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Abstract 

This paper presents a decomposition method for solving convex minimization problems. At each 
iteration, the algorithm computes two proximal steps in the dual variables and one proximal step in 
the primal variables. We derive this algorithm from Rockafellar's proximal method of multipliers, 
which involves an augmented Lagrangian with an additional quadratic proximal term. The algorithm 
preserves the good features of the proximal method of multipliers, with the additional advantage that 
it leads to a decoupling of the constraints, and is thus suitable for parallel implementation. We allow 
for computing approximately the proximal minimization steps and we prove that under mild assump- 
tions on the problem's data, the method is globally convergent and at a linear rate. The method is 
compared with alternating direction type methods and applied to the particular case of minimizing a 
convex function over a finite intersection of closed convex sets. 
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1. Introduction 

This paper presents a decomposition algorithm for solving convex programming prob- 
lems with separable structure. The method is based on the properties of the proximal point 
algorithm and its primal-dual application. 

The proximal point algorithm [ 23 ] is an iterative method for finding a zero of a maximal 
monotone operator T, namely, a point x* ~ ~n such that 0 ~ T(x*). Starting at a point 
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xO~ Nn, the proximal point algorithm generates successively a sequence of points 
x k + 1 .~_ (I-~ i~ k T) -- Ix k, where A k is a positive scalar and the operator (I  + A kT) - 1 is a single 

valued, nonexpansive operator on N n, [23]. For a survey we refer the reader to Lemaire 

[ 17], and for more recent convergence results on the proximal point algorithm, see Guler 
[ 12]. In [22], Rockafellar showed how the proximal point algorithm can be applied to 
convex programming problems in three different ways: the primal proximal minimization 
algorithm, the dual method of multipliers and the primal-dual proximal method of multi- 
pliers. Here, we are particularly interested in the proximal method of multipliers when 
applied to convex programs with separable structure of the form: 

(P) min{f(x) +g (z ) :  Ax=z} (1.1) 

where f :  ~n ~ ( _ ~, + ~1 and g : E'~ ~ ( - ~, + w] are given closed proper convex func- 
tions, and A is a given m × n matrix. Note that many convex programs can be formulated in 
the generic form (1.1), see e.g. [ 10, 21]. The Lagrangian for problem (P) is defined by 
L : ~ x ~ m x ~ m ~  ( - ~ ,  + ~ ] ,  

L(X, Z, y) =f(x)  +g(z)  + (y, A x - z )  (1.2) 

where ( . ,  • ) denotes the inner product and y is the Lagrangian multiplier associated with 
the constraint Ax = z. 

The Lagrangian L(x, z, y) is a closed convex-concave function. Therefore, the set-valued 
subdifferential mapping S on R n X N m X ~rr, given by 

S(x, z, y) = Ox.zL(x, z, y) × Oy( - L(x, z, y) ) (1.3) 

is maximal monotone [22]. A pair (x*, z*) is optimal for (P) and y* is an optimal 
Lagrangian multiplier if and only if 

L ( x * , z * , y ) < . L ( x * , z * , y * ) < ~ L ( x , z , y * )  V ( x , z ) ~ R  nXm, V y ~ R  m, (1.4) 

that is, if and only if O~S(x* ,  z*, y*)  (in the sequel, 0 denotes a zero element in 
R")< ~m × Rm). 

In [22], Rockafellar applied the proximal point algorithm to S to produce the proximal 
method of multipliers for (P). At each iteration of this algorithm, given 2, £, 3), one minimizes 
the augmented Lagrangian with respect to x and z, 

L a ( x , z , ~ ) = L ( x , z , ~ ) + ½ A I l A x - z l l 2 + ( 1 / ( 2 A ) ) ( L I x - y [ 1 2 + l l z - ~ l l 2 )  (1.5) 

to obtain the next iterates (x +, z + ), and then updates the multiplier by the iteration 

y+ =33+ A(Ax + - z  + ) (1.6) 

where A is a positive scalar. 

Without the quadratic terms Iix-2112+ IIz-~IL 2, the above method is the classical 
method of multipliers, see e.g. [2], which can be obtained by applying the proximal point 
algorithm to the dual of (P), [22]. As we shall see later, the additional quadratic terms will 
be of fundamental importance in the algorithm developed here. 
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The proximal method of multipliers is globally convergent under very mild assumptions 
on the problem's data, namely, convexity and existence of optimal solutions are enough to 
guarantee convergence. The principal disadvantage of this method when used in the context 
of separable problems like (P) is the presence of the expression I[ Ax - z lf 2 in the augmented 
Lagrangian L~, which destroys the separability between x and z, since they are linked by 
the cross product term z'Ax, and thus prevent to minimize separately in x and z the augmented 
Lagrangian LA. This has been recognized as one of the major drawbacks of the augmented 
Lagrangian approach when applied to separable convex programs, and a number of strategies 
have been proposed and extensively studied in the literature for removing this difficulty, 
see e.g., [3, 5-8, 10, 13, 14, 16, 18, 19, 24-27]. 

In early 1958, Uzawa [28] suggested to simply minimize the Lagrangian function L(x, 
z, y) with respect to x and z (with y fixed), thus preserving the separability in x, z, and then 
update the multiplier by the iteration (1.6). Uzawa's method is in fact a gradient method 
applied to the dual problem of (P), see e.g. [20]. The convergence of the method is 
guaranteed, if bothfand g are strongly convex. This is a quite restrictive assumption, ruling 
out its potential applications for many interesting problems arising in application. 

An important approach for eliminating the difficulties associated with the nonseparability 
of LA is a family of methods based on the alternating direction method of multipliers 
proposed by Gabay and Mercier [9], and Glowinski and Marrocco [ 1 l ]. The idea of this 
approach is to alternate the minimization with respect to x and z, and is patterned after 
splitting methods used in numerical analysis, such as Douglas-Rachford, see e.g. [ 18]. At 
each iteration of this algorithm, the augmented Lagrangian 

•(x, z, y) :L(x ,  z, y) + ½AJIAx-zlI 2 

is first minimized with respect to x with z, y held fixed, then with respect to z and followed 
by an update of the multiplier y as in (1.6). These methods converge under some assump- 
tions which will be discussed later in Section 5. A closely related method is the partial 
inverse of a monotone operator approach developed by Spingarn [24]. For further details 
and related works, we refer to [ 8, 10] and references therein, and [ 27]. 

Most recently, Eckstein and Bertsekas [4] developed a unified framework via monotone 
operator theory, allowing them to show that alternating type direction methods as well as a 
variety of other convex programming algorithms are in fact special cases of the proximal 
point algorithm, and thus demonstrating the power and versatility of proximal methods in 
the analysis and development of decomposition algorithms for convex optimization prob- 
lems. 

The algorithm developed in this paper is another manifestation of the proximal method- 
ology for solving convex programs with separable structure. The decomposition method 
presented here will preserve the good features of the proximal method of multipliers; it 
globally converges to an optimal primal-dual solution under very mild assumptions, but 
will remove the difficulty of nonseparability associated with the augmented Lagrangian Lx. 
Our method differs from the alternating direction methods. At each iteration of the algorithm, 
one replaces the minimization of the function (1.5) by the minimization of 
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L(x,  z, ~ )  + (1 / (2A)) (  Ilx-2[I 2+ IIz-~ll 2) (1.7) 

followed by the multiplier update (1.6). Here, ~ is an "estimate" of the multiplier obtained 
via a simple update rule similar to the one given by (1.6). Roughly speaking, our method 
consists of computing two proximal steps for the dual problem associated with (P), and 
one proximal step for the primal problem. The additional dual proximal step used to compute 
u~, allows for preserving the separability of the problem. A detailed description and moti- 
vation of the algorithm is given in Section 2. In Section 3, we prove global convergence of 
the method to an optimal solution of (P) and an optimal Lagrangian multiplier, under the 
same modest assumptions used in the proximal method of multipliers. The convergence is 
proved for an inexact version of the algorithm, where the minimization step is performed 
approximately according to a given stopping rule. The convergence rate analysis of the 
method is given in Section 4, where it is shown that the primal-dual sequence converges at 
a linear rate with a ratio given explicitly in terms of the problem's data. Our algorithm is 
then compared with alternating direction type methods in Section 5, and is applied to the 
minimization of a convex function over the intersection of a finite number of closed convex 
sets to obtain a new highly parallelizable algorithm for these problems. For notations or 
definitions of concepts not explicitly given in the paper, the reader is referred to Rockafellar' s 
book [21]. 

2. A proximal-based decomposition method 

To motivate the decomposition algorithm described below, let us first recall the proximal 
point algorithm when applied to find the minimizer of a closed proper convex function F 
on Nn. In this case, starting from an arbitrary point u ° ~ Nn, the iterative scheme of the 
proximal point algorithm is 

u~+l = ( I+  A~OF)- I (u  k) 

u ~+1 =arg  min{F(u) + (1 / (2A~))I lu-u~l[  2} (2.1) 

Hk__ bl k+ l 
_ _  ~ OF(u~+ 1) (2.2) 

A~ 

where, OF denotes the subdifferential of F. It is well known, see e.g. Lemaire [ 17], that the 
above iteration can be seen as an implicit discretization scheme for the differential inclusion 

{ - d u / d t ~ O F ( u ) ,  t>0 ,  (2.3) 
u(0) = u  °. 

Similarly, an explicit discretization scheme of (2.3) leads to the gradient method 

(u k_  uk+ 1)/Ak ~ OF(uk). (2.4) 

Let us now return to problem (P). As described in the introduction, in the proximal method 
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of multipliers, one has to minimize the augmented Lagrangian LA given in (1.5) with respect 
to x and z, followed by the update rule for the multipliers (1.6). The minimization step is 
just the proximal point algorithm applied to the penalized Lagrangian L(x,  z, 

yk) + ½A~ IIAx-z II 2. Formally, using (2.2), one thus obtains the iterative scheme 

( x ~ _ x k +  l)/Ak ~ Of(x k+ 1) +AT(yk + Ak(Ax~+ 1 _ zk+ l) ), (2.5) 

(Zk-- Zk+I)/Ak EOg(z  k+l ) - ( y ~  + Ak(Axk+l--Z~+l)  ). (2.6) 

The difficulty with the above scheme is that the iterates (x ~+ l, zk+l) are coupled by the 
implicit computation of the constraints given by the expression (Ax k + 1 _ z k + 1), and there- 
fore the scheme cannot compute x ~ ÷ 1, zk + 1 separately. To remove this difficulty, we suggest 
to perform an explicit computation of the constraints expression in (2.5)-(2.6) ,  which is 
thus replaced by the iterative scheme 

(xk--xk+l)ll l\k ~ O f ( x  k+l) + A  T(yk + Ak(Ax~--Zk) ), (2.7) 

(z k -  z k+l)/Ak ~ Og(z ~+ 1) _ (yk+ Ak(Ax ~_ z k) ). (2.8) 

The above scheme can thus be interpreted as apartial  implicit-explicit  method: implicit for 
the objectives and explicit for the constraints. Defining 

p~+l = y k +  A k ( A x k _ z  k) (2.9) 

and using (2.1), one can now rewrite (2.7)-(2.8) in the equivalent forms 

x~+ 1 = arg min{f(x) + (pk+ 1, Ax)  + ( 1/(2A~) ) I Ix -x  ~ II 2} ,  (2.10) 

zk+ 1 = arg min{g(z) - (pk+ 1, z) + ( 1 / (2AD) II z -  z k II 2}. (2.11 ) 

Thus, the minimization of the augmented Lagrangian L~ has now been decoupled in two 
separate minimization of strongly convex functions in the variables x and z. Finally, to 
complete one iteration of the proximal method of multipliers, the multipliers are updated 
according to the iteration 

y~+ 1 = y k +  Ak(Ax~+ 1 __zk+ 1) .  (2.12) 

The iterations (2.9)-(2.12) are the decomposition algorithm we propose for solving prob- 
lem (P). Note that the iteration (2.9) is exactly the same as the multiplier update rule 
(2.12), except that the constraints expression A x - z  is now evaluated at the current iterate 
in (2.9). 

As observed by Rockafellar [ 21 ], the Lagrangian dual multiplier update rule is nothing 
else but computing a proximal (maximization) iterate for the dual variable y, i.e. 

yk+ 1 = arg max{ (y, Ax ~+ 1 Zk+ 1)  - -  ( 1 /(2Ak) ) Ily--yk II 2}. (2.13) 

A similar computation will thus produce p~ + 1 by replacing Ax k ÷ 1 _ z k + 1 with Ax ~ -  z ~ in 
(2.13). Recalling the definition of the classical Lagrangian associated with (P), the four 
steps (2.9)-(2.12) of the algorithm can thus be written as 
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p~+l =arg max{L(x k, z k, y) _ ( 1/(2AD) Ily-y~ll 2}, 

x k+l =arg min{L(x, zk, p k+l) q- (1/(2A~))IIx-xkl[  2}, 

z~+ 1 =arg min{L(x k, z, pk+ l) + ( 1 / (2AD) IIz-z~ll 2}, 

yk+ 1 = arg max{L(x~+ l, zk+ l, y) _ ( 1 / (2AD) Ily-ykll 2}. 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

Therefore, our algorithm can be seen as performing two proximal steps in the dual variables, 
the predictor step pk + 1 and the corrector step yk + 1, combined with a primal proximal step 
which is now separable in x and z. For ease of reference, we call this algorithm a predictor 

corrector proximal multiplier method, (PCPM). 
It is interesting to note that the decoupling of the variables x and z can also be obtained 

by using a "kind" of linearization of the quadratic penalty term II Ax - z ll 2; i.e. by linearizing 
the squared Euclidean norm ½ II • II 2 at the current kth iterate. This strategy was proposed by 
Stephanopoulos and Westerberg [ 25 ] to construct separable classical augmented Lagran- 
gian methods for nonconvex problems arising in engineering system optimization. A similar 
approach was further studied in [ 5 ]. None of these works considered adding the proximal 
quadratic terms. In [ 25 ] no convergence results are given, and none of our convergence 
analysis results, however, can be obtained from the results of [5 ]. 

As we shall see in the next sections, the interpretation of our algorithm via the proximal 
point method plays a central role in the convergence analysis of the PCPM method, and 
will demonstrate the benefits of the proximal framework. 

3. Convergence of the PCPM 

Consider the convex problem (P) defined in the introduction. 

(P) min{f(x) +g(z) :  Ax=z} .  (3.1) 

The Lagrangian associated with (P) is defined by 

L(x, z, y) =f(x)  + g(z) + (y, A x - z )  (3.2) 

and the dual of problem (P) is given by 

(D) max(d (y )  := infx. ~ L(x, z, y ) = - f * ( - A ' r y ) - g * ( y ) }  (3.3) 

where f *, g * are the conjugate functions off,  g respectively, see e.g. [ 21 ]. Throughout 
the rest of this paper, we make the following assumption. 

Assumption A. There exist (x*, z*) and y* optimal solutions for problems (P) and (D) 
respectively, i.e. there exists (x*, z *, y *) which is a saddle point of L, 

L ( x * , z * , y ) < ~ L ( x * , z * , y * ) < ~ L ( x , z , y * )  V ( x , z ) ~ N  "xm, Vy~[~ m. (3.4) 
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Note that since (P) is a convex program, the existence of an optimal dual Lagrange 

multiplier y *  associated with the constraint Ax = z is guaranteed if a constraint qualification 
holds for problem (P) (see [21 ] ), namely if, 

there exist x*  ~ r i ( d o m f )  and z*  ~ r i ( d o m  g) satisfying Ax* = z * .  (3.5) 

The PCPM algorithm that we suggest for solving (P) allows for approximate minimization 
with respect to x and z. In the sequel, we use the notation, 

s-arg rain F(u) = {v: F (c )  ~< inf F +  e} 

where F is a given function and e >~ 0. 

Algor i thm I (inexact).  Starting with an initial arbitrary triple (x °, z °, yO) E N" × N"  × Nm, 

a sequence (x ~, z ~, y~) ~ NnX Nmx ~ ' ,  k >j 0, is successively generated by the following 
steps: 

Step 1. Compute 

pk+ i =yk + A~(Ax k_ zk). 

Step 2. Solve 

x ~+ ~ = a~-arg min{f(x) + (pk+ 1, Ax) + ( 1 / (2Zk)  ) IIx--xkll 2}, 

Z ~+I=  fl ,-arg min{g(z) -- (pk+ l, Z) + (1 / (2Ak) ) J Iz -zk l J  2}. 

Step 3. Compute 

yk+ 1 =yk+ Ak(Axk+ l _ zk+ I). 

Here, {ak} and { ilk} are sequences such that 

o~ oo 

w,, E E 
k = O  k = 0  

and {Ak} is a sequence of positive scalars, to be specified later. 

When cek =/3k = 0, we obtain the algorithm with exact minimization. We will denote the 
exact minimizers by yk + ~, Zk+ 1. 

The convergence of the PCPM algorithm strongly relies on its proximal nature. The 
following result gives two basic estimates which will be used in the convergence analysis. 
These estimates have been shown in Auslender [ 1 ]. For completeness, we include here a 
short proof. We would like to stress that the estimate given below in Lemma 3.1 (i) ,  while 
simple, is powerful in its implications on the convergence analysis of  proximal methods, 
see e.g., the elegant new convergence results obtained by Guler [ 12]. 

Let F:  ~ ~ ( - ~z, + w] be a closed proper convex function and define 

ffk+ 1 = arg min{F(u)  + (1 / (2~k)  ) I1 u -  ukll 2}, 
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ue+ 1 = ek-arg min{F(u)  + ( 1/(2Ak) ) 11 u -- uell 2}. (3.6) 

L e m m a  3.1. For  any k >~ O, 

(i) 22tk[F(ff e + l ) - F ( u ) ] ~ ( l l u e - u { [  2 - [ l f f k + ~ - u l l  z - [ l f f e + l - u e l l  z) V u ~ n ;  

(ii) Ilffk+ l -- uk+l }1 ~< ~ e e a ~ .  (3.7) 

Proof .  Let qtk(u ) : = F ( u ) + ( l / ( 2 ) t k ) ) l [ u - u e [ I  2. By the definition of ~ + 1  we have 

O ~ O t ~ ( a e + l ) ,  since ~0k is strongly convex with modulus 1/he (see, Rockafellar [23, 
Proposition 6] ), it follows that 

2aAq,k(u) -Ok(ff~+~)]  > tiff k + ' - u l l  2 Vu 

and (i) is proved. By the definition of u e + l we have t)~ (v )  - tp~ (u k + l ) ) _ e~ Vv. Setting 

u = u k +l and v = t~ k +1 in the above two inequalities respectively, and adding, we obtain 

(ii). [] 

R e m a r k  3.1. As noticed by Auslender [ 1 ], with e~, := ~ the scheme (3.6) implies 
Lemma 3.1 (ii) and then one recover the approximate criterion A suggested by Rockafellar 
[22, p. 100]. Note that here as in Rockafellar, we assume that }2~=o e'k< w (cf. the 
sequences {a~} and {/3k} defined above).  

We define 

37~+ 1 = y k +  )te(Ayk+ 1 _ ge+ 1) 

= a r g  m i n { - L ( 2  k+l, i f + l ,  y)  + (1/(22t~))  [ l y - y k l l  2} (3.8) 

(see (2.13 ) ). In the next result, we establish two fundamental estimates relating the exact 
and inexact iterates from an optimal solution. 

Proposi t ion  3.1. For  all k >>. O, 

( i )  I I .~k+l - -x*][Z-~}]g~k+l- -Z*}]2~} lxk- -x*] lZ-~} l zk - - z* l l  2 

_ 2)re (pC+ 1 _ y * ,  Aye+ 1 _ Zk+ 1) 

- {  I I ~ + 1 - x k l l 2 +  I l f f + ' - z e [ I  2}; 

(ii) I l y ~ + l - y * l l Z < ~ l l y k - y * l l 2 - { l l p e + ~ - j ~ + l l l Z + l l p k + ~ - y ~ l }  2} 

- 2 A  ~ { ( y  * - y ~ +  ~, a Y  ~ + t  _ i f+  ~) + ( . ~ e + ,  _ p C +  ~, a x  ~ _ z ~) }. 

Proof.  From Step 2 of  Algorithm I, the sequences {ye}, {ge} are obtained by applying the 
exact proximal point algorithm (i.e. c~ e = fie = 0) to the separable Lagrangian in (x, z), 

(x, z) ~ L(x ,  z, p~+ ~) = f ( x )  + g ( z )  + (pe+ ', A x - z ) .  (3.9) 
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Applying Lemma 3.l (i) with the choice F:=L at the optimal point x = x *  and z = z * ,  we 
obtain 

2Ak [L(x  k+ I, 5k+ 1, pk+ 1) - L ( x * ,  Z*, pk+ l) ] 

f l x ~ _ x ,  ii 2+ i l z k _ z ,  ii 2__ { ilyk+l--X*II 2+ i i£k+l_z*  [i 2} 

_ { 1137k+ I _Xkfl 2+ IIZ~+ 1 _z~ll 2}. 

Since (x*, Z*, y *) is a saddle point for L(x, z, y),  we also have 

2Ak[L(x*, z*, p~+ 1 ) _ L(2~+ l, ~k+ l, y . )  ] ~< 0. 

Adding the above two inequalities, we obtain (i) after rearranging terms. Similarly, since 
the sequences {p~+l}, {37k+1} are obtained by applying the proximal point algorithm to 
F(y)  := - L ( x  k, z k, y) and F(y) := - L ( Y  k+ 1, ~k+ l, y) respectively, applying once again 

Lemma 3.1 (i) at y = 37 k + 1, y = y .  respectively, we obtain 

2A~[L(x k, z k, 37k + 1) _ L ( x  k, z k, pk+ 1) ] 

~< ilyk_)Tk+ ill 2 _ ilp~+ 1 __)Tk+ 1 [i 2 _ _  i[pk+ 1 _y~  l[ 2, 

2Ak[L(.fk+ 1, ~k+ 1, y . )  _L(yk+ 1, ~k+ 1, y-k+ 1)] 

I l y~ -y*  I12- IIjk+ ~ - y *  II 2 - II~k+ 1 -ykl[  2. 

Adding the above two inequalities, and rearranging terms we obtain (ii). [] 

We can now state and prove our convergence result. 

Theo rem 3.1. Consider problem (P) for which Assumption A holds, that is there exists a 
primal-dual optimal solution (x*, z*, y * ) .  Let {x k, z k, yk} be the sequence generated by 
Algorithm I. If  { Ak} satisfies 

~ A  k ~ m i n  ~- -, Vk>~0 (3.10) 

for some 0 < ~ ~< rain( ½, 1 / (2 [IA II + 1 ) ), then {x k } converges to x*, {z k} converges to Ax* 
and {yk} converges to y*. 

Proof.  We denote w = (x, y, z) with the associated norm II w II 2 = II x II 2 + II z II 2 + II y II 2. B y 
adding the inequalities ( i ) - ( i i )  derived in Proposition 3.1, we obtain 

II~k+l--w*ll2~< Ilwk--W* II 2-- { II~+ I--xklI 2 + II£k+ l--zkll 2} 

__ { i lpk+l  __)~k+ 111 2 +  ilp~+ 1 -y~l l  2} + p  ( 3 . 1 1 )  

where p:= 2a k (37 k+ 1 _p~+ l, A(2~+ 1 _ x  k) _ (zTk+ 1 _ z  k) ). 

Using (3.8) and Step 1 of Algorithm I, we have 
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p=2A~ [IA(2 k + l - x  k ) -  ( £ k + l _ z  ~) lie 

4A~ I[A LI 2 iL2k+, _ x k II 2 + 4)t2 I[ Z k+ ' - z ~ 11 2. (3.12) 

Combining ( 3.11 ) with inequality (3.1 2),  it follows that 

I ]us~+l -w*  II 2 

~<[Iwk-w * l [ 2 - ( 1 - 4 , ~ [ I A I I 2 )  llKk+' x ~ L I 2 _ ( I _ 4 A  2) 1[£ k ÷ l - z k l l 2  

- {l ip k+l - g ~ + ~  II 2 +  ilpk+ 1 -y~IL 2}. (3 .13)  

Since by (3.10) we assumed that e ~< A ~ ~< rain ( 1 ( 1 - e),  ( 1 - ~) / (211A [I ) ), we obtain 
from (3.13),  

I1~ ~+l - w *  II 2<  liw~_w . II 2 - e {  112~+ 1-x~ll  2+  ii~k+ J _z~ll 2 

+ ilpk+ 1 _gk+  111 2+ lipS+ l -y~l l  2}. (3.14) 

Now we need to find an estimate for I I w k + ~ _ W * I[. By the triangle inequality and (3.14),  
we obtain 

IIw ~÷j - w * l l  ~< IluT~÷l--w~÷ll[ + I [ ~ + l - - w * [ I  ~< I[Wk+l--wk+Xll " q - I l w k - w * l l .  

(3.15) 

We also have, 

I ] ~ + l - w ~ + l l [ 2 =  l[2k+l--x~+lll  2 + I I ~ + l - - z ~ + l l l 2 +  ll3Sk+l--y~+lll 2 

~< ( 1 + 2A 2 IIA II 2) ll3?k + ~ _ xk+l l[ 2 + ( 1 + 2A 2) II ~-k÷ 1 _ z~÷ '11 2 (3.16) 

by using the definitions o fy  ~ ÷ l, 37~ + ~ given respectively in Step 3 of Algorithm I and (3.8). 
By Lemma 3.1 (ii),  we have 

112k+ 1 - x k +  111 2 ~< 2Ak%, [1~+1 --Z~+ ~ II 2 ~< 2A~/3k. (3.17) 

Combining (3.17) and (3.16), we then obtain 

[I v7 ~+l - w ~+ ill ~< ~/2A~ %(  1 + 2A~ IIA II 2) + 2A~/3k( 1 + 2A~) 

<~ c, 1/~ + Ca l / ~  (3.18) 

where 0 ~< c~, c2 < ~, since by the assumption (3.10), { A~} is bounded. 
Using (3.18) in the most left-hand part of inequality (3.15),  we then have 

IIw~+X-w*ll ~ IIw~-w*ll +c~f~+c2v/~ (3.19) 

which because of E~=o V/~ <oc and E~=oV/~  ~ < ~ ~mphes" " that {w ~} is bounded, and the 

existence of 

lim I Iw~-w*l [  = / x < ~ .  (3.20) 
k---~ ce 
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From (3.18), we also have under our assumptions for {tee} and {fie} 
II ~ e + l _ w e + l II ~ 0 and therefore using (3.15),  we obtain 

lira II~ e + l - w * l l  = ~ < w .  
k ~  

that 

Therefore, by taking the limits on both sides of  (3.14),  we obtain (since ~ >  0) 

112 k + l - x k l l ~ 0 ,  I lgk+l - -Zk l l~0 ,  (3.21) 

IJp~+l--37~+ll l~0,  [ f p k + 1 _ y k [ l ~ 0 .  

Since {w k} is bounded, there exists a limit point w ~ i.e. there exists a subsequence 
{w kj= (x ej, z e~, y~J) } --*w = =  (x ~, z ~, y~).  We now show that w ~ is a saddle point of  L(x, 

Z,y) .  
Applying Lemma 3.1 (i) to Step 2 of Algorithm I at any fixed x and z, we have 

2Ak[L(~e+ ~, i f+  l, pk+ l) _ L(x ,  z, pk+ 1) ] 

~,~ ]I x k  - -  x II 2 -~ - [I z e - z ll 2 - { [I.~k + l - x ll 2 ÷ ] f f f + l - z l l  2} 

--  { II)~k+ 1 __xkll 2 ÷  II~k+ 1 _ z k l l  2}. ( 3 . 2 2 )  

Taking the limit over the appropriate subsequences on both sides of  (3.22) and using 
(3.21), we have 

L ( x  ~, z ~, y~)  - L ( x ,  z, y~)  <~0 (3.23) 

since/~e is bounded below by e >  0. 
Similarly, by applying Lemma 3.1 (i) to (3.8) at any fixed y, we obtain 

2)te[L(~e+ l, ~e+l, y) _L(~e+  1, Ze+l, 37k+ 1) ] 

<~ ] [ y e y l ]  2 [l~k+ 1 - y [ I  2__ I]~k+ 1 _yell 2 

~< ilye_yl[ 2__ [ I lk+ I - y l l  2 (3.24) 

Taking the limit over the appropriate subsequences on both sides of  (3.24),  we then have 

L ( x  ~, z ~, y)  - L ( x  ~, z ~, y~)  <~0. (3.25) 

Combining (3.23) and (3.25), which hold for any (x, z, y) ,  we have thus shown that (x ~, 
z ~, y~) is a saddle point of  L(x, z, y).  

To complete the proof, it remains to show that {wk} has a unique limit point. Let w] ~ and 
w~ be any two limit points of  {we}. As shown above, both are saddle points of  L(x, z, y) ,  
and hence 

lira [ I w ~ - w ~ l l = / z i < ~ ,  i = 1 , 2 .  
k ~  

Now we can use the same argument as given in [23, p. 885]. Writing 
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I l w k - w l l [  2 -  I[w~-w21l 2= - 2 ( w  k, W l - W 2 } +  [[Wl[I 2 -  IIw~l[ 2 

and passing to the limit we obtain for each limit point w] ~, w~ of  {wk}, 

/x21 - / x ~ =  - 2 ( w ~ ,  w ~ - w ~ } +  [Iw]~ 112- [Iw~: [I 2= - I I w ~ - w 2 1 1 2  

= - 2 ( w 2 ,  w] ~ - w ~ ) +  IIw~ I[ 2 -  Ilw~ II 2= IIw]~ - w ~  II 2. 

Therefore, we must have I[ w]~ - w 2 II = 0 and hence w~ is unique. []  

4. Rate of convergence 

In this section we consider the rate at which the sequence {x k, z k, yk} generated by 

Algorithm I converges to a saddle point of the Lagrangian L(x, z, y). To prove this result, 

we need some further assumptions on the problem's data. Let T be a set valued maximal 

monotone operator on ~". Following Rockafellar [23],  we say that the mapping T -  ~ is 

Lipschitz continuous at the origin with modulus a >/- 0, if there exists a unique solution ti 

such that 0 ~  r( t i )  and for some ~->0, we have Ilu-all ~a[Iv[I ,  whenever v ~ r ( u )  and 

tlvll ~<~-. 
Recall that (cf. (1.3) ) 

S(x, z, y) =O~,zL(x, z, y) ×Oy( - L ( x ,  z, y) ) (4.1) 

is a maximal monotone operator on N" × N '~ × ~ "  and that solving problem (P) is equivalent 

to finding a zero of S. 

Assumption B. S - ~ is Lipschitz continuous at the origin with modulus a >i 0. 

Note that for problem (P) we have 

S - l ( v l ,  va, v 3 ) = a r g  min max{L(x, z, y ) - ( x ,  v l ) - ( z ,  v 2 ) + ( y ,  v3)} 
x ,  z y 

and therefore Assumption B can be interpreted in terms of  the problem's data as: there 

exists a unique saddle point w* such that for some 1->0, we have IIw-w*LI ~aLIv[I, 

whenever II v LI < ~" and w := (x, y, z) ~ S - i (vl, re, v3). 

Assumption C. The sequence {xk, z ~, y ~ } is generated by Algorithm I under the approximate 

criterion 

[Ixk+l--)?k+ll[ <~'rlkllXk+l--Xkl[, [IZk+l--z'k+lll ~ ~Tk [Izk+l--zkll, (4.2) 

where ~k >~ 0 and ~o  ~k < w. 

Note that the use of the same r/k for the approximation criterion (4.2) is just to simplify 

notation in the analysis below. In fact if one chooses different sequences ~ >~ 0, E0 i 
i = 1, 2, then one should simply define ~k = max( 71, ~ ) in (4.2). 
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The assumptions B and C were suggested by Rockafellar [22, p. 100], to derive the rate 
of  convergence of the proximal method of multipliers, and will also be used here to derive 
the rate of convergence for Algorithm I. Note however that the additional proximal dual 
step in Algorithm I precludes a direct application of the results developed in [22] and 
required a specific analysis (see also Remark 4.1 below). 

Before proving our convergent rate result, we need the following lemma. 

L e m m a  4.1. I f  the Assumption C holds, then 

Ir w k ÷  1 _ v V +  1 II ~< 6k [I w k+ 1 _ w k [I ( 4 . 3 )  

where 6k = ~/kmax(~/1 +2A 2 [IAI] 2, 1~/~2A2).  

Proof.  By (2.12), (3.8) and (4.2), we have 

ilyk+ 1 _37~+ 1 ii = Ak ]IA (x k+ ~ --fk+ 1) _ (zk+ 1 _ ~k+ 1) II 

~< r/~A~( IIAII Ilx k+l - x q l  + ][z k+l -zk[I  ). (4.4) 

Using the inequality ( r +  q)2 ~< 2( r  2 + q2), in (4.4) we obtain 

Ily k+1-37k+l II 2 ~< 2(r/kAk)2( IIAII 2llxk+ 1--x~ll 2+ [iz~÷ 1 --zq[ 2). (4.5) 

Therefore from (4.2), (4.5) and the definition of/~k given in the lemma, 

I l w k + J - ~ + l l l  2= I[xk+~--j?~÷lll 2 + l i f t÷ t - - i f÷ I l l  2+ IlYk+l--g~+lll 2 

~<~2( ilxk+ ~ _xkll 2+ IIZ~+ ~ _zkll 2) 

+ 2(~k&)2( IIAI[ 211x~÷ ~--xkll 2+ ilzk+~--Zql 2) 

~<t~( I]x k+x --xkll 2+ [iz~+ 1 _Z~II 2) 

~< 62 IIw~÷l--w~ll 2. [] 

We can now state and prove our convergent rate result. 

Theorem 4.1. Consider problem (P) for  which Assumptions A, B and C hold. Let {x ~, z k, 

yk} be a bounded sequence generated by Algorithm I, and let {Ak} satisfies (3.10). Then, 
w k = {xk, z k, yk} converges linearly to the unique optimal solution w * = (x *, z *, y *),  that 
is, there exists an integer fc such that, for  all k>~ fc, 

I lw~÷l -w*l l  <~O~[Iwk--w*ll, (4.6) 

where 1 > ( ~  + 2a) / ( 2~ /~U+ ~ 3) >~ Oh, for  all k>~f~ 

Proof.  Under our assumptions, w k is bounded and hence from (3.17) with the choice 

IIx k÷l - x q l  2 iiz~+ 1 _zkll 2 

2A~ 2A~ 
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(recall that Ak> e >  0) ,  Theorem 3.1 holds and w k converges to w* by Theorem 3.1. We  

now establish the rate of  convergence.  From Step 2 of  Algori thm I, the sequences {:~}, 

{Z ~ } are obtained by applying the exact proximal point algorithm (i.e. with a ~ = / 3 ~ =  0) ,  

to the Lagrangian given in (3.9) and thus we obtain 

OEOf(yk+l) + A T p k + l  + (£k+l  _ _ x k ) / A k  

=Of(£~+l) +AT37k+ 1 _AT()Tk+ 1 _ p ~ + l )  + (2k+1 _X~)/Ak,  (4.7) 

0 ~ O g ( z  k+ 1 ) _ p k +  1 ~_ (~k+ l _ z k ) / l ~ k  

= 0g(£~+1)  _ ~ +  1 _t_2k+ 1 __pk+ 1 + ( U +  I --  Z k ) / A k .  ( 4 . 8 )  

From (3.8) ,  we have y~ + i _ yk + A k(A:~k + 1 _ ~ + 1 ) which we rewrite as 

__ ( .~k+ 1 _ _ y k ) / t ~ k  = ~k+ I __A~k+ 1. ( 4 . 9 )  

Since 

OxL(yk+l, ~k+~, ;k+l) =Of(yk+ l) +ATyk+ 1, 

OzL(.,~k+l, i k + l ,  y k + l )  = O g ( i k + l )  _ g k + l ,  

Oy( - L ( 2  k+~, Zk+~, 37k+ 1)) = {i~+l _ A y k + , } ,  

f rom ( 4 . 7 ) - ( 4 . 9 )  and the definition of  S (cf. (4.1) ), by rearranging terms we obtain 

( ~k, t-~k, Yk) ~ S (  2k+l, ~k+l, 37k+ 1) (4.10) 

where 

7r k :_~.AT()Tk+ 1 __pk+ 1) __ (2k+l  _ _ x k ) / ) t k ,  (4.11) 

],.L k :~  --  ( y k +  l __pk+ 1 ) __ (~k+ 1 --  Z k ) / ) t k  ' (4 .12)  

"Yk :-'~" --  ( y k+  1 _ _ y k ) / A k .  (4.13) 

Recall  that f rom ( 2 . 9 ) ,  p k + ~ = y k + A k ( A x  ~ -- z ~), then by subtracting the latter f rom ( 3 . 8 ) ,  

we have 

37k+ t _ p ~ +  1 = Ak[A(2k+ 1 _ X k) _ (~k+ ~ _ Z k) ]. (4.14) 

Substituting (4.14) in (4.1 1 ) - (4 .1  3),  we obtain 

7r k = AkA T[A(2~+ I _Xh:) _ (~-k+ t _ Z k ) ]  _ (2k+l  _ x k )  / Ak 

= (AZATA - I) ( X  k +  1 - -  x k ) / l ~ k  - -  AkAT(£k+ l _ Zk), 

/x~ -- - az : [a  (97 e+ ~ - x  ~') - (~-~+ ~ - z  ~:) ] - (z~ ~+ ~ - z  ~)/A~ 

= (.,X~ - 1 ) ( ~ / ' + l  - z ~ ) / A ~  - ,X~A(2  ~ + l  - x ~ ) ,  

Yk = -- ( f k + l - y ~ ) / h ~ .  

Since 
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moo 1 moo 

from (3.2 1 ), we have ( 7rk, Izk, Yk) ~ (0, 0, 0). Choose/~ so that I I ( 7rk,/xk, y~) I I < r for all 
k >/~. Then using Assumption B and the fact 0 ~ S(x*, z *, y *) with the choice 

u =  (:~k+l, ~+1,  3Y~+1), f f=(x* ,z* ,y*) ,  v=  (Trk,/.t k, %) 

we have 

i luSk+l_w,  ii = 11 (~Tk+ l, ~k+l, 37k+ 1) - - (X*,  Z :g, y*)II 

~<all(~r~,/xk, Yk) ll Vk>/~. (4.15) 

We now estimate the right-hand side of (4.15). Using the definition of (Try,/x~, %) and 
the inequality ( r +  q)e ~< 2( r  2 + q2), we obtain 

2< 2 IIA.~ATA_III 2[[.gk+ 1 _xk[ [ 2+2A ~ IIAI1211~k+1-zkll 2, II 7rk II "~ A---~ 

2 2 2 2_[_ 2112~+ II/xg II ~2k2 (hk - 1)211£k+' -z~ll 2a~ IIAII 1--xkll 2, 

: 1 k÷l 2 1 07k+ _p~+l )  (pk+l Ilykll = ~ I l Y  -y~ll  =~11  ~ + -yk ) l l 2  

2 k+ ~<~--{(llp 1-375+~112+ IIp~+l-y~ll2).  

Therefore 

I[ (~k,/z~, .y~)II 2= 117r~ II 2+ II t-re II 2+ Ilyk II 2 

~<D{ I1.~ k+l --xkll 2+ ii~k+ l _zkll 2 

+ lip k+l --37k+' I1 2+ [Ipk+' __ykl[ 2}, (4.16) 

where 

( 1  2 T ~2k2(A k l  2 ~2k21 }__ D := 2max~l,~--~ll A~A A-I l l  2+A~ IIAII 2, _ 1)2+A~ IIAII 2, . 

By simple algebra, using (3.10) (which implies ak~< ½ and ak~< 1/(211All)), one can 
verify that D ~< 4 / A~. Hence, combining (4.15) and (4.16) we obtain for all k >/~, 

A 2 lily k+l - w * l l  2 ~<4a2{ IIX k+l -x~ll  2+ ilffk+ 1_ z~ll 2 

+ ][pk+ 1 __37k+ 111 2+ [Ipk+ 1 __ykl[ 2}, (4.17) 

which together with (3.14) implies that, 

4a211~+~-w*ll2 + eh211~g+l-w*ll2 <<. aa211w~-w*ll 2 Vk>[c. 
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Defining vk := 2a/¢4a 2 + eA~, the latter inequality reduces to 

11,Tk+l--w*ll ~< vklIw~--W*II, k>f~. 

But 

IIwk+*-w*ll < I Iwk+ l - -~+ l l l+  II~ k+ l -w* l l ,  

and invoking Lemma 4.1, we have 

IIw~+l--~k+l II ...< 6k IIw k÷' --wkll .<< 6~ Ilwk+l--w* II + ~k Ilwk--w*ll. 

Therefore using (4.20) and (4.18) in (4.19) we obtain 

I lwk+l-w*ll  <8~l lwk+l-w*l l  + ~ l l w k - w * [ I  + vkllwk--w*ll, k>/~, 

which proved (4.6) with Ok = ( vk + 6k) / ( 1 -- 6k). Since 6~ ~ 0, Ak > e, and 

~ U ~  e3 + 2a 2a 2a 

2 ~  > ~ >  v~, + ¢4a 2 ..{_ ~c, A 2 

for some/7>/~, we have 

~ / ~ 7 ~  3 + 2 a  

1> 2 4f~aZ+e 3 >Ok. [] 

(4.18) 

(4.19) 

(4.20) 

Remark 4.1. It is interesting to notice that even though Algorithm I is quite different from 
the proximal method of multipliers, one is still able to obtain a linear rate of convergence 

result. Once again, Proposition 3.1, which allows us to get the estimate (3.14), is the key 
in the above analysis. Note however that a superlinear rate of convergence derived for the 
proximal method of multipliers, when Ak--+ ~, is not applicable for the PCPM, since here 

{ Ak} must stay bounded above. 

5. Comparison with other methods and potential applications 

5.1. Comparison with alternating direction methods 

It is interesting to compare our algorithm with various types of well known splitting 
methods used for decomposition in convex programming. We will focus on alternating 
direction methods of multipliers. These methods are taking roots from their similarity with 
some methods for solving differential equations, such as the Douglas-Rachford scheme see 
e.g. [ 18]. For further details and references, we refer the reader to the recent books of 

Bertsekas and Tsitsiklis [3] and Glowinski and Le Tallec [ 10]. 
The basic idea underlying alternating direction methods is a relaxation approach, whereby 

given an augmented Lagrangian associated with (P), one first minimizes it with respect to 
x and then with respect to z, and the multipliers y are updated via the usual augmented 
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Lagrangian update rule. This approach removes the difficulty of the joint minimization in 
x and z, and thus preserves separability. As we shall see below, algorithms produced from 
this approach bear similarity with our algorithm, but are different both in the computational 
steps, and in the assumptions involved in the problem's data. 

We will concentrate on comparing our algorithm with the alternating direction method 
of multipliers proposed by Gabay and Mercier [ 9] and Glowinski and Marrocco [ 11 ], and 
with some of its variant and related methods. 

Consider the following augmented Lagrangian associated with (P): 

d ( x ,  z, y) =f (x)  + g(z)  + (y, A x - z )  + ½AIIax- zll 2 (5.1) 

As explained above, by minimising Y first over x then over z, the alternating direction 
method of multipliers takes the basic form: 

Algorithm A [9-1 l ]. 

xk+ l E arg min{f(x) + (yk, Ax) + ½A IlAx- z ~ II 2}, 

z ~+1 =arg  min{g(z) - (yk, z) + ½AIIAx ~+1 -z l l  2}, 

yk+ 1 = y ~ +  A(Axk+ 1 _ Zk+ 1), 

where A is a fixed positive scalar. 

More recently, Tseng [27] proposed another variant of Algorithm A, that he called the 
alternating minimization algorithm. The key difference with Algorithm A is that the usual 

Lagrangian function L(x, z, y) replaces the augmented Lagrangian function • (x ,  z, y) 
when the minimization is taken with respect to x. The alternating minimization algorithm 

takes the form: 

Algorithm B [27]. 

x ~+1 =arg  min{f(x) + (yk, Ax)}, 

zk+ 1= arg min{g(z) - (yk, z) + ½A~ IlAx ~'- 1-zl l  2}, 

yk+ 1 = yk+ A k(Ax~+ l _ zk+ 1), 

where { A k } satisfies some conditions (see (B 3) below). 

For a detailed comparison between Algorithms A and B, we refer the reader to Tseng 
[ 27 ]. For ease of comparison between Algorithms A and B, and our algorithm, we use the 
exact version of Algorithm I (i.e. set c~ = flk = 0 in Step 2 of Algorithm I),  which will be 
called in the sequel, Algorithm E. First we observe that in all three algorithms, the multiplier 
update rules are the same. The main differences between Algorithm E and Algorithms A 
and B are in the minimization steps with respect to x and z (note that for Algorithms A and 
B the minimization steps with respect to z are identical); and by the fact that our Algorithm 
E requires the additional predictor multiplier step 
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pk+ 1 = yk + A~(Ax k_  zk). 

However, this additional step is a simple update similar to the multiplier update rule, and 

allows for obtaining the convergence of our algorithm under the only assumption that there 

exists a primal-dual optimal solution. On the other hand, with this assumption at hand, the 

following additional assumptions are needed to establish the convergence of Algorithms A 

and B: 

For Algorithm A: 
(A1) The matrix ATA is positive definite i.e., the matrix A has full column rank. This is 

needed to have a well defined x k, when performing the minimization with respect to x. 

Note, however that the parameter A > 0, needs not to be chosen from a restricted range 

or changed at each iteration k. But see also Glowinski and Le Tallec [ 10, p. 85 ] for a choice 

of A which is not fixed at each iteration. 

For Algorithm B: 
(B 1 ) The funct ionf is  strongly convex with modulus c~ > 0. 
(B2) {A~} satisfies e~< A~<4c~/IIA II 2 - -  ~o for all k, for some e ~  (0, 2c~/IIA Jl 2 ) .  

Note that Algorithm E requires an assumption similar to (B2) for {Ak} (cf. (3.10)) ,  

except that we need not to know c~, since we emphasize, that in Algorithm E nei therfnor  

g need to be strongly convex. 

We note that only recently, Eckstein and Bertsekas [4] were the first to prove the 

convergence of  the alternating direction method for solving problem (P) allowing approx- 

imate minimization in x and z as in Algorithm I. We are unaware of any convergence rate 

results for the alternating direction method. For the alternating minimization algorithm, 

Tseng [27] proved that at least linear rate of convergence can be achieved, under the 
additional assumption that one of the operators, AOf *A T or Og *, is strongly monotone. 

Finally, we point out that in both Algorithms A and B, one needs to know the vector 
x k + 1 in order to update z ~ + 1. On the other hand, in Algorithm E, x ~ + 1 and z ~ + 1 are computed 

separately from each other, and thus this offers a further degree of  parallelization. This will 

be exemplified below. 

5.2. Potential applications 

In [ l 3 ], Han and Lou proposed a parallel decomposition algorithm for minimizing a 

strongly convex and differentiable function over the intersection of closed convex sets. This 

algorithm has been further studied, under different assumptions in [ 15], [ 19] and [27]. It 

was shown in Iusem and De Pierro [ 15] and Tseng [ 27 ], that Han-Lou algorithm is in fact 

a special case of the alternating minimization algorithm. 

We conclude this section by applying Algorithm E to that problem, providing another 
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new highly parallelizable algorithm, which does not require the strong convexity (or dif- 
ferentiability) assumption imposed in [ 13], [ 19] and [27].  

Consider the following convex programming problem: 

min(h(x) :x~{ ']  Ci)  (5.2) 
i=l  

where h: ~n ~ ( _ w, + ~] is a closed proper convex function, and each Ci is a closed 
convex set in ~". Introducing the artificial variables zi ~ ff~", i = 1 ..... l, we can rewrite (5.2) 
in the following equivalent form: 

m i n ( h ( x ) + ~  6(z~lCi):x=zi, i=l  ... . .  l~ (5.3) 
i~l  

where 8( .  I C~) is the indicator function for C~. Identifying, h(x)=fix) ,  g: ~ ' ~  ( - ~ ,  
+ ~ ]  with g(z)=E~=I 6(zil Ci) where z = (zl, z2, z3 . . . . .  zl) ~ N~l, and A =  [L L .... 
I ] '  ~ N" × ~z, problem (5.3) is clearly a special case of problem (P).  Applying Algorithm 
E to problem (5.3) produces the following iterations. 

Algorithm C. Starting with an arbitrary point (x °, z °, yO), for k>~ 0, 

p~+l=y~i+ak(x~ z~), i = 1  . . . . .  l, 

=arg  m i n ( h ( x )  + }~(p~+ 1, x ) +  (1/(2Ak))IIx--xkl l  2~ y k + l  

z / k + ' = a r g m i n { - ( p ~  + ' , z i ) + ( 1 / ( 2 A k ) ) l l z i - z ~ l l 2 } ,  i = 1  . . . . .  l, 
Zi E Ci 

y~+l=y~+Ak(Xk+~--z~+l), i = 1  . . . . .  I. 

Here, Yi ~ ~n, i = 1 . . . . .  l, is the Lagrangian multipliers associated with the constraints x = zi- 
Note that the above iterations are highly parallelizable and that the minimization with respect 
to z is equivalent to compute a projection on each of the set Ci, i.e. z~ +1 =Pci(Z~ + 
Akp/k+ 1 ), compare with [ 13, 27]. 

To prove convergence of Algorithm C, we assume that Assumption A holds. In this 
particular case, the latter will be satisfied if 

r i (dom h) Nr i (Cl )  0 "" Nri(C~) ~6 .  (5.4) 

Applying Theorem 3.1, we then obtain: 

Theorem 5.1. Let {x k, z ~, yk} be the sequence generated by Algorithm C and assume that 
(5.4) holds. If { A~} satisfies 

e~<Ak ~< ( 1 -  e) / (2V~) Vk>~0 (5.5) 
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forsomeO<~ e<<. I / (2V~+ 1), then {x ~} converges tox* ,  {z~} converges to x*  fo r  all i =  1, 
I and {y~ } converges to * .... Yi , i = 1  . . . . .  I. [] 

We finally mention that one can also apply Theorem 4.1 to problem (5.2) to derive a 
rate of convergence result for Algorithm C. Furthermore, if the function h(x) is given 
separable, then the minimization step for the variable x can be performed componentwise, 
and since we need not to assume the strong convexity of the objective function, our algorithm 
is in particular also applicable to linear programming problems. 
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