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This paper presents two algorithms for solving sparse nonlinear systems of equations: the CM- 
successive column correction algorithm and a modified CM-successive column correction 
algorithm. A q-superlinear convergence theorem and an r-convergence order estimate are given 
for both algorithms. Some numerical results and the detailed comparisons with some previously 
established algorithms show that the new algorithms have some promise of being very effective 
in practice. 
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1. Introduction 

Cons ide r  a nonl inear  system of  equat ions  

F(x) =0, (1.1) 

where  F : R n ~ R n is cont inuous ly  differentiable on an open  convex  set D c R n, and 

the Jacob ian  matr ix F'(x)  is sparse. To solve the system, the fo l lowing i terat ion is 

considered:  

x k+l=x k - B k l F ( x k ) ,  k = 0 , 1 , . . . ,  (1.2) 

where  Bk is an app rox ima t ion  to the Jacob ian  with the same sparsity structure. 

For  convenience ,  we rewrite (1.2) as 

Y ~ = x - B - ' F ( x ) ,  (1.3) 

where  x and ~ indicate  the current  i terate and the new iterate respect ively,  and B 

is an approx imat ion  to the Jacob ian  F'(x).  
Current ly ,  there are several  algori thms to get a sparse app rox im a t ion  to the 

Jacobian .  In this paper  we will discuss three types o f  algori thms.  

This research was partially supported by contracts and grants: DOE DE-AS05-82ERl-13016, AFOSR 
85-0243 at Rice University, Houston, U.S.A. and Natural Sciences and Engineering Research Council 
of Canada grant A-8639. 
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(1) The Sparse Broyden algorithm. In 1970 Schubert [18] gave a sparse modification 
of Broyden's update. Broyden [2] also gave this algorithm independently. It is called 
the SB algorithm. In order to present the SB algorithm, we introduce the following 
notation concerning the sparsity pattern of  the Jacobian: 

Definition 1.1. For j =  1 , 2 , . . . ,  define the subspace ~ c  R" determined by the 
sparsity pattern of the j th  row of the Jacobian: 

Zj-={v e R ' :  e ~ v = 0  for all i such that [F'(x)]ii  = 0 for all x c R ' } ,  

where e~ is the ith column of the n × n identity matrix. Define the set of matrices 
Z that preserve the sparsity pattern of  the Jacobian: 

Z ~ { A c L ( R " ) :  ATejeZj  for j =  1 , 2 , . . . ,  n}. 

Definition 1.2. For j = 1, 2 , . . . ,  n, define the projection operator, Dj ~ L(Rn), that 
maps R" onto ~ :  

where 

D j ~ d i a g ( d j l , d j 2 , . . . , d j , ) ,  

otherwise. 

For a scalar c~ c R, define the pseudo-inverse: 

+ {0  -1 i f c ~ 0  
a = ifc~ =0.  

Now the SB update can be written as 

= B + ~ ([s]~f[sij)+eje~-(y - Bs)[s].~, (1.4) 
j--I  

where [s]j = Dis, s = ~ - x  and y = F ( ~ ) -  F(x) .  
Let 

Qu,~={A~L(R ' ) :  A u = v ,  for vectors u, v c R " } .  

The following theorem, which we will use later, was proved by Reid [16] and Marwil 
[10] independently. 

Theorem 1.1. Let B ~ Z;  y, s c R" with s ¢ O. Define B by (1.4). Then B is the unique 
solution to 

min{ll/~- BIIF: /~c Q y , ~ Z } ,  (1.5) 

where ]]. IIF denotes the Frobenius norm of a matrix. 
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The advantage of the SB algorithm is that at each iteration only one function 

value is required and it is q-superlinearly convergent (see Marwil [10]). However, 

it frequently requires more iterations than finite difference algorithms. Moreover, 

the matrix B, generated by the SB algorithm may not be a good approximation to 

the Jacobian when the problem is badly nonlinear, especially when the current step 

is far away from the solution. Therefore, Pk = -Bk1F(xk) may not be a good descent 

direction of the functional f(x) = ½ll F(x)II 2, where [[. II denotes the 12 vector norm. 
In this case, it may be not good to use a line search with Schubert's algorithm. 

(2) Finite difference algorithms. In general, a finite difference algorithm can be 

formulated as follows: obtain direction vectors dl, d 2 , . . . ,  dp such that B can be 

determined uniquely by the equations 

Bdi=F(x+di)-F(x) ,  i = l , 2 , . . . , p .  

In this paper, we assume that it is not convenient to evaluate the function values 
element by element, instead we only evaluate the value of F(x) as a single entity. 

This is reasonable since in practice it is very common that the components of F(x) 
have expensive common sub-expressions. In this case, to reduce the number of 

function evaluations, Curtis, Powell and Reid [5] proposed a finite difference 

algorithm, called the CPR algorithm, which is based on a partition of the columns 

of the Jacobian. Coleman and Mor6 [4] associate the partition problem with a graph 

coloring problem and gave some partitioning algorithms which can make the number 
of the function evaluations optimal or nearly optimal. 

Following Coleman and Mor6, we give some definitions concerning a partition 

of the columns of the Jacobian. 

Definition 1.3. A partition of the columns of a matrix B is a division of the columns 

into groups cl, c2, •. •, cp such that each column belongs to one and only one group. 

Definition 1.4. A partition of the columns of a matrix B is consistent with the direct 

determination of B if whenever b!j is a nonzero element of B, then the group 

containing column j has no other column with a nonzero element in row i. 

As an example we consider the tridiagonal structure 

[i Xoooo 1 x x 0 0 0 

x x x 0 0 
0 x x x 0 

0 0 x x x 

0 0 0 x x 

(1.6) 

A consistent partition of the columns of the matrix is c~ = {1, 4}, c2 = {2, 5}, and 

C 3 = {3, 6}. 
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The CPR algorithm now can be formulated as follows: for a given consistent 
partition of the columns of  the Jacobian, obtain vectors dl, d2 . . . .  , dp such that B 
is determined uniquely by the equations 

Bd~=F(x+di ) -F(x )~y~ ,  i =  1 , 2 , . . . , p .  (1.7) 

Notice that for the CPR algorithm, the number of function evaluations at each 
iteration is p + 1. Since the partition of the columns of the Jacobian plays an important 
role in the CPR algorithm, we call the CPR algorithm based on Coleman and Mor6's 
algorithms the CPR-CM algorithm. 

For the consistent partition given in example (1.6), if we take 

d~=(h ,O ,O,h ,O ,O)  T, 

d2 = (0, h, 0, 0, h, 0) T, 

d3=(O,O,h,O, 0, h) v, 

then B is determined uniquely and the number of  function evaluations required at 
each iteration is four. 

The advantage of the CPR algorithm is that it usually generates better approxima- 
tion matrices and therefore requires fewer iterations than the SB algorithm. However, 
it requires more function values at each iteration than the SB algorithm. 

(3) The successive column correction algorithms. Polak [14] gave a successive 
column correction algorithm for unconstrained minimization. Feng and Li [8] 
developed a successive column correction algorithm for nonlinear system of 
equations, which is called the column-update quasi-Newton method. Using this 
algorithm, columns of Bk are displaced by differences successively and periodically. 
At each iteration, only two function values are required, but only one column is 
displaced. 

In this paper, we propose two algorithms: the CM-successive column correction 
algorithm and the modified CM-successive column correction algorithm. The former 
is based on Coleman and Mor6's algorithm and the column-update algorithm. The 
latter is a combination of  the CM-successive column correction algorithm and the 
SB algorithm. Both algorithms require only two function values at each iterative 
step. Our numerical results show that the CM-successive column correction 
algorithms, especially the modified one, are competitive with the CPR algorithm 
and the SB algorithm. 

The CM-successive column correction algorithm is given in Section 2. 
A Kantorovich-type analysis for this algorithm is given in Section 3. A q-superlinear 
convergence result and an r-convergence order estimate of the CM-successive 
column correction algorithm are given in Section 4. The modified CM-successive 
column correction algorithm is given in Section 5. Some numerical results and some 
detailed comparisons of the new algorithms with the CPR and the SB algorithms 
for the test problems are given in Section 6. 
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In  this paper,  [1. II~ denotes the Frobenius  norm of  a matrix, and I1" II denotes  
the /2-vector norm. For  a sparse matrix B, we use M to denote  the set o f  pairs o f  

indices (i , j) ,  where b 0 is a structurally nonzero  element o f  B, i.e. 

M = {(i,j):  b~j # 0}. 

Moreover ,  we use S(y, 6) to denote the set { x c R " :  JJx-yl l<8,  y c R " }  and use 

5~(y, 6) to denote  the closure o f  S(y, 6). 

2. The CM-successive column correction algorithm and its properties 

Given a consistent part i t ion o f  the columns of  the Jacobian,  which divides the set 

{1, 2 . . . .  , n} into p subsets Cl, e2, .. •, cp, let 

d k= ~. h%j, (2.1) 
J~  cl k 

where 

and let 

i k = k ( m o d p ) ,  k = l , 2  . . . .  , 

yk = F(x  k + d k) _ F(xk) .  (2.2) 

The CM-successive column correction algori thm can be formulated  as follows: I f  

k ~< p, then for j c ck, the j th  column of  Bk is determined uniquely by the equat ion 

Bkd k = yk ,  (2.3) 

and the other  columns of  Bk are equal to the corresponding columns of  Bk-1. I f  

k > p, the columns of  Bk are displaced as described above successively and periodi- 

cally. In other  words, for j ~ %, the j th  co lumn of  Bk is determined uniquely by 

(2.3), and the other columns of  Bk are equal to the cor responding  columns of  Bk-l .  

For example (1.6), at the first iteration we displace the first group c~ = {1, 4}. At 

the second iteration we displace the second group c2 = {2, 4}. At the third iteration 

we displace the third g roup  c3 = {3, 6}, and then we displace the three groups  
successively and periodically. 

Note  that  one does not have to choose a un i form step length h k for all componen ts  

o f  x k. In practice, it is preferred to choose  different step length for different 
componen t  o f  x k as we do in the numerical  examples. In  fact, un i form step lengths 

will not  affect our theoretical  results. However ,  for simplicity, we assume a uni form 

step length for each step. 

The CM-successive co lumn correction algori thm with a global strategy is given 
below. 

Algorithm 2.1. Given a consistent part i t ion of  the columns of  the Jacobian,  which 

divides the set {1, 2 , . . . ,  n} into p subsets q ,  c2, • • . ,  cp (for convenience,  ci, i = 

1, 2 , . . . ,  p, indicates both the sets o f  the columns and the sets o f  the indices o f  these 
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columns),  and given an x°~ R n and a nonsingular  matrix Bo, which has the same 

sparsity as the Jacobian,  at the initial step: 

(1) Set I = 0 .  

(2) Solve Bos ° = - F ( x ° ) .  
(3) Choose  x ~ by x I = x ° + s  °, or by a global strategy. 

At each iteration k > 0, 

(1) Choose  a scalar h k. 
(2) I f  l < p ,  then set l =  l +  1, otherwise set l =  1. 

(3) Set 

d k =  y hkej. 
jCCl 

(4) I f j c c l  and ( i , j ) 6 M ,  then set 

1 b~ = ~ eV(F(x  k + d k) - F(Xk) ) ,  (2.4) 

otherwise set 

b k = k -1  b !j , 

where Bk = [b~]. 
(5) Solve Bks k = - F ( x k ) .  
(6) Choose  x k+l by x k+~ = x k + s k, or by a global strategy. 

(7) Check  for convergence.  

The global strategy ment ioned  in (3) and  (6) is for the global convergence o f  this 

algorithm. One may use a line search strategy or a trust region strategy. We used a 

line search strategy for our  numerical  examples. 

Let 

L 
I 

Jk = F ' ( x  k + td k) dt. (2.5) 

Then 

j kd  k =yk.  (2.6) 

Let J~ = [J~m]. Since Jk has the same sparsity as the Jacobian,  by (2.6), we have that 
if  (l, m) e M, then 

e~y k 
J r , , -  h k , (2.7) 

where m c G- Comparing (2.7) with (2.4), we have 

Bke~ = Jkej, 

For j ~ Cik. 
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The CM-successive column correction algorithm is also an update algorithm, and 
the update can be written as: 

( ~, ejef)+~j~c,k Jkeief. (2.8) Bk = B k - i  I - j ~  

From (2.8), it is easy to get the following result: 

Lemma 2.2. Let Bk, k = 1, 2 . . . .  , be generated by Algorithm 2.1. I f  k >~ p, then 

k 
Bk = X E Jjete~. (2.9) 

j = k - p + l  Icc(i 

To study the properties of our algorithms, sometimes we assume that F '  satisfies 
the following Lipschitz condition: there exist ai > 0, i = 1, 2 , . . . ,  n such that 

[[(F'(x) - F'(y))ei]] <~ c~illx -y[[, x, y c D. (2.10) 

Let a = (ZI'-1 ~)1/2. Then, it follows from (2,10) that 

[[F'(x)-F'(y)llF<~allx-yl], x, y6 D. (2.11) 

Theorem 2.3. Let F' satisfy Lipschitz condition (2.10). Also let {xi}~=o C D and let 
{Bj}k=o be generated by Algorithm 2.1 with 

2 Ihq  llx -  111. 

I f  {xJ +dJ}k=, c D, then for k >~p, 

k 
[[Bk--F'(xk)Ile <~a 2 [IxJ--xJ-1[[ • (2.12) 

j = k - p + l  

Proof. By (2.5), (2.1) and Lipschitz condition (2.10), 

[[(F'(x~)-Jm)e~,, = (fo' (F'(x~ + td~) -  F'(xm)) dt)ej 

-= , 5  , h°'e l 

~< ~2 x/nlh'~l ~< oljllx" - x " - l l l ,  (2.13) 
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where k - p +  1 <~ m <~ k. It follows from (2.9) and (2.13) that 

k Bk)ej eT IIF'(x~)-B~I[~ = E E (F'(x~) - 
J ,. r n = k - p + l  

k 

~ E 
m - - k - - p + l  j c c  i m 

k 

Y E 
m = k - p + l  j ~ c  i m 

+ II(P'(xm) - Jm)ejll) ~ 

I[ ( F ' ( x  k) - J m ) e j l l  2 

(1[ ( F'(x~) - F ' (x  m )) ej II 

(2.14) 

k 
~ ~ ~([[X~--xmlI+IIx~--xm-'II)= 

m ~ k - - p + l  j ~ c  i m 

2 ~ ~ 2 [Ixl-x'-ll] 
m ~ k - p + l  .j~c t I=k  p+l 

l = k  p+l 

Then, (2.12) follows from (2.14). [] 

To start iteration (1.2) for a given x°~ D, an initial matrix Bo is needed. We 
suggest using the CPR-CM algorithm to get Bo since it is easy to be implemented 
after we have a consistent partition of the columns of the Jacobian. 

3. A Kantorovich-type analysis 

By means of Theorem 2.3, we have the following Kantorovich-type analysis for the 
CM-successive column correction algorithm. 

Theorem 3.1. Assume  that F ' ( x )  satisfies Lipschitz condition (2.10). Let  x° c D, and 

let Bo be a nonsingular n × n matrix such that 

[IBo-F'(x°)ll~<6, I[Bo'll~</~, f[Bo'F(x°)[[<n, 

h -  ( 1 - ~ - ) 2 ~ g  , (3.1) 

and 

/~6 < ] ,  

where c~, fl and ~7 are positive scalars. I f  S ( x  °, 2t*) ~ D, where 

t* 1 -  3fl8 , .  
~ - ~  t , - V 1 - 6 h ) ,  (3.2) 
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then {xk}, generated by the CM-successive column correction algorithm with Ihk[<~ 
(ll , /~)llx~-x~-'l l  and without any global strategy, converges to x*, which is the 
unique root of  F (x )  in S (x  °, ~)c~ D, where 

f =  1 - / 3 8 ( 1 + (  1 2_~'0 "~ 1/2"~ 
o~ fi ( 1 -  fl ~ ) 2 / ]" 

Proof. Consider the scalar iteration 

tk+i-- tg=~f( tk) ,  to=O, k = O , l , 2 , . . . ,  (3.3) 

where 

3 .2 { 1 - 3 ~  

It follows from (3.3) that 
1 

f (  tk ,) =-fi ( t k  - tk-1)- 

Thus, by Taylor expansion, 

f ( tk )  =f( tk- l )  +f ' ( tk- i ) ( tk  -- tk-l) +i30'(tk-1)( tk -- tk-,) 2 

=3 ( tk-- tk-O + atk-i + a6 ( tk -- tk-~). 

Substituting (3.5) into (3.3), we have 

Equation (3.6) can be rewritten as 

(3.4) 

(3.5) 

k =  1 , 2 , . . . .  (3.6) 

[° ] tk+l-- tk -= 3fl "~ ( tk + tk-1) + 6 ( tk-- tk-l). (3.7) 

Noticing that to=O and t1=,1 >0 ,  by induction, we have that {tk} is a strictly 
increasing sequence. Since t* is the smallest root o f f ( t ) ,  

t * -  tk+l = t*-- tk -- flf( tk) 

= fl { [ f (  t* ) - - f (  tk ) - - f ' (  tk)( t*-- tk)] + [ f ' (  tk) + ~ ] (  t*-- tk) } 

= /3{~a (t* -- tk)+ 3atk + 36}(t* -- tk) 

= fl{3a(t* + tk) + 33}(t* - tk). 

Therefore, noticing that to = 0 and t*> 0, by induction, we obtain 

tk <~ t*, k = 0 , 1 , . . . .  
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Hence,  there exists a [<~ t* such that 

lira tk = t. 
k ~ o o  

By (3.3), f ( [ )  = 0. Since t* is the smallest root  o f f ,  we have that [ =  t*, i.e. we have 

lim tk = t*. 
k ~ c o  

Now, by induction,  we will prove that 

[[Xk+'--Xkll<~tk+,--tk, k = l , 2 , . . . ,  (3.8) 

{x k} c ~q(x °, t*), k = 1, 2 . . . .  , (3.9) 

{x ~ + d ~ } ~ ~ ( x  °, 2 t*) ,  (3 .10)  

and 

]]BL-']] ~ 3~, k = 1 , 2 , . . . .  (3.11) 

For  k = 0, we have 

I Ix ' -x° [ [ -<  n = t , -  to-< t*. 

Thus, 

[Ix' + d '  - x°[[ <~ LIx' - x% + II d'l l  <~ 2ll x~ - x°l{ ~ 2 t* .  

Suppose (3.8)-(3.11) hold for k =0 ,  1 , . . . ,  m - 1 .  Then 

r n  - -  1 r n  - -  1 

[ [ x ' - X %  <~ E {{Xi+'-xi[[ <~ E ( t i + , - t i ) = t , ,  ~ t*"  
i = 0  i 0 

Therefore ,  x m c S(x  °, t*). Fur thermore,  

IIx m + d m - x %  <- Itx m - x %  + ICx m - x m - '  tl 

2( t,, - to) = 2tm ~ 2t*, 

which implies 

{x "~ + d m} c S (x  °, 2t*). 

From the p roo f  of  Theorem 2.3, it can be seen that for  all k, 

k 

IlBk - F ' ( x k ) l l ~  < - [ [ B o -  F'(x°) [ f~  + ~ Z Ifx j - x j - ' t l .  (3 .12)  
j = O  

Therefore ,  

IIBo'( Bm - Bo)ll ~ Jl Bo' II F(IJB,. - F ' ( x m ) l l ~  + IIF'(x m) - F ' ( x ° ) l l ~  

+ II F ' (x° )  - Boll ,:) 

<<-~ 2a E - x ' 1 1 + 2 8  
i = 0  

2 ~ ( a t ~  + 6) ~ 2,8 (a t*  + 8). (3.13) 
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By (3.2), 

1 
a t * + ~ < ~ - - .  

3/3 

Hence, bye(3.13), 

[IBo'(B, , , -  Bo)ll ~<-~. 

Thus, by Ortega and Rheinboldt's Perturbation Lemma [13, p. 45], 

IIB,,,'ll ~< ~@~ = 3/3. 

Since 

F ( x  m-l) + Bm_l(X" - x "-~) = O, 

by (3.12), (3.6) and Lemma 4.1.12 in [7], 

II xm÷' - x ' l l  <~ IIBmlll,~llF(xm)ll 

= IIB,211~,IIF(x m) -  F ( x  '°- ')  - B m  ,(x '~ - x  .... ')IL 

< I I B m ' I I F { I J F ( x ~ ) - F ( x m - ' ) - F ' ( x m - ' ) ( x  ~ - x m - ' ) [ I  

+ I l f ' ( x " - ' ) -  S,.- ,  II ~ [ I x " -  xm-' II} 

<~3fi II x ' ~ - x "  'LL +,~ E I I x ' ÷ ' - x ' l l + a  IIx'~-xm-'ll  
i = 0  

[°, ] ~<3/3 ~ (m- - t , , _~ )+a tm_~+8  (tin--tin ~)=tm+~--t,,. 

This completes the induction step. By (3.8), it is easy to show that there is an x* ¢ D 
such that 

lim x k = x*. 
k -~ co 

The uniqueness of x* in S(x °, f) ~ D can be obtained from Ortega and Rheinboldt's 
Theorem 12.5.5 [13, p. 418] by setting G ( x ) = - X - B o l F ( x ) .  [] 

4. Local convergence properties 

To study the local convergence of our algorithms, we assume that F : D c R" ~ R n 
has the following property: 

There is an x* c D, such that F ( x * )  = 0 and F'(x*)  is nonsingular. (4.1) 
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Theorem 4.1. Let F : D c R n ~ R" satisfy (4.1), and let F' satisfy Lipschitz condition 
(2.10). Also let {x k} be generated by Algorithm 2.1 with [hk[<~ 1/,/~llx k - x  k '11 and 
without any global strategy. Then, there exist, e, 6 > 0 such that if  x ° ~ D and Bo satisfy 

[Ix°-x*l] < e, JIB0-F'(x*)]l.  ~< a, 

then {x k} is well defined and converges q-superlinearly to x*. 

Proof. Notice that when e and 6 are small enough, we have that h < ~, ~ < ½ and 
that S(x °, 2 t* )c  D where h, /3 and t* are defined in Theorem 3.1. Therefore, by 
Theorem 3.1, 

x k + d k c D ,  k = 0 , 1 , . . . .  

By (2.8), 

Thus, 

I - j  eje)-)+ ~, (Jk-F ' (x*) )e je f .  (4.2) Bk - F'(x*) = (Bk-1 -- F'(x*)) ~k' ie~k 

IIJk-F'(x*)[[F = f f  (F'(xk + t d k ) - F ' ( x * ) )  dt 

<~ a(llx k -x*[I +½[[dkll) 

  (ll  -x*ll+llx '11) 
~< c~(2]]x k -x*[[ + IJx k ' -x*]]) .  (4.3) 

Let o'(x k-l, x k) = max{llx k -x*l],  IIx k-~ -x*l[}. Then it follows from (4.2) and (4.3) 
that 

II - F ' ( x * ) l l  11 - F ' ( x * ) l l  + I lL - F ' ( x * ) l l  

<~ }lBk_l- F'(X*)IIF + 3OZO-(X k-l, xk). 

Thus, by Broyden, Dennis and Mor4's Theorem 3.2 [3, p. 228], we know that {x k} 
converges at least q-linearly to x*. 

According to Dennis and Mor6's Theorem 2.2 [6, p. 551], to get q-superlinear 
convergence, we need only to prove that 

lim [[(Bk - F'(x*))(x  k+~ -xk)[I 
k-~ ]lXk+l--Xkll --0. (4.4) 

From (2.12), it follows that 

lim II Bk - F'(x*)H = 0. (4.5) 
k ~ o o  

This implies (4.4). [] 

Theorem 4.2. Assume that F satisfies the hypotheses in Theorem 4.1. Then the r- 
convergence order of Algorithm 2.1 is not less than r, where ,c is the unique positive 
root of 

t p + I  - -  t p - -  1 = O. 
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Proof. Notice that (4.5) implies that there exist ko and/3  > 0 such that IIB~lll ~</3 
for all k ~  > ko. Thus, by Theorem 2.3 and Lemma 4.1.12 in [7], 

[Ix k+' - x*l[ = Ilx k -- x * - -  Bk~ F(xk)[[  

= - [ I B ~ ' { F ( x k ) - B k ( x  k - x*)}[[ 

<_ IIBklII~{IIF(x ~) - F ( x * ) -  F ' ( x * ) ( x  k - x * ) l  I 

+ (11 F'(x*) - F'(xk)II  ~ + II F'(x~) - Bk II ~)11 x ~ - x* II } 

</3{1~llx~-x*l12 

+ o~LLxk-x*lL+ o~ Z ILxJ÷a-xJll IIx~-x*lL 
j=k--p 

=/3 ~ l lx~-x*l l+~  E I lxJ+'-x j x~-x*ll  
j=k--p 

) < ~  II/J-x*[[ IIx~-x*ll. 
j =  p 

Thus, the desired result follows from Ortega and Rheinboldt's Theorem 9.2.9 
[13, p. 291]. [] 

5. The modified CM-suceessive column correction algorithm 

Estimate (2.12) shows that when p is small, Bk iS a good approximation to F ' ( x k ) .  

However, Bk still retains information from the previous p steps. Therefore, the 
following question is reasonable: Can we have a better approximation to F ' ( x  k) 

without more function evaluations? Notice that when we get Bk by Algorithm 2.1, 
we did not use the value of F ( x k ) .  The main idea of the modified CM-successive 
column correction algorithm stated below is to use all the information we already 
have to improve our approximation to F'(xk). 

Algorithm 5.1. Given a consistent partition of the columns of the Jacobian, a vector 
x ° and a nonsingular matrix Bo with the same sparsity as the Jacobian, at the initial 
step: 

(1) Set 1 = 0 and/~o = Bo. 
(2) Solve /~oS ° = - F ( x ° ) .  
(3) Choose x I by x 1= x ° + s  °, or by a global strategy. 

At each iteration k > 0: 
(1) Update Bk_~ by Algorithm 2.1 to get Bk. 
(2) Update Bk by the SB update to get /3k- 
(3) Solve /~ks ~ = - F ( x ~ ) .  
(4) Choose x k+~ by x k÷~ = x k + s  k, or by a global strategy. 
(5) Check for convergence. 
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Our numerical results show that Algorithm 5.1 requires fewer iterations than 
Algorithm 2.1 for many problems. Especially, when the problem is not well behaved, 
and a global strategy is used, the modified algorithm behaves significantly better 
than Algorithm 2.1. The cost of the improvement is the computation of the SB 
update. However, since the Jacobian is sparse, the SB update is relatively cheap. 
For example, if the number of nonzeros in the matrix is O(n), then only O(n) 
operations are required. We feel that it is worth doing this rather than computing 
more function values and solving more linear systems. 

Now we will briefly discuss the convergence properties of Algorithm 5.1. Let 

Io' L =  F'(x ~ l + t ( x ~ - x k - ' ) ) d t .  ( 5 . 1 )  

Since ]k performs exactly the same as the secant factor 

f ( x k ) _ f ( x  ~ l) 
X k _ X  k - I  

in one dimensional problems, we call a~k the secant operator. It is easy to show the 
following result. 

Lemma 5.1. I f  F' satisfies Lipschitz condition (2.10), then 

I l L  - F ' ( x ~ ) l l  ~ ~< -~ IIx k - x k - ' l l  • (5.2) 
2 

Estimate (5.2) shows that L is a good approximation to F'(x  k) when ]Ix k - x  k ~[1 is 
small 

Theorem 5.2. Let F' satisfy Lipschitz condition (2.10). I f  {Bk} and {/~k} are generated 
by Algorithm 5.1, then 

II~k-LII~ ~ [[Bk- LII~. (5.3) 

If, in addition, 1~ k # Bk, then the strict inequality holds. 

Proof. Since Jk c Qy, s c~ Z, where Z is defined in Definition 1.1, by Theorem 1.1, we 
have 

I]/~ -~]1~ + II/~k -Bkll~ = ]lBk - L l l ~ .  (5.4) 

Then, (5.3) follows from (5.4). [] 

Notice that in general, /~k ~ Bk. Therefore, by Theorem 5.2, /~k is usually closer 
to the secant operator Jk than Bk. Thus, /~k should be a better approximation to 
the Jacobian than Bk when Bk retains some information from previous steps. But 
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theoretically, we have not been able to get a better estimate for II Bk -- F'(x  k) II v than 
that for ][Bk- F'(xk)ll F. However,  we can get the following result: 

Theorem 5.3. Let F : R  n-->R" satisfy Lipschitz condition (2.10). Also let {Bk} and 
{x k} be generated by Algorithm 5.1. Then, 

II~-F'(x~)l l~2~ 2 [[xJ-xJ-'LI. (5.5) 
j--k--p+l 

Proof.  By (5.3), 

I I & - F ' ( x ~ ) l l ~  I I & - L I I ~  + I l L -  F'(x~)ll~ 

II B~ - L II ~ + II L - F ' (x  ~)11 

<~ [[Bk - F ' ( x k ) l l ~  + 2 I L L  - F ' ( x~ ) [ [  F. 

Then, from (2.12) and (5.2), we obtain (5.5). [] 

From estimate (5.5), it is easy to prove that Algorithm 5.1 has at least the same 
local convergence properties as Algorithm 2.1. 

6. Numerical  results 

To see how the new algorithms work in practice, we computed six examples by the 
CPR algorithm, the SB algorithm, Algorithm 2.1, and Algorithm 5.1. In this section, 
we compare the numerical results from these four algorithms. The global strategy 
we used in computing the examples is the line search with backtracking strategy 
(see Dennis and Schnabel [7, p. 126]). For the CPR algorithm, if p k =  _Bk1F(x  k) 
is not a descent direction, then we try _pk. I f  it is not a descent direction either, 

then the algorithm fails. For the other algorithms, if pk is not a descent direction, 
i.e. if the line search fails, then we try --Pk. I f  it is not a descent direction either, 
then we try the CPR direction. For the CPR algorithm, Algorithm 2.1 and Algorithm 
5.1, at step k, we use different h k for each component  of x k instead of one uniform 

h k. According to Dennis and Schnabel [7, p. 98], we choose 

h~ = ~ p s  x~. 

where macheps is the machine precision. The stopping test we used is 

max ~< ~, 
,~<i~<, max{Ix~+'l, typ xi} 

where typ xi is a typical value of x~ given by users. We used double precision, and 
the machine precision is 2 . 2 2 d - 1 6 ,  with typ x~ = 10 s and e = 10 5. The merit 

function we used is ½11F(x)ll~. For all the four algorithms, the initial matrix Bo is 
generated by the CPR algorithm. 
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Example  6.1 is the E x t e n d e d  R o s e n b r o c k  F u n c t i o n  given by  Sped ica to  [19] (also 

see Mor6,  G a r b o w  and  Hi l l s t rom [12]). E x a m p l e s  6.2, 6.3 and  6.4 were given by  

the au thor  in a previous  p a p e r  [9], and  they  can also be seen to be the extens ions  

o f  the Rosenb rock  [17] func t ion  (also see [12]) to non l inea r  systems o f  equa t ions  

with t r id iagona l ,  f ive-d iagonal  and  seven-d iagona l  s tructures.  E x a m p l e  6.5 was given 

by  Broyden  [ l ]  (also see [12]). E x a m p l e  6.6 was given by Mor6 and  Cosna rd  [11] 

(also see [12]). 

The results  are shown in the  tables  below,  where  IT is the n u m b e r  o f  i terat ions,  

F M  is the number  o f  func t ion  (F(x))  eva lua t ions  used  for  forming  the matr ices  Bk 

and  checking  s topping .  F L  is the n u m b e r  o f  func t ion  (F(x))  evalua t ions  used  in 

l ine searches.  L N  is the  n u m b e r  o f  l ine searches  in which  the s tep length a < 1. N D  

is the n u m b e r  o f  nondec rea se  di rect ions ,  x ° is the ini t ia l  guess. In  the examples ,  p 

is the n u m b e r  o f  g roups  for  an op t imal  par t i t ion  o f  the co lumns  o f  the Jacobian .  

Example  6.1 (Ex tended  R o s e n b r o c k  Func t ion)  

~ / _ , ( x )  = 10(x2i - x / 2 _ l ) ,  

/,/ 

I 2 j ( X ) = I - - x 2 j _ I ,  j=l,...,~, 
n = 20, 

p = 2 ,  

x 1 = ( - 1 . 2 , 1 , . . . , - 1 . 2 , 1 )  T, x 2 = ( - 5 , - 5 , . . . , - 5 )  T. 

Table 6.1 

Algorithms x ° = xl x ° = x2 

IT FM FL LN ND IT FM FL LN ND 

CPR 15 46 12 12 0 17 52 13 13 0 
SB 22 25 27 17 0 40 43 124 36 6 
Alg. 2.1 17 36 14 17 0 25 52 36 21 1 
Alg. 5.1 18 38 16 13 0 17 36 15 12 0 

Example 6.2 ( t r id iagona l )  

f l (x)  - - 4 ( x  1 - x ~ ) ,  

£ ( x )  = 2 _ . . ,  8x~(xi-xj_l  ) 2(1-x j )+4(x~-x2+l) ,  j = 2 , .  n - l ,  

f~(x) = 8x,(x  2, - x,_,) - 2 ( 1  - x , ) ,  

n =36 ,  

p = 3 ,  

x l  = ( - 2 ,  - 2  . . . .  , - 2 )  T, x2 = (12, 12 . . . . .  12) T. 
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Table 6.2 

Algorithms x ° = x l  x ° = x2 

I T  FM FL LN N D  IT  FM FL L N  N D  

CPR 16 65 7 7 0 41 165 28 28 
SB 40 47 51 16 5 306 313 918 229 
Alg. 2.1 28 59 27 14 0 55 113 130 35 
Alg. 5.1 22 47 8 8 0 50 103 54 30 

0 
33 

7 
1 

E x a m p l e  6 .3  ( f i v e - d i a g o n a l )  

f l (x)  = 4 ( x l - x 2 ) + x 2 - x ~ ,  

f 2 ( x )  = 8 x 2 ( x  2 - x l )  - 2 (1  - x2) + 4 ( x 2  - x 2) + x3 - x 2, 

f j (x )=8x~(x~-x j  1 ) - 2 ( 1 - x j ) + 4 ( x j -  x~+l) 
2 2 -~-Xj_I--Xj_2-~Xj+I j = 3 ,  n - 2 ,  - - X j + 2 ,  . . , , 

- - X n )  "Jr Xn 3 ,  f, ,  l ( x )  = 8X,_l(X,_12 _ x ,_2) -2(1-xn_l )+4(x , , - i  2 x~-2-2 

f . ( x ) = S x . ( x 2 _ x . _ l ) _ 2 ( a _ x . )  2 -~ X n  --1 -- Xn--2,  

n = 3 6 ,  

p - - 5 ,  

x 1 = ( - 2 , - 2 , . . . , - 2 )  v, x 2 = ( - 3 , - 3 , . . . , - 3 )  T. 

Table 6.3 

Algorithms x ° = x 1 x ° = x2 

IT FM FL LN ND IT FM FL LN ND 

CPR 32 193 35 24 0 16 97 7 7 0 
SB 66 78 85 32 8 81 92 108 39 8 
Alg. 2.1 90 185 541 71 26 33 71 17 13 0 
Alg. 5.1 28 61 27 14 1 20 45 5 4 0 

Example 6.4 ( s e v e n - d i a g o n a l )  

2 
f l  ( x )  = 4 ( x l  - x~)  + x2 - x 2 + x3 - x 4 ,  

f j(x) = 8Xi(X 2 - x~_,) -2(1  - Xi) + 4 ( x j  - x ] + , )  + x~ l -  x j -2  

2 2 .~ 2 +xj+l-x j+2+xj-2-x j -3  X j + z - X j + 3 ,  j = 2 , . . . , n - 1 ,  

f n ( X ) = 8 X n ( X 2 X n  1 ) _ _ 2 ( l _ _ x  n 2 q_ 2 ) ' q - X n _  1 - - X n _  2 X n _ 2 - - X n - 3 ,  

n = 36 ,  

p = 7 ,  

x 1 = ( - 2 , - 2 , . . . , - 2 )  T, x 2 = ( - 3 , - 3 , . . . , - 3 )  T. 
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Table 6.4 
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Algorithms x ° = xl x ° = x2 

IT FM FL LN ND IT FM FL LN ND 

CPR 19 153 10 10 0 18 145 8 8 
SB 43 59 28 15 3 77 93 146 34 
Alg. 2.1 34 75 46 18 2 fail 
Alg. 5.1 23 53 15 7 1 27 61 22 12 

0 
16 

1 

Example 6.5 ( B r o y d e n  T r i d i a g o n a l  F u n c t i o n )  

f i ( x )  : (3 - - 2X i )X i - -  X i I -- 2Xi+l-t- 1, 

X 0 = X n +  1 = O,  

n = 36, 

p = 3 ,  

x l = ( - 1 , - 1 , . . . , - 1 )  T, x 2 = ( - 1 6 , - 1 6 , . . . , - 1 6 )  f. 

Table 6.5 

Algorithms x ° = xl x ° = x2 

IT FM FL LN ND IT FM FL LN ND 

CPR 5 21 0 0 0 9 37 0 0 0 
SB 7 11 0 0 0 33 37 4 4 0 
Alg. 2.1 6 15 0 0 0 13 29 0 0 0 
Alg. 5.1 6 15 0 0 0 11 25 0 0 0 

E x a m p l e  6.6 ( D i s c r e t e  B o u n d a r y  V a l u e  F u n c t i o n )  

h 2 
f ( x )  = 2 x i -  xi , - x i + l  + ~  (xi  + t, + 1) 3 

1 
h - n +  1'  ti = ih, Xo = x~+l = O, 

n --- 36, 

x l = ( ~ j )  T, ~ T j = t j ( t j - 1 ) ,  x 2 = ( 5 0 , 5 0  . . . .  , 5 0 )  T, 

F r o m  t h e  n u m e r i c a l  r e s u l t s  it c a n  b e  s e e n  t h a t  t h e  n u m b e r  o f  f u n c t i o n  e v a l u a t i o n s  

r e q u i r e d  b y  A l g o r i t h m  5.1 is a l w a y s  less  ( s o m e t i m e s  m u c h  less)  t h a n  t h a t  r e q u i r e d  

b y  t he  C P R  a l g o r i t h m ,  a n d  in  at  l e a s t  e i g h t  cases  ( E x a m p l e  6.1, x ° =  x2 ,  E x a m p l e  

6.2, 6.3, 6.4, E x a m p l e  6.5, x ° = x 2  a n d  E x a m p l e  6.6, x ° = x 2 )  i t  is e v e n  less  t h a n  t h a t  

r e q u i r e d  b y  t he  SB a l g o r i t h m .  

O n  t h e  o t h e r  h a n d ,  t h e  n u m b e r  o f  i t e r a t i o n s  r e q u i r e d  b y  A l g o r i t h m  5.1 is u s u a l l y  

g r e a t e r  t h a n  t h a t  r e q u i r e d  b y  t h e  C P R  a l g o r i t h m .  H o w e v e r ,  t h e  d i f f e r e n c e  is u s u a l l y  
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Fable 6.6 

Algorithms x ° = xl x ° = x2 

IT FM FL LN ND lT FM FL LN ND 

CPR 3 13 0 0 0 12 49 0 0 0 
Schubert 4 8 0 0 0 30 34 3 3 0 
Alg. 2.1 4 11 0 0 0 19 41 0 0 0 
Alg. 5.1 4 11 0 0 0 16 35 0 0 0 

not significant. Meanwhile, the number of iterations required by Algorithm 5.1 is 

less than that required by the SB algorithm in eleven of the twelve cases, and when 

the problem is badly nonlinear and (or) the starting point is far away from the 

solution, for example, in the eight cases mentioned above, the difference is significant. 
Therefore, in this case Algorithm 5.1 may be very effective. 

Moreover, it is interesting to note that the CPR algorithm never takes nondecrease 

directions for the test problems. Algorithm 5.1 sometimes takes some nondecrease 

directions. However, the number of the nondecrease directions for Algorithm 5.1 

is usually much less than that for the SB algorithm. Algorithm 2.1 takes more 

nondecrease directions than Algorithm 5.1, but the number of nondecrease directions 
is usually less than that for the SB algorithm. 

Furthermore, the CPR algorithm takes the fewest line search steps for the test 

problems. Algorithm 5.1 sometimes takes more line search steps than the CPR 

algorithm, but the difference is usually not significant. The SB algorithm takes a lot 

more line search steps than the CPR algorithm and Algorithm 5.1 in the eight cases 

mentioned above. Algorithm 2.1 usually takes fewer line search steps than the SB 
algorithm. 

Also, note that in the eight cases mentioned above, Algorithm 5.1 performs much 
better than Algorithm 2.1, and for Example 6.5, x ° = xl ,  and Example 6.6, x ° = x l  

they perform exactly the same. Therefore, it seems that Algorithm 5.1 can really 

improve Algorithm 2.1 when the problem is badly nonlinear or the starting point 

is far away from the solution, and when the problem has a good behavior and 

starting point is close to the solution, these two algorithms perform almost the same. 

Finally, from the results of Example 6.1 it can be seen that when p, the number 

of groups in the partition of the columns of the Jacobian, is small, Algorithm 2.1 
may have a very good efficiency. When p increases (Examples 6.3 and 6.4), its 

efficiency may decrease. In this case, Algorithm 5.1 may have a better efficiency. 

7. Concluding remarks 

We have presented two algorithms for solving sparse nonlinear systems of 
equations. The CM-successive column correction algorithm (Algorithm 2.1) is based 
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on Coleman and Mor6's partitioning algorithm and the column-update algorithm. 

This algorithm uses only two function values at each iterative step, and it is 

q-superlinearly convergent. Using this algorithm, one group of  the columns of Bk 

is displaced at each step. Note that it is not necessary to update just one group at 

each iterative step. Instead, we can displace several groups at each iteration, and 

this gives the algorithm a faster convergence rate. However, if one more group is 

displaced, then one more function value is required. Therefore, the efficiency of the 
algorithm depends on the number of  the groups displaced at each iterative step. 

The modified CM-successive column correction algorithm (Algorithm 5.1) is a 

combination of the CM-successive column correction algorithm and the SB 

algorithm. It is also q-superlinearly convergent. Our numerical results indicate that 

the modified successive column correction algorithm behaves much better than the 

CM-successive column correction algorithm in some cases. However, we have not 

been able to prove better theoretical convergence results for the modified CM- 
successive column correction algorithm than those for the unmodified one. Addi- 

tional numerical results indicate that these two new algorithms, especially the 

modified one, are competitive with the CPR-CM algorithm and the SB algorithm. 

The idea of the CM-successive column correction algorithms can also be used 

with Powell and Toint's [15] work, which will lead to methods for unconstrained 

optimization problems. This will be our future work. 
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