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Abstract 

A 0, 1 matrix A is near-perfect if the integer hull of the polyhedron {x/> 0: Ax ~< 1 } can be obtained 
by adding one extra (rank) constraint. We show that in general, such matrices arise as the clique- 
node incidence matrices of graphs. We give a colouring-like characterization of the corresponding 
class of near-perfect graphs which shows that one need only check integrality of a certain linear 
program for each 0, 1, 2-valued objective function. This in contrast with perfect matrices where it is 
sufficient to check 0, 1-valued objective functions. We also make the following conjecture: a graph 
is near-perfect if and only if sequentially lifting any rank inequality associated with a minimally 
imperfect graph results in the rank inequality for the whole graph. We show that the conjecture is 
implied by the Strong Perfect Graph Conjecture. (It is also shown to hold for graphs with no stable 
set of size eleven.) Our results are used to strengthen (and give a new proof of) a theorem of Padberg. 
This results in a new characterization of minimally imperfect graphs: a graph is minimally imperfect 
if and only if both the graph and its complement are near-perfect. 

Keywords: Stable set polyhedra; Perfect graphs 

1. Introduct ion 

A 0, 1-matrix A (whose column are indexed by V say) ,  is perfect  if  the polyhedron 

P ( A )  = { x ~ Q V :  A.x~< i ,  x~>0} (1)  

is integral. 

The notion of  a perfect graph was introduced by Berge in 1959. (A graph is perfect  if  

each of  its induced subgraphs H has chromatic number, denoted by XH, equal to the size, 

o)n, of  a maximum clique in H. In 1975 Chwital noted that results of  Lov~isz imply a 
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polyhedral characterization of such graphs: a graph is perfect if and only if any nontrivial 
facet of its stable set polytope is induced by a clique inequality. (The stable setpolytope of 
a graph is the convex hull of incidence vectors of its stable sets.) This result of Chv~ital and 
a result of Padberg (see [ 18] ) show that perfect matrices are essentially equivalent to 
clique matrices of perfect graphs. 

Theorem 1.1. A matrix A is perfect if and only if there is a perfect graph G such that the 
incidence vectors of  the maximal cliques of  G are exactly the maximal rows of A. [] 

In particular, the graph whose existence is asserted in the theorem is the derived graph of 
A which we denote by G(A).  This is the graph whose nodes correspond to the columns of 
A and two nodes are adjacent in G (A) if some row of A has a one in each of their components. 
This theorem shows that we lose no generality by restricting ourselves to studying perfect 
graphs instead of perfect matrices, i.e., by studying stable set polyhedra instead of the 
polyhedron (1). 

Note that even ifP(A) is not integral, its integer hull, denoted by P(A)I, can be described 
in terms of the derived graph G(A),  of A: 

For any 0, 1-matrix A, P(A)z  = P ( G ( A ) )  . (2) 

In [ 19] Padberg defines a polyhedron P(A)  to be almost integral if it is not integral but 
each v ~ V, P(A)  n {x ~ Q v: xv = 0} is integral. He proves the following surprising result. 
Here, we use c~ e to denote the value max{1 .x: x~P~}. 

Theorem 1.2 (Padberg [ 19] ). I f  P = P ( A ) is almost integral, then it has a unique fractional 
vertex ~. Furthermore, ~ is adjacent to exactly J VI vertices v~ . . . . .  Vlv I of P such that for 
i=1  . . . . .  JV[,1.vi=t~t,. [] 

This yields a full description of the integer hull of P(A):  if P(A) is almost integral, then 
P(A)I  is given by 

{x~QV: x>~O, A .x< 1, 1 .x<~ Ogp(a) } • (3) 

This leads to the definition of a near-perfect matrix: a 0, 1-matrix A is near-perfect if the 
polyhedron (3) is integral. We will see that there are many near-perfect matrices A for 
which P(A)  has a large number of fractional vertices and hence is not almost integral. In 
addition, the fractional vertices are not necessarily derived from minimally imperfect sub- 
matrices (see discussion following Theorem 4. l 1 ). We return to near-perfect matrices but 
first we discuss their graphical counterparts. 

Padberg showed that if G is minimally imperfect, then P(G)  is almost integral. Thus for 
such graphs we have the following theorem. 

Theorem 1.3 (Padberg). I f  G is minimally imperfect, then 
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x ( i )  
P ( G ) =  ~ v :  (ii) 

(iii) 
x( K) <~ 1 for each clique . 
x( V) <~ ~ 

[] (4) 

We call a graph near-perfect if its stable set polytope is defined by the inequalities ( i ) - ( i i i )  
of (4). It follows from a result of Chv~ttal (see Theorem 2.4) that the inequalities of (4) 
are also sufficient to define the stable set polytope of any replication of a minimally imperfect 
graph, i.e., a graph obtained by 'expanding' nodes into cliques. These are not, however, the 
only graphs with this property. Fig. 1 gives some small examples of other such graphs. 

We know that the clique-node incidence matrices of near-perfect graphs form one class 
of near-perfect matrices. Theorem 1.1 shows that the concepts of perfect graphs and matrices 
are essentially equivalent; the same is not quite true for near-perfection. The matrix J -  I is 
near-perfect but for [ V[ > 2 is not obtained from the maximal cliques of any graph. The 

derived graph of A, in fact, is a clique! A near-perfect matrix A, is said to be graph- 
representable if the set of maximal rows of A is exactly the set of incidence vectors of 
maximal cliques of G(A). It is easy to see that this is equivalent to stating that the incidence 
vector of each maximal clique of G(A) is a row of A. For suppose that some maximal row 
X ~ say, of A is not the incidence vector of a maximal clique in G(A). Hence there is some 
other clique K' which contains K. By maximality o f x  K, X K' does not appear as a row of A. 
The next theorem shows that the near-perfect matrices which are not graph-representable 
form a very restricted class. 

Theorem 1.4. If  A is a near-perfect matrix, then either A is graph-representable or G(A ) 
is a clique. 

Proof. Suppose that A is not representable. By the preceding comments, there is some 
maximal clique K of G(A) for which X K is not a row of A. Now (2) yields that K gives a 
facet-inducing inequality of P(A)z. Thus XK'X<~ 1 must appear in a defining system of 
P(A)t. Since A is near-perfect, this implies that X K= 1. Thus G(A) is a clique. IS] 

v v 

Fig. 1. 
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Hence for the remainder of this paper we focus our attention on the class of near-perfect 

graphs. 
The definition of near-perfection is given in terms of a graph's stable set polytope. 

Conversely, perfect graphs were defined in terms of a colouring property. It was over a 
decade after their introduction that the polyhedral characterization of perfect graphs was 

found. Sections 4.1-4.4 are devoted to developing a colouring-like characterization of near- 

perfect graphs. Such a result should somehow characterize the structure of bad subgraphs 
in a near-perfect graph (a graph H is bad if X~/> tou). This approach leads to the following 

conjecture. 

Conjecture 4.10. A graph is near-perfect i f  and only if  each lifting o f  a rank facet  corre- 
sponding to a minimally imperfect induced subgraph yields the constraint 1 . x <<. a. 

(We define the lifting operation in Section 2.) We show that a minimal counterexample to 
the conjecture must satisfy several stringent conditions. We use these to show that if the 
Strong Perfect Graph Conjecture is true, then so is Conjecture 4.10. We also show that any 
counterexample to Conjecture 4.10 must have a stable set of size at least 11. 

In Section 4.5 we discuss the complements of near-perfect graphs. Clearly any perfect 
graph is also near-perfect. In contrast to the Perfect Graph Theorem however, the comple- 
ments of near-perfect graphs need not be near-perfect. For example, the graph of Fig. 2 is 

a replication of an odd hole and hence near-perfect. The inequality Xl + " "  + x5 ~< 2 is an 
odd hole inequality for the stable set polytope of the complement of this graph. It can be 
seen to be facet-inducing by lifting, and so the complement is not near-perfect. 

We use some of our earlier results to give a new polyhedral characterization of minimally 

imperfect graphs. 

Theorem 4.41. An imperfect graph is minimally imperfect i f  and only if  both it and its 

complement are near-perfect. 

5 

1 4 

v 

2 3 
Fig. 2. 
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(We give a proof of  necessity which is different from [ 19] .) In Section 4.6 we discuss 

briefly the problem of recognizing a near-perfect graph. It is shown that this problem is in 

coNP and that if it is in NP, then so too is the problem of recognizing a perfect graph. The 
rest of  this section contains basic definitions and notations. 

1.1. Definitions and notation 

We follow Bondy and Murty [4] for terms which we have not defined below. A graph 

G, is an ordered pair (V, E) consisting of  a node set V and edge set E. The edges are a 

subset of  { { u, v }: u, v E V, u v~ v }. (Note that by the definition there are no multiple edges 

or loops.) We denote a set { u, v } simply by uv. If  uv ~ E, the nodes u and v are said to be 

adjacent. The neighbourhood of a node v, denoted by N(v) ,  is the set { u E V: u, v are 

adjacent }. The closed neighbourhood of v, denoted by N[ v ], is the set N(v)  tA { v }. A stable 

set of G is either the 0 or a set of  mutually nonadjacent nodes of  V. A clique of  G is a subset 

of  V which is a stable set in G. The collection of  all stable sets (respectively cliques) of  G 

is denoted by ~ ( G )  (respectively JTc~(G)). The stability number (respectively clique 

number) of  G is denoted by ac,  or simply a, (respectively w~, or w), is the size of  a 

maximum stable set (clique) of  G. A stable set S (respectively clique), is universal if each 

maximum clique (respectively stable set) contains a node of S. For an integer k, a k-clique 

of G is a clique with k elements. Similarly we define a stable k-set. A colouring of G is a 

partition of  V into stable sets: the size of  a colouring is the number of  sets in the partition. 

A colouring is proper if none of  the stable sets is 0. The chromatic number of G, denoted 

by X~, or simply X, is the minimum size of  a colouring of G. A clique cover of G is a 

partition of  Vinto cliques. A clique k-cover is a clique cover of  size k. The size of  a minimum 

clique cover is denoted 0~. 

For X c V, the subgraph of G induced by X (or simply the graph induced by X), denoted 

by Gx, is the graph ( X, { uv: u, v ~ X, uv E E} ) . Such a graph is called an induced subgraph 

of G. The node set, edge set, stability number, clique number and chromatic number of  Gx 

are denoted by Vx, Ex, ax, oJx, Xx respectively. For a graph H, we say G contains H, if there 

is X C V, such that H--  Gx. 

A cycle, C, of G is a sequence of  distinct nodes Vo, vl . . . . .  vk- 1 such that for each i = 0, 

.... k -  1, vivi + 1 ~ E (using modulo k arithmetic). A chord of C is any edge vivj of  G with 

(l i - j [  mod k) > 1. A path P is defined similarly, except that YOrk-~ is not an edge. The 

nodes { Vo, vk- ~ } are called the endpoints of P and P is called a ( Vo, vk_ 1 ) -path. The internal 

nodes of the path P are the nodes Vl . . . . .  Vk-2. 
For X c V  we denote by X, the set V - X .  For X c V, the notation G - X  may be used to 

denote G~. Similarly for E '  _ E, G - E'  denotes the graph ( V, E -  E'  ). 

The graph obtained from G by replicating a node v, k >~ I times, is the graph with node 

set 

( V - -  {U}) ~.J{U 1 . . . . .  U k } 

and edge set 



300 F.B. Shepherd~Mathematical Programming 64 (1994) 295-323 

( E - { u v :  u ~ N ( v )  } ) U {viv;: l <~i,j<<.k} U {uvi: l <~i~<k, u ~ N ( v )  } . 

where v 1 . . . . .  v k are new, distinct nodes. A replication of G is a graph which is obtainable 
from G by replicating a sequence of nodes. Stable replicating is analogous to replicating 
except that the new nodes v 1 . . . . .  v k form a stable set instead of a clique. For w ~ Z v, we 

denote by G[w] the graph obtained from G by deleting each node v if w~ is nonpositive 
and replicating each node v, wv times otherwise. We define G(w) analogously for stable 
replication. 

2. Stable set polyhedra 

For a graph G, the stable setpolytope of G, denoted by P ( G ) ,  is conv( {xS: S is a stable 
set of G}).  The vertices of  P ( G )  are the integral vectors in 

{ x ~ Q V :  xv>~O f°r each n°de v E }  (5) 
x, +xv ~< 1 for each edge uv ~ " 

Since P ( G )  is full dimensional, there is a unique, up to positive scalar multiplication, facet- 
inducing inequality corresponding to each facet of P(G) .  An obvious family of valid 

inequalities is the class of  trivial inequalities: x~ >1 O, for each v E V. The corresponding face 
is called a trivial facet. A valid supporting inequality for P(G)  is called nontrivial if it does 
not induce a trivial face. The following fact is well known. 

2.1. Let G be a graph. Suppose that a .x <~ 1 is a nontriviaI facet-inducing inequality for  
P (G) .  Thena>>.O. [] 

Let A o be a matrix whose rows consist of all a ~ Q v, such that a .  x ~< 1 induces a nontrivial 

facet of  P ( G ) ,  i.e., P ( G )  = {x ~ Q v: A ~. x l ,  x ~> 0}. The next result shows that a defining 
linear system for the stable set polytope of a graph is inherited by its induced subgraphs. 

2.2. For any subset X of  V, P ( Gx) = { x ~ QX: x >~ O, A ~ . x ~ l } . [] 

Here Ax a denotes the matrix obtained by restricting to the columns in the set X. 
We describe a procedure due to Padberg [ 17], called sequential lifting, which is used to 

build facet-inducing inequalities from those for induced subgraphs. Consider X c  V and 
a.x<~l,  a valid inequality for P(Gx) .  Suppose v ~ V - X  and let 7 = l - m a x { a . x S :  
S~S(Gx_N(v) )  }. The lift of  a.x<. 1 to XU {v} is the inequality 7xv+a'x<<. 1. The next 
theorem shows that this operation can be repeated to obtain a facet-inducing inequality for 
P(G) .  

Theorem 2.3 (Padberg [ 17 ] ). Let G be an arbitrary graph and X c_ V. I f  a . x  <~ 1 is facet- 
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inducing for P ( Gx) , v ~ V -  X and y = 1 - max { a . )¢s : S ~ S ( Gx_ N¢~) ) }, then yx~ + a . x <<. 1 

isfacet-inducingforP(Gxut~).  [] 

We consider the substitution operation. Consider two node-disjoint graphs G and H. The 
substitution of  H for the node v (in G), denoted by Gv_~/~, is the graph obtained from 
(G - v) U H by joining each node of H to each node in N(v).  Chv~ital [ 6 ] has shown that 
a defining system of inequalities for P ( Q ~ r l )  can be described simply in terms of the 
inequalities for P(G) and P(H) .  Cunningham showed [ 11 ] that each of the inequalities 
described by Chv~ital is facet-inducing. 

Theorem 2.4 (Chv~ital, Cunningham). Let G and H be graphs and v a node of G. Then a 
nontrivial inequality is facet-inducing for P( Gv-~H) if and only if it can be scaled to be in 
the form 

G G( ~ a n x z ) 1 ,  (6) E ayXy  + a v  <~ 
y~V--lv} " Z~VH 

where a ~ and a H are, respectively, rows ofA ~ and A H. [] 

The following is an immediate consequence. 

Corollary 2.5. I f  G' is obtained from G by replicating a node v, k times, then A ~' can be 
obtained from A c by adding k -  1 copies of the column corresponding to v. [] 

Denote by 3"2 the class of graphs G with c~ = 2. Note that the weighted stable set problem 
is easy for this class of graphs as one need only check at most ] V 12 subsets of the nodes. A 
description of a defining family of inequalities for 3,2 was first given by Cook [ 10 ]. Knowing 
such a family for 3,z provides a useful testing ground for conjectures about general stable 
set polyhedra. We use the following notation: for a graph G and X__c_ V we denote by ~'(X) 
the set of all nodes v for which X__c_ N(v) if X v~ 0, otherwise/V(X) = V. 

Theorem 2.6 (Cook [ 10] ). I f  G ~ 3,2,  then the following system is defining for P( G) 

x~>0, (7) 

2x(K) +x(N(K)  ) < 2 for each clique K .  (8) 

Moreover, K' s inequality is facet-inducing for P( G) if and only if no component of G~i~ 
is bipartite. [] 

A proof of this result is given in [ 23 ] which also shows how to assign the integral dual 
variables for the associated LP. To state this result, let 3F* denote the set of all maximal 
cliques K for which G~7o:) is nonbipartite and does not contain any isolated nodes. 
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Theorem 2.7 (Shepherd [23] ). For G ~ ' 2 ,  the following is the minimal integral TDI 
system for P( G) : 

{ x  >~ O , 
2x (K)+x(N(K) )< .2  f o r e a c h K ~ * .  [] (9) 

The reader is referred to [ 20] and [ 22] for further background in polyhedral combinatorics. 

3. Perfect graphs 

In any colouring of a graph G, each node in a clique must have a distinct colour, hence 
X >/o). A graph is perfect if every induced subgraph H satisfies XH = o#/. This class of graphs 
was first defined by Berge; he made two conjectures (see [2] ) which have since attracted 
much attention. The first was resolved by Lovfisz [ 15 ] in 1971 and is known as the Perfect 
Graph Theorem: a graph G is perfect if and only if G is perfect. 

The smallest example of an imperfect graph is a chordless cycle of length five. Note that 
the chromatic number of this graph is 3 although the size of the largest clique is 2. An odd 
hole is any odd length (chordless) cycle of length at least five. The same reasoning shows 
that odd holes are imperfect. It is also easy to see that the complement of a hole with 2k + 1 
nodes has chromatic number k + 1 and maximum clique size k. Hence such graphs, called 
odd antiholes, are also imperfect. The second conjecture made by Berge, which remains 
unsolved, asserts that graphs without odd holes or antiholes are perfect. It is called the 
Strong Perfect Graph Conjecture because it immediately implies Perfect Graph Theorem. 

Conjecture 3.1 (Strong Perfect Graph Conjecture). A graph G is perfect if and only if 
neither G nor G contain an odd hole. 

A graph is minimally imperfect if it is imperfect and each proper induced subgraph is 
perfect. The Strong Perfect Graph Conjecture is equivalent to stating that the only minimally 
imperfect graphs are the odd holes and antiholes. 

We now examine some results on perfect graphs which we will need later. Our attention 
focuses on results relating to stable set polyhedra. 

3.1. Characterizations of perfect graphs 

Fulkerson [ 12 ] used anti-blocking theory to reduce the Weak Perfect Graph Conjecture 
to the following statement known as the replication lemma: if G is perfect, then so is any 
replication of G. 

Independently of Fulkerson's work, Lov~isz [ 15 ] settled the Weak Perfect Graph Con- 
jecture. His proof is based on the following theorem. 
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Theorem 3.2 (Lovfisz [ 15 ] ). If  G and H are perfect graphs, then substituting the graph H 

for any node of G results in a perfect graph. [] 

It follows that every perfect graph is pluperfect. The following is also immediate. 

Coro l la ry  3.3. If G is minimally imperfect, then G does not contain a pair of replicated 
nodes. [] 

Lov~isz later gave an even stronger characterization of perfect graphs. 

Theorem 3.4 (Lov~isz [14] ). A graph G is perfect if and only if for each subset S of V, 
ISI ~OJs~s. []  

Note that if I SI > ~eO~s, for some S _  V, then the graph Gs could not possibly be co s- 
colourable since each colour can be used for at most a s nodes of S. This characterization 
leads to another fact about minimally imperfect graphs: 

if G is minimally imperfect, then I Vl = ~co+ 1.  (10) 

About the same time, Chvfital noted that the results of  Lovfisz imply a characterization 
of a different nature. 

T h e o r e m  3.5 (see [6] ). A graph G is perfect if and only if 

P ( G ) = { x ~ " V :  (1) x>~O K } .  ~ 
(2) x( K) ~ 1 for each clique 

Note that Theorem 3.5 is equivalent to having for each w ~ Q v+, an integral optimum of  

maximize w .x, subject to the constraints (1) and (2) of Theorem 3.5. If  G is perfect, then 
for 0,1-valued vectors w this is just a restatement of  the definition of a perfect graph. Chv~tal 
appeals to the Replication Lemma to exhibit an integral optimum for any integral weight 
vector w. 

3.2. Minimally imperfect and partitionable graphs 

Forp ,  q >/2, a graph G is an (p, q) -graph if ] V I =pq + 1 and for each node v, G - v can 
be partitioned into q stable sets of  s izep and p cliques of size q. The following is immediate. 

3.6. I fGisa(p,q)-graph,  t h e n a = p , w = q , x = o ) + l a n d ~ = a +  l. [] 

In light of  this remark we refer to such graphs as (a ,  co)-graphs. We call a graph G 

partitionable if it is an ( a,  w)-graph. Note that Remark 3.6 implies that each partitionable 
graph is imperfect. It is easy to check that each odd hole and antihole is partitionable. In 
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fact it follows from the Perfect Graph Theorem and (10) that every minimally imperfect 
graph is partitionable. 

Other examples of partitionable graphs have been constructed in [7] and [8]. Indeed 
every known example of a partitionable graph has been shown not to be minimally imperfect 
(cf. [9] ). In [ 16] Lov~isz states: 

... it seems that virtually all structural results which we know for minimally imperfect 
graphs also follow for (a, to)-graphs. (This indicates the main difficulty in the proof of 
the Strong Perfect Graph Conjecture - it is difficult to determine that an (a, to)-graph is 
not minimally imperfect.) 

This suggests that the partitionable graphs act as impostors of the minimally imperfect 
graphs. 

The next theorem shows that partitionable graphs have some interesting and apparently 
strong properties. These properties were shown to hold first for minimally imperfect graphs 
by Padberg [ 18] and later for all partitionable graphs by Bland, Huang and Trotter [3]. 
For an (a, to)-graph G and each node v E V, arbitrarily choose a partition K~ . . . . .  K]  of 
G - v  into to-cliques and similarly choose a colouring S~ . . . . .  S~o of G - v .  In fact, the 
following theorem implies that these partitions are unique. 

Theorem 3.7 (Padberg [ 18] ; Bland, Huang, Trotter [3] ). I f  G is a partitionable graph, 

then G has the following properties: 
(1) G has exactly IVI w-cliques: in fact, {XK: K is a maximum clique} is linearly 

independent, 
(2) G has exactly I VI stable a-sets: in fact, {xS: S is a maximum stable set} is linearly 

independent, 
(3) each node is in exactly to maximum cliques, 
(4) each node is in exactly ~ maximum stable sets, 
(5) each maximum clique is disjoint from exactly one maximum stable set, 
(6) each maximum stable set is disjoint from exactly one maximum clique, 
(7) for any to-clique K, ( { K} U ( U v ~ x{ K7 } i~= 1 ) is the set of all maximum cliques in G, 
(8) for any a-set S, ({S} U (Uv~s{S~'}~'=l) is the set of all maximum stable sets in 

G. [] 

4. Near-perfection 

4.1. Some properties of near-perfect graphs 

A graph H is said to be bad if XH> toF/- Perfect graphs were originally defined in terms 
of the structure of their bad subgraphs, namely, that they do not have any such induced 
subgraphs. In contrast, near-perfect graphs are defined in terms of a polyhedral property. 
We prove a colouring characterization for the class of near-perfect graphs. This also leads 
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to a conjecture about a characterization of  a different type (given in Section 4.2). We begin 

by examining some of  the properties implied by near-perfection. 
2.2 shows that a defining linear system for the stable set polytope of  a graph is inherited 

by its induced subgraphs. Hence we have the following proposition. 

Proposition 4.1. I f  G is near-perfect and S is a subset o f  V, then G s is near-perfect. [] 

A subset S of  V is a bad set of G if Xs > tos. Evidently, a graph is perfect if and only if it 

has no bad sets. We now describe three properties which we show are possessed by near- 

perfect graphs: 

Pl: I f S  is a bad set, then as = a, for all Sc_V, 

P2: If  S is a bad set, then aS-Ntvl = C~s-- 1, for all S ~ V and v ~ V, 

P3: If  S is a bad set, then I S I > tosas, for all S c V. 

Proposition 4.2. I f  G is near-perfect, then G has property P1. 

Proof. Suppose S is a bad set of  G. By Proposition 4.1, Gs is near-perfect. Since Gs is 

imperfect. Theorem 3.5 implies that x (S )  ~ as is facet-inducing for P(Gs) .  Since as >~ 2, 

2.2 implies that as  = aa. []  

Clearly, a graph with property P1 need not be near-perfect. For example, the 5-wheel has 

property P1 yet lifting the odd hole inequality yields a non-rank inequality. This graph does 

not, however, have property P2. 

Proposition 4.3. I f  G is near-perfect, then G has property P2. 

Proof.  Suppose S is a bad set and v is some node. Since Gs u I~) is near-perfect and imperfect, 

x ( S U { v } ) <4 as u t ~ I must be facet- inducing. In p articular, we deduce that a s u t ~ ~ = as, i.e., 

a s -  Nt ~ ] <~ as - 1. Otherwise x ( S U { u } ) ~< as u ~ ~ } i s the addition of Gs' s rank inequality and 

the clique inequality for { v }, a contradiction. Furthermore there is a set ~ ,  of  I S U { v } I 

linearly independent incidence vectors of  stable asut~)-sets in Gsut~ .  The linear inde- 

pendence of S a implies that v must be in some maximum stable set of Gsuto). Hence 

aS-N[~] >1 aS-- 1. ThUS aS-N[v] = aS-- 1. [] 

We now show that near-perfect graphs must have property P3. 

Proposition 4.4. I f  G is near-perfect, then G has property P3" 

Proof.  The proof is by induction on to, the case to = 1 being trivial. We may assume that 

the bad set which violates the definition of P3 is V. So suppose G is near-perfect such that 

[ V I ~< toa and to > 1. The vector ( 1 / to) • 1 satisfies the inequalities in (4) and so is in P ( G ) .  

Thus for some A ~ Ns(o) satisfying 1. A = 1 we have ( 1 /to) 1 = E s ~ ( o ) A s X  s. Let k be an 
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integer such that koJAs ~ Y- for each S ~ ~ ( G )  : set ks = kwAs. Then k. T = E s ~ G ~  ks)( s. 
Let G'  be the graph obtained from G by replicating each node k times. Clearly wG, = kw. 

Also A gives rise to a colouring of  G '  with 

Z ks= co E as= co=coG, 
S E ~ ( G )  S~ ,~ ' (G)  

stable sets. Let $1 . . . . .  So, w, be such a colouring of  G'. Since this is an wG,-colouring, each 
Si is a universal stable set of  G'.  Each such set has a natural correspondence with a universal 

taG' stable set of  G. Let r =  I VI - ( c o -  1)~.  Now since Ei=l Iall = I V~, I =k l  VI, one of  the 
stable sets must have cardinality at least 

klVl IVl cote- ce+ r c~--r 
= ~ >  - -  ol - - ,  

O) G , CO O) 60 

which is at least r since co> 1 and r <  w. Thus G has a universal stable set S such that 

I V -  S I ~< ( co -  1 ) ~. Now if G - S is perfect, then clearly it is ( w - 1 ) -colourable. Other- 

wise, since G has property Pa, c~_  s = c~ and so by the induction hypothesis and the fact 

that G - S is near-perfect, G -  S is ( c o -  1)-colourable. Hence G is co-colourable. [] 

Fig. 3 shows a graph with property P2 but not P1. This graph and the 5-wheel together 

show that P1 and P2 are independent. This may not be true for the third property P3. (We  

discuss this further in the next section.) 

We complete this section by noting how the properties we have discussed are affected 

by the replication of  nodes. It follows from Corollary 2.5 that near-perfection is closed 

under performing replications. 

R e m a r k  4.4.1. The replication of a near-perfect graph is near-perfect. [] 

We also have the following. 

¢ 
Fig. 3. 
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Remark  4.4.2. The replication of a graph with property P1 has property P~. 

Proof. Suppose G has property P~. Let G'  be a replication of  G and S be any bad set of  G',  

Since G~ is imperfect it must contain an induced minimally imperfect subgraph H' .  Cor- 

ollary 3.3 states that H '  cannot contain a pair of  replicated nodes. Thus G contains an 

induced subgraph H isomorphic to H' .  We have c~H= ~ ( -- c~G, ) and since c~/= ~xn, ~< as 

we must have c~ s = c~G,. Hence G'  has property P1. []  

The following is proved in a similar fashion. 

R e m a r k  4.4.3. The replication of a graph with property P2 has property P2- [] 

This does not hold for property P3. Fig. 4 shows a graph which has property P3 but 

replicating the node v yields a graph G' with 12 nodes and w~,aa, = 12. It is, however, 

straightforward to check that XG' > 3 = wG, and so G'  does not have property/3.  We consider 

one more property that a graph G may have: 

P *  : each replication of  G has property P3. 

4.2. A conjecture and a characterization 

In this section we give a characterization of  near-perfect graphs. We also make a conjec- 

ture about an alternative characterization. 
First, we show that graphs with properties P1 and P3 have a strong colouring property. 

Proposi t ion 4.5. I fG has properties P1 and P3, then x ( G )  = max{ w, [I V[ /a]} .  

Fig. 4. A graph with property P3 but not P*. 
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Proof. The proof is by induction on [ V I , the base case being trivial. Now if G satisfies the 
hypotheses and I VI < o~a, then certainly the proposition holds. So suppose I Vl = ma + r, 
m >/w, 1 ~< r < c~. Let S be a maximum stable set of G. If a G_ s < ~, then since G has property 
P1, G - S  is we_ s-colourable. Otherwise, m = [I V - S  I~ (aa_s)] and so by the induction 
hypothesis is m-colourable. In either case we can colour G with m + 1 colours. [] 

We now give the characterization. The proof of this result also shows that if G is near- 
perfect, then P(G) has the integer decomposition property (see [ 1 ] ). 

Theorem 4.6. A graph is near-perfect if and only if it has properties P~ and P~. 

Proof. First suppose G is near-perfect. Then Remark 4.4.1 states that any replication of G 
is near-perfect. Hence Propositions 4.2 and 4.4 imply that G has properties P~ and P~ .  

Conversely, suppose G has property P1 and P * .  Let x be a rational vector in the poly- 
hedron defined by (4) and let k be an integer such that kx ~ 77 v. Let G' be obtained from G 
by replicating each node v, (kx)v times. Remark 4.4.2 and our hypothesis then imply that 

G' has properties P1 and P3. (4) implies that kx(K) <~k for each clique K of G. Hence 
w e, ~< k. Also x satisfies I Vc, I = kx(V) <<. ka c and so [I VG, I/c~] ~< k. Thus if c~G, = c~, then 
by Proposition 4.5, G' is k-colourable. Otherwise aa, < a and hence must be a replication 
of an induced subgraph H of G with a n <  c~. Thus H is perfect and so by Theorem 3.2, G' 
is also perfect and hence c~c,-colourable. In either case G' is k-colourable and so kx is the 

sum of k vertices of P (G) .  Hence x is a convex combination of vertices of P (G) .  It follows 
that P (G)  is given by (4). [] 

This theorem is the best possible in the sense that we cannot relax either of the conditions. 

It is clear that we cannot eliminate the condition of having property P1 but neither can we 
relax the condition of P * .  For example, Fig. 4 shows a graph with properties P1 and P3 
(but not P *  ). This graph is not near-perfect since the node w together with the bad set 
forming the odd cycle of length nine, violate the requirement in the definition of P2. 

It would be desirable to have a characterization which did not require a property to hold 
for each replication of a graph. We do not know of a graph which has properties Pa, P2 and 

P3 but not P * .  We conjecture the following. 

Conjecture 4.7. A graph is near-perfect if and only if it has properties P1, Pz and P3" 

As mentioned in the preceding section, we do not even know if property P3 is independent 

of P1 and P2. We conjecture the following. 

Conjecture 4.8. Ira graph has properties P1 and P2, then it has property P3. 
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Of course if Conjecture 4.8 holds then using Remarks 4.4.2, 4.4.3 and Theorem 4.6 we 
could also prove the following conjecture. 

Conjecture 4.9. A graph is near-perfect i f  and only i f  it has properties P1 and P2. 

An equivalent form of this conjecture is the following: 

Conjecture 4.10. Given a graph G, exactly one o f  the following statements is true: 

• G is near-perfect. 

• G contains a minimally imperfect graph L such that the inequality x(1) ~ al can be 

lifted to V to obtain an inequality other than x(  V) <<. a. 

Let us examine the equivalence of the two conjectures. Suppose G is a graph which has 

properties P1 and P2. Let H (not a clique) be an induced subgraph such that X(VH) ~< an  is 
facet-inducing for P ( H ) .  Suppose v ~ V -  VH, then since H contains a bad set, lifting results 
in a coefficient of 1 for the new node v. 

Conversely, suppose that G is a graph such that lifting a non-clique rank inequality which 
is facet-inducing for an induced subgraph of G results in a rank inequality for a larger 

subgraph. Now suppose H is a minimally imperfect subgraph of G. If v ~ V -  VH, then since 

lifting the inequality x(VH) ~< aH yields a rank inequality, we must have aVH-N~ = an- -  1. 

It now follows that G has property P2. Repeating this lifting process we obtain the inequality 

x (V)  <<. an. Thus an = a, and so G has property P~. 
We end this section by noting that Conjecture 4.9 holds for graphs G, with aa  = 2. 

Theorem 4.11. For a graph G with a~ = 2, the following are equivalent: 

(1) G is near-perfect. 

(2) G has properties P1 and P2. 

(3) For each node v, GN(o~ is perfect. 

Proof. We already know from Propositions 4.2 and 4.3 that (1) implies (2). Now suppose 
G is a graph with properties P1 and P2 and v ~ V. If GN(v~ is not perfect, then it contains an 
induced minimally imperfect subgraph, H say. But then aH-S(v~ = 0 ¢ all-- 1, a contradic- 
tion. Hence G must also satisfy (3). 

We now show that (3) implies (1). This follows from Theorem 2.6 which states that 
any, facet-inducing inequality of P ( G )  can be scaled to be in the form 

2x(K) + x ( F ( K ) )  ~<2, where K is a clique such that Gr(r) is nonbipartite (i.e., Gr(K) is 
imperfect). Thus G is near-perfect if and only if F(K)  is perfect for each nonempty clique 
K, or equivalently GN(v) is perfect for each node v. [] 

For k >  2 let Mk be the graph (called an even MObius ladder) with vertices v0, Vl . . . . .  

V2k- 1 and edges vivi+ 1 for i = 1 . . . . .  2 k -  1 and vivi+ k for i = 1 . . . . .  k (arithmetic is mod 2k). 
Note that Theorem 4.11 implies that the complement of Mk is near-perfect. Moreover, it is 
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routine to check that the stable set polytope of  M~ has a rank facet associated with its node 

set (this can also be argued using a result of  Chv~ital [ 6 ], since Mk is so-called a-critical). 

These facts together imply that the near-perfect matrix associated with the complement of  

Mk defines a polytope with a fractional vertex which is not associated with a minimally 

imperfect induced subgraph of  Mk (i.e., an odd hole). 

4.3. Strong decompositions and a finite characterization 

As noted previously, Conjecture 4.9 is equivalent to Conjecture 4.8. We now study the 

structure of  a counterexample to this latter conjecture with a minimum number of  nodes. 

These are graphs which have properties P1, P2 and not P3 but for which every proper induced 

subgraph has property P3. Recall that a universal stable set is one which contains a node of  

each maximum clique. We then show that the node set of any such graph can be partitioned 
into two sets Q and Q which satisfy: 

• Q is a universal maximal stable set of  G of  size at most a - 1, 

• Q induces a minimally imperfect subgraph. 

Any graph with properties P1 and P2 which can be partitioned in this fashion is called 

decomposable relative to the set Q and (G, Q) is called a decomposition (of  G). The pair 

(G, Q) is called a strong decomposition if it is a node minimal counterexample to Conjecture 
4.8. 

We need the following fact. 

L e m m a  4.12. I f  A, B are m × n matrices and m > n, then A .  B x is singular. [] 

We next show that there is a universal stable set in a minimum counterexample to 

Conjecture 4.8. 

L e m m a  4.13. I f  I V~I <<- oga and G -  v is w-colourable f o r  each node v in some maximum 

stable set So, then G has a universal stable set o f  size at least r=max{1 ,  

IWl- (w-  1)a- 1}. 

Proof.  Let So be a maximum stable set of  G. For each v ~ So, let S~ . . . . .  SO be a colouring 

of  G -  v. Then ~ = So U ( U ,  ~ so { S~ } ~o= 1 ) is a collection of  aw + 1 stable sets of size at 

least r. Note that for each maximum clique K, if v ~ S o -  K, then K must intersect each of  

S~ . . . . .  S'~o. Thus we deduce: 

each ~o-clique is disjoint from at most one member o f ~ .  (11) 

Let A be a matrix whose rows are incidence vectors of  the stable sets in S p. If  no stable 

set in S p is universal, then for each S ~ S p we can choose an w-clique Ks with S f3 Ks = ~. 

Let B be an m × n matrix such that for i = 1 . . . . .  m, the ith row of B is X rs if the ith row of 
A is X s. Then A .B ~ = J - I  which is nonsingular, contradicting Lemma 4.12. []  
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The idea of  constructing the collection S :  as defined in the previous proof was first used 

by Bland, Huang and Trotter [ 3 ] to prove Theorem 3.7. The construction is used again in 

the next theorem (the first part of  the proof is nearly identical). We show that, in the 

definition of  an (c~, 09)-graph, we can remove the condition of G - v  being clique ~- 

coverable for each node v if we insist that there are no universal stable a-sets. 

Theorem 4.14. A graph G is partitionable if and only if for  some p, q >~2 such that 

I Vl = P q +  1: 
• G has a family o f  I VI stablep-sets, 9 ,  such that each node is in exactlyp o f  the sets 

in 9 .  

• G has no stable p-set which intersects every q-clique. 

Proof. Le tA be a matrix whose rows are incidence vectors of  the sets in S: .  By hypothesis, 

for each S ~ 9 we can choose an n-clique Ks such that S N Ks = 0. Let B be a matrix whose 

ith row is X xs if the ith row of A is X s. Then 

• a .B a. 1 = q ( 1  .B T. 1) = q ( l V [ p ) .  

Hence A. BT has exactly [ V I ( I V I - 1) ones and I V I zeros, that is each column has exactly 
one zero and so A. B T = J -  L Since J -  I is nonsingular, each of  A and B T is a nonsingular 

] VI × [ VI matriX. Thus for each v E V, there is a unique solution to 

B T . x = T - - X  ~") . (12) 

Furthermore, the unique solution to (12) must also be the unique solution to 

A . B T . x = A  • ( 1 - X  ("~) . 

But the vth column of  A satisfies this last equation. Hence the solution to (12) is (0, 1)- 

valued. It follows that for each node v, G - v can be partitioned into p q-cliques. Similarly, 

G - v can be partitioned into q stable sets of  size p. It is straightforward to check now that 

p = a, q = 09 and so G is an (a ,  09)-graph. []  

We also have the following consequence. 

Corol lary  4.15. I f  ] V I = c~09+ 1, G has no universal stable a-set, and for  some stable a- 

set So, G - v is 09-colourablefor each node v ~ So, then G is an (~, og)-graph. [] 

The theorem also implies the following. 

Corol lary  4.16. For a partitionable graph G: G -  e is partitionable (for an edge e) i f  and 

only if e is not contained in any maximum clique. 

Proof. The proof of  necessity is easy. So suppose that e is not contained in any maximum 
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clique. Applying Theorem 4.14 to the complement of  G - e  shows that there is again the 

desired collection of  q-cliques. []  

This immediately implies the following well-known fact. 

Corol lary  4.17. I f  G is partitionable and aG_ e > a, then e is in some maximum clique. [] 

We cannot replace 'partitionable' in Corollary 4.16 by minimally imperfect. This is 

because it could be that G is minimally imperfect and G - e is partitionable but not minimally 

imperfect. This would imply that G contains a perfect induced subgraph H such that H -  e 
is minimally imperfect. We give the following result on the structure of  such graphs 

(although we will not use it). 

Proposi t ion 4.18. I f  G is perfect and G -  e is minimally imperfect, then G has a unique 
maximum clique and e is the unique edge of G whose removal leaves a minimally imperfect 
graph. 

Proof.  Let e = uv and set G'  = G - e. Clearly o) = ~0 G, + I since G is perfect. We also have 

c~ = ~a,. Hence e lies in each maximum clique of  G. Now if G has two maximum cliques 

C1, C2, then C1 - { u }, C1 - { v }, C2 - { u } and C2 - { v } are distinct maximum cliques of  G'.  

But 

X Cl-{u l  - X  Cl-{v} - X  Cz-{u} "~-X C2-{°} = 0 ,  

contradicting the linear independence of  the maximum cliques in G'. Let K be the maximum 

clique of  G and denote by K,, and Ko denote the cliques K -  {u} and K -  {v}. Similarly let 

G, and Go denote the graphs G -  {u} = G ' -  {u} and G -  {v} = G ' -  {v}. 

Claim. A clique a-cover of G. (respectively Gu) must contain K. (respectively Kv). 

Proof.  Let C1 . . . . .  Ca be a clique a-cover of  G, and C~ . . . . .  C'~ be such a cover for Gv. 

Note that Ko 4: Ci and K, v~ C~ for each i. But also 

xKu __ xKv .~_ xC1A¢- . . . .~_ xCc~_ xC] . . . . .  ,~,c~ = 0 , 

and this is a nontrivial linear combination unless both K,~{C1 . . . . .  Ca} and 
! Ko e { C~ . . . . .  Ca }, and the claim follows. []  

Now suppose that there is some other edge xy such that G - x y  is minimally imperfect. 
Without loss of  generality, v 4: x, y. The claim implies that any a-cover of  G -  v must contain 

Kv but on the other hand G - { v } - x y  must also have an a-cover since G - x y  is minimally 

imperfect. But K -  { v } is not a clique in this graph, a contradiction. [] 

The next theorem describes the structure of ( a, ~o)-graphs as induced subgraphs. 
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Theorem 4.19. l f  G is an (a ,  09)-graph and H is a proper induced subgraph which is a 

partitionable graph, then aH< a and 09H < 09. 

Proof. Suppose H is a proper induced subgraph of  G which is an (all, WH) -graph. Without 

loss of  generality, 09H < OJ. NOW suppose a H=  a. Consider the LP 

rain 1.x 
x ( K )  >~ 09- 09H for each 09-clique K, (A)  

x > ~ 0 .  

Clearly X v-vH is a solution to (1) and IX v-vÈ= 09a+ 1 - 09Hall-- 1 = (09-- 09H)a. But 

the dual of  (A) is: 

max (09 -09H) l ' y )  

Ex:~ ~K YK ~< 1 for each node v ,  (B) 

y~>0. 

Theorem 3.7 implies that setting Yx = 1 / 09 for each w-clique K yields a feasible solution, 

y, to (B) such that 1 .y = (09-  09H) ( a +  1/W). This contradicts weak LP duality, therefore 

all< a. [] 

This implies the following result. 

Corol lary  4.20. I f  G has property Pm and H is an induced subgraph which is a partitionable 

graph, then H is minimally imperfect. [] 

We can now prove the main structural result. 

Proposition 4.21. I f  G is a minimal counterexample (with respect to the node set) to 

Conjecture 4.8, then G is decomposable. 

Proof. Suppose that G is a minimum counterexample. Then IV[ ~< wa and X>  w. Set 

r = IV] - ( w -  1 ) a -  1. By minimality and Proposition 4.5 we have 

G has no universal stable set of  size greater than r .  (13) 

Since G is imperfect and has property P2, each node is in a stable a-set. Thus a t -  v = a 

for each node v. Also wo-v  = 09 for each node v (otherwise v would be in a universal stable 

a-set). Thus by minimality, G - v  is 09-colourable for each node v. Hence by (13) and 

Lemma 4.13, G has a universal stable set, S, of size r. In particular, note that r is positive. 

Now we = 09-  1 and ] S] = wga + 1. Thus Gg is imperfect and so a~ = a. Since any universal 

stable set of Ge is also universal for G, Gs cannot have a universal stable a-set. It follows 

that 09s-v = 09s for each node v (otherwise v would be in a universal stable a-set) and since 

each node v ~ S  is in a stable a-set of Gs (by property P2), as~_v = a .  H e n c e l S -  v I ~< 
09s-va~-~ for each node v and so Gs-o  is w~_~-colourable. Theorem 4.14 now implies 

that Ge is an (a,  09-  1)-graph. Hence by Corollary 4.20, G~ is minimally imperfect. [ ]  
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For a decomposition (G, Q), we denote by ~ / ( Q )  the collection of maximum cliques in 
G 0. We say a clique Kin  .~e'(Q), is straddled by a node v ~ Q, i fKc_N(v).  We denote by 

Z o ( v )  (or Z ( v )  if the context is clear) the collection of all cliques in ~ ' ( Q )  which are 
straddled by v. We now bound the number of cliques straddled by a node in Q. 

Lemma  4.22. Suppose G has property P2. I f  ( G, Q) is a decomposition and v ~ Q, then 
I Z Q ( v )  I ~< oJ. 

Proof. Suppose K ~ o ( v  ). Theorem 3.7 states that {K} U ( Ux~r{K x } no i= 1 ) is exactly the 
set J¢" (Q). Since c~ 0_ ~v~ v~ -- c~o - 1 it follows that for each x ~ K, at most one of the cliques 
in the partition K~ . . . . .  KXo is straddled by v. Hence I ~ o ( v  ) [ ~< IKI + 1. [] 

In light of Lemma 4.22, for k = 1 . . . . .  ~o we call v a k-node if I "~Uo(v) [ = k. Recall that 

a decomposition (G, Q) for which G is a minimal counterexample to Conjecture 4.8 is 
called a strong decomposition. The next lemma shows an even stronger condition which 
must be possessed by these decompositions. 

Lemma  4.23. I f  (G, Q) is a strong decomposition, then each maximum clique of G O is 
straddled by some node. 

Proof. Suppose that K is in ~ ' ( Q ) .  By Theorem 3.7 there is a stable c~-set S of G O which 
intersects every maximum clique of ~ ' ( Q )  except K. Since S is not a universal stable set 

o f G ( b y  ( 1 3 ) ) , K m u s t b e c o n t a i n e d i n a m a x i m u m c l i q u e o f G .  [] 

Lemma 4.23 and Theorem 3.7 imply the following. 

Corollary 4.24. For a strong decomposition ( G, Q) we have 

IX(v) I >~o~(oJ- 1) + 1. [] (14) 
v~Q 

The right hand side of (14) may be even larger when there are cliques of J{ (Q)  which 
are straddled by more than one node. We now show that such cliques must exist. 

The straddle intersection graph of (G, Q), denoted G °, is a bipartite graph with bipar- 

tition ( Q, ~"  ( 0 ) ) : there is an edge between a node v and clique K if K ~ • (v). Using this 
terminology, Lemma 4.23 states that each node in ~ ' ( Q )  has degree at least one, or: 

IX(v) l= ~ dGQ(K). (15) 
v~Q KEJe'(O) 

The next lemma proves that the right hand side of (15) is larger than I ~ ( Q )  I by at 
least one half the number of w-nodes in Q. 
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Lemma 4.26 I f  (G, Q) is a strong decomposition and v is an w-node, then there is some 
other node u, such that H ( v ) n YY'(u) v~O. 

Proof. Let v be an to-node. Since G has property P2, there is some stable a-set, S, such that 
SN Q =  {v}. Let K ~ ( v ) .  Then without loss of generality, for each x ~ K ,  S intersects 
K~ . . . . .  K~,. Thus ~ ' ( v )  = {K} U ( Ux~r{K~ }). Hence S intersects each clique in ~ ' ( Q )  
except those in ~ ( v ) .  Since S is not universal, some other node must straddle one of the 
cliques in ~-~U(v). [] 

We use this lemma to enlarge the class of graphs for which we know Conjecture 4.8 
holds. This new class is considerably more complex than the graphs with stability number 
two. 

Theorem 4.26. I f  G is a strong decomposition, then ~ >>- 2o9 + 1. 

Proof. Suppose (G, Q) is a strong decomposition. Let m be the number of w-nodes in Q. 
Then by Lemma 4.25 and (15) 

I X ( v )  [ ~>a(oJ-  1) + 1 + ½ m.  
v~Q 

But also, 

] ~ ( v )  [ <-~ [Q[ ( w - 1 )  +m<<. ( a - 1 ) ( t o - 1 )  + m .  
v~Q 

Combining these two inequalities yields m ~> 2w. But also m ~< a -  1, hence the result. [] 

Since o) ~> 3 for any strong decomposition, this implies the following. 

Corollary 4.27. For a graph G with a ~< 6, the following are equivalent: 
( 1 ) G is near-perfect. 
(2) G has properties P1 and P2. [] 

We show in the next section that we can improve the bound of 6 in Theorem 4.26. 
We now give the main results of this section which arefinite characterizations of near- 

perfect graphs: that is, we do not require a property to hold for every replication. The result 
brings us close to resolving Conjecture 4.7. A graph G has property p2 if for any stable set 

S with [ S[ < c~, the graph obtained by replicating once, each node in S, has property P3- 

Theorem 4.28. A graph G is near-perfect if and only if it has properties P1, P2 and p2. 

Proof. Theorem 4.6 implies that we need only show that if G has properties P1, P2 and P~, 

then it has property P~'. If  this is not the case, then some replication G[w] of G gives rise 
to a strong decomposition (G[w] ,  Q). By Corollary 3.3, G[w]o contains no replicated 
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nodes. Hence any new nodes may be presumed to be in Q, but this contradicts G having 

property PS. [] 

Theorem 4.29. Let G be a graph and A be its clique-node incidence matrix. Then G is near- 

perfect if  and only if zc = max{ cx: x >1 O, A . x <.< 1, 1. x <<. cz } is integral for  each O, 1, 2-valued 
objective function c. 

Proof. One direction is obvious to suppose that G is not near-perfect. We show that zc is 
fractional for some c ~  {0, 1, 2} v. If G does not satisfy PI, then there is a 0, 1 objective 
function corresponding to a minimally imperfect subgraph which yields a fractional opti- 
mum. So suppose that G has property P1 but not P2. Then there is some minimally imperfect 
subgraph H and node v ~ V~/such that v is not in any stable a-set contained in VHU {v}. 
Thus if c = xvH+ 2X ~ ,  the maximum c-weight of a stable set of G is c~. Conversely, one 

checks that 

~ - 1  1 y = ~(vn+ X~V~ 
( a - 1 ) w + l '  a w + l - w  

is feasible for the LP in the theorem statement. Furthermore, zc >~ c. y > a. One also checks 
easily that zc < c~ + 1 and so c is an appropriate objective function. So suppose that G has 
properties P1 and Pz. Theorem 4.28 implies that there is a 0, 1,2 vector c such that G' = G [ c] 
is a strong decomposition. We let w', X' denote the maximum clique and fractional colouring 

numbers of G'.  Then 

z,,<~max{cx: x>~O, A.x<<, 1} = min{1 .y: y.A>~c, y>~0} =X' .  

We can fractionally colour G'  by combining a fractional colouring of a minimally imperfect 
graph (with maximum clique size o9' - 1 ) with a single stable set. Thus 

X' ~< 1 + { ( ~ o ' - 1 ) + 1 } <  ~o' + 1. 

On the other hand, by the nonexistence of a universal stable set of appropriate size, we have 
X' > w'- So let (y, r/) be an optimal solution for 

zc= min{1 "y + a~7: y, ~7>~0, y . A  + ~ql >>.c}. 

We have just seen that r /> 0. Also note that y~ ( 1 - "q) yields a fractional colouring of G' 
and so 1 . y > ( 1 - r / ) w ' .  Thus T . y + c e ~ > w ' + r / ( c ~ - ~ o ' )  which is greater than w' by 
Theorem 4.26. Thus z~ ~ ( w', w' + 1 ) and we are finished. [] 

4.4. Assuming the Strong Perfect Graph Conjecture 

We now show that Conjecture 4.9 follows if the Strong Perfect Graph Conjecture holds. 
Our approach is to examine how the ,o-nodes in a decomposition interact, i.e., how they 
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jointly straddle cliques. In this section, all graphs are assumed to have both properties P~ 

and P2. 

L e m m a  4.30. I f ( G ,  Q) is a decomposition o f  G, v ~ Q is an w-node, then: 

(1) there is a unique stable a-set o f  G which contains v, 

(2) for  K ~ ~" ( G - r) - Z  (v) ,  v is not contained in a stable a-set o f  G - K .  

Proof.  We first show ( 1 ). Suppose that S is a stable a-set containing v and x ~ S -  v is a 

node which is not contained in every such stable set. Now let K be an (o9-  1)-clique in 

G - v which contains x. Clearly, Kff  , ,~(v).  Thus for some node z ~ K, two of  the cliques 

in the minimum clique cover of  G - z must be straddled by v (otherwise [ ,,~ (v) [ ~< [ K[ ). 

This implies that z is in every stable a-set containing v, but zx  ~ E, a contradiction. 
Now suppose that K ~  ~ ' ( G  - v) -,,TC~(v) and K'  ~ ~g/(v). We have seen that v straddles 

exactly one of  the cliques in the clique cover of  G - x for each x ~ K'. Furthermore, one of  

these clique covers, for z ~ K' say, contains the clique K as well. Since zv ~ E, it follows 

that each stable a-set containing v must intersect K. []  

A graph G is called sparse if it is triangle-free and has a subgraph which is an odd cycle 

of  length [ V[. We show that sparse graphs are imperfect. 

L e m m a  4.31. I f  G is sparse, then it is imperfect. 

Proof.  Since G contains a spanning odd cycle, we have that a~< ½IV[. Hence, since I VI is 

odd we have that [ V[ > 2 a  = wa. [] 

We call a decomposition (G, Q) for which G O is an odd hole, a hole-decomposition. For 
the next few paragraphs we let (G, { v } ) be a hole-decomposition and v be an w-node. Note 

that v is of  one of  three types. By our assumption, G -  v is simply an odd cycle on 2a  + 1 

nodes. Hence each clique straddled by v is an edge. We say that v is a type i node if the 

length of a longest path in GN(v) is i. Fig. 5 shows a type one node and a type two node. Let 

T be the neighbours of  v which are contained in a triangle of G. It follows that if v is of  type 

i, then G -  ({ v } U T) has exactly 4 -  i components (each of  which is a path). A segment 

ofv is a subset of  the nodes of  the form UU { u, v }, where Gv is a component o fG - ({ v } U T) 

and {x, y} are the two nodes of  Twhich  are adjacent to U (i.e., to some node of  U). Note 

that for any segment X, Gxu tvj is triangle-free and so Lemma 4.31 implies the following. 

L e m m a  4.32. I f X  is a segment o f  v, then I Sl is odd. [] 

We are now ready to prove our main lemma. 

L e m m a  4.33. I f  (G, Q) is a hole-decomposition and u, v ~ Q  are w-nodes, then 

• (u)  n ~ ( v )  ¢ o  
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Fig. 5. Example of a type one node (v) and type two node (w). 

Proof. Suppose that the statement is false and let u, v satisfy the hypotheses but 

Y~(u) O • ( v )  = 0. We consider three cases. 
Case 1 (At least one of the nodes, say u, is of type three). Let the edges straddled by u 

be XoXl, xlxz, x2x3. It follows that these edges lie in the graph induced by some segment, X 
say, of v. Hence G ' =  G~,,v~ u (x-txl~2~ is triangle-free. Furthermore, by Lemma 4.32, G' 
has an odd number of nodes. Hence by Lemma 4.31, G' is imperfect, contradicting the fact 

that G has property Pa. 
Case 2 (At least one of the nodes, say u, is of type two). Let u' be the node of N(u) 

which is contained in two of the triangles containing u. 

Case 2a (A segment X, of u is contained in some segment Y, of v). Since IXI, I Y[ are 
odd it follows that G~, ,v lu(r - (xu/u '~  has an odd number of nodes, and is hence sparse. 
Thus by Lemma 4.31 this contradicts the fact that G has property P~. 

Case 2b (There are distinct segments Y~, I12 of v, which contain edges straddled by u). 
Let I11 be the segment of v which contains u'. Let P be a (u, v)-path whose internal nodes 
are contained in YI--N(Yz).  Now since [Y21 is odd, there is another (u, v)-path in 
Gr2 u ~,,~ ~ whose length is of different parity from P. The union of the nodes of the two paths 
induces a sparse graph, a contradiction. 

Case 3 (Both u and v are type one). 

Case 3b (Two segments X1, X: of one of the nodes, u say, is contained in a single segment, 
X, of v). In this case (XU {u, v}) - (X1 t.JX2) induces a sparse graph, a contradiction. 

Case 3b (There is some segment X, of u say, which contains exactly one edge straddled 
by v). As in Case 2b, there are ( u, v ) -paths in Gxu ~,.~ ~ whose lengths are of different parity. 
We obtain an induced sparse subgraph by taking the union of one of these paths with an 

appropriate (u, v)-path which passes through one of the other segments of u. [] 



If (G, 

I ~ ~ ( v )  ~ > 2 a + l .  
v~Q 

Thus I Q I ~> a, contradicting the definition of a decomposition. 

The following is now immediate. 
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We now prove the main result of this section. 

Theorem 4.34. No hole-decomposition is a strong decomposition. 

Proof. Suppose that (G, Q) is a hole-decomposition. By Lemmas 4.22 and 4.33 we have 

I ~ Y~(v)I'--<2IQ[ + 1 .  
v~Q 

Q) is also a strong decomposition, then by Corollary 4.24 we have 

[] 

Theorem 4.35. I f  the Strong Perfect Graph Conjecture is true, then so too is the Conjecture 
4.9. [] 

B. Reed [21 ] noted how a result of Tucker shows that the previous theorem may be used 
to improve the bound in Theorem 4.26. 

Proposition 4.36. I f  G has properties P1, P2 and a <<. 10, then G has property P3. 

Proof. The proof is similar to Theorem 4.26 except that we may assume that the minimally 
imperfect graph G O is not an odd hole or antihole. Tucker [24] has shown that any such 
graph must have a clique of size 4. Hence the lower bound in the proof of Theorem 4.26 
becomesa t>2~o+11>2.5+l .  [] 

We immediately have the following. 

Corollary 4.37. For a graph G with a <<. 10, the following are equivalent: 
(1) G is near perfect. 

(2) G has properties P1 and P2. 

4.5. A polyhedral characterization of minimally imperfect graphs 

We have seen that the complement of a near-perfect graph need not be near-perfect. We 
show that the only imperfect near-perfect graphs for which the complement is near-perfect 
are the minimally imperfect graphs. In fact, we only require that both the graph and its 
complement have property P1 (or Pz). 



320 F.B. Shepherd / Mathematical Programming 64 (1994) 295-323 

Theorem 4.38. The following are equivalent for an imperfect graph G: 
(1) G is minimally imperfect, 

(2) both G and G have property P1, 

(3) both G and G have property P2. 

Proof. Clearly (1) implies (2).  Since each node of a minimally imperfect graph is in a 
maximum stable set and a maximum clique (1) also implies (3). 

It is straightforward to check that (2) and (3) both imply that if S induces a minimally 

imperfect graph in G and v ~ V -  S, then tosu tv~ = Ws and C~su tv~ = as. We use this fact to 
show that both (2) and (3) imply (1). For let S be a subset of V such that Gs is minimally 
imperfect and subject to this w s + a s is minimized. If S v~ V, then consider v ~ V - S .  Set 
N = N ( v )  AS, 1 Y = S -  N. Now consider w ~ S  and set GW =Gsutvt - w .  Note that G w has 

the same number of nodes as S, that is, astos + 1. Furthermore since Gs is minimally 
imperfect it is easy to show that a~w = a s and W~w = tos (i.e., deleting w does not destroy 
all of the maximum cliques or stable sets). Hence G w has a~w to~w + 1 nodes and so contains 
a minimally imperfect subgraph. But by our choice of S, G w must itself be minimally 
imperfect. In particular, v must be in exactly Ws cliques of size tos. Thus N -  {w} contains 

exactly tos cliques of size tos - 1. Thus choosing w ~ .~  implies that N contains exactly tos 
cliques of size (Ws-  1) and choosing w to be some node in a maximum clique of G w which 
contains v, implies that N contains at least (tos + 1) cliques of size ( to s -  1), a contradiction. 
Thus S must be the whole node set V. [] 

An induced subgraph H of G is called diminished if WH < to or a,~ < a. It is not the case that 
any proper minimally imperfect induced subgraph is diminished but instead we have the 
following. 

Corollary 4.39. I f  H is a minimally imperfect induced subgraph of G, then either H is 
diminished or for each v f~ V H there is a diminished minimally imperfect subgraph whose 

intersection with V -  VH is { v }. [] 

Corollary 4.40. Every imperfect graph which is not minimally imperfect contains a dimin- 

ished minimally imperfect subgraph. [] 

We now give the promised polyhedral characterization and a new proof of Theorem 1.3. 

Theorem 4.41. An imperfect graph G is minimally imperfect i f  and only if  both G and 
are near-perfect. 

Proof. First suppose that G is minimally imperfect. Clearly G has properties P1, P2 and P3. 
Furthermore, replicating each node of a stable set of S of G cannot result in a strong 
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decomposition. Otherwise by Lemma 4.23 S would be a universal stable set of G, Hence 
by Theorem 4.28 G is near-perfect. 

Conversely, if G and G are near-perfect, then they both have property Pz by Proposition 

4.3 and so by Lemma 4.38, G is minimally imperfect. [] 

4. 6. The recognition problem 

The recognition problem associated with a class ~ of graphs is a decision problem which 
takes a graph G as input and outputs YES if G ~ ~ and NO otherwise. We denote by 

PERFECT, MINIMPR and NEARPERF the recognition problems associated with classes 
of perfect, minimally imperfect and near-perfect graphs respectively. At present, none of 
these problems is known to be polynomially solvable. Gr6tschel et al. [ 13] and Cameron 
[5] have shown that PERFECT is in coNP. 

4.42. The problem PERFECT is in coNP. [] 

Furthermore the following is easy to show. 

4.43. MINIMPR is in coNP. [] 

On the other hand the following problems are still open. 

Conjecture 4.44. PERFECT is in NP. 

Conjecture 4.45. MINIMPR is in NP. 

Note that the first conjecture implies the second. Conjecture 4.44 is stronger also in the 
sense that an affirmative answer to the Strong Perfect Graph Conjecture would immediately 
imply a polynomial time algorithm for MINIMPR whereas it is not clear how it would bear 
on Conjecture 4.44. 

We now outline a proof to show that NEARPERF is in coNP but first we need one fact. 
Suppose G is near-perfect and v ~ V. Since G has property Pz, c~7-~vtvj < ~ and since G has 

property P1 we deduce the following: 

Remark  4.45.1. I f  G is near-perfect, then for each node v ~ V, G -  N[ v ] is perfect. [] 

Now suppose G is a graph which is not near-perfect. If  there is some node v such that 
G - N [ v ]  is imperfect, then we need only display an induced partitionable graph in 

G - N [ v ] .  So assume that no such node exists. To show that G is not near-perfect it is 
enough to show that there is some nontrivial facet-inducing inequality of P(G)  which is 

not a constant multiple of any of the inequalities in (4). Note that it is easy to check that a 
is not a constant multiple of 1 or X K for some clique K. Suppose a . x  < yis such an inequality. 
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We can verify that this is valid for P (G) simply by showing for each node v that max { a.  xS: 

S ~ S : ( G - N [ v ]  ) } <~ y - a , .  Since G - N [ v ]  is perfect, this can be done by displaying an 

appropriate clique over G - N[  v ]. Finally, to see that our chosen inequality is facet-inducing 

we must exhibit ] V] linearly independent incidence vectors of  stable sets which satisfy the 

inequality with equality. Thus we have: 

4.46. The problem NEARPERF is in coNP. []  

We close this section with a remark on how near-perfect graph recognition relates to 

perfect graph recognition. 

R e m a r k  4.46.1. I fNEARPERF is in NP, then PERFECT is in NP. 

This is easy to see, for suppose G is a perfect graph. If  NEARPERF is in NP, then we 

can give a certificate to show that G is near-perfect. In order to show that G is perfect we 

need only show that x(V) ~< a is not facet-inducing for P ( G )  (since this implies that P (G) 
is given by the clique inequalities). This can be done by exhibiting a stable set and a clique 

cover of G with the same size (i.e., of size c~). (Note that a near-perfect graph with OG = aa  

is perfect.) 
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