
Mathematical Programming 43 (1989) 18%207 187
North-Holland

S U C C E S S I V E C O L U M N C O R R E C T I O N A L G O R I T H M S F O R

S O L V I N G S P A R S E N O N L I N E A R S Y S T E M S O F E Q U A T I O N S

Guangye LI

Computer Center, Jilin University, Changchun, Jilin, People's Republic of China

Received 15 August 1986
Revised manuscript received 25 January 1988

This paper presents two algorithms for solving sparse nonlinear systems of equations: the CM-
successive column correction algorithm and a modified CM-successive column correction
algorithm. A q-superlinear convergence theorem and an r-convergence order estimate are given
for both algorithms. Some numerical results and the detailed comparisons with some previously
established algorithms show that the new algorithms have some promise of being very effective
in practice.

Key words: Finite difference, Jacobian, nonlinear equation, sparsity.

1. Introduction

Cons ide r a nonl inear system of equat ions

F(x) =0, (1.1)

where F : R n ~ R n is cont inuous ly differentiable on an open convex set D c R n, and

the Jacob ian matr ix F'(x) is sparse. To solve the system, the fo l lowing i terat ion is

considered:

x k+l=x k - B k l F (x k) , k = 0 , 1 , . . . , (1.2)

where Bk is an app rox ima t ion to the Jacob ian with the same sparsity structure.

For convenience , we rewrite (1.2) as

Y ~ = x - B - ' F (x) , (1.3)

where x and ~ indicate the current i terate and the new iterate respect ively, and B

is an approx imat ion to the Jacob ian F'(x).
Current ly , there are several algori thms to get a sparse app rox im a t ion to the

Jacobian . In this paper we will discuss three types o f algori thms.

This research was partially supported by contracts and grants: DOE DE-AS05-82ERl-13016, AFOSR
85-0243 at Rice University, Houston, U.S.A. and Natural Sciences and Engineering Research Council
of Canada grant A-8639.

188 (7. Li / SCC algorithms for sparse nonlinear equations

(1) The Sparse Broyden algorithm. In 1970 Schubert [18] gave a sparse modification
of Broyden's update. Broyden [2] also gave this algorithm independently. It is called
the SB algorithm. In order to present the SB algorithm, we introduce the following
notation concerning the sparsity pattern of the Jacobian:

Definition 1.1. For j = 1 , 2 , . . . , define the subspace ~ c R" determined by the
sparsity pattern of the j th row of the Jacobian:

Zj-={v e R ' : e ~ v = 0 for all i such that [F'(x)]ii = 0 for all x c R ' } ,

where e~ is the ith column of the n × n identity matrix. Define the set of matrices
Z that preserve the sparsity pattern of the Jacobian:

Z ~ { A c L (R ") : ATejeZj for j = 1 , 2 , . . . , n}.

Definition 1.2. For j = 1, 2 , . . . , n, define the projection operator, Dj ~ L(Rn), that
maps R" onto ~ :

where

D j ~ d i a g (d j l , d j 2 , . . . , d j ,) ,

otherwise.

For a scalar c~ c R, define the pseudo-inverse:

+ {0 -1 i f c ~ 0
a = ifc~ =0.

Now the SB update can be written as

= B + ~ ([s]~f[sij)+eje~-(y - Bs)[s].~, (1.4)
j--I

where [s]j = Dis, s = ~ - x and y = F (~) - F(x) .
Let

Qu,~={A~L(R ') : A u = v , for vectors u, v c R " } .

The following theorem, which we will use later, was proved by Reid [16] and Marwil
[10] independently.

Theorem 1.1. Let B ~ Z; y, s c R" with s ¢ O. Define B by (1.4). Then B is the unique
solution to

min{ll/~- BIIF: /~c Q y , ~ Z } , (1.5)

where]]. IIF denotes the Frobenius norm of a matrix.

G. Li / SCC algorithms for sparse nonlinear equations 1 8 9

The advantage of the SB algorithm is that at each iteration only one function

value is required and it is q-superlinearly convergent (see Marwil [10]). However,

it frequently requires more iterations than finite difference algorithms. Moreover,

the matrix B, generated by the SB algorithm may not be a good approximation to

the Jacobian when the problem is badly nonlinear, especially when the current step

is far away from the solution. Therefore, Pk = -Bk1F(xk) may not be a good descent

direction of the functional f(x) = ½ll F(x)II 2, where [[. II denotes the 12 vector norm.
In this case, it may be not good to use a line search with Schubert's algorithm.

(2) Finite difference algorithms. In general, a finite difference algorithm can be

formulated as follows: obtain direction vectors dl, d 2 , . . . , dp such that B can be

determined uniquely by the equations

Bdi=F(x+di)-F(x) , i = l , 2 , . . . , p .

In this paper, we assume that it is not convenient to evaluate the function values
element by element, instead we only evaluate the value of F(x) as a single entity.

This is reasonable since in practice it is very common that the components of F(x)
have expensive common sub-expressions. In this case, to reduce the number of

function evaluations, Curtis, Powell and Reid [5] proposed a finite difference

algorithm, called the CPR algorithm, which is based on a partition of the columns

of the Jacobian. Coleman and Mor6 [4] associate the partition problem with a graph

coloring problem and gave some partitioning algorithms which can make the number
of the function evaluations optimal or nearly optimal.

Following Coleman and Mor6, we give some definitions concerning a partition

of the columns of the Jacobian.

Definition 1.3. A partition of the columns of a matrix B is a division of the columns

into groups cl, c2, •. •, cp such that each column belongs to one and only one group.

Definition 1.4. A partition of the columns of a matrix B is consistent with the direct

determination of B if whenever b!j is a nonzero element of B, then the group

containing column j has no other column with a nonzero element in row i.

As an example we consider the tridiagonal structure

[i Xoooo 1 x x 0 0 0

x x x 0 0
0 x x x 0

0 0 x x x

0 0 0 x x

(1.6)

A consistent partition of the columns of the matrix is c~ = {1, 4}, c2 = {2, 5}, and

C 3 = {3, 6}.

190 G. Li / SCC algorithms for sparse nonlinear equations

The CPR algorithm now can be formulated as follows: for a given consistent
partition of the columns of the Jacobian, obtain vectors dl, d2 , dp such that B
is determined uniquely by the equations

Bd~=F(x+di) -F(x)~y~ , i = 1 , 2 , . . . , p . (1.7)

Notice that for the CPR algorithm, the number of function evaluations at each
iteration is p + 1. Since the partition of the columns of the Jacobian plays an important
role in the CPR algorithm, we call the CPR algorithm based on Coleman and Mor6's
algorithms the CPR-CM algorithm.

For the consistent partition given in example (1.6), if we take

d~=(h ,O ,O,h ,O ,O) T,

d2 = (0, h, 0, 0, h, 0) T,

d3=(O,O,h,O, 0, h) v,

then B is determined uniquely and the number of function evaluations required at
each iteration is four.

The advantage of the CPR algorithm is that it usually generates better approxima-
tion matrices and therefore requires fewer iterations than the SB algorithm. However,
it requires more function values at each iteration than the SB algorithm.

(3) The successive column correction algorithms. Polak [14] gave a successive
column correction algorithm for unconstrained minimization. Feng and Li [8]
developed a successive column correction algorithm for nonlinear system of
equations, which is called the column-update quasi-Newton method. Using this
algorithm, columns of Bk are displaced by differences successively and periodically.
At each iteration, only two function values are required, but only one column is
displaced.

In this paper, we propose two algorithms: the CM-successive column correction
algorithm and the modified CM-successive column correction algorithm. The former
is based on Coleman and Mor6's algorithm and the column-update algorithm. The
latter is a combination of the CM-successive column correction algorithm and the
SB algorithm. Both algorithms require only two function values at each iterative
step. Our numerical results show that the CM-successive column correction
algorithms, especially the modified one, are competitive with the CPR algorithm
and the SB algorithm.

The CM-successive column correction algorithm is given in Section 2.
A Kantorovich-type analysis for this algorithm is given in Section 3. A q-superlinear
convergence result and an r-convergence order estimate of the CM-successive
column correction algorithm are given in Section 4. The modified CM-successive
column correction algorithm is given in Section 5. Some numerical results and some
detailed comparisons of the new algorithms with the CPR and the SB algorithms
for the test problems are given in Section 6.

G, Li / SCC algorithms for sparse nonlinear equations 191

In this paper, [1. II~ denotes the Frobenius norm of a matrix, and I1" II denotes
the /2-vector norm. For a sparse matrix B, we use M to denote the set o f pairs o f

indices (i , j) , where b 0 is a structurally nonzero element o f B, i.e.

M = {(i,j): b~j # 0}.

Moreover , we use S(y, 6) to denote the set { x c R " : JJx-yl l<8, y c R " } and use

5~(y, 6) to denote the closure o f S(y, 6).

2. The CM-successive column correction algorithm and its properties

Given a consistent part i t ion o f the columns of the Jacobian, which divides the set

{1, 2 , n} into p subsets Cl, e2, .. •, cp, let

d k= ~. h%j, (2.1)
J~ cl k

where

and let

i k = k (m o d p) , k = l , 2 ,

yk = F(x k + d k) _ F(xk) . (2.2)

The CM-successive column correction algori thm can be formulated as follows: I f

k ~< p, then for j c ck, the j th column of Bk is determined uniquely by the equat ion

Bkd k = yk , (2.3)

and the other columns of Bk are equal to the corresponding columns of Bk-1. I f

k > p, the columns of Bk are displaced as described above successively and periodi-

cally. In other words, for j ~ %, the j th co lumn of Bk is determined uniquely by

(2.3), and the other columns of Bk are equal to the cor responding columns of Bk-l .

For example (1.6), at the first iteration we displace the first group c~ = {1, 4}. At

the second iteration we displace the second group c2 = {2, 4}. At the third iteration

we displace the third g roup c3 = {3, 6}, and then we displace the three groups
successively and periodically.

Note that one does not have to choose a un i form step length h k for all componen ts

o f x k. In practice, it is preferred to choose different step length for different
componen t o f x k as we do in the numerical examples. In fact, un i form step lengths

will not affect our theoretical results. However , for simplicity, we assume a uni form

step length for each step.

The CM-successive co lumn correction algori thm with a global strategy is given
below.

Algorithm 2.1. Given a consistent part i t ion of the columns of the Jacobian, which

divides the set {1, 2 , . . . , n} into p subsets q , c2, • • . , cp (for convenience, ci, i =

1, 2 , . . . , p, indicates both the sets o f the columns and the sets o f the indices o f these

192 G. Li / SCC algorithms for sparse nonlinear equations

columns), and given an x°~ R n and a nonsingular matrix Bo, which has the same

sparsity as the Jacobian, at the initial step:

(1) Set I = 0 .

(2) Solve Bos ° = - F (x °) .
(3) Choose x ~ by x I = x ° + s °, or by a global strategy.

At each iteration k > 0,

(1) Choose a scalar h k.
(2) I f l < p , then set l = l + 1, otherwise set l = 1.

(3) Set

d k = y hkej.
jCCl

(4) I f j c c l and (i , j) 6 M , then set

1 b~ = ~ eV(F(x k + d k) - F(Xk)) , (2.4)

otherwise set

b k = k -1 b !j ,

where Bk = [b~].
(5) Solve Bks k = - F (x k) .
(6) Choose x k+l by x k+~ = x k + s k, or by a global strategy.

(7) Check for convergence.

The global strategy ment ioned in (3) and (6) is for the global convergence o f this

algorithm. One may use a line search strategy or a trust region strategy. We used a

line search strategy for our numerical examples.

Let

L
I

Jk = F ' (x k + td k) dt. (2.5)

Then

j kd k =yk. (2.6)

Let J~ = [J~m]. Since Jk has the same sparsity as the Jacobian, by (2.6), we have that
if (l, m) e M, then

e~y k
J r , , - h k , (2.7)

where m c G- Comparing (2.7) with (2.4), we have

Bke~ = Jkej,

For j ~ Cik.

G. Li / SCC algorithms for sparse nonlinear equations 193

The CM-successive column correction algorithm is also an update algorithm, and
the update can be written as:

(~, ejef)+~j~c,k Jkeief. (2.8) Bk = B k - i I - j ~

From (2.8), it is easy to get the following result:

Lemma 2.2. Let Bk, k = 1, 2 , be generated by Algorithm 2.1. I f k >~ p, then

k
Bk = X E Jjete~. (2.9)

j = k - p + l Icc(i

To study the properties of our algorithms, sometimes we assume that F ' satisfies
the following Lipschitz condition: there exist ai > 0, i = 1, 2 , . . . , n such that

[[(F'(x) - F'(y))ei]] <~ c~illx -y[[, x, y c D. (2.10)

Let a = (ZI'-1 ~)1/2. Then, it follows from (2,10) that

[[F'(x)-F'(y)llF<~allx-yl], x, y6 D. (2.11)

Theorem 2.3. Let F' satisfy Lipschitz condition (2.10). Also let {xi}~=o C D and let
{Bj}k=o be generated by Algorithm 2.1 with

2 Ihq llx - 111.

I f {xJ +dJ}k=, c D, then for k >~p,

k
[[Bk--F'(xk)Ile <~a 2 [IxJ--xJ-1[[• (2.12)

j = k - p + l

Proof. By (2.5), (2.1) and Lipschitz condition (2.10),

[[(F'(x~)-Jm)e~,, = (fo' (F'(x~ + td~) - F'(xm)) dt)ej

-= , 5 , h°'e l

~< ~2 x/nlh'~l ~< oljllx" - x " - l l l , (2.13)

194 G. L i / S C C a lgor i thms f o r sparse non l inear equa t ions

where k - p + 1 <~ m <~ k. It follows from (2.9) and (2.13) that

k Bk)ej eT IIF'(x~)-B~I[~ = E E (F'(x~) -
J ,. r n = k - p + l

k

~ E
m - - k - - p + l j c c i m

k

Y E
m = k - p + l j ~ c i m

+ II(P'(xm) - Jm)ejll) ~

I[(F ' (x k) - J m) e j l l 2

(1[(F'(x~) - F ' (x m)) ej II

(2.14)

k
~ ~ ~([[X~--xmlI+IIx~--xm-'II)=

m ~ k - - p + l j ~ c i m

2 ~ ~ 2 [Ixl-x'-ll]
m ~ k - p + l .j~c t I=k p+l

l = k p+l

Then, (2.12) follows from (2.14). []

To start iteration (1.2) for a given x°~ D, an initial matrix Bo is needed. We
suggest using the CPR-CM algorithm to get Bo since it is easy to be implemented
after we have a consistent partition of the columns of the Jacobian.

3. A Kantorovich-type analysis

By means of Theorem 2.3, we have the following Kantorovich-type analysis for the
CM-successive column correction algorithm.

Theorem 3.1. Assume that F ' (x) satisfies Lipschitz condition (2.10). Let x° c D, and

let Bo be a nonsingular n × n matrix such that

[IBo-F'(x°)ll~<6, I[Bo'll~</~, f[Bo'F(x°)[[<n,

h - (1 - ~ -) 2 ~ g , (3.1)

and

/~6 <] ,

where c~, fl and ~7 are positive scalars. I f S (x °, 2t*) ~ D, where

t* 1 - 3fl8 , .
~ - ~ t , - V 1 - 6 h) , (3.2)

G. Li / SCC algorithms for sparse nonlinear equations 195

then {xk}, generated by the CM-successive column correction algorithm with Ihk[<~
(ll , /~)llx~-x~-'l l and without any global strategy, converges to x*, which is the
unique root of F (x) in S (x °, ~)c~ D, where

f = 1 - / 3 8 (1 + (1 2_~'0 "~ 1/2"~
o~ fi (1 - fl ~) 2 /]"

Proof. Consider the scalar iteration

tk+i-- tg=~f(tk) , to=O, k = O , l , 2 , . . . , (3.3)

where

3 .2 { 1 - 3 ~

It follows from (3.3) that
1

f (tk ,) =-fi (t k - tk-1)-

Thus, by Taylor expansion,

f (tk) =f(tk- l) +f ' (tk- i) (tk -- tk-l) +i30'(tk-1)(tk -- tk-,) 2

=3 (tk-- tk-O + atk-i + a6 (tk -- tk-~).

Substituting (3.5) into (3.3), we have

Equation (3.6) can be rewritten as

(3.4)

(3.5)

k = 1 , 2 , (3.6)

[°] tk+l-- tk -= 3fl "~ (tk + tk-1) + 6 (tk-- tk-l). (3.7)

Noticing that to=O and t1=,1 >0 , by induction, we have that {tk} is a strictly
increasing sequence. Since t* is the smallest root o f f (t) ,

t * - tk+l = t*-- tk -- flf(tk)

= fl { [f (t*) - - f (tk) - - f ' (tk)(t*-- tk)] + [f ' (tk) + ~] (t*-- tk) }

= /3{~a (t* -- tk)+ 3atk + 36}(t* -- tk)

= fl{3a(t* + tk) + 33}(t* - tk).

Therefore, noticing that to = 0 and t*> 0, by induction, we obtain

tk <~ t*, k = 0 , 1 ,

196 G. Li / SCC algorithms for sparse nonlinear equations

Hence, there exists a [<~ t* such that

lira tk = t.
k ~ o o

By (3.3), f ([) = 0. Since t* is the smallest root o f f , we have that [= t*, i.e. we have

lim tk = t*.
k ~ c o

Now, by induction, we will prove that

[[Xk+'--Xkll<~tk+,--tk, k = l , 2 , . . . , (3.8)

{x k} c ~q(x °, t*), k = 1, 2 , (3.9)

{x ~ + d ~ } ~ ~ (x °, 2 t*) , (3 .10)

and

]]BL-']] ~ 3~, k = 1 , 2 , (3.11)

For k = 0, we have

I Ix ' -x° [[-< n = t , - to-< t*.

Thus,

[Ix' + d ' - x°[[<~ LIx' - x% + II d'l l <~ 2ll x~ - x°l{ ~ 2 t* .

Suppose (3.8)-(3.11) hold for k =0 , 1 , . . . , m - 1 . Then

r n - - 1 r n - - 1

[[x ' - X % <~ E {{Xi+'-xi[[<~ E (t i + , - t i) = t , , ~ t*"
i = 0 i 0

Therefore , x m c S(x °, t*). Fur thermore,

IIx m + d m - x % <- Itx m - x % + ICx m - x m - ' tl

2(t,, - to) = 2tm ~ 2t*,

which implies

{x "~ + d m} c S (x °, 2t*).

From the p roo f of Theorem 2.3, it can be seen that for all k,

k

IlBk - F ' (x k) l l ~ < - [[B o - F'(x°) [f~ + ~ Z Ifx j - x j - ' t l . (3 .12)
j = O

Therefore ,

IIBo'(Bm - Bo)ll ~ Jl Bo' II F(IJB,. - F ' (x m) l l ~ + IIF'(x m) - F ' (x °) l l ~

+ II F ' (x°) - Boll ,:)

<<-~ 2a E - x ' 1 1 + 2 8
i = 0

2 ~ (a t ~ + 6) ~ 2,8 (a t* + 8). (3.13)

G. Li / SCC algorithms for sparse nonlinear equations 1 9 7

By (3.2),

1
a t * + ~ < ~ - - .

3/3

Hence, bye(3.13),

[IBo'(B, , , - Bo)ll ~<-~.

Thus, by Ortega and Rheinboldt's Perturbation Lemma [13, p. 45],

IIB,,,'ll ~< ~@~ = 3/3.

Since

F (x m-l) + Bm_l(X" - x "-~) = O,

by (3.12), (3.6) and Lemma 4.1.12 in [7],

II xm÷' - x ' l l <~ IIBmlll,~llF(xm)ll

= IIB,211~,IIF(x m) - F (x '°- ') - B m ,(x '~ - x ')IL

< I I B m ' I I F { I J F (x ~) - F (x m - ') - F ' (x m - ') (x ~ - x m - ') [I

+ I l f ' (x " - ') - S,.- , II ~ [I x " - xm-' II}

<~3fi II x ' ~ - x " 'LL +,~ E I I x ' ÷ ' - x ' l l + a IIx'~-xm-'ll
i = 0

[°,] ~<3/3 ~ (m- - t , , _~)+a tm_~+8 (tin--tin ~)=tm+~--t,,.

This completes the induction step. By (3.8), it is easy to show that there is an x* ¢ D
such that

lim x k = x*.
k -~ co

The uniqueness of x* in S(x °, f) ~ D can be obtained from Ortega and Rheinboldt's
Theorem 12.5.5 [13, p. 418] by setting G (x) = - X - B o l F (x) . []

4. Local convergence properties

To study the local convergence of our algorithms, we assume that F : D c R" ~ R n
has the following property:

There is an x* c D, such that F (x *) = 0 and F'(x*) is nonsingular. (4.1)

198 G. Li / SCC algorithms for sparse nonlinear equations

Theorem 4.1. Let F : D c R n ~ R" satisfy (4.1), and let F' satisfy Lipschitz condition
(2.10). Also let {x k} be generated by Algorithm 2.1 with [hk[<~ 1/,/~llx k - x k '11 and
without any global strategy. Then, there exist, e, 6 > 0 such that if x ° ~ D and Bo satisfy

[Ix°-x*l] < e, JIB0-F'(x*)]l. ~< a,

then {x k} is well defined and converges q-superlinearly to x*.

Proof. Notice that when e and 6 are small enough, we have that h < ~, ~ < ½ and
that S(x °, 2 t*)c D where h, /3 and t* are defined in Theorem 3.1. Therefore, by
Theorem 3.1,

x k + d k c D , k = 0 , 1 ,

By (2.8),

Thus,

I - j eje)-)+ ~, (Jk-F ' (x*))e je f . (4.2) Bk - F'(x*) = (Bk-1 -- F'(x*)) ~k' ie~k

IIJk-F'(x*)[[F = f f (F'(xk + t d k) - F ' (x *)) dt

<~ a(llx k -x*[I +½[[dkll)

 (ll -x*ll+llx '11)
~< c~(2]]x k -x*[[+ IJx k ' -x*]]) . (4.3)

Let o'(x k-l, x k) = max{llx k -x*l], IIx k-~ -x*l[}. Then it follows from (4.2) and (4.3)
that

II - F ' (x *) l l 11 - F ' (x *) l l + I lL - F ' (x *) l l

<~ }lBk_l- F'(X*)IIF + 3OZO-(X k-l, xk).

Thus, by Broyden, Dennis and Mor4's Theorem 3.2 [3, p. 228], we know that {x k}
converges at least q-linearly to x*.

According to Dennis and Mor6's Theorem 2.2 [6, p. 551], to get q-superlinear
convergence, we need only to prove that

lim [[(Bk - F'(x*))(x k+~ -xk)[I
k-~]lXk+l--Xkll --0. (4.4)

From (2.12), it follows that

lim II Bk - F'(x*)H = 0. (4.5)
k ~ o o

This implies (4.4). []

Theorem 4.2. Assume that F satisfies the hypotheses in Theorem 4.1. Then the r-
convergence order of Algorithm 2.1 is not less than r, where ,c is the unique positive
root of

t p + I - - t p - - 1 = O.

G. Li / SCC algorithms for sparse nonlinear equations 199

Proof. Notice that (4.5) implies that there exist ko and/3 > 0 such that IIB~lll ~</3
for all k ~ > ko. Thus, by Theorem 2.3 and Lemma 4.1.12 in [7],

[Ix k+' - x*l[= Ilx k -- x * - - Bk~ F(xk)[[

= - [I B ~ ' { F (x k) - B k (x k - x*)}[[

<_ IIBklII~{IIF(x ~) - F (x *) - F ' (x *) (x k - x *) l I

+ (11 F'(x*) - F'(xk)II ~ + II F'(x~) - Bk II ~)11 x ~ - x* II }

</3{1~llx~-x*l12

+ o~LLxk-x*lL+ o~ Z ILxJ÷a-xJll IIx~-x*lL
j=k--p

=/3 ~ l lx~-x*l l+~ E I lxJ+'-x j x~-x*ll
j=k--p

) < ~ II/J-x*[[IIx~-x*ll.
j = p

Thus, the desired result follows from Ortega and Rheinboldt's Theorem 9.2.9
[13, p. 291]. []

5. The modified CM-suceessive column correction algorithm

Estimate (2.12) shows that when p is small, Bk iS a good approximation to F ' (x k) .

However, Bk still retains information from the previous p steps. Therefore, the
following question is reasonable: Can we have a better approximation to F ' (x k)

without more function evaluations? Notice that when we get Bk by Algorithm 2.1,
we did not use the value of F (x k) . The main idea of the modified CM-successive
column correction algorithm stated below is to use all the information we already
have to improve our approximation to F'(xk).

Algorithm 5.1. Given a consistent partition of the columns of the Jacobian, a vector
x ° and a nonsingular matrix Bo with the same sparsity as the Jacobian, at the initial
step:

(1) Set 1 = 0 and/~o = Bo.
(2) Solve /~oS ° = - F (x °) .
(3) Choose x I by x 1= x ° + s °, or by a global strategy.

At each iteration k > 0:
(1) Update Bk_~ by Algorithm 2.1 to get Bk.
(2) Update Bk by the SB update to get /3k-
(3) Solve /~ks ~ = - F (x ~) .
(4) Choose x k+~ by x k÷~ = x k + s k, or by a global strategy.
(5) Check for convergence.

200 G. Li / SCC algorithms for sparse nonlinear equations

Our numerical results show that Algorithm 5.1 requires fewer iterations than
Algorithm 2.1 for many problems. Especially, when the problem is not well behaved,
and a global strategy is used, the modified algorithm behaves significantly better
than Algorithm 2.1. The cost of the improvement is the computation of the SB
update. However, since the Jacobian is sparse, the SB update is relatively cheap.
For example, if the number of nonzeros in the matrix is O(n), then only O(n)
operations are required. We feel that it is worth doing this rather than computing
more function values and solving more linear systems.

Now we will briefly discuss the convergence properties of Algorithm 5.1. Let

Io' L = F'(x ~ l + t (x ~ - x k - ')) d t . (5 . 1)

Since]k performs exactly the same as the secant factor

f (x k) _ f (x ~ l)
X k _ X k - I

in one dimensional problems, we call a~k the secant operator. It is easy to show the
following result.

Lemma 5.1. I f F' satisfies Lipschitz condition (2.10), then

I l L - F ' (x ~) l l ~ ~< -~ IIx k - x k - ' l l • (5.2)
2

Estimate (5.2) shows that L is a good approximation to F'(x k) when]Ix k - x k ~[1 is
small

Theorem 5.2. Let F' satisfy Lipschitz condition (2.10). I f {Bk} and {/~k} are generated
by Algorithm 5.1, then

II~k-LII~ ~ [[Bk- LII~. (5.3)

If, in addition, 1~ k # Bk, then the strict inequality holds.

Proof. Since Jk c Qy, s c~ Z, where Z is defined in Definition 1.1, by Theorem 1.1, we
have

I]/~ -~]1~ + II/~k -Bkll~ =]lBk - L l l ~ . (5.4)

Then, (5.3) follows from (5.4). []

Notice that in general, /~k ~ Bk. Therefore, by Theorem 5.2, /~k is usually closer
to the secant operator Jk than Bk. Thus, /~k should be a better approximation to
the Jacobian than Bk when Bk retains some information from previous steps. But

G. Li / SCC algorithms ,for sparse nonlinear equations 201

theoretically, we have not been able to get a better estimate for II Bk -- F'(x k) II v than
that for][Bk- F'(xk)ll F. However, we can get the following result:

Theorem 5.3. Let F : R n-->R" satisfy Lipschitz condition (2.10). Also let {Bk} and
{x k} be generated by Algorithm 5.1. Then,

II~-F'(x~)l l~2~ 2 [[xJ-xJ-'LI. (5.5)
j--k--p+l

Proof. By (5.3),

I I & - F ' (x ~) l l ~ I I & - L I I ~ + I l L - F'(x~)ll~

II B~ - L II ~ + II L - F ' (x ~)11

<~ [[Bk - F ' (x k) l l ~ + 2 I L L - F ' (x~) [[F.

Then, from (2.12) and (5.2), we obtain (5.5). []

From estimate (5.5), it is easy to prove that Algorithm 5.1 has at least the same
local convergence properties as Algorithm 2.1.

6. Numerical results

To see how the new algorithms work in practice, we computed six examples by the
CPR algorithm, the SB algorithm, Algorithm 2.1, and Algorithm 5.1. In this section,
we compare the numerical results from these four algorithms. The global strategy
we used in computing the examples is the line search with backtracking strategy
(see Dennis and Schnabel [7, p. 126]). For the CPR algorithm, if p k = _Bk1F(x k)
is not a descent direction, then we try _pk. I f it is not a descent direction either,

then the algorithm fails. For the other algorithms, if pk is not a descent direction,
i.e. if the line search fails, then we try --Pk. I f it is not a descent direction either,
then we try the CPR direction. For the CPR algorithm, Algorithm 2.1 and Algorithm
5.1, at step k, we use different h k for each component of x k instead of one uniform

h k. According to Dennis and Schnabel [7, p. 98], we choose

h~ = ~ p s x~.

where macheps is the machine precision. The stopping test we used is

max ~< ~,
,~<i~<, max{Ix~+'l, typ xi}

where typ xi is a typical value of x~ given by users. We used double precision, and
the machine precision is 2 . 2 2 d - 1 6 , with typ x~ = 10 s and e = 10 5. The merit

function we used is ½11F(x)ll~. For all the four algorithms, the initial matrix Bo is
generated by the CPR algorithm.

2 0 2 G. Li / SCC algorithms for sparse nonlinear equations

Example 6.1 is the E x t e n d e d R o s e n b r o c k F u n c t i o n given by Sped ica to [19] (also

see Mor6, G a r b o w and Hi l l s t rom [12]). E x a m p l e s 6.2, 6.3 and 6.4 were given by

the au thor in a previous p a p e r [9], and they can also be seen to be the extens ions

o f the Rosenb rock [17] func t ion (also see [12]) to non l inea r systems o f equa t ions

with t r id iagona l , f ive-d iagonal and seven-d iagona l s tructures. E x a m p l e 6.5 was given

by Broyden [l] (also see [12]). E x a m p l e 6.6 was given by Mor6 and Cosna rd [11]

(also see [12]).

The results are shown in the tables below, where IT is the n u m b e r o f i terat ions,

F M is the number o f func t ion (F(x)) eva lua t ions used for forming the matr ices Bk

and checking s topping . F L is the n u m b e r o f func t ion (F(x)) evalua t ions used in

l ine searches. L N is the n u m b e r o f l ine searches in which the s tep length a < 1. N D

is the n u m b e r o f nondec rea se di rect ions , x ° is the ini t ia l guess. In the examples , p

is the n u m b e r o f g roups for an op t imal par t i t ion o f the co lumns o f the Jacobian .

Example 6.1 (Ex tended R o s e n b r o c k Func t ion)

~ / _ , (x) = 10(x2i - x / 2 _ l) ,

/,/

I 2 j (X) = I - - x 2 j _ I , j=l,...,~,
n = 20,

p = 2 ,

x 1 = (- 1 . 2 , 1 , . . . , - 1 . 2 , 1) T, x 2 = (- 5 , - 5 , . . . , - 5) T.

Table 6.1

Algorithms x ° = xl x ° = x2

IT FM FL LN ND IT FM FL LN ND

CPR 15 46 12 12 0 17 52 13 13 0
SB 22 25 27 17 0 40 43 124 36 6
Alg. 2.1 17 36 14 17 0 25 52 36 21 1
Alg. 5.1 18 38 16 13 0 17 36 15 12 0

Example 6.2 (t r id iagona l)

f l (x) - - 4 (x 1 - x ~) ,

£ (x) = 2 _ . . , 8x~(xi-xj_l) 2(1-x j)+4(x~-x2+l) , j = 2 , . n - l ,

f~(x) = 8x,(x 2, - x,_,) - 2 (1 - x ,) ,

n =36 ,

p = 3 ,

x l = (- 2 , - 2 , - 2) T, x2 = (12, 12 12) T.

G. Li / S C C algori thms f o r sparse nonlinear equations 203

Table 6.2

Algorithms x ° = x l x ° = x2

I T FM FL LN N D IT FM FL L N N D

CPR 16 65 7 7 0 41 165 28 28
SB 40 47 51 16 5 306 313 918 229
Alg. 2.1 28 59 27 14 0 55 113 130 35
Alg. 5.1 22 47 8 8 0 50 103 54 30

0
33

7
1

E x a m p l e 6 .3 (f i v e - d i a g o n a l)

f l (x) = 4 (x l - x 2) + x 2 - x ~ ,

f 2 (x) = 8 x 2 (x 2 - x l) - 2 (1 - x2) + 4 (x 2 - x 2) + x3 - x 2,

f j (x)=8x~(x~-x j 1) - 2 (1 - x j) + 4 (x j - x~+l)
2 2 -~-Xj_I--Xj_2-~Xj+I j = 3 , n - 2 , - - X j + 2 , . . , ,

- - X n) "Jr Xn 3 , f, , l (x) = 8X,_l(X,_12 _ x ,_2) -2(1-xn_l)+4(x , , - i 2 x~-2-2

f . (x) = S x . (x 2 _ x . _ l) _ 2 (a _ x .) 2 -~ X n --1 -- Xn--2,

n = 3 6 ,

p - - 5 ,

x 1 = (- 2 , - 2 , . . . , - 2) v, x 2 = (- 3 , - 3 , . . . , - 3) T.

Table 6.3

Algorithms x ° = x 1 x ° = x2

IT FM FL LN ND IT FM FL LN ND

CPR 32 193 35 24 0 16 97 7 7 0
SB 66 78 85 32 8 81 92 108 39 8
Alg. 2.1 90 185 541 71 26 33 71 17 13 0
Alg. 5.1 28 61 27 14 1 20 45 5 4 0

Example 6.4 (s e v e n - d i a g o n a l)

2
f l (x) = 4 (x l - x~) + x2 - x 2 + x3 - x 4 ,

f j(x) = 8Xi(X 2 - x~_,) -2(1 - Xi) + 4 (x j - x] + ,) + x~ l - x j -2

2 2 .~ 2 +xj+l-x j+2+xj-2-x j -3 X j + z - X j + 3 , j = 2 , . . . , n - 1 ,

f n (X) = 8 X n (X 2 X n 1) _ _ 2 (l _ _ x n 2 q_ 2) ' q - X n _ 1 - - X n _ 2 X n _ 2 - - X n - 3 ,

n = 36 ,

p = 7 ,

x 1 = (- 2 , - 2 , . . . , - 2) T, x 2 = (- 3 , - 3 , . . . , - 3) T.

204

Table 6.4

G. Li / SCC algorithms for sparse nonlinear equations

Algorithms x ° = xl x ° = x2

IT FM FL LN ND IT FM FL LN ND

CPR 19 153 10 10 0 18 145 8 8
SB 43 59 28 15 3 77 93 146 34
Alg. 2.1 34 75 46 18 2 fail
Alg. 5.1 23 53 15 7 1 27 61 22 12

0
16

1

Example 6.5 (B r o y d e n T r i d i a g o n a l F u n c t i o n)

f i (x) : (3 - - 2X i)X i - - X i I -- 2Xi+l-t- 1,

X 0 = X n + 1 = O,

n = 36,

p = 3 ,

x l = (- 1 , - 1 , . . . , - 1) T, x 2 = (- 1 6 , - 1 6 , . . . , - 1 6) f.

Table 6.5

Algorithms x ° = xl x ° = x2

IT FM FL LN ND IT FM FL LN ND

CPR 5 21 0 0 0 9 37 0 0 0
SB 7 11 0 0 0 33 37 4 4 0
Alg. 2.1 6 15 0 0 0 13 29 0 0 0
Alg. 5.1 6 15 0 0 0 11 25 0 0 0

E x a m p l e 6.6 (D i s c r e t e B o u n d a r y V a l u e F u n c t i o n)

h 2
f (x) = 2 x i - xi , - x i + l + ~ (xi + t, + 1) 3

1
h - n + 1' ti = ih, Xo = x~+l = O,

n --- 36,

x l = (~ j) T, ~ T j = t j (t j - 1) , x 2 = (5 0 , 5 0 , 5 0) T,

F r o m t h e n u m e r i c a l r e s u l t s it c a n b e s e e n t h a t t h e n u m b e r o f f u n c t i o n e v a l u a t i o n s

r e q u i r e d b y A l g o r i t h m 5.1 is a l w a y s less (s o m e t i m e s m u c h less) t h a n t h a t r e q u i r e d

b y t he C P R a l g o r i t h m , a n d in at l e a s t e i g h t cases (E x a m p l e 6.1, x ° = x2 , E x a m p l e

6.2, 6.3, 6.4, E x a m p l e 6.5, x ° = x 2 a n d E x a m p l e 6.6, x ° = x 2) i t is e v e n less t h a n t h a t

r e q u i r e d b y t he SB a l g o r i t h m .

O n t h e o t h e r h a n d , t h e n u m b e r o f i t e r a t i o n s r e q u i r e d b y A l g o r i t h m 5.1 is u s u a l l y

g r e a t e r t h a n t h a t r e q u i r e d b y t h e C P R a l g o r i t h m . H o w e v e r , t h e d i f f e r e n c e is u s u a l l y

G. Li / SCC algorithms for sparse nonlinear equations 205

Fable 6.6

Algorithms x ° = xl x ° = x2

IT FM FL LN ND lT FM FL LN ND

CPR 3 13 0 0 0 12 49 0 0 0
Schubert 4 8 0 0 0 30 34 3 3 0
Alg. 2.1 4 11 0 0 0 19 41 0 0 0
Alg. 5.1 4 11 0 0 0 16 35 0 0 0

not significant. Meanwhile, the number of iterations required by Algorithm 5.1 is

less than that required by the SB algorithm in eleven of the twelve cases, and when

the problem is badly nonlinear and (or) the starting point is far away from the

solution, for example, in the eight cases mentioned above, the difference is significant.
Therefore, in this case Algorithm 5.1 may be very effective.

Moreover, it is interesting to note that the CPR algorithm never takes nondecrease

directions for the test problems. Algorithm 5.1 sometimes takes some nondecrease

directions. However, the number of the nondecrease directions for Algorithm 5.1

is usually much less than that for the SB algorithm. Algorithm 2.1 takes more

nondecrease directions than Algorithm 5.1, but the number of nondecrease directions
is usually less than that for the SB algorithm.

Furthermore, the CPR algorithm takes the fewest line search steps for the test

problems. Algorithm 5.1 sometimes takes more line search steps than the CPR

algorithm, but the difference is usually not significant. The SB algorithm takes a lot

more line search steps than the CPR algorithm and Algorithm 5.1 in the eight cases

mentioned above. Algorithm 2.1 usually takes fewer line search steps than the SB
algorithm.

Also, note that in the eight cases mentioned above, Algorithm 5.1 performs much
better than Algorithm 2.1, and for Example 6.5, x ° = xl , and Example 6.6, x ° = x l

they perform exactly the same. Therefore, it seems that Algorithm 5.1 can really

improve Algorithm 2.1 when the problem is badly nonlinear or the starting point

is far away from the solution, and when the problem has a good behavior and

starting point is close to the solution, these two algorithms perform almost the same.

Finally, from the results of Example 6.1 it can be seen that when p, the number

of groups in the partition of the columns of the Jacobian, is small, Algorithm 2.1
may have a very good efficiency. When p increases (Examples 6.3 and 6.4), its

efficiency may decrease. In this case, Algorithm 5.1 may have a better efficiency.

7. Concluding remarks

We have presented two algorithms for solving sparse nonlinear systems of
equations. The CM-successive column correction algorithm (Algorithm 2.1) is based

206 G. Li / SCC algorithms for sparse nonlinear equations

on Coleman and Mor6's partitioning algorithm and the column-update algorithm.

This algorithm uses only two function values at each iterative step, and it is

q-superlinearly convergent. Using this algorithm, one group of the columns of Bk

is displaced at each step. Note that it is not necessary to update just one group at

each iterative step. Instead, we can displace several groups at each iteration, and

this gives the algorithm a faster convergence rate. However, if one more group is

displaced, then one more function value is required. Therefore, the efficiency of the
algorithm depends on the number of the groups displaced at each iterative step.

The modified CM-successive column correction algorithm (Algorithm 5.1) is a

combination of the CM-successive column correction algorithm and the SB

algorithm. It is also q-superlinearly convergent. Our numerical results indicate that

the modified successive column correction algorithm behaves much better than the

CM-successive column correction algorithm in some cases. However, we have not

been able to prove better theoretical convergence results for the modified CM-
successive column correction algorithm than those for the unmodified one. Addi-

tional numerical results indicate that these two new algorithms, especially the

modified one, are competitive with the CPR-CM algorithm and the SB algorithm.

The idea of the CM-successive column correction algorithms can also be used

with Powell and Toint's [15] work, which will lead to methods for unconstrained

optimization problems. This will be our future work.

Acknowledgement

This work was started while the author was a Ph.D. student at Rice University,

Houston, USA and was completed while the author was visiting the University of

Waterloo, Canada. The author would like to express his deepest thanks to Professor

John Dennis for his many helpful suggestions and corrections after several readings

of preliminary drafts of this paper. The author also would like to thank Dr. Jorge
Mot6, Professor Richard Tapia and the referees for their helpful suggestions and

corrections. The author is grateful to Professor Andy Corm for providing him an

opportunity to do more numerical experiments and to revise this paper.

References

[1] C.G. Broyden, "A class of methods for solving nonlinear simultaneous equations," Mathematics
of Computation 19 (1965) 577-593.

[2] C.G. Broyden, "The convergence of an algorithm for solving sparse nonlinear systems," Mathematics
of Computation 25 (1971) 285-294.

[3] C.G. Broyden, J.E. Dennis, Jr. and J.J. Mor6, "'On the local and superlinear convergence of
quasi-Newton methods," Journal of the Institute of Mathematics and its Application 12 (1973) 223-246.

[4] T.F. Coleman and J.J. Mor6, "Estimation of sparse Jacobian and graph coloring problems," SIAM
Journal on Numerical Analysis 20 (1983) 187-209.

G. Li / SCC algorithms for sparse nonlinear equations 207

[5] A.R. Curtis, M.J.D. Powell and J.K. Reid, "On the estimation of sparse Jacobian matrices," IMA
Journal of Applied Mathematics 13 (1974) 117-119.

[6] J.E. Dennis, Jr. and J.J. Mor~, "A characterization of superlinear convergence and its application
to quasi-Newton methods," Mathematics of Computation 28 (1974) 549-560.

[7] J.E. Dennis, Jr. and R.B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear
Equations (Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1983).

[8] Guocheng Feng and Guangye Li, "Column-update quasi-Newton method," Numerical Mathematics
Journal of Chinese Universities 5 (1983) 139-147.

[9] Guangye Li, "The secant/finite difference algorithm for solving sparse nonlinear systems of
equations," Technical Report 86-1, Mathematical Sciences Department, Rice University (Houston,
TX, 1986), to appear in SIAM Journal on Numerical Analysis.

[10] E. Marwil, "Convergence results for Schubert's method for solving sparse nonlinear equations,"
SIAM Journal on Numerical Analysis 16 (1979) 588-604.

[11] J.J. Mor6 and M.Y, Cosnard, "Numerical solution of nonlinear equations," ACM Transactions on
Mathematical Software 5 (1979) 64-85.

[12] J.J. Mor~, B.S. Garbow and K.E, Hillstrom, "Testing unconstrained optimization software," ACM
Transactions on Mathematical SoJ~ware 7 (1981) 17-41.

[13] J.M. Ortega and W.C. Rheinboldt, lterative solution of nonlinear equations in several variables
(Academic Press, New York and London, 1970).

[14] E. Polak, "A modified secant method for unconstrained minimization," Memorandum No. ERL-
M373, Electronics Research Lab, College of Engineering, University of California (Berkeley, CA,
1973).

[15] M.J.D. Powell and PH.L. Toint, "On the estimation of sparse Hessian matrices," SlAM Journal on
Numerical Analysis 16 (1979) 1060-1074.

[16] J.K. Reid, "Least squares solution of sparse systems of non-linear equations by a modified Marquardt
algorithm," Proceedings of the NATO Conference at Cambridge (North Holland, Amsterdam, 1972)
pp. 437-445.

[17] H.H. Rosenbrock, "An automatic method for finding the greatest or least value of a function,"
Computer Journal 3 (1960) 175-184.

[18] L.K. Schubert, "Modification of a quasi-Newton method for nonlinear equations with a sparse
Jacobian," Mathematics of Computation 24 (1970) 27-30.

[19] E. Spedicato, "Computational experience with quasi-Newton algorithms for minimization problems
of moderately large size," Report C1SE-N-175, Segrate (Milano, 1975).

