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Methods are considered for solving nonlinear programming problems using an exact l~ penalty 
function. LP-like subproblems incorporating a trust region constraint are solved successively both 
to estimate the active set and to provide a foundation for proving global convergence. In one 
particular method, second order information is represented by approximating the reduced Hessian 
matrix, and Coleman-Conn steps are taken. A criterion for accepting these steps is given which 
enables the superlinear convergence properties of the Coleman-Conn method to be retained 
whilst preserving global convergence and avoiding the Maratos effect. The methods generalize to 
solve a wide range of composite nonsmooth optimization problems and the theory is presented 
in this general setting. A range of numerical experiments on small test problems is described. 
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I. Introduction 

The pr imary mot ivat ion  for this work is to consider  methods  for f inding a local 

solut ion,  x* say, to a non l inea r  p rogramming  (NLP) p rob lem with equali ty and  

inequal i ty  constraints:  

minimize  f ( x ) ,  x ~ ~" 

subject to ci(x ) = O, i c E, (1.1) 

ci(x)<-O, i c  I. 

The methods  were developed with the aim of inc lud ing  the fol lowing features which 

cont r ibute  either to reliabili ty or efficiency. The methods  are first derivative methods  

so that we avoid the inconven ience  associated with deriving expressions for second 

derivatives and  the overheads of storing and  man ipu l a t i ng  them. The methods  solve 

LP-like subproblems on every iteration: this avoids the extra complexi ty of solving 

QP-like subproblems (as in the SQP method)  and  the need to man ipu la t e  a full 

(n x n) Hess ian matrix. The LP-like subprob lem includes  a trust region constra int :  

~ r O t .  " " ~ :  - " , 
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together with the use of  an 11 exact penalty function this enables global convergence 
to be proved under very mild conditions. The trust region constraint also enables 
the advantage of QP-like methods to be retained in which an accurate estimate of  
the active constraints at the solution is obtained. Second order information is 

represented in the form of a reduced Hessian matrix, the dimension of which is 
(n - t) x (n - t) where t is the number  of active constraints. Together with the feature 
of  solving LP-like subproblems, this potentially allows very large problems to be 
solved, as long as the dimension of the reduced space (i.e. n - t) is not too large. 
Rapid local convergence when second order effects are important is obtained by 
using any method which uses a reduced Hessian matrix. In this paper  we concentrate 
on the method of Coleman and Conn (1982a, b) which we regard as most suitable, 

although we have studied other possibilities (Sainz de la Maza, 1987). An important 
part of  this paper  is the way in which the Coleman-Conn  step is interfaced with 
the technique of solving an LP-like subproblem. The latter provides an estimate of  
the active constraints and a trust region bound is included so that only locally active 
constraints are located. However  the step defined by the LP-like subproblem is only 
used if the Coleman-Corm step fails and second order information is inadequate. 
A criterion for accepting a Coleman-Conn  step is devised which is related to the 

reduction predicted by the LP-like subproblem. This enables Co leman-Conn  steps 
to be accepted asymptotically whilst preserving global convergence properties, and 
so avoids the Maratos effect. 

In Section 2 the LP-like subproblem is specified and the criterion for a sufficient 
reduction in the penalty function is derived. A prototype algorithm is given which 
contains the basic features that are sufficient for convergence whilst allowing 

refinements to improve practical performance. Global convergence of the prototype 
algorithm is proved under  very general conditions, in particular not requiring any 
linear independence assumptions. Convergence of the multiplier estimates is proved, 
and some properties of  the estimate of  the active set are derived. In Section 3 the 
Coleman-Conn  method is described in a general way which allows the null space 
matrix to be calculated by a variety of  schemes (generalized elimination). Subject 
to certain standard conditions and suitable asymptotic behaviour of  the approximate 
reduced Hessian matrix, an expression is obtained for the actual reduction in the 

penalty function given by the Coleman-Conn  step. This is shown to be asymptotically 
equal to the predicted reduction of a certain QP-like problem. This result is then 
used to show asymptotically that the Coleman-Conn  step satisfies the sufficient 
reduction criterion derived in Section 2, and that the correct active set is determined. 
Hence the method avoids the Maratos effect and inherits the local convergence 
properties of  the Coleman-Conn  method (Byrd, 1984). In Section 4 a range of 
numerical experiments with a pilot code on small NLP problems is described. This 

suggests that despite solving only LP-like subproblems and using only reduced 
Hessian information, the method is nonetheless comparable with various other types 
of  method that are currently attracting attention. Some suggestions for refining the 
algorithm are also presented. 
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The methods are based on using the 11 exact penalty function 

qS(x) = f ( x )  + 2 ]ci(x)l + 2 max(ci(x),  0). (1.2) 
ice  i~l 

It is well known that if f ( x )  is scaled so that the Lagrange mulipliers A* for (1.1) 
satisfy ]A~* I < 1 then under mild conditions x* is also a local minimizer of  this 

function. It happens that the type of  method that we have developed is more widely 
applicable to a range of composite nonsmooth optimization (CNSO) problems, 
having the form 

minimize 4)(x) ~ f(x)+ h(c(x)) (1.3) 

in which f ( x )  (R" ~ R) and c(x) (R" ~ R m) are smooth (C 2) andh (c ) (Rr~  R) i s a  

polyhedral convex function 

h(c) = m a x  h~e+ ~s. (1.4) 
i 

This includes not only ll and /~ penalty functions but also minimax problems and 
problems in 11 and l~ approximation. In all these applications fii = 0 for all i, and 
in each case an appropriate set of vectors hi can readily be determined. (A review 

of this material is given by Fletcher, 1981). Therefore the paper  is presented in this 
wider setting whilst attempting to relate to the NLP problem at a number  of places 
in the text. 

First order necessary conditions for x* to solve (1.3) are that there exists a vector 
of  multipliers A* c Oh(c*) such that 

g * + A * A * = 0  (1.5) 

where g(x) A=Vf(x), A(X)~VCT(X) and where c*, g*,.., denote c(x*), 
g(x*),  . . . ,  etc. For convenience these conditions are referred to as KT conditions 
and x* as a KT point in what follows. For a polyhedral convex function (1.4) it 
can be shown (e.g. Fletcher, 1981) that the subdifferential set is given by 

Oh(c) = cony hi (1.6) 
i ~ ( c )  

where ag(c )=  {i: h~c+fli = h(c)} is the set of  indices at which the max is attained. 
When (1.3) refers to the ll exact penalty function (1.2) then (1.6) can be expressed 
a s  

Oh(c)={h:-l~<hi~<l if c i = 0  and icE, 

0~<&~<l if c i=0  and i ~ / ,  (1.7) 

Ai =s ign  ci otherwise}. 

It is also useful to have an alternative representation of the set Oh (c) in the following 
form. Let Ao be an arbitrary vector in Oh(c). I f  the dimension of Oh(e) is t, then 
there exists an n x t matrix D whose columns dl, d 2 , . . . ,  d, c R n are basis vectors 

for the set Oh(c)-Ao. That is to say, Oh(c) can be expressed as 

Oh(c)={A: A = ho+Du,  u6  U} (1.8) 
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where U c R '  is some set which exists. This is essentially the idea contained in 
Osborne's (1985) concept of structure funetionals for polyhedral convex functions, 
taken up more generally by Womersley (1984). For the 11 exact penalty function it 
follows from (1.7) that the most natural choice for Ao is given by 

0 if ci = O, 

(ho)i = sign ci otherwise. 
(1.9) 

Also the columns of D are simply the coordinate vectors ei for indices i of  active 
11 terms (ci = 0) in the penalty function. Similar expressions hold in other common 
cases, e.g. Womersley (1984), Fletcher (1987). For example in a minimax problem, 
the columns of D are the vectors ei - eq, i ~ ~4\q where q c M is arbitrary. 

When considering the set Oh(c*) which arises in (1.5), it is often convenient to 
choose A* as the arbitrary vector in place of ho. This merely translates the set U. 
Thus we may define 

3 h ( c * ) = O h * = { A :  h = h * + D*u,  u ~  U*}. (1.10) 

In addition, strict complementari(v is said to hold if A* is in the relative interior of 
Oh*, or equivalently if 06 int U*. In the case of the 11 exact penalty function, this 
requires that A* strictly satisfies the inequalities in (1.7) (for c = c*), and is analogous 
to the usual meaning of the term. 

A further significance of the matrix D* arises by considering the NLP problem 

minimize f ( x )  -l- C(x)TA * (1.11) 

subject to D*T(c(x)  -- c*) = O. 

This problem is locally equivalent to the CNSO problem (1.3) (in the sense that x* 
minimizes (1.3) iff x* solves (1.11)) under the mild assumptions of second order 
sufficiency and strict complementarity. Moreover u*=  0 is the KT multiplier vector 
for (1.11). A precise statement of this result is given by Fletcher (1987). In fact if 
the definition of h(c) in (1.4) is restricted to have fii = 0 for all i, then a more simple 
equivalent problem 

minimize f ( x )  + C(x)TA* (1.12) 

subject to D*Tc(x)  = 0 

is obtained. This result follows directly from Lemma 1.1 given at the end of this 
section. For reasons of clarity this form of the equivalent problem is used in the 
rest of the paper. Since fi~ = 0 in all common cases, little is lost by imposing this 
condition, although the theory can be worked through in the more general case. 

In the case of the l~ exact penalty function, (1.12) can be rearranged to give the 
problem 

minimize f ( x )  + c(x)TA0 (1.13) 

subject to ci(x) = 0 Vi: Ci(X* ) = 0 

(ho is calculated using c* in (1.9)) and the local equivalence to (1.2) is well known. 
Thus the constraint D * T c ( x ) =  0 in (1.12) simply picks out the active constraints 
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from the vector c(x),  and these are in fact Osborne ' s  structure functionals  in this 

case. Likewise columns o f  the matrix A ' D *  are the constraint  gradients for the 

active constraints at x*. Also the term C(x)TA * in (1.12) has the effect of  inserting 

a n  l 1 penalty for each violated constraint into the objective function.  

Our  methods  involve the solution of  LP-like subproblems which provide a current 

basis D (k) and multiplier estimate A k. We can therefore define the current estimate 

o f  the equivalent N L P  problem as 

minimize f ( x )  + A(k)Tc(x) (1.14) 

subject t o  D ( k ) T  c ( x )  = 0 

in which the constraints can be regarded as the current estimate o f  the set of  active 

constraints. In fact the use o f  A (k) can be varied in practical computa t ion  without  
changing the minimizer of  this problem. We return to this point  in Section 3 (after 

eq. (3.8)). 

Finally we state two lemmas giving some properties o f  the set 8h(c). I f  the reader  
wishes to restrict at tention to the case o f  the 11 exact penalty funct ion then these 
results are easily verified f rom (1.7). 

Lemma 1.1. Let h(c) be a polyhedral convex function (1.4) in which fii = 0 for all i. 
I f  A' ~ Oh(d) for  some vector c', and D' is a basis for O h ( d ) -  A', then both 

aTc ' =  h(c') VA ~ 0 h ( d )  (1.15) 

and 

D ' T c  ' = 0. (1.16) 

Proof.  I f  fii = 0  for all i, then a consequence o f  (1.4) is that  M a c ) =  ah(c)  for  all 
a >/- O. It follows from the subgradient  inequality 

h(c)>~h(c')+ max AT(c--d)  (1.17) 
~coh(c') 

that  

h ( c ' )  -1- (ol - 1) ) tTc '  ~ h(c~c') = c~h(c') 

for all A c Oh(d), and taking a = 1 ± e gives ATC ' = h(c'). Since A'c Oh(d) it follows 

that A'Yc '= h(c') and hence ( A - - A ' ) T c ' = 0 .  Defining D '  as in (1.8) with A0 = A' as 

the arbitrary vector, it can be deduced that  

uT D ' T  c ' = 0 

for all u ~  U ' c N  r. Since the dimension o f  U '  is t', it follows that  D ' T C ' =  0. []  

Lemma 1.2. For h(c) as in Lemma 1.1, if c is sufficiently close to c' then 

Oh(c) cOh(c').  (1.18) 

In addition if D'T c = 0 then 

Oh(c)=Oh(c'). (1.19) 
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Proof. See Fletcher (1987), Lemmas 14.4.1 and 14.4.2. 

2. Global properties 

In this section a prototype algorithm is described which provides global convergence 
properties for a variety of  possible methods. The main feature of  this algorithm is 
that it is a trust region algorithm based on solving LP-like subproblems. This enables 
asymptotically accurate estimates of  multipliers and active constraints to be made. 
However the correction determined by the subproblem is usually not used directly 

because of the possibility of  slow local convergence on certain types of  problem. 
Rather a Newton-like step is taken which allows superlinear convergence to occur. 
Only if this step is unsuccessful does the algorithm use the step determined by the 
subproblem. The interrelation of these different types of  step is such that usually 
the trust region radius (p (k) below) does not shrink to zero and so does not affect 
the superlinear convergence of the Newton-like step. 

First of  all the linearized subproblem at a current point x (k) is defined as 

minimize l(k)(6)&J~k)+g(k)T6+h(c(k)+A(k)'rS) 
6 

(2.1) 
subject to }}3N ~<p(k) 

where c (k) denotes c(x (k~) etc. The condition 118 II ~< p(k~ is the trust region constraint 
and here we use the loo norm for convenience. In this case, if h(c) is a polyhedral 
function, (2.1) can be transformed to give an LP calculation, although in practice 
a more efficient method of solution might exist, as in the case of an 11 exact penalty 
function. Denote the solution of (2.1) by g(k) and let g(k)= c(k)+A(k)Tg(k). First 

order conditions (e.g. Fletcher, 1987) are that there exist multipliers A(k) e Oh(?(k)), 
w(k)~ ollg(k~[[ and 7r(k)~>0 such that 

g(k) + A(k)A (k) + ~.(k)W(k) = 0 (2.2) 

and 

~(k~(llg(k)ll_,(k~)__ 0. (2.3) 

Again these are referred to as KT conditions in what follows. The linearized reduction 
given by {if(k) can be defined by 

where (h (k) denotes qS(x(k)). Also some suitable basis D ~k) for Oh(g(k))-A ~k) is 
chosen, and a set U (k~ exists in a similar way to (1.10). The matrix D (k) provides 
the current estimate of  the set of  active constraints, and it follows from Lemma 1.1 
that 

D(k)Tc (k) = 0. (2.4) 
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In the prototype algorithm we wish to allow the actual correction 6 (k~ to be 

determined by a Newton-like step for (1.14), in which case the correction g(k) is 
not used. However the linearized reduction Al (k~ is used to determine a criterion 
which measures whether any step gives a sufficient reduction in ~b(x). This criterion 
also makes use of any second-order information that is available. Let the matrix 
B (k~ be a positive semi-definite approximation to the Hessian of the Lagrangian 

function, from which 

b (k) = g(k)rB(k)g(k) ~ 0 (2.5) 

can be calculated. Define 

q(k)(6) A l(k)(~) +½(3TB(k)~ (2.6) 

and denote the predicted reduction for this quadratic model by 

/tq (k) = q(k)(0) - min q(k)(6) (2.7) 
6 

(allowing Aq(k)=oO if q(k)(~) is unbounded below.) We do not calculate Aq (k) 
directly but a bound can be obtained by using the following lemma. 

Lemma 2.1. Let l (a)  c C O (N ~ R) be convex and be minimized in [0, 1] by c~ = 1, with 

l (0 )>  l(1). Define q ( a )  = I(e~)+½ba 2 where b>~O. Let  qmin be the minimum value o f  

q(ce) in [0, 1], and denote Al = / ( 0 ) - l ( 1 ) > 0 .  Then 

q(O) - qmin) ½A1 min(  Al/b,  1). 

Proof. Consider the chord c(c~) = (1 - c~)/(0) + at(1). Let c~' minimize c(c~) +½bc~ 2 

in [0, 1]. Clearly ce'>0. I f  c e ' < l  then c e ' = A l / b  and hence 

c (0) - (c (a ') + ½ba'2) = ½Al2/b. 

I f  a ' =  1 then 

c(0) - (cf l )  +½b) = At-½b = a/(1 -½b/A1) >t ½Al 

since A l~ b >~ 1 by definition of a ' .  But q(a')~< c(a ' )+½ba '2 by convexity of l and 

use of the chord, so the lemma follows by definition of qmin<~ q (a ' )  and the above 

results. [] 

Now if we set 6 = o l g  (k) in (2.6), where a c [0, 1], then it follows from Lemma 2.1 

that 

Aq(k) >~ ½AI (k) min(Al(kl/b (k~, 1). (2.8) 

In our algorithm we assess the value of any correction 6 (k) by first computing the 

actual reduction defined by 

Aq5 (k) = ~h (k~ - 4,(x(k) + 6(k)). (2.9) 
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Under certain conditions on B (k~ we can expect that Afb(k)/Aq(k)-~ 1. Together with 
(2.8), this suggests using a sufficient reduction criterion of the form 

Ad) (k) >~ oZll (k~ min(z~l~k)/b (k), 1), (2.10) 

where 0 e (0, ½) is a fixed preset parameter. 
It is now possible to describe the trust region algorithm which is used as the 

prototype for the methods in this paper. On iteration k, the aim is first to try a 
Newton-like correction, 8(k)=d (k~ say, derived from the NLP problem (1.14), 
possibly with the addition of  a line search. However, if these steps fail to give a 
sufficient reduction in the sense of (2.10), then the step 3(k)= g(k) given by the 
linearized subproblem is tried. The algorithm changes the trust region radius in a 
fairly standard way, reducing it when (2.10) is not satisfied and allowing an increase 
when (2.10) is satisfied and 118(k)ll~>p (k). However it is not necessary for the 
Newton-like step to lie within the trust region. The algorithm is initialized with 
values of x (~ and pO), and terminates if x (k) is a KT point for ~b(x). Iteration k of 
the algorithm is 

(i) solve the linearized subproblem determined by x (k) and p(k) giving gk), A(k), 
D (k) and Al(k); 

(iia) evaluate OS(x (k)+ d(k)): 
if b(k)_ &(x(k)+ d(k)) ~ Odl(k) min( Al(k)/ b(k), 1) 

then set 8 (k)-- d (~) and omit step (lib); 
(iib) set 8 (k)= g(k) and evaluate 4~(X(k)+8(k)); 
(iii) if dq5 (k) < OAf (k) min(Al(k) /b  (k), 1) 

then set p(k+l)~ [0-,llg(~)ll, 0-~ll~(k)li] (2.11) 
else if 118(~)ll >~p(k) 

then set p(~÷~)e [p(~), min(0-3p (~), p .... )] 
else set p(~÷~) = p(~); 

(iv) if Aq¢ ~ ~< 0 then set x (~÷~ = x (~ 
else set x (k+i) = x(k) + 6 (k~. 

In this algorithm 0~(0,½), 0-~, 0-: (0<0-~<o-~< 1) and 0-3 (O'3> 1) are fixed para- 
meters, and /gma x is a user supplied upper limit on p(k). 

The main theoretical properties that are satisfied by this prototype algorithm 
include global convergence to a KT point of q5 (x) and convergence of the multiplier 
estimates )t (~). It is also possible to say something about the active set basis matrices 
D (k~. These results are given in the three theorems that follow. For these theorems, 
d (k~ in step (iia) is an arbitrary vector, so we can also allow step (iia) to be repeated 
a finite number of times with different choices of  d (k), without affecting the con- 
clusions. It is important to observe that these theorems do not require any linear 
independence assumptions. 

Theorem 2.1 (Global convergence of the algorithm (2.11)). Either the sequence {x (k)} 
terminates at a K T  point, or &(k) ~ - o o ,  or i f  the sequence {x {k)} is bounded, and i f  
B ~k) is bounded above independently of  k, then there exists a subsequence S with an 
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accumulation point x ~ which satisfies K T  conditions, that is 

max sr(g~+A°°h)>~O for all s. (2.12) 
h~3h ~ 

This condition is equivalent to the statement of  the K T  conditions given in (1.5). 

Proof. We need only consider  the case that  the sequence  fails to terminate  and 
{O(k)} is b o u n d e d  below. By considering whether  i n f p  (k) = 0  or not, and because  
{x (k)} is bounded ,  there exists a subsequence  S of  i terations with x (")-~ x ~, k ~ S, 

for  which either 
(a) 6 (k) does not  satisfy (2.10), p(k+~_~ 0 and hence [[6(k)ll-~ 0 for  all k ~ S, or 

(b) 6 (k) satisfies (2.10) and i n f p ( k ) > 0 ,  for  all k ~  S. 
In case (a) let there exist a descent  direct ion s (llsl{ = 1) at x °~, that  is 

max  s T ( g ~ + A ~ h ) = - / 9 ,  / 3>0 .  (2.13) 

By opt imal i ty  of  g(k~, a consequence  of  (2.13) is 

zll(k~ = & (k~ _ l(k~( gk~) >1 ( d~k~ _ l(k~(ll g(k~llS) ) 

~>/9 IJ g(k)[I + O(I] g(k)ll) (2.14) 

by the corol lary to L e m m a  14.5.1 of  Fletcher  (1981). We can use this inequali ty to 

deduce  a contradit ion.  A consequence  of  C ~ cont inui ty o f f  and c, convexi ty  of  h(c) 
and boundedness  of  3h(c) is that  

a 4  ~) = a l  ;k)+o([Ig;~)ll) 

and hence that  A&(k)/Al(k)~ 1. However  (2.14) and  (2.5) imply  that  

Al(k)/ b(k~>~ /9(1 +o(1) )/ ([}gk)ll llB(k~l{) 

and it follows f rom /(~g)~ 0 and the b o u n d  on B (g) that  

min(Al(k~/b ~k), 1) = 1 

for  all k sufficiently large. The fact that  (2.10) fails for  all k c S thus implies that  
A&(k~<~ OAl ~k) which establishes the contradict ion.  Therefore  there are no descent  

directions at x ~ and the theorem follows for  this subsequence.  

In  case (b) it can be assumed  that  inf p (~  >/5 > 0. Because &(~ - q5 °~ >~ ~k~S A&(k~' 
it follows f rom (2.10) and  the bounds  on B (~ and p(k) that  A l ( ~ 0 .  Define 
l ° ° (6 )=f f+g°°V6+h(c~+A°~T6) .  Let g minimize 1~(6) subject  to II~ll<~ and 
denote  ~ = x°°+ & Then 

I I~-  x(~ll  ~ I1~ - x~ll  + IIx ~ -  x(~ll  = II gll + o(1)  <~ ~ + o(1)  ~ p(~' 

for  all k sufficiently large. Thus g is feasible in the subp rob l em so 

l(k)(~2_ x(*)) >~ I(~)( ~ (~)) = qS ( ~ - AI (~). 

In the limit, for  k ~ S, g(k) --> gOO, C(k) --> CO~, A(~ -> AO~, g _ X(k) ~ ~ and zll (k) ~ O, so it 

follows that  l~(g) ~> &co = lo~(0). Thus 3 = 0 also minimizes  I°~(~) subject  to II 311 <~ fi, 
and since the latter constra int  is not  active it fol lows that  x °° is a KT point.  ~] 
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Subsequently the accumula t ion  point  x ~ is referred to as x*, and c * =  c ( x * ) ,  

Oh* = Oh(c*),  etc. 

Theorem 2.2 (Convergence o f  multipliers). I f  the subsequence  S in the s t a t emen t  o f  

Theorem 2.1 exists,  then ~r (k) -~ 0 f o r  k c S. M o r e o v e r  any  accumula t ion  point,  A ~ say,  

o f  the mult ipl ier  vectors A (k), k ~ S, sat is f ies  A ~ ~ A *  where  A * =  {A:A satisf ies K T  

condit ions at  x*}, and such an accumula t ion  po in t  exists. 

Proof. The definition o f  l (k)(6)  in (2.1) and the subgradient  inequality give 

All(k) = __g(k)T~(k) + h(c(k))  _ h (~(k)) (2.15) 

_g(k)T g(k) _ A (k)TA(k)Tg(k). 

It follows f rom (2.2) above and eq. (14.3.7) o f  Fletcher (1981) that 

Al(k) ~ > ~r(k)w(k)~6 (k)= ~'(k)[Ig(k)ll. (2.16) 

In both case (a) and case (b) of  Theorem 2.1 it follows that Al l ( k )oo  and hence 

~(k)llg(k~ll-~ 0 from (2.16). From this it can be deduced that 7r(k)-~ 0 as follows. 

Conversely let 7r(k)~ >/3  > 0 on some subsequence S ' c  S. It follows that g(k)~ 0 

and also f rom (2.3) that II g(k)ll = p(k) for k c S'.  These condit ions contradict  p(k) > fi > 
0 in case (b), so S must  be the subsequence that arises from case (a). But in this 
case we have seen in the argument  fol lowing (2.14) that the inequality Al (k) >I/3 IIg(k)ll 

leads to a contradiction.  Thus 7r (k)-~ 0 for k ~ S. 
Now consider  the sequence h (k) for k c S .  Because x (k ) -~X  * and p(k)<~p . . . . .  it 

follows that the vectors g(k) and g(k) are bounded .  Existence o f  an accumulat ion 

point  is then a consequence of  Lemma 14.2.1 of  Fletcher (1981). Let h(k)~ h ~ for  

k ~ S'  c S, In the limit it now follows f rom (2.2) and 7r (k) ~ 0 that 

g* + A*,~°° = 0. (2.17) 

Moreover  the subgradient  inequality and A(k)~ 0h(O (k)) give 

h(c)>~ h(a(k))+(c--~(k))L~ (k) Vc 

= h (c (k)) - All (k) - g(k)Tg(k) + (C -- C (k) - A(k)Tg(k))T~- (k) 

= h ( c  (k)) - All(k) ÷ (c  - c(k))~A (k) ÷ ~(k)ll g(k)ll 

using the definitions o f  zll  (k) and E(k), and then (2.2) as above. In the limit All(k)~ O, 
C(k) ~ C*, h (c (k)) ~ h (c*) ,  A (k) __~ A 00 and ~r (k)ll g(k)ll o 0, so it follows that 

h ( c ) > ~ h ( c * ) + ( c - c * ) T A  ~ Vc ,  

that is A oo c Oh*. Together  with (2.17) we see that A ~ satisfies K T  condit ions at x*. 

The next result concerns the convergence o f  the subdifferential sets in the solution 

of  the linearized subproblem. Because h ( c )  is polyhedral ,  it follows from (1.6) that 
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there are only a finite number of possible sets Oh(c). If strict complementarity holds 
then it is shown that the set cgh(? (k)) at the solution of  the linearized subproblem 
contains the set Oh(c*) at the limit point x* for sufficiently large k. The opposite 
inclusion can be proved if the condition D(k)Tc*= 0 holds. Now this condition 
cannot be deduced from D(k)Tc (k)~- 0 because ?(~) does not usually converge to c*. 

However it is later shown in Theorem 3.2 that under certain assumptions it can be 
deduced from properties of the Newton-like step, We are then able to conclude that 
3h(? (k~) = 3h* which implies that it is possible to select D (k) so that asymptotically 
the correct active set D (~)= D* is determined by the algorithm. 

Theorem 2.3 (Convergence of subdifferential sets). Assume that the set A* defined 
in Theorem 2.2 contains only the single vector h* (i.e. , l ~ = a * ) .  Consider k c  S. Let  

3h(g (k)) be any fixed subdifferential set which occurs infinitely and let D (k) be a f ixed 
basis for  Oh ( ~(k)) _ ,~ (k). 
I f  D(k)T c * = 0 then 

Oh(e (k)) c Oh*, (2.18) 

Alternatively, ~ h * is in the relative in terior o f  0 h* ( i, e. u* = 0 c in t  U* in (1.10)), then 

Oh( ~ (k)) D Oh*. (2.19) 

Proof. Together with Theorem 2.2, the assumption that A* only contains the single 
vector A* implies that h ~ =  A* and hence that h(k)-~ h*, k~ S. Because Oh(~ (k)) is 
closed it follows that h*~ Oh(*(k)). 

The subgradient inequality about c* and ~(k) implies that 

(c* - e ( % T ~ ,  >I h(c*)  - h ( e ( %  >1 (c* - e ( % T A ( ~  

and because the vectors g(k) are bounded it follows that 

h(c*) - h(8 (k)) = (c* - C(k))TA *-~-O(1) .  (2.20) 

Let S ' c  S be the subsequence on which the set 3h(8 (k)) occurs and consider k< S'. 
It follows from (1.16) and the assumption of D(k)Xe * =  0 that 

D(k)T(~ ~k~ - c* )  = 0. 

Hence by definition of D (k~ and h*~  0h(g (k~) it follows that 

(a --A*)T(c(k)--C*)~-0, a E~Jh(c(k)). (2.21) 

Consider h c Oh(~(")). By the subgradient inequality 

h(c)>~h(g(k) )+(c-g(k) )Th  Vc  

= h (c*) + (c - c*)TA + O(1) 

from (2.20) and (2.21). By taking the limit it follows that h E ah* and hence (2.18) 
is established. 
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Now consider (2.19). Assume conversely that there exists A'e Oh* for which A' 
is not in Oh(g(k)). Define X = A* + e(A* - A') and observe for sufficiently small e > 0 
that A ¢ Oh* by the relative interior property. The subgradient inequality about c* 
and A' 6 Oh* give 

h( a ~k~) >i h( c*) + ( a ~k)- c*)TX' = a~k)~x ' 

by (1.15). Since A' is not in Oh(g (k)) it follows from (1.15) that 

h(? <k)) > ?{k)TA'. (2.22) 

By definition of a and A*c Oh(g(k)), 

C(k)TA = (1 + E)C(k)TA * --  e0(k)Ta ' 

> (1 + e ) h ( a  ~*)) - e h ( e  (k)) = h ( a  ~))  

using (2.22). Hence from (1.15), and because A ~ Oh*, 

h(e (k)) < h(c*) + (e (k)- c*)TA 

which contradicts the subgradient inequality at c*. Thus A' not in Oh(g (k)) is 
contradicted and (2.19) follows. [] 

3. Local properties 

In this section it is assumed for the main sequence that x(k)~ x*, a(k)~ A* and 
7r(k)~ 0, and local properties of the algorithm are considered. It has been observed 
that the CNSO problem (l.3) has an equivalent NLP problem (1.12). Using the 
active set matrix D (k) and multiplier estimate a (k) determined by the linearized 
subproblem (2.1), the current guess at the equivalent NLP problem is 

minimize f ( x )  -~- a ( k ) T c ( x ) ,  

(3.1) 
subject to D(k)Vc(x) = O. 

In the prototype algorithm (2.11) the first trial correction in step (iia) is to take a 
Newton-like step for (3.1). In this paper we concentrate on using the Coleman-Conn 
horizontal + vertical step method. This may be followed by a finite search of certain 
other points in an attempt to obtain a sufficient reduction, before resorting to the 
descent step g(k) in step (iib). The aim of this section is to describe the Coleman-Conn 
step in this general setting and to show that asymptotically the step satisfies the 
sufficient reduction criterion (2.10) under mild conditions. It then follows that the 
local properties of the Coleman-Conn method (two-step superlinear convergence, 
one-step superlinear convergence in x(k)+h (k~, Byrd (1984)) are valid for the 
prototype algorithm. 

Usually the Coleman-Conn method is described in terms of a null space matrix 
Z having orthonormal columns. However it is possible to use the more general 
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formulation (generalized elimination) given for example by Fletcher (1981). It is 
easy to extend the results of Byrd to this situation and it allows us for example to 
use direct elimination methods to calculate Z. In practice it is most efficient if we 

determine Z and the other matrices t h a t w e  require from the factors calculated 
when solving the linearized subproblem. This is of  particular value for example 
when solving large nonlinear network problems or large sparse nonlinear program- 
ming problems. The Jacobian of the constraints in (3.1) is the matrix A(k)D (k) and 
the required matrices are defined by the equation 

[A(k)D(k): V] -T = [ Y: Z].  (3.2) 

It is assumed that V = V ( x )  can be regarded as being C 1 in a neighbourhood of x* 

(a mild assumption), and that [ A ' D *  : V*] is nonsingular. A consequence of (3.2) 
is the set of equations 

yTA(k)D(k)  = I, Y V V  = 0, (3.3) 

Z T A ( k ) D  (k) = 0, z T v  = L 

The matrices obtained f rom (3.2) on iteration k are referred to as V (k), y(k) and 
Z (k). Of course these matrices may be obtained indirectly as a consequence of some 

factorized form. 
The Co leman-Conn  method is one of a number  of  methods which are based on 

the use of a matrix, M (k) say, which approximates the reduced Hessian matrix 
Z :~T W ' Z * ,  where W* denotes V2(f+ X *Tc) evaluated at x*. For theoretical purposes 

we assume that a sequence of matrices can be calculated for which 

( M (k) _ z(g)T W(g)Z(k)) V(k)T8 (k) _-- O( I] 8 (g) [}) (3.4) 

where W (k)= V2(f+  A (g)Tc), evaluated at x (k). This is the usual condition assumed 

by Byrd in his analysis of local convergence. In our numerical work we have updated 
a positive definite matrix M (k) using the BFGS method with some modifications 
proposed by Nocedal and Overton (1985), and rely on this condition to occur. 
However this is at present an open question since their analysis depends on the 
assumption that M (1) is sufficiently close to z * T w * z  *, which is unrealistic in 

practice. We also assume that M (k) is bounded for global convergence (Theorem 

2.t), and that (M(k)) -~ is bounded to prove the local convergence results. The use 
of  a reduced Hessian approximation M (k~ implies that the corresponding estimate 
of  W* can be regarded as being the matrix 

B (k) = v ( k ) M  ~k) V (k)T. (3.5) 

It is this matrix that is used to compute b (k) in (2.5) for use in the sufficient reduction 
test (2.10). Of  course this matrix is usually deficient as an estimate of W*, lacking 
information about Y V W * Y  and Y T W * Z .  However  the former term does not 

contribute to the Newton step for solving the KT conditions, and the lack of the 
latter term is compensated for by the additional evaluation of c (x )  used in the 
Coleman-Corm step. 
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The Coleman-Corm step is derived directly from the current equivalent NLP 
problem (3.1). Thus the total step d (~) is the sum of a horizontal step h ~) and a 
vertical step v (k) defined by 

d (k) = h(k)+ v (k), 

h (k) = _Z(k)(M(~))-lz(k)V(g(k) + A(k)A (~)), 

v(k) = - y(k)D(k)'rC(X(k) + h(k)). 

(3.6) 

(3.7) 

(3.8) 

(Note that h (k) refers to the step given by (3.7) and not to h(c(k))). I f  there are n 

active constraints (the dimension of Oh(g (k)) is n) then h (k) =0,  and if there are no 
active constraints then v (k) = 0. Otherwise the method requires the additional evalu- 
ation of c(x(k)+h (k)) as specified in (3.8). One particular aspect deserves some 
clarification. The vector Z(k)V(g ~k~+A(k)A (k~) in (3.7) occurs frequently: in fact it 

can be equivalently written as Z(k)T(g (k)+A(k)A~ok)) where A(o k~ is any other vector 
in Oh(g(k)), and this form may be more convenient for calculation. In particular, 
for the ll exact penalty function A(0 k) could be conveniently chosen as indicated in 
(1.9), using the vector g(k). However the text continues to use the notation in (3.7) 
for simplicity. Likewise the equivalent NLP problem ((3.1) or (1.14)) could also be 

given with A (k) replaced by A(o k), and this indicates that the equivalent problem is 
solely determined by the estimate of the active constraints derived from Oh(g (k)) 
and is not affected by how close A (k~ is to A*. 

To establish the local properties of  the Co leman-Conn  step we assume that certain 
well known standard conditions hold, which are: 

f ( x )  and c(x) are C 2 functions, 

strict complementari ty (A* is such that u * =  0c  int U*), 
the reduced Hessian z * T w * z  * is positive definite, and A ' D *  has full rank 
(linearly independent active constraint gradients). 

These conditions are often used and are in the nature of  second order sufficient 
conditions for a minimizer of the CNSO problem (1.3). They are used by Byrd 
(1984) to derive the local convergence results for the Coleman-Conn  method. The 
final condition ensures that V* can be chosen to make [A*D*:  V*] nonsingular 

and also ensures that A* is unique. Using strict complementari ty we can deduce 
asymptotically from Theorem 2.3 that Oh(g (k)) ~ Oh(c*). We also assume for any 
fixed set Oh(g (k)) that D (k) is a fixed matrix: this causes no difficulty, especially for 
the ll exact penalty function in which case the columns of D (k) are simply columns 
of a unit matrix. 

Firstly we consider those iterations, k 6 S *  say, for which 8h(g(k))=Oh *. 
Asymptotically, by the full rank assumption, Z (k~ and y(k) are bounded and the 
estimates 

II h (k)[[ ~ IIz(k)T(g(k)_~ A(k)a (k))[[, (3.9) 

IIv (k) l f -  IIo:BTc(X(k) ~- h(k))ll 
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follow f rom (3.3), (3.6) and the assumed bounds  on M (g~ and (M(g~) -1 (a ~ b ¢~ a = 
O(b)  and b = O(a ) ) .  It  also follows f rom g(k) + A(k)A (k) ~ g .  -t- A ' A *  = 0 that  h (k) -~ 0. 
Hence  D*Tc(x  ~) + h ~g)) ~ D*Tc * = 0 implies that  v ~g~ ~ 0 and hence d (k) ~ O. 

The main  result of  this section is that  asymptot ica l ly  for  k c S* the C o l e m a n - C o n n  

me thod  satisfies the sufficient reduct ion criterion (2.10). Hence  most  of  the effort is 
devoted to deriving asympto t ic  est imates of  the actual  and predic ted  reduct ions  in 
&. There are two componen t s  of  the error in x ~g~ which must  be accounted  for. One 
is the error in the reduced gradient  (see (3.9)) which is --llh(k)ll. An impor t an t  
feature of  what  follows is to preserve the significance of  the te rm ½h(k)TB(k)h (k). 

Hence  we can only allow negligible terms involving h (g) if they are o(I I h(g~ll2 ). Terms  
o f  order  [[h(k)[[ ]lv(k)l] are handled  by regarding them as O([Iv(k)ll). The other  com- 
ponen t  o f  the error is that  in the active constra int  residuals,  that  is D*Vc (k). A term 
of  the form (g(k)q-A(k)A(k))Ty(k)D*Tc(k) arises which is o(llD*~c~)]]) since g(k)+ 

A(k)A(k)-->O. By a Taylor  series 

c (k) = c(x  (k) + h(k)) _ A(k)V h(k) + O(llh(k)ll2), 

SO from (3.3) 

D*Tc (k~ = D*Tc(x(k)+ h (k)) + O( I] h(k)1] 2). (3.10) 

This relates v (k) and D * r c  (~), in par t icular  in that  f rom (3.8) 

II v(k) II = O(11D*Tc(k)II) + O( [[ h (") 1[ 2). (3.11) 

Also in bo th  Lemmas  3.1 and 3.2 be low a te rm h(c(g))--A(k)Tc (g) arises. It  fol lows 
f rom strict complementa r i ty  that  

h ( c (k~) - a (k)Tc(k) ~- --]1 D*Tc(k)I1" (3.12) 

This result is easily seen in the case of  an 11 exact  penal ty  function.  Typica l ly  for  
indices i such that  i c E ,  c * = 0 ,  the left hand  side of  (3.12) includes a te rm 

- A i  ~i which is - Ic~ k~] because  A~g)~A * and - I < A * < I  by  strict com-  
plementar i ty .  In the general  case we can argue as follows. The po lyhedra l  funct ion 
h(c)  is locally l inear (see Fletcher,  1987) so asymptot ica l ly  

h(c (k)) = h(c*) + max, (c (k~- c*)TA. 

Because of  A(k)c Oh* and (1.15) it fol lows that  

h(  c (k)) - -  ,~ ( k ) T  c ( k )  = max ( c (k) - -  c * ) T ~  - -  A ( k ) T (  c ( k )  - -  C * )  
A ~Jh* 

= max  uTD*Tc(k)+O(IID*Tc(k~II) 
u e U *  

using ,~(k)> A*, (1.10) and (1.16). Strict complemen ta r i ty  is 0 ~ int U* and so (3.12) 

follows. 
We can now prove  the ma in  l emmas  for  actual  and predic ted reduct ions  in th(x) 

when  a C o l e m a n - C o n n  step is taken.  



250 R. Fletcher, E. Sainz de la Maza / Successive linear programming 

Lemma 3.1 (Predicted reduction). I f  q~k~(6) is defined by (2.6) then for sufficiently 
large k c S*, under standard conditions, a unique minimizer ~(k) exists and the predicted 
reduction Aq ~k~ = q(k~(O) - q(k~(~(k)) is given by 

Aq(k) = lh(k)TB(k) h (k) ~_ (g(k) + A(k)h  (k))T y(k)D,T c(k) + h (c (k)) - h (k)Tc(k). 
(3.13) 

Proof. Asymptotically, under standard conditions, it is shown in Lemma 4.1 of 
Womersley (1985) that ~(k~ exists and Oh(~ (k)) = Oh(c*), where ~(k) denotes c(k~+ 
A(k)T6 (k~. Using the result that relates (1.3) to (1.12), the problem minimize q(k~(6) 
has an equivalent QP problem 

minimize 128TB(k)6+g(k)Tt~+A*T(c(k)+A(k)T6 ) 

subject to D*T(c(k~ + A(k~Ts) = O. 

From the KT conditions, (3.5) and (3.7), and standard conditions, the unique 
solution of this problem is readily verified to be 

g(k~ = h(k~_ y(k~D.Tc(k~" 

It follows from (3.5), (3.3) and (3.7) that both 

g(k)T B(k) d(k) = h (k)T B ( k ) h  (k) 

and 

(3.14) 

g(k)Tg(k)  = _ h (k)TB(k)h  (k) _ (g(k)  + A ( k ) h  (k))T y ( k ) D , T  c(k) - g(k)TA(k) h (k). 

(3.15) 

Because h(k~c Oh(c (k)) =Oh* =Oh(~ (k)) it  follows from (1.15) and the definition of 
~(k) that 

h (~(k~) = ~(k)T ~ (k) = c(k)TA (k) _[_ ~(k)TA(k) A (k). (3.16) 

By definition 

Aq(k)= _g(k)Tg(k)_½g(k)TB(k)~)(k)q_ h (c(k))  _ h (~(k)) 

and (3.11) follows directly from (3.14), (3.15) and (3.16). D 

Lemma 3.2 (Actual reduction for a Coleman-Conn step). Asymptotically for k c S*, 
under standard conditions at x*, 

Aft) (k) = Aq(k)+ o(ll h (k)[12) + 0(1[ v(k)I()" (3.17) 

Proof. In this lemma we denote [(k)= C(x(k)+ h(k))_bA(k)Tv(k) and it follows from 
(3.8) and (3.3) that D(k~T( (k~= 0 and hence D*T~ ~k)= 0. Then using Taylor series 
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and boundedness of Oh, 

h(c(x(k) + d(k)) ) = h(c(x(k) + h(k)) + A(x(k) + h(k))T v(k) + o(llv(k)[I) ) 

= h(~(k)) + o(ll v(k)ll). (3.18) 

Also by Taylor series 

h (k)T(c(x(k) + h(k)) _ C(k) _ A(k)Th(k) ) 

= ½h(k)T( W (k~ - G(k))h(k)+ o(11 h<k)ll 2) (3.19) 

using the definition of W (k) after (3.4) and G (k~= V2f(x(k)). Because ?(~)~ c* and 
D 'T?  (~) = 0 it follows from Lemma 1.2 that Oh(? (~) = Oh(c*) = Oh(?(k)). Hence in a 
similar way to (3.16) of Lemma 3.1 we can deduce that 

h (~(k))  = .~ (k)T C (x(k) .q_ h (~)) + h (~)TA(k)Tv(~). (3.20) 

Finally by definition of A4~ (k) (at 6 (~= d (~) and Taylor series 

= _g(k)Vd(k)_½h(~)TG(~)h(~)+ h(c ~)) - h(c(x(~)+ d(~))) 

+o( l lh  (~)112)+o(11¢~)11) 

from (3.6) and (3.9). Merging this with (3.18), (3.19) and (3.20), and rearranging 
using (3.5), (3.7) and (3.8) gives 

Aq~(k) = h (k)T B(k)h (k) _½h (k)T w ( k ) h  (k) 

+ (g(~) + A(k)h (~))T y(~)D(~)Tc(x(~) + h(k)) 

+ h (c (~)) - a ( ~ c  (~) + o (11 h (~) II ~) + o( II ¢~)II). 

The quadratic terms can be combined using (3.4) and the next term can be rearranged 
using (3.10), D (~)= D* and g(k)+A(~)h(~)-~ 0. Equation (3.17) then follows from 
(3.13). [] 

We can now state the first main result of this section which is that asymptotically 
for k 6 S*, a Coleman-Conn step satisfies the sufficient reduction criterion (2.10). 

Theorem 3.1 (Asymptotic behaviour of Coleman-Conn steps). For k c S*, if  standard 
conditions hold, if  M (k) and (M(k)) -~ are bounded independently of  k, and if (3.4) 
holds, then both AqS(k)= Ziq(k)(l+o(1)) and (2.10) hold asymptotically. 
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Proof. Conversely assume that 3 a subsequence S ' c  S* such that IA&(k~/Aq (k~ - 11 >! 
3 '>0.  We can always find a thinner subsequence S " c  S' such that either case (i) 
or case (ii) below holds, and in either case we prove that d4)(k) /Aq(k)~ 1 which is 

a contradiction. 
Case (i): IID*Tc(k)II = o(llh~k~ll2). In this case IID*Tc(x~k)+h~k~)II = O([[h<k~ll 2) 

from (3.10), and hence IIv(k~ll = O([[h(~)ll-') from (3.9). Thus (Y13), (3.17) and (3.12) 
give 

Ad)(k) ~h(k)TB(k)h(k) +O([lh(k)[[2 ) 
-- lh(k)TB(k)h(k)+o ( -- 1 + o(1).  Aq ~k) Ilh(k)ll= ) 

Case (ii): IIh<k>ll2 = O(llD*Tc  )tt) n this case it follows from (3.11)that IIv(k)ll = 

O([IO*%~>ll)  and hence 

AC~ (k) ½h(k)TB(k)h(k) + h(c(k))--A (k)Tc(k) + O([[D*T c(k)ll ) 

Aq (~) -- ½h (k)TB (k)h (k) + h ( c (k)) - A (k>T c(k) + O( II D*Tc(k)II) 

= 1 + o ( 1 )  

s ince ½h(k)TB(k)h (k) + h(c (k)) - -  ) t ( k ) T  c ( k )  = ~ IlP*Y c(k)[[ from (3.12). 

Finally (2.10) follows from dq5 (k)= Aq(~)(1 +o(1))  and (2.8). [] 

Our remaining theoretical result shows that the correct active set is ultimately 
identified by the algorithm. In deriving this result we allow step (iia) of algorithm 
(2.11) to try a finite number  of  Co leman-Conn  corrections in which h (k) in (3.7) is 
replaced by 

h(k) = _ozZ(k)(M(k))  1Z(k)T(g(k) + A(k)A ( k ) )  (3.21) 

for a > 0, and this value of h (k) is used in (3.8). It is assumed that the unit step 

c~ = 1 is tried first and that the values of  c~ are bounded above independently of  k. 

Theorem 3.2. I f  the assumptions o f  Theorem 3.1 hold for  all k, then k c S* for  all k 
sufficiently large. Also p(k) is uniformly bounded away from zero. 

Proofl Denote S *±= {k: k~(S*} as the subsequence on which Oh(g (k)) # Oh*. Let 
be a thinner subsequence on which Oh(6 (k)) is constant and assume that D (k~ is also 
constant. For sufficiently large k c S, it follows by Theorem 2.3 and strict complemen- 
tarity that D(k)Tc * ~ O. Also (2.19) implies that if A ' D *  has full rank then A * D  (k~ 
has full rank, and hence Z (k) can be bounded above asymptotically. Consider h (k) 
in (3.21). Since a(M(k) )  -1 is bounded by assumption and g(k)+A(k)A(k)-->O by 

Theorem 2.2, it follows that h (k~ ~ 0. Thus c(x (k) + h (k)) ~ 0 and so from the definition 
of ~(k) in Lemma 3.2 and D(k)Tc (k)= 0 it follows that 

D(k)TA(k)T1)(k) = --D(k)Tc* + O(1). 

Since A (k) is bounded and D(k)Tc*# 0, it follows that v (k~ is uniformly bounded 

away from zero, and hence there exists 3 ' > 0  such that IId(k)ll~>3 ,. Similarly by 
considering 0 = D(k)To (k) = D(k)Tc(k)+D(k)TA(k)T~ (k), a bound IIg(k)ll ~ 3' can be 



R. Fletcher, E. Sainz de la Maza / Successive linear programming 253 

)btained and this also implies that p(k~/> 3" Since the number of possible sets Oh (g(k)) 

iS finite, there exists y such that these bounds (that is I[d(k~ll >~ 7, IIg(k)ll >t 3' and 
P (k) >1 7)  apply for sufficiently large k c S *±. Now the actual step (i.e. x (g+l~ - x  (k)) 
in algorithm (2.11) is either d (k~, g(k) or 0, and since X ( k ~ X  * it follows from the 
bounds on d (k~ and g(k) that x(k+l)=x (k~ for sufficiently large k c S  *l ,  Thus 
asymptotically the only steps that reduce qS(x) are those for k c S*. These steps will 
be unit Coleman-Conn steps because the unit step in (2.21) is tried first, and by 
virtue of Theorem 3.1. Moreover d(k)-~O for these steps, and the algorithm can 
increase p(k) by a factor of  at most 0" 3 only if {{d(k)ll ~> p(k). Thus it is asymptotically 
not possible for a step k E S* to increase p(k> to give p(k+~> 7. Thus step k+  1 c S* 
and hence k c S* for all k sufficiently large. 

Finally because Theorem 3.1 shows for such k that unit Coleman-Conn steps 
satisfy (2.10), it follows that p(k) is not decreased asymptotically and hence is 
uniformly bounded away from zero. [] 

4. Numerical experiments and conclusions 

The first part of this section describes some pilot calculations with a rudimentary 
form of the prototype algorithm, in order to indicate the potential of this type of 
method in practice. We consider the solution of the NLP problem (1.1) using the 
la exact penalty function (1.2), having first scaled the objective function (by f ~  vf) 
so that Ila*ll~< 1. The norm used in the trust region bound in (2.1) is the lo~ norm 
and (2.1) has been solved by converting it to an LP problem and using a standard 
package. (Clearly a special purpose/aLP solver could be expected to be more efficient 
here.) In common with other implementations of the Coleman-Corm method we 
have defined the null space matrix Z (k~ by the orthogonal factorization method (e.g. 
see Fletcher, 1981), using QR factors of the current matrix A(k~D (k~ of active 
constraint gradients. Currently we have not yet tried to exploit other factors, in 
particular the direct elimination factors arising from the solution of the /aLP sub- 
problem. 

In regard to updating the reduced Hessian approximation M (k~ we have tried to 
use existing technology where possible. However it is by no means certain what is 
currently best in this respect and any future developments will be very relevant to 
our algorithm. In fact we do not necessarily need to think in terms of updating M (k) 
at all: it might be better to consider calculating the reduced Hessian matrix 
Z (k)r W(k)Z (k) directly, particularly in the case of sparse NLP problems. Nonetheless 
in our numerical experiments we have updated the matrix M (k) by the BFGS method 

M (k+l) = M (k)-t ,yfk),~(k)T M(k)s(k)S(k)TM(k)  
.y(k)Ts(k) s(k)TM(k)s(k) 

We have followed Nocedal and Overton (1985) in choosing 

s (k) = Z(k+a)T(x (k+a) _ X(k)), 
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,y(k) = z ( k+DT(g(k+l )  _ (g(k) + A ( k ) A  ) ) .  

In the latter equation A is any convenient multiplier approximation: we have tried 

various obvious possibilities with very little difference in our results. We have also 

used the Nocedal and Overton criterion to skip the update if 

{I r (k+l)T(X(k+l)  -- x(k))  > 7] 
, ~ ( k +  1),+~ IIs(k){I (4.1) 

choosing T/= 1 and # = 0.01. This ensures that the BFGS update is always well 

defined when it is used, and does not impede the local convergence results. On the 

other hand the dependence on k of the factor on the right-hand side of (4.1) is not 

very attractive and it may be that a better criterion could be developed, 

When the active set changes we need to derive a new positive definite reduced 

Hessian approximation. We may not always have adequate information in the 

current matrix so we follow the usual practice of  including unit matrix information 
(e.g. Byrd and Schnabel (1984)). Specifically, if Q = [ Q ~ :  Q2] is the orthogonal 

matrix in the QR factors (Q2 = Z) then we proceed on the assumption that Z T W* Qi = 

0 and Q 1 T W * Q 1  = cL Thus our current estimate of W* i s  Z M Z T + c Q I Q ~ .  If  we 

change basis from one null space Z <k) to another Z ~k+t), then it follows that the 

current reduced Hessian approximation M is changed to T T ( M - e l ) T +  cI where 

T = Z(k~Tz  (k+~. We have taken the scale factor to be c = I{M(k~l{. We only use this 

transformation when D (k~ and D (k+l~ differ. 
We have performed the experiments on a DEC 10 computer with relative precision 

2 - 2 7  ~ 0 .751o  --  8. We have used a version of algorithm (2.11) in which the search 

process is a single Coleman-Conn step, with the horizontal step h (k) being truncated 

if necessary to lie within the trust region box. This truncation allows for M (k~ being 

unduly small and does not seem to occur close to the solution. The simplest way 

to accomodate this change within our current theory is to regard M (k> as being 

rescaled accordingly. An alternative would be to show that the results in Section 3 

remain valid when only a fraction of the full h (k~ step is taken. However it may be 

that this truncation would be more effectively replaced by a line search along h (k). 
1 1 We have used parameter values 0 = z, 0-1 = 0-2 =5 and 0-3 = 2 and have made no 

attempt to optimize these choices. The scaling parameter z, is chosen to be 1 or 0.1 

as necessary. We have terminated the iteration when the KT conditions for the NLP 

problem are satisfied to an accuracy of 10 -7 . Various small standard test problems 

have been used: the references for these are given in Sainz de la Maza (1987). The 

results are set out in Table 4.1. In this table n, m and b denote the numbers of  

variables, constraints and bounds respectively, and n -  t* is the dimension of the 

reduced space at the solution. NI, NF, NG and NU denote the numbers of iterations, 

function+ constraint evaluations, gradient evaluations and updates respectively. 

If  we compare these results with other first derivative methods in the literature 

we see that our results are often an improvement. Nocedal and Overton (1985) 

describe a different type of  reduced Hessian method that requires 5 and 8 function 
evaluations for the Wright 1 and 2 problems, 12 function evaluations for the Powell 



R. Fletcher, E. Sainz de la Maza / Successive linear programming 

rable 4.1 

Numerical experiments 

255 

Problem n m b n - t* NI NF NG NU 

Wright1 2 1 0 0 4 4 4 3 
Wright2 5 3 0 2 6 6 6 4 
Chamberlain 2 1 0 0 5 5 5 4 
Mukai-Polak 6 2 2 3 13 15 13 9 
Powell 5 3 0 2 5 5 5 3 
Hock-Schittkowski 100 7 4 0 5 11 19 11 9 
Colville2 15 5 15 4 29 40 29 20 

problem and 12 for the Hock-Schittkowski 100 problem. Gurwitz (1986) reports 

various calculations with SQP-type methods which use reduced Hessian approxima- 
tions. With an ll penalty function 63 function evaluations are required for the 

Chamberlain problem (clearly the Maratos effect is occurring here) and 13 for the 

Mukai-Polak problem. With an augmented Lagrangian merit function, 6 function 

evaluations are required for the Chamberlain problem, 14 for the Mukai-Polak 

problem and 8 for Powell's problem. Gurwitz also reports that the NPSOL package 

of Gill et al. which approximates full Hessian matrices takes 7, 15 and 10 function 

evaluations respectively for these problems. For the Colville 2 problem, Powell 
(1978) requires 17 function evaluations with an SQP-type method which updates 

full Hessian matrices. Whilst we would not like to make too much of these com- 

parisons, they do suggest that our method is comparable to these other approaches 

and does not lose out either on account of solving LP rather than QP subproblems, 

or on account of updating reduced Hessians rather than full Hessians. A point to 

observe is that all the other methods above find it necessary to use double precision 

calculation whereas our results are obtained satisfactorily in single precision. 
However our method does appear to be superior to the original implementation of 

the Coleman-Conn method (Coleman and Conn, 1982a, b). For example on the 

Hock-Schittkowski 100 problem they require between 50 and 64 function evaluations 

to reach a less accurate solution. This can possibly be ascribed to the fact that 

solving LP-type subproblems locates the correct active set more quickly than the 

method of tolerances used by Coleman and Conn. 

A number of improvements might be made to the pilot code which has been used 
to derive the above results. A special purpose/1LP solver would improve the overall 

efficiency of  the code and a sparse matrix version would allow large problems to 

be solved. The use of direct elimination factors from the /1LP solver in place of 

orthogonal factors is another possible saving that could be explored. Some experi- 

ments with different parameter selections might be interesting, particularly those 

that relate to changing p(k), but we suspect that our method is relatively insensitive 

to the values of these parameters. The change that we think would be most useful 
is to include a line search in step (iia) of algorithm (2.11). Thus we would try points 
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X ~k) + a h  ~k) (h <k) as in (3.7)) for a range of c~-values generated by some combinat ion  

of sect ioning and  interpolat ion.  We would follow each of these trials with a vertical 

step only if  an overall reduct ion in the value of &(x) were predicted. This should 

not  only reduce ~b(x) more quickly but  should also enable  the subsequent  update  

of M ~k) to provide more accurate second derivative informat ion.  Al though we are 

using the BFGS formula  for upda t ing  M ~k~ we are aware that the Nocedal  and 

Overton rule for skipping the update  is somewhat  ad-hoc and  that its theoretical 

just if icat ion is limited. Thus  we cont inue  to look for any improvements  that arise 

in this aspect of the subject. F inal ly  we have also considered using other reduced 

Hessian methods  to replace the C o l e m a n - C o n n  method,  in par t icular  the second 

method analysed Byrd (1984). This work is described by Sainz de la Maza (1987). 

Sainz de la Maza uses a more complicated algori thm in order  to obta in  the sufficient 

decrease property and is not  able to detect any advantage to set against  this. Thus 

we have preferred the C o l e m a n - C o n n  method as our  choice of Newton-l ike  step 

in the algorithm. 
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