ) °  ( b - A T x k ( r ) )  e =ao.  (2.10) 
r 

Perform a number of Newton iterations with the starting vector ixk(r), or xk(r),  as 
described in (2.2) or (2.6), (2.7), till we get 60(~, rk+l) or 3p(X, rk+l) small, say to 
machine accuracy. 

Lemma 1. Condition (2.10) is equivalent to the following: 

f(rk)(rk--rk+l) ~ /  rk =X~o, (2.11) 
¥ rk+l 

where 

f ( r ) :  =1 II~p(r)ll 1/2, ¢( r ) :=  or(r) o , ( r )=~r( r ) -o-2(r ) ,  
r 

d 
tr(r) := r d-- l ° g r  s(r),  

r d 
r(r) := ~rr log Ix(r), 

o- ( r )=M(r )e ,  T ( r ) = ( I - M ( r ) ) e = e - o - ( r ) ,  

and S(r)  
in terms of  the vectors and matrices, 

z(r)  := (s(r),  ix(r)), H( r )  :-- H ( x ( r ) ,  ~7(r)), 

the function f ( r )  is also given by 

1 1 ~/2. 
f ( r )  = ~  I]~'(r)lj ~r)=~ IIz ~(r) o ~(r)lj 

M ( r )  := ~ T ( ~ T ) - I ~ ,  ~ :~_ A S - l ( r ) ,  

is the diagonal matrix associated to s( r ) := s( x(  r ) ) = b -- A T x( r ). Moreover, 

sO(r) := (x(r) ,  ~q(r)), 

Proof. By definition of x(r) ,  s(r) and Ix(r), see (1.5) and (1.6), we have identically 
in r, 

c+ Atz(r)  =0, 

A T x ( r ) + s ( r )  = b, 

Ix(r) o s(r) = re. 
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Differentiation with respect r yields 

al~(r)  =0,  

AT2(r) + ~(r) = 0, (2.12) 

i~(r) o s(r)  + l~(r) o g(r) : e. 

In terms of the logarithmic derivatives cr and r this gives 

A ~ ( r )  : 0 ,  

rAT£(r) + or(r) = 0, 

r ( r )+o- ( r )  = e, 

which shows r(r) < W(A), ~(r) < ~(~T),  r(r) ± o-(r), So that 

o-(r)= M ( r ) e ,  r ( r ) = ( I -  M ( r ) ) e ,  

as M ( r )  is the orthogonal projection on ~(,~T). A further differentiation of (2.12) 
gives 

f i (r )  o s(r)  +/~(r)  o }'(r) = - 2 / i ( r )  o g(r), 

--1 S 1 o ~ ( r )  c ~C(A), o ~'(r) ~ ~ ( A ~ ) ,  

z ' ( r )  o ~( r )  : _ 2  o-(r)  o ~'(r), 
r 

showing 

1 1 
!r ll°'(r) ° ~'(r)ll&/~ = ~ llz-'(r) ° ~(r)ll~/~ : ~ ll~:(r)ll L{~). 

Finally by (2.12), the definitions of xk(r) ,  I~k(r) and sk(r):= s ( x k ( r ) ) =  b - - A T x k ( r )  

we have 

( r  - r~)= ( r -  rk) 2 i~k(r) o sk(r) e -- - -  ~(rk)  o g(rk) -- - -  ~r(pk)° r(rk). 
r r rrk 

This leads to the formula (2.11) for the solution r ( =: rk+0 of (2.10), which completes 
the proof of the lemma. [] 

The algorithms, quantities, and formulas given above can be generalized to 
"weighted" central paths (x(r,  Y),/z(r, Y)), obtained when we replace the vector 
e = ( 1 , . . . ,  1) T in (1.5), (1.6) by an arbitrary positive vector YcR m, see [17], [25]. 
In particular, for any strictly primal feasible Xk and any strictly dual feasible/2k the 
weighted central path (x(r,  ek), t~(r, ek)) with ek := (1/rk)/2k ° S(Yk) passes through 
xk := x(rk,  ek) and /2k:=/z(rk, ek)- One may define linear extrapolants xk(r):= 
Xk + (r--  rk)2(rk, ~ )  and simlarly/zk(r) to the weighted trajectories, and steps rk+l := 
r < rk as the solution r of 

i~k(r) o ( b - - A T x k ( r ) )  ek = d o ,  
r 
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where &o min{(Yk)~li = 1, 2 , . . . ,  m} = ~o< 1. Such a solution r is computable with 
a straightforward generalization of Algorithm 1, especially of (2.11). Clearly tZk (rk+~) 
and Xk(rk+~) then are strictly feasible. 

The functions M(r) and especially f(r) are most important for the study of the 
central curves and their first order approximations. Also in connection with our 
function f ( r ) ,  which gives a simple expression for the second order (i.e. main error) 
term for linear extrapolations, a statistical analysis of the "anticipated" behavior 
of several classes of interior point methods was given in [15]. There, the use of 
probability distributions is quite nonstandard: it is assumed that at each step the 
subspace represented by the projector M(r) is randomly, independently and uni- 
formly distributed. Assumptions of this kind seem hard to justify: we outline below 
a different method which may help to obtain rigorous average complexity results 
for this class of algorithms. We stress in this context however that it is the main 
goal of this paper to obtain robust algorithms excluding the possiblity of occasional 
extremely slow or unstable behaviour. 

In much the same way as in the proof of Lemma 1 one can derive explicit 
expressions for the analogous of the distance (2.10), namely of the distances 6p.d 
defined by (2.1), (2.5). For example, 6p is given by 

t~p(Xk(r), r ) = m i n [  sk(r)°tXr e 2 A / z + c = 0 }  

As in Lemma 1 one finds 

 p xk r,,r,=min{ r 4A 0} ¸ 
Its solution is 

( r -  rk) 2 
6p(Xk(r), r) 

rrk 
o 

where M~ is the orthogonal projection 

Ms := A~(AsA~) ~A~, A~ := AS -~. 

By taking limits r~' rk, we find lim r;rk Ms,,<,.)= M(rk) and therefore 

1 1 
lim t~p(Xk(r ) ,  r)---]lM(rk)o'(rk) o ~ ( r . ) l l :  
r~rk ~ - -  r2k 

1 "" r = llx( k)ll'o rk)" 
In a similar way, one also shows 

1 
lim 6o(p~k(r), r)--½l[~(r,,)llHo<r,). r?,k 

(2.13) 

(2.14) 
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These formulae suggest the following variant of Algorithm 1 in which either a primal 
or a dual move is made at each iteration. 

A l g o r i t h m  2. Let 0 < a o < l  and assume that rk>0 ,  x(rk) and/~(rk)  are given and 
the linear extrapolants xk(r), p~k(r) are defined as in Algorithm 1. Compute rk+~ := 

p,d satisfy min(rP+l, r~+l), where rk+l 

p ap(x~(r~÷,),  r~+,) = do,  a ~ ( x ~ ( r L , ) ,  rd+0  = ~o. 

Perform a number  of  Newton corrector steps either with the starting vector xk(r) 
or with the vector/xk(r),  r := rk+~, for finding x(r)  and/x( r ) ,  depending on whether 

115/]1, p is smaller than ][4}]]u~ or not. 

p,d We note that the asymptotical properties (2.13), (2.14) for r =  rk+ 1 close to rk 

show that we have for small ao > 0 approximatively 

1 ~ /  rk 
- -  Hp(rk ) • rk -- rP+ l ) .T-- -- C~o , II~(rk)/l'/2 , 

rk+l 
(2.15) 

1 "" r 1/2 , /  r~ . 

/ 

117/(k) l lHd(rk)( rk- - rd+l)  V ~ = O Z 0 '  
rk+l 

formulas, which could also be used to realize Algorithm 2 in practice. 

We introduce a further refinement for the conceptual improvement of  the above 
algorithms, by noting that the main goal of each step rk ~ rk+~ should be to choose 

rk+l > 0 as the smallest number  for which one can still find a starting approximation 

for the computation of x(rk+~), /x(rk+~) in the domain of global convergence of 
Newton's  method. This is mainly important for Algorithm 2, as Algorithm 1 already 

is optimal in the following sense: One could question, whether in Algorithm 1 there 
is a p < rk+l such that 

II~k(r,+l) o (b --aVxk(rk+~))-pell  <~ ~oP 

because then it is better to choose p instead of rk+~ in Algorithm 1. Now the minimum 

of the left hand side with respect to p is reached for 

1 
p = - -  I ~ ( r k + l ) T s k ( r k + l ) ,  

m 

which turns out to be equal to p = rk+~, using that ¢(rk)T~(rk)=0,  which follows 

from Lemma 1. 
In the case of  primal methods, where rk > O, x(rk), and /x(rk) are given and the 

linear extrapolants xk(r), sk(r):= b--ATxk(r) ,  txk(r) are defined as in Algorithm 1, 

such an optimal rk÷l is defined as follows: For 0 < r < rk let 

Op(r):=min{ sk(P-)°# e 0 < p < r k ,  c + A t x = 0 }  (2.16) 
r 2 
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with optimal solution p = p(r). Then take rk+~ = r~+~ := r as the solution of ~p(r)  = ol o. 

All in all, such parameter  optimizations lead to the following refinement of  Algorithm 

2: 

Algorithm 3. Let 0 < So < 1, rk > 0, x(rk) and # (rk) be given and define the linear 
extrapolants xk(r), sk(r) = b--ATxk(r) and/xk(r)  as in Algorithm 1. Further let for 

F <  rk, 

- e O<p<rk, c+Atx=O , 
r 2 

~d(r)::min{[ I~k(p)°(b-Ayx)  I } e O<p<rk, x ~ "  . 
r 2 

p,d satisfy Take rk+l := min(rP.~, r~+~), where rk+~ 

p m d 
~ t p ( r k + l )  - -  O l o ,  Od(rk+,) = S o .  

Compute  x(rk+l) and /x(rk+l) by a number  of Newton corrector steps with the 
appropriate  starting vectors, e.g. in the primal case with xk(p(rP+O), where p(r) is 

the optimal argument p in the definition of 0p(r) .  

Of course, Algorithm 3 is only a conceptual algorithm, which seems very difficult 

to realize. To motivate a proposal  for an efficient but only approximative realization 

we use again its asymptotic properties for small ao > 0, i.e. for rk+~ close to rk. When 

discussing Algorithm 2 we already found for r <  rk close to rk, 

ap(x(r) ,  r) -- 11½(r- rk)2x(rk)I1Hp(rk) ~ IIx~(r) - x(r)II ~(~). 

Similarly, we have for r < rk close to rk, 

~ , ~ ( r )  - I lx~ ( v  ( r ) )  - x(r)I[-~.~ - omi~r It x ~ ( p )  - x(r)II .o~r )  

min Ilxk(r)--x(p)]lH~(xk(r)). (2.17) -- min Itxk(r)--X(p)llHp(O)--o<v< r 
0 < p < r  

Therefore, by the quadratic convergence of Newton's  method 

xk(r) --X(p) -- Hp(xk(r)) 'e(p, xk(r)), 

where e ( . ,  • ) is defined by (1.3). Hence, the number  rP+l of  Algorithm 3 is approxi- 
mated by any number  r satisfying 

_ao ~< rain e(p, xk(r) )T H~l(xk( r) )e(p, xk(r) ) <~ 6o, (2.18) 
p 

where 0 < a0 < 60 are some threshold values with ao ~< Cro <~ 60. A solution r with 
(2.18) can be found by common bisection techniques. Note that the minimal p in 
(2.18) is easily computed. We also note that Algorithm 3 of [21] uses this kind of 
approximation.  
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In view of  the asymptot ic  relations (2.17) one also sees that the difference between 

r and p(r) for  r close to rk has to do with the tangential  acceleration 2(r)VHp(r)2(r), 
which can be influenced by choosing other parameters  s = s(r) than r to parametrize 

the central curve. In order  to find the right parametr izat ion s = s(r) we note that 

for s close to Sk the point  xk(s)= x(sk)+ ( s -  Sk)X'(Sk) is closest to ~ ( s ) :=  x(sk)+ 
(s -- Sk)X'(Sk) +½(S -- Sk)2X"(Sk)(Sk) -- X(S) in the Hp(sk)-norm if 

s = arg minll ( a  - Sk)X'(Sk) +½(S -- Sk)2X"(Sk)]I Hp(sk )  , 

which is the case iff x"(s)VHp(s)x'(s) = 0. We are thus led to consider the condit ions 

x"(u)Hp(u)x'(u)-~ O, resp. rt"(V)Hd(V)rl'(v) -~ O, (2.19) 

where u and v are the new "arc length"  parameters  along the primal and dual central 

path, respectively. The corresponding algorithms move with a speed propor t ional  

to the inverse of  the sequare root  o f  the norm of  the curvature with respect to these 

parameters  in view of  

I l x k ( s )  - x ( s )P I  .p(s  = 2 _- 111 "(sk)I I  sp(,k (S - -  2. (2.20) 

It turns out  that the parametr izat ions determined by (2.19) are just the following: 

u(r) := cVx(r) + const, v(r)  := bT/x(r) + const. (2.21) 

The p roof  can be obtained by direct calculations using the easily verified formulae 

ti(r) = CT)C(r) = CTHplC/r 2 = ero-(r) = eTo-2(r), 

2 H~,(cCTHp,~T(r ) _ cTHp%~V(r))~r2(r), (2.22) 
x"(u) CTHplC 

where all arguments  are taken at r, resp. u = u(r). This analysis also suggest the 

following for the realization of  Algori thm 3: In order  to decide whether a primal 

or a dual step is made,  compare  

and take a primal step itt the first number  is smaller. Use a suitable bisection 

procedure  to refine r°+l to a solution rk+~ of  (2.18) or its dual analogue. 
Note  (see example (4.14)) that  it is possible to have r/'(v)=-p but IIx"(u)ll.~ 0. 

As a contrast  (see Proposi t ion 2 below), the curvature f ( r )  appearing in Algori thm 

1 is positive for all r >  0 unless f (r)  =- O. 
It is interesting to note, that  the weighted curvatures figuring in (2.22) can also 

be expressed in terms of  the ("first order")  rr and M variables, but  not in terms of  
the o--variables alone. A straightforward computa t ion  gives 

(X"(u)T Hp(Y(U) )X"(U) )I/4bl(r) 

=~__~2r (O.2(r)TM(r)o.Z(r ) (T(r))2) 1/4 ~ ( ~  ] , (2.23) 
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where 

i t (r )*Q(r)  = eVo-2(r), T(r)  = eTo-3(r). 

A consequence of the relation (2.21), which expresses the optimality of  the arclength 
parameter  u is that 

IIx"(u) II It (r)II (2.24) 

(an analogous inequality holds for the dual curvature). 

Observe that r is for the pr imal-dual  problem the "arclength" parameter. Indeed 

it is easy to see that the duality gap along the path, i.e. the primal-dual objective 
function: CXx(r)+ bV/x(r) = m • r. On the other hand there is an essential difference 

between the behaviour of  the pr imal-dual  curvature f ( r )  and that of the primal or 

dual curvatures (with respect to the corresponding arclength parameters u, resp. v): 
the latter ones may vanish at some point without vanishing everywhere while if 

f ( r )  = 0 for some r, then f ( r )  =- 0 everywhere, see Proposition 2 below. 
Finally, we note that if the primal problem itself is a pr imal-dual  (i.e. self dual) 

problem, then the dual problem coincides with the primal one and Algorithms 1, 

2 (and 3) lead simply to (essentially) identical sequences {rk}, thus over Yfo Algorithm 
3 has - -  in the worst case sense - -  the same (global) complexity as Algorithm 1. 

3. Estimation of the total number of iterations by an integral 

In this section, we consider estimates for the number  N = N ( R ,  6, ~ )  of steps needed 

by an algorithm for solving ~ to reach x (6 )  from x ( R ) ,  

R =  ro> r~> " " "> 6>~rn>O. 

Specifically, we would like to obtain estimates of  the form 

N ( R ,  3, ~ )  ~< const m e log(R/~i) (3.1) 

holding for all ~ of  a class y { c  Y{o of linear programs, where the number  of  
constraints m = m ( ~ )  depends on ( ~ )  but the complexity exponent ~ = a(Y{) and 
const = const(Y{) depend only on Yf but not on ~ ~ Y{. 

For zero order methods (these take the zero order approximation x(rk) to x ( . )  
as starting point for the Newton-corrector-steps for computing x(rk+l)) such an 

estimate holds with a = ½ for the class Y{o of all programs satisfying our assumptions 
(for first order methods this will be obtained from the estimates below). This follows 
from the rule 

( consfl 
rk+l:= rk 1--~---m] (3.2) 

adopted by zero order methods. Within the class of  zero order path following 
methods the analysis of  Newton's  method shows that this is the best one can achieve. 
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Note that since 

r 
- -<~cx(r ) -  A* <~m. r 
m 

(see [20]) the value of 

m s log(R/6)  

is "equivalent" to 

m s Iog((cTx(R)--A*)/(cTx(6)--A*)) 

whenever a > 0, if R > 6 > 0 satisfies 

l og (R/6 )  >/3'o (3.3) 

for some universal Y0 > 0. 

The next arguments are borrowed from approximation theory, where they are 

used to estimate the number  of  function evaluation steps necessary for a sequential 

algorithm to achieve an optimal recovery over an interval (6, R), see [19]. I f  the 
condition (2.11) of Algorithm 1 implies that for all k either 

I rk f ( s )  ds >1 C (3.4) 
rk+l 

o r  

rk - rk+l ~ c (3.5) 
rk+l 

holds for some universal positive constant c > O, then we obtain an estimate 

N,(R, 6, ~)<~ cl f ( r )  dr+c21og(R/6) (3.6) 
3 

for the number  N = NI(R, 6, ~)  of steps needed by Algorithm 1. Here c~ := 1/c, 
c= := Ilog(1 - c) I are again universal constants. 

Note that the quantity f(rk)(rk - r k + ~ ) ~  of (2.11) can be considered as an 

approximation to I~ . l f ( r )  dr, provided rk/rk+l is not too large. This makes (3.4), 
(3.5) and, therefore, (3.6) plausible. In fact, Zhao and Stoer [25] have shown that 
there are universal constants o~o>0 and c > 0  so that (3.4), (3.5) and, therefore, 
(3.6) hold for Algorithm 1. The proof  is quite complicated though and is based on 

a proof  of the inequality. 

I f (s )  - f (rk) l  <~ const(C~o)(1 + (rkf(rk))-l)f(rk) (3.7) 

which holds for all rk+l ~ s ~ rk, and on the observation that, for a suitably defined 
constant/3 =/3(c) ,  rkf(rk) <~/3 implies (3.5). 

By the same techniques used to show the Lipschitz property (3.7) one can also 
estimate the higher order derivatives of  the central path. I f  we represent the dual 
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variable Iz = I-LYe7 in terms of r/E R ~-" (see (2.4)), set again ~(r):= (x(r), ~7(r)) 
and use the matrix H(r)  = H(x(r) ,  x(r)) (see (2.8)) then one can show: 

Proposition 1. There exist universal constants c I and c2, such that for the central path 
~( r), r > 0 and arbitrary integers p >12, 

II~:(P)(r)ll ' /P < + c=/r). [] (3.8)  mr> ~ Cl(ll ~(r) l l  ,/2 H(r) 

Now, by Lemma 1 we have the relation 

1 
f ( r )  = ~ I] [(r)Jl H(r).l/2 (3.9) 

Thus it is justified to interpret the right hand side of (3.6) as a curvature integral 
We can now formulate the main conclusions as follows. 

Theorem 1. The number NI(R, 6, ~ )  of basic iteration steps needed by Algorithm 1 
to reach x( 6 ) from x( R ) when solving the linear program ~ can be estimated from 
above by the formulae (3.6), (3.9), i.e. by an integral of weighted curvatures along the 
central path. [] 

Consequences of this estimate, which lead to upper bounds of the type (3.1), will 
be derived below. Note that it appears harder to derive analogous estimates for 

potential reduction algorithms. 
Using similar arguments one can probably show that the number N(P)(R, 6, ~) 

of basic iteration steps of a pth order primal-dual path following algorithm construc- 
ted exactly as Algorithms 1, 2, but replacing xk(r) and tzk(r) with pth order 
approximants of x(r) and ~( r )  at rk as follows: 

xk(r) := x(rk) + ( r -  rk)2(rk) +" • • + (r-- rk) p x(P)(rk) 
p~ 

can be estimated by the integral 

N(PI(R, 6, ~)  ~< const II~(P+l~(r)lll/(P+'~dr+constlog(R/6) 

(See [2] and [19] for a more general use of similar ideas and techniques.) The 
inequality in Proposition 1 shows that these higher order algorithms are not worse 
than the first order algorithm studied here. (See [9] on an implementation and 
comparison of higher order algorithms using polynomial extrapolation.) Finally we 
mention, that the number N1(R, 6, ~ )  of steps needed by Algorithm 1 is estimated 
by the integral also from below: there exist positive universal constants /Co, kl, k2 
such that 

NI(R, iS, ~ )  >! k o f ( r )  d r -  kl log(R/6) ,  

see [25] for a proof. 
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Using a similar reasoning we can expect that for Algorithms 2 and 3 the number  

of  iteration steps N2(R, 6, ~) and N3(R, 6, ~) can be estimated by 

Nz(R, 6, ~ )  ~< const fr R min(ll Y(r)II II # (r)tl dr (3.10) 

and 

N3(R, 6, ~) 

I R 1/2 t{r ~ 1/2 t 
r ' ,d(~v (r)) (3.11) <~ const min(llx"(u)ll. ¢u -, ,, II "(v)ll dr. 

Such estimates are suggested by the asymptotic formulas (2.15) and (2.20), but at 

this moment  we have no rigorous proof  for them. Concerning Algorithm 2 we refer 

to the remark below made after Proposition 2 below. 

4. Estimation of the curvature integrals 

We now turn to the problem of estimating the curvature integral (3.6), 

II(R, 6) = It(R, 6; ~):= f(r) dr, 
6 

and remember that it is our goal is to consider " long" intervals (see (3.3)), in order 

to get global estimates of  this integral. This is necessary if we wish to get better 

estimates than 

I1 ~< const m 1/2 log(R~6), 

since for some problems ~ and particular values of  r it may happen that 

f(r) >i const ~-m/r  

(this occurs in both examples (4.14), (4.16) below). In order to explain why the 

expected behavior of  the integral is given by 

I1 ~< const m 1/4 log(R~6)  (for log(R/6)  ~> const) (4.1) 

we could argue that the average value of 

rf(r) = liar(r) o z(r)l[~/2= [l(M(r)e)o ( I -  M(r))ell 1/2 

over all possible projection matrices M(r) of rank n in Em is smaller than const m ~/4. 
Such an analysis was given in [15], but it involves statistical assumptions on the 
distribution of the matrices M(r) and other quantities which are hard to justify 
rigorously. In particular, assumptions on the statistical independence of their values 
found in the different steps of an interior point algorithm are questionable: In fact 
we will show that M(r) and other values will change with r according to surprisingly 

simple Y{o-universal laws. 
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We introduce the new parameter  p = - l o g  r and note that r = 0, 1, oo corresponds 

to oo, 0, -oo and dp/dr  = -1/r .  The following computations get easier if we use the 

relations following from Lemma 1, 

[Me] = [o-] = rS 'S, 

where V or [v] denotes the diagonal matrix with entries taken from the vector v. 

Lemma 2. In the variable p = - l o g r ,  ~ ( p ) - - M ( e  0) satisfies the following 
autonomous differential equation 

d ~  
M ' : =  - ~ [ ~ e ] + [ ~ e ] M  - 2 ~ [ M e ] M = : h ( ~ ) .  (4.2) 

dp 

Proof. With the above notation Lemma 1 gives 

M =  S-1ATHplAS 1, Hp=AS  2AT. 

Now using 

__d S l=_ S 1[o--]/r~ ILlp=-2AS 3 S A T = A S - 1 [ o - ] S - 1 A T  ' 
dr 

we g e t / ~ / =  ( - [ M e ] .  M - M .  [Me]+2M.  [Me] • M ) / r  from which (4.2) follows, 

since dp/dp = - l / r .  [] 

Note that, in the variable p, the curvature integral 11 has the form 

far ~p(R) f (r)  dr = - fo(~l(p)) dp where f0(zkt)= HAgeo (e-#//e)ll2 ~/2. 
ap(6) 

Another more symmetric form of this differential equation is 

~ ' ( p )  = YgD - D3~, where D = ~ .  [ ~ e ]  - [ ~ e ] .  W/t, 

f o ( ~ )  = IIDe]] 1/2, note that D * = - D .  It is surprising that the above differential 

equation is universal, i.e. it does not depend on ~ and defines an (autonomous) 
flow on the Grassmann manifold G(m, n) on n-dimensional subspaces in ~m. 

The problem of estimating the worst case value of the curvature integral reduces 

thus to the standard optimization problem (po > pl) 

tJpo 

which can be reduced (using e.g. the maximum principle) to a two point boundary 
problem for ODEs. Note, that both functions h (M)  and fo(M) are globally defined 
over the compact manifold G(m, n). The compactness of  this manifold implies that 
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there exists an invariant normed  "equi l ibr ium" measure for this flow. A basic result 
of  ergodic theory asserts that 

f~ ( l i m l  r 
~(m,n) \ T'[oo ? fO fo(Jl(p)) dp) dlx(~(O)) 

= f f 0 ( ~ )  d /x (M)  = ~m,n" (4.3) 
d O(m,n) 

Suppose now that R =  1, p(R)=0,  T=p(6)  then T=log(R /6 )=- log  6, and we 
can define a probabil i ty distribution on the class Y{o as the inverse image d v ( ~ ) =  
F - l ( d / x ) ( M ~ ( 1 ) )  of  the measure d/x(.  ) (the direct map associating to each ~ E Y{o 
the value F ( ~ ) : =  Mo~(1), i.e. for  each program ~ we look to the value of  the 
project ion matrix at R = 1). Now if the above flow is ergodic,  then 

L lim 1 f~ ( r )  dr  = fi~,n 
a-,0 log(R~6) 

with probabil i ty one. Note  that the asymptotics o f fo (p ) ,  p ~ oc expressed in Lemma 
3 below contradicts ergodicity, but  is, o f  course, favorable for  the smallness of/3 . . . .  
In any case, the relation (4.3) says that the average value of  the left hand side with 
respect to d v ( ~ )  equals the right hand side. 

From the differential equat ion for the funct ion M(r) we immediately obtain a 
differential equat ion connect ing the variables ~r(r)= M(r)e and o'2(r)- o-(r), 

o-2(r) - o-(r) 
6-(r) = ( 2 M ( r )  - I )  (4.4) 

r 

Observe that U = 2 M - 1  is an involut ion U =  U * =  U i so that ]16"(r)ll'/e=f(r). 
An immediate  consequence of  this relation is the following proposit ion.  

Proposition 2. Iff(ro)=Ofor some r= r o > 0  then 6-(r)-=0, thusf(r)=-O. [] 

We even conjecture that the same proposi t ion holds also for the primal or dual 
curvatures with respect to the r-parameter ,  more precisely, e.g. in the primal case 

const f ( r )  ~< IlY(r)II , - ,~,  <~ const f ( r ) ,  (4.5) 

so that Algorithm 2 would be not  essentially different f rom Algorithm 1. 
We now derive some estimates for  the complexi ty  integral 11 (3.6). A first estimate 

follows from Lemma 1, which implies 

tr(r) = M(r)e, r(r) = (I - M(r))e, 

with an or thogonal  project ion M(r). Hence  

tlo-[[oo ~ < [o-[[2 ~< lle[12 = x/m, Ilr[[o~<~ [[rl]2 ~ < [[e[[2 = x/m, (4.6) 

and thus 

rf( r )  ~< -ffm, (4.7) 
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so that by (3.6) we get the complexity estimate 

N I ( R ,  6, ~ )  <~ ~ log R,  (4.8) 

which is wellknown for zero-order methods, also for the first-order algorithm 1. 
The next lemma shows however that (4.7) is asymptotically a rather bad estimate, 

so that (4.8) will be too pessimistic in most cases. 

Lemma 3. The funct ions oi(  r), i = 1 , . . . ,  m, have the following limit behaviour at r -= 0: 

lim o-i(r) = (~  i f  i is inactive at the optimum, 
r~o i f  i is active at the optimum. 

Thus 

lim r f (r)  = 0. [] (4.9) 
r$0 

The proof  of  (4.9) follows from the observation, see e.g. [23], that the functions 

~(r) and /2(r) have finite limits for r$0  for all linear programs ~ ~ Yfo (even for 

programs with a degenerate optimum),  and from the formulae (see Lemma 1) 

cr(r)= r s - l ( r )o  :~(r), . ; (r)= r t z - l ( r )o  lL(r), c r ( r ) + ' r ( r ) = e ,  
(4.10) 

s(r)  o tz(r)  = re, o-(r) o "c(r) = r~(r) o t2(r). 

Using the limiting behaviour (4.9) it is easy to show the following relatively weak 

asymptotic result: 

Corollary. For each ~ ~ Yfo and each R > 0 there is a y = y (~ ,  R ) >  0 so that 

R 
N I ( R ,  6, ~ )  <~ c. m 1/4 log 

for  all 6 with log (R~6)  >~ 3/. Here c does not depend on ~.  [] 

An interesting consequence of (4.6) is obtained for the following special class of 

programs: We say that a linear program ~ = ~ l e "  • "O ~k with the feasible set 
is a direct sum of programs ~j, j = 1 , . . . ,  k, with the feasible sets Pj if m = 

m l + "  " '+ ink ,  X = X l e ' "  "•Xk and x c P  iff x j ~ j  for a l l j .  Suppose that ~ is a 
direct sum such that mj ~< m0 for j = 1 , . . . ,  k. Then 

N I ( R ,  6, ~ )  <~ const m~/4 m 1/4 l o g ( R / 6 ) .  (4.11) 

Indeed note that tr(r) = ~rl(r)®. • "® o-k(r), T(r) = ~-l(r)e .  • . e  rk(r) and according 

to ( 4 . 6 ) I I % ( r ) l l ~ < ~ 0 0 ,  Ilr(r)ll2<~v/m. Hence 

rf(r)  = [[~(r) o ~'(r)[[~/2~ < mlo/4m 1/4 (4.12) 

Noting that the above curvature integrals are continuous functions of  the para- 
meters (R, 6, A, b) for all fixed 6, we get complexity estimates for arbitrarily degener- 
ate Klee-Minty type problems, where mo= 2. 
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We next relate the complexity integral 11 in (3.6) to another integral by showing 
that there is a constant/3 ( = -~/2) so that 

rf(r) <~/3(rg(r) + ml/4),  (4.13) 

where 

g( r ) :=  ~ o-4(r =-no-2(r)l]2 ~/2. 
i r 

Proof of (4.13). We have by Lemma 1 and (4.6), 

Iio-o ~-II ~= II o-~- ~11~<~ (11 o-~lff + II o-I I /~  < 2(IF~2tl2 + It~112) < 2(tlcr2ll2 + m). 

Hence 

rf(r)= llo-o r]l~/2 <~ ~/2 (llo-2ll2 + m)l/4<~ ~/2 (llcr2llt/2 + m'/4). [] 

Therefore, and by (4.13), upper bounds for the integral 

I2(8, 6):= g(r) dr = -I]cr2(r)lt~/2 dr 
a r 

also provide upper bounds for the integral 1l = ~ f ( r )  dr in (3.6). The next observa- 
tion: The parameter invariance of the integrals 

f ,; d t( c~ t( R ) ( ' ~i ( s : ( t ) ]'£ ' ( t ) x~ 2X~ ( ~/I ] 11 = f (r)  d r =  ~ dr, 

f, f t (R) (~ i  )1/4 /2 = (2  °-/4(r)) 1/4 dr  = (S: ( t ) / s i ( t ) )  4 dt (4.14) 
r tit(r) 

often allows to estimate them by choosing a particular parameter t depending on 
the class of problems YL If for example we can find a parameter t such that 

sl(t) ] const 
~ < - -  i = l , . . ,  m, (4.15) 

si(t) t ' 

then, as I2(R, 6) <~ const m ~/4 log(t(R)/ t (6)) ,  we find the complexity exponent a = ¼ 
provided t and r are equivalent up to factors polynomially bounded in m. Such 
parameters t can be found for all programs, where m = n + 1 or for their duals, 
where n = 1. For example, for the program ("simplex problem") 

min{cTx]~xi<~l,  xi>~O, i=1 ,  . . .  m} (4.16) xE~m 

it is true that for the parameter t = t(r) = r(1 - ~  xi(r))  -1 we have 

sl(t) 2 i = 0 ,  m, 
s,( t ) <-7' " " '  
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so that 

Rm 
NI(R,  8)~<const ml/41og ~<const ml/41og 8 (4.17) 

This follows from the easily computable, explicit form of the path (and of the 
integral (4.14)) when the parameter t is used, noting that t (R)  <~ mR. Note that in 
this example [[ ~r(r(t))[t ~ "fro holds, for instance, for t =  1, c~ = 1, c2 . . . . .  c,, = x/~, 
but this does not contradict (4.15) since d t / d r ~ , / m .  

The duals of the class of  "simplex" problems have a one-dimensional feasible 
set; for general linear programs in R ~, 

min{x [x ~> ai, i -- 1 , . . . ,  ml,  X ~ fli, i = 1 , . . . ,  m2} (4.18) 

introduce the parameter 

x ( r ) - x *  
t = ~ _ x ( r ) ,  where x* := max ~ :=minf l i .  

Then it is easy to show that (4.15) holds with const = 1. Indeed (4.15) is equivalent 
to 

S~(X) t'(x) 
~< for all i, x, 

s,(x) t(x) 

the validity of which is easily checked using [sl(x)[-= 1 and 

t '(x) _ 1 1 1 1 1 

t ( x ) - x  - x* + ~-x'xi(xl<~ - ~  ~ - x  

For one-dimensional problems (4.18) we have 

c T x ( R ) _ x , ,  ~ 
NI(R,  3, ~)<~const mm/41og m cTx(8)_  X, ] .  (4.19) 

This follows immediately from (4.14), (4.15) and the definition of t = t(r), since 
~ - x ( 6 ) < ~ f l - x  * and ~ - x ( R ) > ~ m - l ( ~ - x  *) for all R, 8 > 0 .  

The presence of the factor m in the argument of the log function in (4.17) and 
(4.19) makes it difficult to extend the corresponding m 1/4 estimate to an arbitrary 
direct sum of the last two kinds of problems unless the number of summands is 
universally bounded. 

Also one-sided bounds like 

s'i(t) const /zi(t) const 
<~ and /o r  ~ < - -  i = l , . . ,  m, (4.20) 

s , ( t )  t r e ( t )  t ' ' 
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are helpful:  I f  e.g. for the pa rame te r  t = r, 

or(r) = rs-l(r)  o d(r)<- Ke, 

then by r ( r ) =  e - o ( r )  one finds 

[]~r(r) o r(r)][o~ <~/(2 

so that  

z(r) = rtz-l(r)t2(r) <~ Ke, 

IR 1'2 1'4 R 
I i (R,  3) = 1-11cr(r) o~'(r)ll2/ dr<~Krn / log-~.  

r 

Note that  inequalities of  this type hold for  " s implex  p r o b l e m s "  and therefore in 

all cases, where  P is a direct sume of  simplices.  Here  it is true that  

~ i ( r )~<l ,  i= l , . . . ,  rn, r > 0 .  (4.21) 

The dual condi t ion is r ;(r)  = 1 - o-~(r) ~ < 1, that  is 

o-;(r)~>0, i = l , . . . , m ,  r > 0 ,  (4.22) 

and this holds for the duals (direct sums of  duals) o f  the elements  of  the previous 

class. 

Both of  these condit ions have interesting geometr ic  interpretat ions:  (4.21 ) requires 
- -  see L e m m a  1 - -  that  the relative change in the distance to the ith bounding  

hyperp lane  d~(r)/si(r) be not  larger than  the relative change i'/r = 1/r  of  the para-  

meter  r, a condi t ion which limits the degeneracy  of  the problem.  This condi t ion is 

pa rame te r  invariant,  

d 
~ log(si( t))  <~ log( r ( t ) ) ,  i = l , . . . , m .  

In [20] it is p roved  that  this condi t ion always holds in the mean  

~i s:(r) <~m 1 
s,(r) r" 

Condi t ion  (4.22) requires that  the distances s;(r), i= 1 , . . . ,  m, be mono tone  
funct ions of  r. This seems to hold for most  (but not all) p roblems,  which can be 

put  in the fo rm 

min max  (/3;-a/Vx).  
x i = l , . . . , M  

Also this condi t ion always holds in the mean  

~ s / = d  l o g ( s l ( r ) . . ,  sin(r)) > 0. 
i si d r  
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If only one set inequalities of the type (4.20) holds (e.g. simplex problems or 
their duals) then one can prove a slightly weaker result: 

Proposition 3. Suppose that (r,(r) <~ K for  i = 1 , . . . ,  m and r >  O, where K >~ 1. Then 

for  log(R/6) /> 1 both curvature integrals I1 and 12 satisfy 

R 
I1(R, 6), I2(R, 6) <~ c.  K m  3/8 log ~ ,  

where c is a Y{o-universal constant. 

Proof. We shall use the following identity: 

2 e r r  3 = 2 2 o-3(r) = 2 e-C0-2 + eT6_(r), (4.23) 
r r i r 

which is obtained from the differential equation (4.4), 

eT6.(r ) =-1 (20-T__ eT)(o2_ 0- ) 
r 

using M e  = 0-, M = M r =  M 2. Integrating (4.23) between 6 and R we get 

2 - d r - 2  - d r +  0-,(r) (4.24) 
r r 

Because of (4.13) it will be sufficient to estimate 12. The concavity of the function 
t 1/4 gives via Jensen's inequality 

f R l ( 2  0-4(r ))1/4 dr<~ (f; 2  7(r) \ 1 / 4 [  R )  3/4. 
- d r )  ~log (4.25) 
r r 

In order to estimate the first factor on the right hand side of (4.25) we fix r for 
the moment, write briefly or for o-(r) and introduce the index set ~¢ := {i11~,1 > K} 
and its complement . ¢± :={1 , . . . ,  m}\& Then Io-,1~< K for i~.¢ ± and o-i~>-K for 
i~5  ~. By ]o-il ~<~/m for all i (4.6) we get 

so that 

+inK4. 

Also 

3]~__~ 3 3 o', 0 - , + 2  I ~ r 3 1 < - 2 o - , + m K  3. 
i , ¢ ±  i 
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or i<~-m - o-i+mK 3 +mK 4. 
i 

Therefore ,  using (4.24) and  0 ~< crV~r = eTo " ~< m (4.6), 

f R ~i cr~(r) dr< (-~ (-½e'%-(r)[~- f ~ [[°-(-rr )[[= dr+ mK31ogR ) 
r 

R + mK 4 log 

Combin ing  this est imate with (4.25) and using l o g ( R / 6 ) / >  1, K ~ 1 we finally get 
the desired result, 

R ]  1/4// R \  3/4  ,og j 
R 

< ml/4[½~/m+ ~/m K 3 + K4] '/4 log 

4 ~  3'8 R < ,7/3 m ~ l o g ~ .  [] 

Finally we give an example  of  a l inear p rogram,  for  which the values of  the above 
curvature  integrals are not  smaller  than const  • m -~+~/3 l o g ( R / 6 )  for arbi t rary e > 0 
and large enough m. This p rog ram is a direct sum of  k one-d imens iona l  problems,  
where  the componen t s  of  the central pa th  are given by 

Here  

c j r  1 n 
0, c ]=pJ ,  j = l , . . . , k .  

r 1 - x j  xj 

o : = / 3 / . ,  /~ := (n - . / ~ ) - ' ,  . := (n -¼./~) 1, 

and 6 := cka, R := l, k:= x/-n, thus rn = n 3/2. 
The idea of  this const ruct ion was to find first a one-d imens iona l  central  pa th  /7 

on [6, R]  for  which ]10-2-¢z1] 1/2 (or what  is the same Ilcr]l) reaches (and keeps) its 
max imal  value O(rn 1/2) on a relatively long "cr i t ical"  subinterval  [a ,  fi] of  [6, R].  
By scaling the objective funct ion in the k identical copies of  /7 ( = t h e  direct 
s u m m a n d s  of  the example)  differently, so that  their  critical subintervals  do not 
over lap and fill out the full interval [6, R], we are able to mainta in  a relatively large 
value of  the local curvature  on the whole interval [6, R].  
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The path H corresponds to the one-dimensional  equat ion 

1 1 n 
--~ - -  0, 
r 1 - x  x 

belonging to the program 

min{x Ix <~ 1 and x/> 0 counted n times}. 

Denot ing so(r):= 1 - x ( r ) ,  sJ(r):= 1 - x i ( r ) ,  j = 1 , . . . ,  k, q~0(r) = go(r)/so(r),  we 

observe that 

dr = --  dr  
j ~  k s ' ( r ) /  ~ j ,, cj / :  

> z f [  q~°(r/cJ) d r = k  f q~o(r) dr>~½ k. 
j cio~,ci~ ] Cj [c~,/3 ] 

Indeed it is easy to see that  p ~ 1-3/(4~/-n) ,  i.e. p ' 2 g ~ r e  3/4 and 6=ckce>~pk/n ,  

therefore  for  large enough n (i.e. n ~> no), 

log R > - l o g  8 = - k  log p - l o g  a > ~ + l l o g  n. 

On the interval Ice,/3] - -  whose length is larger than 3~,/n/4n 2 - -  the value of  q~o(r) 
is larger than n2/3,]-ff and therefore  

q~0(r) dr~>~. 
~./3] 

We omit details, providing only the expression for 

~o(r) = x~(1 - x ) /  / (x~ + n(~ -x)~), 

where x = x ( r ) ;  on the interval [a , /3] ,  x(r )  varies within [1 - 2/~/n, 1 - 1/,,/n]. Thus 
12>1 m ~ l o g ( R / 6 )  will hold  iff 

1 + log  n~ 1 

Setting k = ~-ff the last inequali ty holds for  large enough n iff 3' < ½. Note  also that 
l o g ( R / 3 )  ~>½(l+log n), i.e. the path is not short. For  the integral 11 essentially the 
same estimations can be der ived since on the critical intervals 0 -2 and 0-(1 - 0-) have 
the same order  of  magnitude.  

Proposition 4. There exists a class y{ c ?7{o o f  linear programs with m = m(  ~ )=  n = 
n ( ~ )  3 for  ~ {  and the following property: For any constant c > 0  and any e > 0  
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there exist a ~ ~ Y{ and numbers  R > 6 > 0 so that  A lgor i thm 1 needs f o r  solving 

at  least 

N I ( R ,  (3, ~ )  ~ em -~+1/3 l o g ( R ~ 6 )  

steps to reach x (  ~ ) f r o m  x (  R ). [] 
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