
Mathematical Programming 64 (1994) 81-101

A proximal-based decomposition method for convex
minimization problems

Gong Chert, Marc Teboulle*

Department of Mathematics and Statistics, University of Maryland, Baltimore County Campus, Baltimore,
MD 21228, USA

(Received 10 September 1992; Revised manuscript received 12 April 1993)

Abstract

This paper presents a decomposition method for solving convex minimization problems. At each
iteration, the algorithm computes two proximal steps in the dual variables and one proximal step in
the primal variables. We derive this algorithm from Rockafellar's proximal method of multipliers,
which involves an augmented Lagrangian with an additional quadratic proximal term. The algorithm
preserves the good features of the proximal method of multipliers, with the additional advantage that
it leads to a decoupling of the constraints, and is thus suitable for parallel implementation. We allow
for computing approximately the proximal minimization steps and we prove that under mild assump-
tions on the problem's data, the method is globally convergent and at a linear rate. The method is
compared with alternating direction type methods and applied to the particular case of minimizing a
convex function over a finite intersection of closed convex sets.

AMS Subject Classification: 90C25.

Key words." Convex programming; Proximal methods; Augmented Lagrangian; Decomposition-splitting methods

1. Introduction

This paper presents a decomposition algorithm for solving convex programming prob-
lems with separable structure. The method is based on the properties of the proximal point
algorithm and its primal-dual application.

The proximal point algorithm [23] is an iterative method for finding a zero of a maximal
monotone operator T, namely, a point x* ~ ~n such that 0 ~ T(x*). Starting at a point

*Corresponding author. Partially supported by Air Force Office of Scientific Research Grant 91-0008 and National
Science Foundation Grant DMS-9201 ~97.

0025-5610 © 1994--The Mathematical Programming Society, Inc. All rights reserved
SSD10025-5610 (93) E0046-H

82 G. Chen, M. Teboulle / Mathematical Programming 64 (1994) 81-101

xO~ Nn, the proximal point algorithm generates successively a sequence of points
x k + 1 .~_ (I-~ i~ k T) -- Ix k, where A k is a positive scalar and the operator (I + A kT) - 1 is a single

valued, nonexpansive operator on N n, [23]. For a survey we refer the reader to Lemaire

[17], and for more recent convergence results on the proximal point algorithm, see Guler
[12]. In [22], Rockafellar showed how the proximal point algorithm can be applied to
convex programming problems in three different ways: the primal proximal minimization
algorithm, the dual method of multipliers and the primal-dual proximal method of multi-
pliers. Here, we are particularly interested in the proximal method of multipliers when
applied to convex programs with separable structure of the form:

(P) min{f(x) +g (z) : Ax=z} (1.1)

where f : ~n ~ (_ ~, + ~1 and g : E'~ ~ (- ~, + w] are given closed proper convex func-
tions, and A is a given m × n matrix. Note that many convex programs can be formulated in
the generic form (1.1), see e.g. [10, 21]. The Lagrangian for problem (P) is defined by
L : ~ x ~ m x ~ m ~ (- ~ , + ~] ,

L(X, Z, y) =f(x) +g(z) + (y, A x - z) (1.2)

where (. , •) denotes the inner product and y is the Lagrangian multiplier associated with
the constraint Ax = z.

The Lagrangian L(x, z, y) is a closed convex-concave function. Therefore, the set-valued
subdifferential mapping S on R n X N m X ~rr, given by

S(x, z, y) = Ox.zL(x, z, y) × Oy(- L(x, z, y)) (1.3)

is maximal monotone [22]. A pair (x*, z*) is optimal for (P) and y* is an optimal
Lagrangian multiplier if and only if

L (x * , z * , y) < . L (x * , z * , y *) < ~ L (x , z , y *) V (x , z) ~ R nXm, V y ~ R m, (1.4)

that is, if and only if O~S(x* , z*, y*) (in the sequel, 0 denotes a zero element in
R")< ~m × Rm).

In [22], Rockafellar applied the proximal point algorithm to S to produce the proximal
method of multipliers for (P). At each iteration of this algorithm, given 2, £, 3), one minimizes
the augmented Lagrangian with respect to x and z,

L a (x , z , ~) = L (x , z , ~) + ½ A I l A x - z l l 2 + (1 / (2 A)) (L I x - y [1 2 + l l z - ~ l l 2) (1.5)

to obtain the next iterates (x +, z +), and then updates the multiplier by the iteration

y+ =33+ A(Ax + - z +) (1.6)

where A is a positive scalar.

Without the quadratic terms Iix-2112+ IIz-~IL 2, the above method is the classical
method of multipliers, see e.g. [2], which can be obtained by applying the proximal point
algorithm to the dual of (P), [22]. As we shall see later, the additional quadratic terms will
be of fundamental importance in the algorithm developed here.

G. Chen, M. Teboulle / Mathematical Programming 64 (1994) 81-101 83

The proximal method of multipliers is globally convergent under very mild assumptions
on the problem's data, namely, convexity and existence of optimal solutions are enough to
guarantee convergence. The principal disadvantage of this method when used in the context
of separable problems like (P) is the presence of the expression I[Ax - z lf 2 in the augmented
Lagrangian L~, which destroys the separability between x and z, since they are linked by
the cross product term z'Ax, and thus prevent to minimize separately in x and z the augmented
Lagrangian LA. This has been recognized as one of the major drawbacks of the augmented
Lagrangian approach when applied to separable convex programs, and a number of strategies
have been proposed and extensively studied in the literature for removing this difficulty,
see e.g., [3, 5-8, 10, 13, 14, 16, 18, 19, 24-27].

In early 1958, Uzawa [28] suggested to simply minimize the Lagrangian function L(x,
z, y) with respect to x and z (with y fixed), thus preserving the separability in x, z, and then
update the multiplier by the iteration (1.6). Uzawa's method is in fact a gradient method
applied to the dual problem of (P), see e.g. [20]. The convergence of the method is
guaranteed, if bothfand g are strongly convex. This is a quite restrictive assumption, ruling
out its potential applications for many interesting problems arising in application.

An important approach for eliminating the difficulties associated with the nonseparability
of LA is a family of methods based on the alternating direction method of multipliers
proposed by Gabay and Mercier [9], and Glowinski and Marrocco [1 l]. The idea of this
approach is to alternate the minimization with respect to x and z, and is patterned after
splitting methods used in numerical analysis, such as Douglas-Rachford, see e.g. [18]. At
each iteration of this algorithm, the augmented Lagrangian

•(x, z, y) :L(x , z, y) + ½AJIAx-zlI 2

is first minimized with respect to x with z, y held fixed, then with respect to z and followed
by an update of the multiplier y as in (1.6). These methods converge under some assump-
tions which will be discussed later in Section 5. A closely related method is the partial
inverse of a monotone operator approach developed by Spingarn [24]. For further details
and related works, we refer to [8, 10] and references therein, and [27].

Most recently, Eckstein and Bertsekas [4] developed a unified framework via monotone
operator theory, allowing them to show that alternating type direction methods as well as a
variety of other convex programming algorithms are in fact special cases of the proximal
point algorithm, and thus demonstrating the power and versatility of proximal methods in
the analysis and development of decomposition algorithms for convex optimization prob-
lems.

The algorithm developed in this paper is another manifestation of the proximal method-
ology for solving convex programs with separable structure. The decomposition method
presented here will preserve the good features of the proximal method of multipliers; it
globally converges to an optimal primal-dual solution under very mild assumptions, but
will remove the difficulty of nonseparability associated with the augmented Lagrangian Lx.
Our method differs from the alternating direction methods. At each iteration of the algorithm,
one replaces the minimization of the function (1.5) by the minimization of

84 G. Chen, M. Teboulle / Mathematical Programming 64 (1994) 81 l O l

L(x, z, ~) + (1 / (2A)) (Ilx-2[I 2+ IIz-~ll 2) (1.7)

followed by the multiplier update (1.6). Here, ~ is an "estimate" of the multiplier obtained
via a simple update rule similar to the one given by (1.6). Roughly speaking, our method
consists of computing two proximal steps for the dual problem associated with (P), and
one proximal step for the primal problem. The additional dual proximal step used to compute
u~, allows for preserving the separability of the problem. A detailed description and moti-
vation of the algorithm is given in Section 2. In Section 3, we prove global convergence of
the method to an optimal solution of (P) and an optimal Lagrangian multiplier, under the
same modest assumptions used in the proximal method of multipliers. The convergence is
proved for an inexact version of the algorithm, where the minimization step is performed
approximately according to a given stopping rule. The convergence rate analysis of the
method is given in Section 4, where it is shown that the primal-dual sequence converges at
a linear rate with a ratio given explicitly in terms of the problem's data. Our algorithm is
then compared with alternating direction type methods in Section 5, and is applied to the
minimization of a convex function over the intersection of a finite number of closed convex
sets to obtain a new highly parallelizable algorithm for these problems. For notations or
definitions of concepts not explicitly given in the paper, the reader is referred to Rockafellar' s
book [21].

2. A proximal-based decomposition method

To motivate the decomposition algorithm described below, let us first recall the proximal
point algorithm when applied to find the minimizer of a closed proper convex function F
on Nn. In this case, starting from an arbitrary point u ° ~ Nn, the iterative scheme of the
proximal point algorithm is

u~+l = (I+ A~OF)- I (u k)

u ~+1 =arg min{F(u) + (1 / (2A~))I lu-u~l[2} (2.1)

Hk__ bl k+ l
_ _ ~ OF(u~+ 1) (2.2)

A~

where, OF denotes the subdifferential of F. It is well known, see e.g. Lemaire [17], that the
above iteration can be seen as an implicit discretization scheme for the differential inclusion

{ - d u / d t ~ O F (u) , t>0 , (2.3)
u(0) = u °.

Similarly, an explicit discretization scheme of (2.3) leads to the gradient method

(u k_ uk+ 1)/Ak ~ OF(uk). (2.4)

Let us now return to problem (P). As described in the introduction, in the proximal method

G. Chen, M. Teboulle / Mathematical Programming 64 (1994) 81 101 85

of multipliers, one has to minimize the augmented Lagrangian LA given in (1.5) with respect
to x and z, followed by the update rule for the multipliers (1.6). The minimization step is
just the proximal point algorithm applied to the penalized Lagrangian L(x, z,

yk) + ½A~ IIAx-z II 2. Formally, using (2.2), one thus obtains the iterative scheme

(x ~ _ x k + l)/Ak ~ Of(x k+ 1) +AT(yk + Ak(Ax~+ 1 _ zk+ l)), (2.5)

(Zk-- Zk+I)/Ak EOg(z k+l) - (y ~ + Ak(Axk+l--Z~+l)). (2.6)

The difficulty with the above scheme is that the iterates (x ~+ l, zk+l) are coupled by the
implicit computation of the constraints given by the expression (Ax k + 1 _ z k + 1), and there-
fore the scheme cannot compute x ~ ÷ 1, zk + 1 separately. To remove this difficulty, we suggest
to perform an explicit computation of the constraints expression in (2.5)-(2.6) , which is
thus replaced by the iterative scheme

(xk--xk+l)ll l\k ~ O f (x k+l) + A T(yk + Ak(Ax~--Zk)), (2.7)

(z k - z k+l)/Ak ~ Og(z ~+ 1) _ (yk+ Ak(Ax ~_ z k)). (2.8)

The above scheme can thus be interpreted as apartial implicit-explicit method: implicit for
the objectives and explicit for the constraints. Defining

p~+l = y k + A k (A x k _ z k) (2.9)

and using (2.1), one can now rewrite (2.7)-(2.8) in the equivalent forms

x~+ 1 = arg min{f(x) + (pk+ 1, Ax) + (1/(2A~)) I Ix -x ~ II 2} , (2.10)

zk+ 1 = arg min{g(z) - (pk+ 1, z) + (1 / (2AD) II z - z k II 2}. (2.11)

Thus, the minimization of the augmented Lagrangian L~ has now been decoupled in two
separate minimization of strongly convex functions in the variables x and z. Finally, to
complete one iteration of the proximal method of multipliers, the multipliers are updated
according to the iteration

y~+ 1 = y k + Ak(Ax~+ 1 __zk+ 1) . (2.12)

The iterations (2.9)-(2.12) are the decomposition algorithm we propose for solving prob-
lem (P). Note that the iteration (2.9) is exactly the same as the multiplier update rule
(2.12), except that the constraints expression A x - z is now evaluated at the current iterate
in (2.9).

As observed by Rockafellar [21], the Lagrangian dual multiplier update rule is nothing
else but computing a proximal (maximization) iterate for the dual variable y, i.e.

yk+ 1 = arg max{ (y, Ax ~+ 1 Zk+ 1) - - (1 /(2Ak)) Ily--yk II 2}. (2.13)

A similar computation will thus produce p~ + 1 by replacing Ax k ÷ 1 _ z k + 1 with Ax ~ - z ~ in
(2.13). Recalling the definition of the classical Lagrangian associated with (P), the four
steps (2.9)-(2.12) of the algorithm can thus be written as

86 G. Chen, M. Teboulle /Mathematical Programming 64 (1994) 81-101

p~+l =arg max{L(x k, z k, y) _ (1/(2AD) Ily-y~ll 2},

x k+l =arg min{L(x, zk, p k+l) q- (1/(2A~))IIx-xkl[2},

z~+ 1 =arg min{L(x k, z, pk+ l) + (1 / (2AD) IIz-z~ll 2},

yk+ 1 = arg max{L(x~+ l, zk+ l, y) _ (1 / (2AD) Ily-ykll 2}.

(2.14)

(2.15)

(2.16)

(2.17)

Therefore, our algorithm can be seen as performing two proximal steps in the dual variables,
the predictor step pk + 1 and the corrector step yk + 1, combined with a primal proximal step
which is now separable in x and z. For ease of reference, we call this algorithm a predictor

corrector proximal multiplier method, (PCPM).
It is interesting to note that the decoupling of the variables x and z can also be obtained

by using a "kind" of linearization of the quadratic penalty term II Ax - z ll 2; i.e. by linearizing
the squared Euclidean norm ½ II • II 2 at the current kth iterate. This strategy was proposed by
Stephanopoulos and Westerberg [25] to construct separable classical augmented Lagran-
gian methods for nonconvex problems arising in engineering system optimization. A similar
approach was further studied in [5]. None of these works considered adding the proximal
quadratic terms. In [25] no convergence results are given, and none of our convergence
analysis results, however, can be obtained from the results of [5].

As we shall see in the next sections, the interpretation of our algorithm via the proximal
point method plays a central role in the convergence analysis of the PCPM method, and
will demonstrate the benefits of the proximal framework.

3. Convergence of the PCPM

Consider the convex problem (P) defined in the introduction.

(P) min{f(x) +g(z) : Ax=z} . (3.1)

The Lagrangian associated with (P) is defined by

L(x, z, y) =f(x) + g(z) + (y, A x - z) (3.2)

and the dual of problem (P) is given by

(D) max(d (y) := infx. ~ L(x, z, y) = - f * (- A ' r y) - g * (y) } (3.3)

where f *, g * are the conjugate functions off, g respectively, see e.g. [21]. Throughout
the rest of this paper, we make the following assumption.

Assumption A. There exist (x*, z*) and y* optimal solutions for problems (P) and (D)
respectively, i.e. there exists (x*, z *, y *) which is a saddle point of L,

L (x * , z * , y) < ~ L (x * , z * , y *) < ~ L (x , z , y *) V (x , z) ~ N "xm, Vy~[~ m. (3.4)

G. Chen, M. Teboulle / Mathematical Programming 64 (1994) 81-101 87

Note that since (P) is a convex program, the existence of an optimal dual Lagrange

multiplier y * associated with the constraint Ax = z is guaranteed if a constraint qualification
holds for problem (P) (see [21]), namely if,

there exist x* ~ r i (d o m f) and z* ~ r i (d o m g) satisfying Ax* = z * . (3.5)

The PCPM algorithm that we suggest for solving (P) allows for approximate minimization
with respect to x and z. In the sequel, we use the notation,

s-arg rain F(u) = {v: F (c) ~< inf F + e}

where F is a given function and e >~ 0.

Algor i thm I (inexact). Starting with an initial arbitrary triple (x °, z °, yO) E N" × N" × Nm,

a sequence (x ~, z ~, y~) ~ NnX Nmx ~ ' , k >j 0, is successively generated by the following
steps:

Step 1. Compute

pk+ i =yk + A~(Ax k_ zk).

Step 2. Solve

x ~+ ~ = a~-arg min{f(x) + (pk+ 1, Ax) + (1 / (2Zk)) IIx--xkll 2},

Z ~+I= fl ,-arg min{g(z) -- (pk+ l, Z) + (1 / (2Ak)) J Iz -zk l J 2}.

Step 3. Compute

yk+ 1 =yk+ Ak(Axk+ l _ zk+ I).

Here, {ak} and { ilk} are sequences such that

o~ oo

w,, E E
k = O k = 0

and {Ak} is a sequence of positive scalars, to be specified later.

When cek =/3k = 0, we obtain the algorithm with exact minimization. We will denote the
exact minimizers by yk + ~, Zk+ 1.

The convergence of the PCPM algorithm strongly relies on its proximal nature. The
following result gives two basic estimates which will be used in the convergence analysis.
These estimates have been shown in Auslender [1]. For completeness, we include here a
short proof. We would like to stress that the estimate given below in Lemma 3.1 (i) , while
simple, is powerful in its implications on the convergence analysis of proximal methods,
see e.g., the elegant new convergence results obtained by Guler [12].

Let F: ~ ~ (- ~z, + w] be a closed proper convex function and define

ffk+ 1 = arg min{F(u) + (1 / (2~k)) I1 u - ukll 2},

88 G, Chen, M. Teboulle /Mathematical Programming 64 (1994) 81-101

ue+ 1 = ek-arg min{F(u) + (1/(2Ak)) 11 u -- uell 2}. (3.6)

L e m m a 3.1. For any k >~ O,

(i) 22tk[F(ff e + l) - F (u)] ~ (l l u e - u { [2 - [l f f k + ~ - u l l z - [l f f e + l - u e l l z) V u ~ n ;

(ii) Ilffk+ l -- uk+l }1 ~< ~ e e a ~ . (3.7)

Proof . Let qtk(u) : = F (u) + (l / (2) t k)) l [u - u e [I 2. By the definition of ~ + 1 we have

O ~ O t ~ (a e + l) , since ~0k is strongly convex with modulus 1/he (see, Rockafellar [23,
Proposition 6]), it follows that

2aAq,k(u) -Ok(ff~+~)] > tiff k + ' - u l l 2 Vu

and (i) is proved. By the definition of u e + l we have t)~ (v) - tp~ (u k + l)) _ e~ Vv. Setting

u = u k +l and v = t~ k +1 in the above two inequalities respectively, and adding, we obtain

(ii). []

R e m a r k 3.1. As noticed by Auslender [1], with e~, := ~ the scheme (3.6) implies
Lemma 3.1 (ii) and then one recover the approximate criterion A suggested by Rockafellar
[22, p. 100]. Note that here as in Rockafellar, we assume that }2~=o e'k< w (cf. the
sequences {a~} and {/3k} defined above).

We define

37~+ 1 = y k +)te(Ayk+ 1 _ ge+ 1)

= a r g m i n { - L (2 k+l, i f + l , y) + (1/(22t~)) [l y - y k l l 2} (3.8)

(see (2.13)). In the next result, we establish two fundamental estimates relating the exact
and inexact iterates from an optimal solution.

Proposi t ion 3.1. For all k >>. O,

(i) I I .~k+l - -x*][Z-~}]g~k+l- -Z*}]2~} lxk- -x*] lZ-~} l zk - - z* l l 2

_ 2)re (pC+ 1 _ y * , Aye+ 1 _ Zk+ 1)

- { I I ~ + 1 - x k l l 2 + I l f f + ' - z e [I 2};

(ii) I l y ~ + l - y * l l Z < ~ l l y k - y * l l 2 - { l l p e + ~ - j ~ + l l l Z + l l p k + ~ - y ~ l } 2}

- 2 A ~ { (y * - y ~ + ~, a Y ~ + t _ i f+ ~) + (. ~ e + , _ p C + ~, a x ~ _ z ~) }.

Proof. From Step 2 of Algorithm I, the sequences {ye}, {ge} are obtained by applying the
exact proximal point algorithm (i.e. c~ e = fie = 0) to the separable Lagrangian in (x, z),

(x, z) ~ L(x , z, p~+ ~) = f (x) + g (z) + (pe+ ', A x - z) . (3.9)

G. Chen, M. Te boulle / Mathematical Programming 64 (1994) 81-101 89

Applying Lemma 3.l (i) with the choice F:=L at the optimal point x = x * and z = z * , we
obtain

2Ak [L(x k+ I, 5k+ 1, pk+ 1) - L (x * , Z*, pk+ l)]

f l x ~ _ x , ii 2+ i l z k _ z , ii 2__ { ilyk+l--X*II 2+ i i£k+l_z* [i 2}

_ { 1137k+ I _Xkfl 2+ IIZ~+ 1 _z~ll 2}.

Since (x*, Z*, y *) is a saddle point for L(x, z, y), we also have

2Ak[L(x*, z*, p~+ 1) _ L(2~+ l, ~k+ l, y .)] ~< 0.

Adding the above two inequalities, we obtain (i) after rearranging terms. Similarly, since
the sequences {p~+l}, {37k+1} are obtained by applying the proximal point algorithm to
F(y) := - L (x k, z k, y) and F(y) := - L (Y k+ 1, ~k+ l, y) respectively, applying once again

Lemma 3.1 (i) at y = 37 k + 1, y = y . respectively, we obtain

2A~[L(x k, z k, 37k + 1) _ L (x k, z k, pk+ 1)]

~< ilyk_)Tk+ ill 2 _ ilp~+ 1 __)Tk+ 1 [i 2 _ _ i[pk+ 1 _y~ l[2,

2Ak[L(.fk+ 1, ~k+ 1, y .) _L(yk+ 1, ~k+ 1, y-k+ 1)]

I l y~ -y* I12- IIjk+ ~ - y * II 2 - II~k+ 1 -ykl[2.

Adding the above two inequalities, and rearranging terms we obtain (ii). []

We can now state and prove our convergence result.

Theo rem 3.1. Consider problem (P) for which Assumption A holds, that is there exists a
primal-dual optimal solution (x*, z*, y *) . Let {x k, z k, yk} be the sequence generated by
Algorithm I. If { Ak} satisfies

~ A k ~ m i n ~- -, Vk>~0 (3.10)

for some 0 < ~ ~< rain(½, 1 / (2 [IA II + 1)), then {x k } converges to x*, {z k} converges to Ax*
and {yk} converges to y*.

Proof. We denote w = (x, y, z) with the associated norm II w II 2 = II x II 2 + II z II 2 + II y II 2. B y
adding the inequalities (i) - (i i) derived in Proposition 3.1, we obtain

II~k+l--w*ll2~< Ilwk--W* II 2-- { II~+ I--xklI 2 + II£k+ l--zkll 2}

__ { i lpk+l __)~k+ 111 2 + ilp~+ 1 -y~l l 2} + p (3 . 1 1)

where p:= 2a k (37 k+ 1 _p~+ l, A(2~+ 1 _ x k) _ (zTk+ 1 _ z k)).

Using (3.8) and Step 1 of Algorithm I, we have

9 0 G. Chen, M. Teboulle / Mathematical Programming 64 (1994) 81-101

p=2A~ [IA(2 k + l - x k) - (£ k + l _ z ~) lie

4A~ I[A LI 2 iL2k+, _ x k II 2 + 4)t2 I[Z k+ ' - z ~ 11 2. (3.12)

Combining (3.11) with inequality (3.1 2), it follows that

I]us~+l -w* II 2

~<[Iwk-w * l [2 - (1 - 4 , ~ [I A I I 2) llKk+' x ~ L I 2 _ (I _ 4 A 2) 1[£ k ÷ l - z k l l 2

- {l ip k+l - g ~ + ~ II 2 + ilpk+ 1 -y~IL 2}. (3 .13)

Since by (3.10) we assumed that e ~< A ~ ~< rain (1 (1 - e), (1 - ~) / (211A [I)), we obtain
from (3.13),

I1~ ~+l - w * II 2< liw~_w . II 2 - e { 112~+ 1-x~ll 2+ ii~k+ J _z~ll 2

+ ilpk+ 1 _gk+ 111 2+ lipS+ l -y~l l 2}. (3.14)

Now we need to find an estimate for I I w k + ~ _ W * I[. By the triangle inequality and (3.14),
we obtain

IIw ~÷j - w * l l ~< IluT~÷l--w~÷ll[+ I [~ + l - - w * [I ~< I[Wk+l--wk+Xll " q - I l w k - w * l l .

(3.15)

We also have,

I] ~ + l - w ~ + l l [2 = l[2k+l--x~+lll 2 + I I ~ + l - - z ~ + l l l 2 + ll3Sk+l--y~+lll 2

~< (1 + 2A 2 IIA II 2) ll3?k + ~ _ xk+l l[2 + (1 + 2A 2) II ~-k÷ 1 _ z~÷ '11 2 (3.16)

by using the definitions o fy ~ ÷ l, 37~ + ~ given respectively in Step 3 of Algorithm I and (3.8).
By Lemma 3.1 (ii), we have

112k+ 1 - x k + 111 2 ~< 2Ak%, [1~+1 --Z~+ ~ II 2 ~< 2A~/3k. (3.17)

Combining (3.17) and (3.16), we then obtain

[I v7 ~+l - w ~+ ill ~< ~/2A~ %(1 + 2A~ IIA II 2) + 2A~/3k(1 + 2A~)

<~ c, 1/~ + Ca l / ~ (3.18)

where 0 ~< c~, c2 < ~, since by the assumption (3.10), { A~} is bounded.
Using (3.18) in the most left-hand part of inequality (3.15), we then have

IIw~+X-w*ll ~ IIw~-w*ll +c~f~+c2v/~ (3.19)

which because of E~=o V/~ <oc and E~=oV/~ ~ < ~ ~mphes" " that {w ~} is bounded, and the

existence of

lim I Iw~-w*l [= / x < ~ . (3.20)
k---~ ce

G. Chen, M. Teboulle /Mathemat ica l Programming 64 (1994) 81-101 91

From (3.18), we also have under our assumptions for {tee} and {fie}
II ~ e + l _ w e + l II ~ 0 and therefore using (3.15), we obtain

lira II~ e + l - w * l l = ~ < w .
k ~

that

Therefore, by taking the limits on both sides of (3.14), we obtain (since ~ > 0)

112 k + l - x k l l ~ 0 , I lgk+l - -Zk l l~0 , (3.21)

IJp~+l--37~+ll l~0, [f p k + 1 _ y k [l ~ 0 .

Since {w k} is bounded, there exists a limit point w ~ i.e. there exists a subsequence
{w kj= (x ej, z e~, y~J) } --*w = = (x ~, z ~, y~). We now show that w ~ is a saddle point of L(x,

Z,y) .
Applying Lemma 3.1 (i) to Step 2 of Algorithm I at any fixed x and z, we have

2Ak[L(~e+ ~, i f+ l, pk+ l) _ L(x , z, pk+ 1)]

~,~]I x k - - x II 2 -~ - [I z e - z ll 2 - { [I.~k + l - x ll 2 ÷] f f f + l - z l l 2}

-- { II)~k+ 1 __xkll 2 ÷ II~k+ 1 _ z k l l 2}. (3 . 2 2)

Taking the limit over the appropriate subsequences on both sides of (3.22) and using
(3.21), we have

L (x ~, z ~, y~) - L (x , z, y~) <~0 (3.23)

since/~e is bounded below by e > 0.
Similarly, by applying Lemma 3.1 (i) to (3.8) at any fixed y, we obtain

2)te[L(~e+ l, ~e+l, y) _L(~e+ 1, Ze+l, 37k+ 1)]

<~] [y e y l] 2 [l~k+ 1 - y [I 2__ I]~k+ 1 _yell 2

~< ilye_yl[2__ [I lk+ I - y l l 2 (3.24)

Taking the limit over the appropriate subsequences on both sides of (3.24), we then have

L (x ~, z ~, y) - L (x ~, z ~, y~) <~0. (3.25)

Combining (3.23) and (3.25), which hold for any (x, z, y) , we have thus shown that (x ~,
z ~, y~) is a saddle point of L(x, z, y).

To complete the proof, it remains to show that {wk} has a unique limit point. Let w] ~ and
w~ be any two limit points of {we}. As shown above, both are saddle points of L(x, z, y) ,
and hence

lira [I w ~ - w ~ l l = / z i < ~ , i = 1 , 2 .
k ~

Now we can use the same argument as given in [23, p. 885]. Writing

92 G. Chen, M. Teboulle / Mathematical Programming 64 (1994) 81-101

I l w k - w l l [2 - I[w~-w21l 2= - 2 (w k, W l - W 2 } + [[Wl[I 2 - IIw~l[2

and passing to the limit we obtain for each limit point w] ~, w~ of {wk},

/x21 - / x ~ = - 2 (w ~ , w ~ - w ~ } + [Iw]~ 112- [Iw~: [I 2= - I I w ~ - w 2 1 1 2

= - 2 (w 2 , w] ~ - w ~) + IIw~ I[2 - Ilw~ II 2= IIw]~ - w ~ II 2.

Therefore, we must have I[w]~ - w 2 II = 0 and hence w~ is unique. []

4. Rate of convergence

In this section we consider the rate at which the sequence {x k, z k, yk} generated by

Algorithm I converges to a saddle point of the Lagrangian L(x, z, y). To prove this result,

we need some further assumptions on the problem's data. Let T be a set valued maximal

monotone operator on ~". Following Rockafellar [23], we say that the mapping T - ~ is

Lipschitz continuous at the origin with modulus a >/- 0, if there exists a unique solution ti

such that 0 ~ r(t i) and for some ~->0, we have Ilu-all ~a[Iv[I , whenever v ~ r (u) and

tlvll ~<~-.
Recall that (cf. (1.3))

S(x, z, y) =O~,zL(x, z, y) ×Oy(- L (x , z, y)) (4.1)

is a maximal monotone operator on N" × N '~ × ~ " and that solving problem (P) is equivalent

to finding a zero of S.

Assumption B. S - ~ is Lipschitz continuous at the origin with modulus a >i 0.

Note that for problem (P) we have

S - l (v l , va, v 3) = a r g min max{L(x, z, y) - (x , v l) - (z , v 2) + (y , v3)}
x , z y

and therefore Assumption B can be interpreted in terms of the problem's data as: there

exists a unique saddle point w* such that for some 1->0, we have IIw-w*LI ~aLIv[I,

whenever II v LI < ~" and w := (x, y, z) ~ S - i (vl, re, v3).

Assumption C. The sequence {xk, z ~, y ~ } is generated by Algorithm I under the approximate

criterion

[Ixk+l--)?k+ll[<~'rlkllXk+l--Xkl[, [IZk+l--z'k+lll ~ ~Tk [Izk+l--zkll, (4.2)

where ~k >~ 0 and ~o ~k < w.

Note that the use of the same r/k for the approximation criterion (4.2) is just to simplify

notation in the analysis below. In fact if one chooses different sequences ~ >~ 0, E0 i
i = 1, 2, then one should simply define ~k = max(71, ~) in (4.2).

G. Chen, M. Teboulle / Mathematical Programming 64 (1994) 81-101 93

The assumptions B and C were suggested by Rockafellar [22, p. 100], to derive the rate
of convergence of the proximal method of multipliers, and will also be used here to derive
the rate of convergence for Algorithm I. Note however that the additional proximal dual
step in Algorithm I precludes a direct application of the results developed in [22] and
required a specific analysis (see also Remark 4.1 below).

Before proving our convergent rate result, we need the following lemma.

L e m m a 4.1. I f the Assumption C holds, then

Ir w k ÷ 1 _ v V + 1 II ~< 6k [I w k+ 1 _ w k [I (4 . 3)

where 6k = ~/kmax(~/1 +2A 2 [IAI] 2, 1~/~2A2).

Proof. By (2.12), (3.8) and (4.2), we have

ilyk+ 1 _37~+ 1 ii = Ak]IA (x k+ ~ --fk+ 1) _ (zk+ 1 _ ~k+ 1) II

~< r/~A~(IIAII Ilx k+l - x q l +][z k+l -zk[I). (4.4)

Using the inequality (r + q)2 ~< 2(r 2 + q2), in (4.4) we obtain

Ily k+1-37k+l II 2 ~< 2(r/kAk)2(IIAII 2llxk+ 1--x~ll 2+ [iz~÷ 1 --zq[2). (4.5)

Therefore from (4.2), (4.5) and the definition of/~k given in the lemma,

I l w k + J - ~ + l l l 2= I[xk+~--j?~÷lll 2 + l i f t÷ t - - i f÷ I l l 2+ IlYk+l--g~+lll 2

~<~2(ilxk+ ~ _xkll 2+ IIZ~+ ~ _zkll 2)

+ 2(~k&)2(IIAI[211x~÷ ~--xkll 2+ ilzk+~--Zql 2)

~<t~(I]x k+x --xkll 2+ [iz~+ 1 _Z~II 2)

~< 62 IIw~÷l--w~ll 2. []

We can now state and prove our convergent rate result.

Theorem 4.1. Consider problem (P) for which Assumptions A, B and C hold. Let {x ~, z k,

yk} be a bounded sequence generated by Algorithm I, and let {Ak} satisfies (3.10). Then,
w k = {xk, z k, yk} converges linearly to the unique optimal solution w * = (x *, z *, y *), that
is, there exists an integer fc such that, for all k>~ fc,

I lw~÷l -w*l l <~O~[Iwk--w*ll, (4.6)

where 1 > (~ + 2a) / (2~ /~U+ ~ 3) >~ Oh, for all k>~f~

Proof. Under our assumptions, w k is bounded and hence from (3.17) with the choice

IIx k÷l - x q l 2 iiz~+ 1 _zkll 2

2A~ 2A~

94 G. Chen, M. Teboulle / Mathematical Programming 64 (1994) 81-101

(recall that Ak> e > 0) , Theorem 3.1 holds and w k converges to w* by Theorem 3.1. We

now establish the rate of convergence. From Step 2 of Algori thm I, the sequences {:~},

{Z ~ } are obtained by applying the exact proximal point algorithm (i.e. with a ~ = / 3 ~ = 0) ,

to the Lagrangian given in (3.9) and thus we obtain

OEOf(yk+l) + A T p k + l + (£k+l _ _ x k) / A k

=Of(£~+l) +AT37k+ 1 _AT()Tk+ 1 _ p ~ + l) + (2k+1 _X~)/Ak, (4.7)

0 ~ O g (z k+ 1) _ p k + 1 ~_ (~k+ l _ z k) / l ~ k

= 0g(£~+1) _ ~ + 1 _t_2k+ 1 __pk+ 1 + (U + I -- Z k) / A k . (4 . 8)

From (3.8) , we have y~ + i _ yk + A k(A:~k + 1 _ ~ + 1) which we rewrite as

__ (.~k+ 1 _ _ y k) / t ~ k = ~k+ I __A~k+ 1. (4 . 9)

Since

OxL(yk+l, ~k+~, ;k+l) =Of(yk+ l) +ATyk+ 1,

OzL(.,~k+l, i k + l , y k + l) = O g (i k + l) _ g k + l ,

Oy(- L (2 k+~, Zk+~, 37k+ 1)) = {i~+l _ A y k + , } ,

f rom (4 . 7) - (4 . 9) and the definition of S (cf. (4.1)), by rearranging terms we obtain

(~k, t-~k, Yk) ~ S (2k+l, ~k+l, 37k+ 1) (4.10)

where

7r k :_~.AT()Tk+ 1 __pk+ 1) __ (2k+l _ _ x k) /) t k , (4.11)

],.L k :~ -- (y k + l __pk+ 1) __ (~k+ 1 -- Z k) /) t k ' (4 .12)

"Yk :-'~" -- (y k+ 1 _ _ y k) / A k . (4.13)

Recall that f rom (2 . 9) , p k + ~ = y k + A k (A x ~ -- z ~), then by subtracting the latter f rom (3 . 8) ,

we have

37k+ t _ p ~ + 1 = Ak[A(2k+ 1 _ X k) _ (~k+ ~ _ Z k)]. (4.14)

Substituting (4.14) in (4.1 1) - (4 .1 3), we obtain

7r k = AkA T[A(2~+ I _Xh:) _ (~-k+ t _ Z k)] _ (2k+l _ x k) / Ak

= (AZATA - I) (X k + 1 - - x k) / l ~ k - - AkAT(£k+ l _ Zk),

/x~ -- - az : [a (97 e+ ~ - x ~') - (~-~+ ~ - z ~:)] - (z~ ~+ ~ - z ~)/A~

= (.,X~ - 1) (~ / ' + l - z ~) / A ~ - ,X~A(2 ~ + l - x ~) ,

Yk = -- (f k + l - y ~) / h ~ .

Since

GI Chen, M. Teboulle / Mathematical Programming 64 (1994) 81-101 95

moo 1 moo

from (3.2 1), we have (7rk, Izk, Yk) ~ (0, 0, 0). Choose/~ so that I I (7rk,/xk, y~) I I < r for all
k >/~. Then using Assumption B and the fact 0 ~ S(x*, z *, y *) with the choice

u = (:~k+l, ~+1, 3Y~+1), f f=(x* ,z* ,y*) , v= (Trk,/.t k, %)

we have

i luSk+l_w, ii = 11 (~Tk+ l, ~k+l, 37k+ 1) - - (X*, Z :g, y*)II

~<all(~r~,/xk, Yk) ll Vk>/~. (4.15)

We now estimate the right-hand side of (4.15). Using the definition of (Try,/x~, %) and
the inequality (r + q)e ~< 2(r 2 + q2), we obtain

2< 2 IIA.~ATA_III 2[[.gk+ 1 _xk[[2+2A ~ IIAI1211~k+1-zkll 2, II 7rk II "~ A---~

2 2 2 2_[_ 2112~+ II/xg II ~2k2 (hk - 1)211£k+' -z~ll 2a~ IIAII 1--xkll 2,

: 1 k÷l 2 1 07k+ _p~+l) (pk+l Ilykll = ~ I l Y -y~ll =~11 ~ + -yk) l l 2

2 k+ ~<~--{(llp 1-375+~112+ IIp~+l-y~ll2).

Therefore

I[(~k,/z~, .y~)II 2= 117r~ II 2+ II t-re II 2+ Ilyk II 2

~<D{ I1.~ k+l --xkll 2+ ii~k+ l _zkll 2

+ lip k+l --37k+' I1 2+ [Ipk+' __ykl[2}, (4.16)

where

(1 2 T ~2k2(A k l 2 ~2k21 }__ D := 2max~l,~--~ll A~A A-I l l 2+A~ IIAII 2, _ 1)2+A~ IIAII 2, .

By simple algebra, using (3.10) (which implies ak~< ½ and ak~< 1/(211All)), one can
verify that D ~< 4 / A~. Hence, combining (4.15) and (4.16) we obtain for all k >/~,

A 2 lily k+l - w * l l 2 ~<4a2{ IIX k+l -x~ll 2+ ilffk+ 1_ z~ll 2

+][pk+ 1 __37k+ 111 2+ [Ipk+ 1 __ykl[2}, (4.17)

which together with (3.14) implies that,

4a211~+~-w*ll2 + eh211~g+l-w*ll2 <<. aa211w~-w*ll 2 Vk>[c.

96 G. Chen, M. Teboulle / Mathematical Programming 64 (1994) 81-101

Defining vk := 2a/¢4a 2 + eA~, the latter inequality reduces to

11,Tk+l--w*ll ~< vklIw~--W*II, k>f~.

But

IIwk+*-w*ll < I Iwk+ l - -~+ l l l+ II~ k+ l -w* l l ,

and invoking Lemma 4.1, we have

IIw~+l--~k+l II ...< 6k IIw k÷' --wkll .<< 6~ Ilwk+l--w* II + ~k Ilwk--w*ll.

Therefore using (4.20) and (4.18) in (4.19) we obtain

I lwk+l-w*ll <8~l lwk+l-w*l l + ~ l l w k - w * [I + vkllwk--w*ll, k>/~,

which proved (4.6) with Ok = (vk + 6k) / (1 -- 6k). Since 6~ ~ 0, Ak > e, and

~ U ~ e3 + 2a 2a 2a

2 ~ > ~ > v~, + ¢4a 2 ..{_ ~c, A 2

for some/7>/~, we have

~ / ~ 7 ~ 3 + 2 a

1> 2 4f~aZ+e 3 >Ok. []

(4.18)

(4.19)

(4.20)

Remark 4.1. It is interesting to notice that even though Algorithm I is quite different from
the proximal method of multipliers, one is still able to obtain a linear rate of convergence

result. Once again, Proposition 3.1, which allows us to get the estimate (3.14), is the key
in the above analysis. Note however that a superlinear rate of convergence derived for the
proximal method of multipliers, when Ak--+ ~, is not applicable for the PCPM, since here

{ Ak} must stay bounded above.

5. Comparison with other methods and potential applications

5.1. Comparison with alternating direction methods

It is interesting to compare our algorithm with various types of well known splitting
methods used for decomposition in convex programming. We will focus on alternating
direction methods of multipliers. These methods are taking roots from their similarity with
some methods for solving differential equations, such as the Douglas-Rachford scheme see
e.g. [18]. For further details and references, we refer the reader to the recent books of

Bertsekas and Tsitsiklis [3] and Glowinski and Le Tallec [10].
The basic idea underlying alternating direction methods is a relaxation approach, whereby

given an augmented Lagrangian associated with (P), one first minimizes it with respect to
x and then with respect to z, and the multipliers y are updated via the usual augmented

G. Chen, M. Teboulle / Mathematical Programming 64 (1994) 81-101 97

Lagrangian update rule. This approach removes the difficulty of the joint minimization in
x and z, and thus preserves separability. As we shall see below, algorithms produced from
this approach bear similarity with our algorithm, but are different both in the computational
steps, and in the assumptions involved in the problem's data.

We will concentrate on comparing our algorithm with the alternating direction method
of multipliers proposed by Gabay and Mercier [9] and Glowinski and Marrocco [11], and
with some of its variant and related methods.

Consider the following augmented Lagrangian associated with (P):

d (x , z, y) =f (x) + g(z) + (y, A x - z) + ½AIIax- zll 2 (5.1)

As explained above, by minimising Y first over x then over z, the alternating direction
method of multipliers takes the basic form:

Algorithm A [9-1 l].

xk+ l E arg min{f(x) + (yk, Ax) + ½A IlAx- z ~ II 2},

z ~+1 =arg min{g(z) - (yk, z) + ½AIIAx ~+1 -z l l 2},

yk+ 1 = y ~ + A(Axk+ 1 _ Zk+ 1),

where A is a fixed positive scalar.

More recently, Tseng [27] proposed another variant of Algorithm A, that he called the
alternating minimization algorithm. The key difference with Algorithm A is that the usual

Lagrangian function L(x, z, y) replaces the augmented Lagrangian function • (x , z, y)
when the minimization is taken with respect to x. The alternating minimization algorithm

takes the form:

Algorithm B [27].

x ~+1 =arg min{f(x) + (yk, Ax)},

zk+ 1= arg min{g(z) - (yk, z) + ½A~ IlAx ~'- 1-zl l 2},

yk+ 1 = yk+ A k(Ax~+ l _ zk+ 1),

where { A k } satisfies some conditions (see (B 3) below).

For a detailed comparison between Algorithms A and B, we refer the reader to Tseng
[27]. For ease of comparison between Algorithms A and B, and our algorithm, we use the
exact version of Algorithm I (i.e. set c~ = flk = 0 in Step 2 of Algorithm I), which will be
called in the sequel, Algorithm E. First we observe that in all three algorithms, the multiplier
update rules are the same. The main differences between Algorithm E and Algorithms A
and B are in the minimization steps with respect to x and z (note that for Algorithms A and
B the minimization steps with respect to z are identical); and by the fact that our Algorithm
E requires the additional predictor multiplier step

98 G. Chen, M. Teboulle / Mathematical Programming 64 (1994) 81-101

pk+ 1 = yk + A~(Ax k_ zk).

However, this additional step is a simple update similar to the multiplier update rule, and

allows for obtaining the convergence of our algorithm under the only assumption that there

exists a primal-dual optimal solution. On the other hand, with this assumption at hand, the

following additional assumptions are needed to establish the convergence of Algorithms A

and B:

For Algorithm A:
(A1) The matrix ATA is positive definite i.e., the matrix A has full column rank. This is

needed to have a well defined x k, when performing the minimization with respect to x.

Note, however that the parameter A > 0, needs not to be chosen from a restricted range

or changed at each iteration k. But see also Glowinski and Le Tallec [10, p. 85] for a choice

of A which is not fixed at each iteration.

For Algorithm B:
(B 1) The funct ionf is strongly convex with modulus c~ > 0.
(B2) {A~} satisfies e~< A~<4c~/IIA II 2 - - ~o for all k, for some e ~ (0, 2c~/IIA Jl 2) .

Note that Algorithm E requires an assumption similar to (B2) for {Ak} (cf. (3.10)) ,

except that we need not to know c~, since we emphasize, that in Algorithm E nei therfnor

g need to be strongly convex.

We note that only recently, Eckstein and Bertsekas [4] were the first to prove the

convergence of the alternating direction method for solving problem (P) allowing approx-

imate minimization in x and z as in Algorithm I. We are unaware of any convergence rate

results for the alternating direction method. For the alternating minimization algorithm,

Tseng [27] proved that at least linear rate of convergence can be achieved, under the
additional assumption that one of the operators, AOf *A T or Og *, is strongly monotone.

Finally, we point out that in both Algorithms A and B, one needs to know the vector
x k + 1 in order to update z ~ + 1. On the other hand, in Algorithm E, x ~ + 1 and z ~ + 1 are computed

separately from each other, and thus this offers a further degree of parallelization. This will

be exemplified below.

5.2. Potential applications

In [l 3], Han and Lou proposed a parallel decomposition algorithm for minimizing a

strongly convex and differentiable function over the intersection of closed convex sets. This

algorithm has been further studied, under different assumptions in [15], [19] and [27]. It

was shown in Iusem and De Pierro [15] and Tseng [27], that Han-Lou algorithm is in fact

a special case of the alternating minimization algorithm.

We conclude this section by applying Algorithm E to that problem, providing another

G. Chen, M. Teboulle /Mathematical Programming 64 (1994) 81-101 99

new highly parallelizable algorithm, which does not require the strong convexity (or dif-
ferentiability) assumption imposed in [13], [19] and [27].

Consider the following convex programming problem:

min(h(x) :x~{ '] Ci) (5.2)
i=l

where h: ~n ~ (_ w, + ~] is a closed proper convex function, and each Ci is a closed
convex set in ~". Introducing the artificial variables zi ~ ff~", i = 1 l, we can rewrite (5.2)
in the following equivalent form:

m i n (h (x) + ~ 6(z~lCi):x=zi, i=l l~ (5.3)
i~l

where 8(. I C~) is the indicator function for C~. Identifying, h(x)=fix) , g: ~ ' ~ (- ~ ,
+ ~] with g(z)=E~=I 6(zil Ci) where z = (zl, z2, z3 zl) ~ N~l, and A = [L L
I] ' ~ N" × ~z, problem (5.3) is clearly a special case of problem (P). Applying Algorithm
E to problem (5.3) produces the following iterations.

Algorithm C. Starting with an arbitrary point (x °, z °, yO), for k>~ 0,

p~+l=y~i+ak(x~ z~), i = 1 l,

=arg m i n (h (x) + }~(p~+ 1, x) + (1/(2Ak))IIx--xkl l 2~ y k + l

z / k + ' = a r g m i n { - (p ~ + ' , z i) + (1 / (2 A k)) l l z i - z ~ l l 2 } , i = 1 l,
Zi E Ci

y~+l=y~+Ak(Xk+~--z~+l), i = 1 I.

Here, Yi ~ ~n, i = 1 l, is the Lagrangian multipliers associated with the constraints x = zi-
Note that the above iterations are highly parallelizable and that the minimization with respect
to z is equivalent to compute a projection on each of the set Ci, i.e. z~ +1 =Pci(Z~ +
Akp/k+ 1), compare with [13, 27].

To prove convergence of Algorithm C, we assume that Assumption A holds. In this
particular case, the latter will be satisfied if

r i (dom h) Nr i (Cl) 0 "" Nri(C~) ~6 . (5.4)

Applying Theorem 3.1, we then obtain:

Theorem 5.1. Let {x k, z ~, yk} be the sequence generated by Algorithm C and assume that
(5.4) holds. If { A~} satisfies

e~<Ak ~< (1 - e) / (2V~) Vk>~0 (5.5)

100 G. Chen, M. Teboulle / Mathematical Programming 64 (1994) 81-101

forsomeO<~ e<<. I / (2V~+ 1), then {x ~} converges tox* , {z~} converges to x* fo r all i = 1,
I and {y~ } converges to * Yi , i = 1 I. []

We finally mention that one can also apply Theorem 4.1 to problem (5.2) to derive a
rate of convergence result for Algorithm C. Furthermore, if the function h(x) is given
separable, then the minimization step for the variable x can be performed componentwise,
and since we need not to assume the strong convexity of the objective function, our algorithm
is in particular also applicable to linear programming problems.

References

[1] A. Auslender, "Numerical methods for nondifferentiable convex optimization," Mathematical Program-
ming Study 30 (1987) 102-126.

[2] D.P. Bertsekas, Constrained Optimization and Lagrangian Multipliers (Academic Press, New York, 1982).
[3] D.P. Bertsekas and J.N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods (Prentice-

Hall, Englewood Cliffs, NJ, 1989).
[4] J. EcksteinandD.P. Bertsekas, "On the Douglas-Rachford splitting method andtfie proximalpoint algorithm

for maximal monotone operators," Mathematical Programming 55 (1992) 293-318.
[5] W. Findeisen, F.N. Bailey, M. Brdys, K. Malinowski, P. Tatjewski and A. Wozniak, Control and Coordi-

nation in Hierarchical Systems (Wiley, New York, 1980).
[6] M. Fortin and R. Glowinski, Augmented Lagrangian Methods: Applications to the Solution of Boundary-

Valued Problems (North-Holland, Amsterdam, 1983).
[7] M. Fukushima, "Application of the alternating direction method of multipliers to separable convex pro-

gramming problems," Computational Optimization and Applications 1 (1992) 93-111.
[8] D. Gabay, "Applications of the method of multipliers to variational inequalities," in: M. Fortin and R.

Glowinski, eds., Augmented Lagrangian Methods: Applications to the Solution of Boundary-Valued Prob-
lems (North-Holland, Amsterdam, 1983) pp. 299-331.

[9] D. Gabay and B. Mercier, "A dual algorithm for the solution of nonlinear variational problems via finite-
element approximations," Computors and Mathematics with Applications 2 (1976) 17-40.

[10] R. GlowinskiandP. LeTallec, "Augmented lagrangian and °perat°r-splitting meth°ds in n°nlinear mechan-
ics," in: SIAM Studies in Applied Mathematics (SIAM, Philadelphia, PA, 1989).

[11] R. Glowinski and A. Marrocco, "Sur l'approximation par 616ments finis d'ordre un, et la r6solution par
p6nalisation-dualit6 d' une classe de probl~mes de Dirichlet nonlin6aires," Revue Franfaise d'Automatique,
Informatique et Recherche Op¢rationelle 2 (1975) 41-76.

[12] O. Guler, "On the convergence of the proximal point algorithm for convex minimization," SIAM Journal
on Control and Optimization 29 (1991) 403-419.

[13] S.P. Han and G. Lou, "A parallel algorithm for a class of convex programs," SIAM Journal on Control and
Optimization 26 (1988) 345-355.

[14] S. Ibaraki, M. Fukushima and T. Ibaraki, "Primal~lual proximal point algorithm for linearly constrained
convex programming problems," Technical Report, No. 91016, Kyoto University (Kyoto, Japan, 1991).

[15] A.N. Iusem and A.R. De Pierro, "On the convergence of Han's method for convex programming with
quadratic objective," Mathematical Programming 52 (1991) 265-284.

[16] L.S. Lasdon, Optimization Theory for Large Systems (Macmillan, New York, 1970).
[17] B. Lemaire, "The proximal algorithm," International Series of Numerical Mathematics 87 (1989) 73-87.
[18] P.L. Lions and B. Mercier, "Splitting algorithms for the sum of two nonlinear operators," SIAM Journal on

Numerical Analysis 16 (1979) 964-979.
[19] K. Mouallif, V.H. Nguyen and J.J. Strodiot, "A perturbed parallel decomposition method for a class of

nonsmooth convex minimization problems," SIAM Journal on Control and Optimization 29 (1991) 829-
847.

[20] B.T. Polyak, Introduction to Optimization (Optimization Software, New York, 1987).

G. Chen, M. Teboulle / Mathematical Programming 64 (1994) 81-101 101

[21] R.T. Rockafellar, Convex Analysis (Princeton University Press, Princeton, N J, 1970).
[22] R.T. Rockafellar, "Augmented lagrangians and applications of the proximal point algorithm in convex

programming," Mathematics of Operations Research 1 (1976) 97-116.
[23] R.T. Rockafellar, "Monotone operators and the proximal point algorithm," SIAM Journal on Control and

Optimization 14 (1976) 877-898.
[24] J.E. Spingarn, "Applications of the method of partial inverses to convex programming: decomposition,"

Mathematical Programming 32 (1985) 199-223.
[25] G. Stephanopoulos and A.W. Westerberg, "The use of Hestenes' method of multipliers to resolve dual gaps

in engineering system optimization," Journal of Optimization Theory and Applications 15 (1975) 285-
309.

[26] A. Tanikawa and H. Mukai, "A new technique for nonconvex primal-dual decomposition," IEEE Trans-
actions on Automatic Control AC-30 (1985) 133-143.

[27] P. Tseng, "Applications of a splitting algorithm to decomposition in convex programming and variational
inequalities," SIAM Journal on Control and Optimization 29 (1991) 119-138.

[28] H. Uzawa, "Iterative methods for concave programming," in: K.J. Arrow, L. Hurwicz and H. Uzawa, eds.,
Studies in Linear and Nonlinear Programming (Stanford University Press, Stanford, CA, 1958) pp. 154-
165.

