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In this paper we consider heuristic algorithms for a special case of the generalized bilevel 
mathematical programming problem in which one of the levels is represented as a variational 
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several numerical examples. 
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1. Introduction 

In this  p a p e r  we cons ide r  a specia l  case o f  the  gene ra l i zed  bi level  ma the ma t i c a l  

p r o g r a m m i n g  p r o b l e m  s tud ied  by  M a r c o t t e  (1986), H a r k e r  and  Pang (1990) and  

H a r k e r  a n d  Choi  (1987). Name ly ,  i f y  and  x represen t  the  dec i s ion  vectors  a s soc ia t ed  

with  the  u p p e r  and  lower  levels respect ive ly ,  then  we wish to solve 

min imize  F ( x , y )  (1) 

subjec t  to L<<-y<~ U, (2) 

Z ( x , y ) ( z - x ) > ~ O  Vz~  K(y) ,  (3) 

x ~ K(y ) ,  (4) 

where  F : R  n x•q--*  ~1 is d i f ferent iable  in (x,y) ,  L ~ R  q, U ~ R  q, and  K(y )  is the  

feas ib le  set, poss ib ly  d e p e n d e n t  on y, o f  x -var iab les :  

K ( y )  = { x ~ R ~ :  g (x , y )~O,  h (x , y )=0} .  (5) 

We will  cons ide r  a finite d i m e n s i o n a l  p r o b l e m  with  x = ( x l , . . . ,  x~); y = ( y ~ , . . . ,  yq); 

g :  R n x ~q --* •m, d i f fe ren t iab le  and  concave  in x; h : ~"  x R q ~ ~P, l inea r  in x; and  

Z :  R" × R q ~ R", d i f fe ren t iab le  and  str ict ly m o n o t o n e  in x. As shown in Sect ion 2, 
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these conditions guarantee that the variational inequality (3)-(4) has a unique 
solution x* for each y. 

Problems of this form are difficult to solve for several reasons: 
(i) Evaluation of the objective function F ( . ,  • ) at a given point fi is difficult 

since it requires finding ~ ~ K(fi) solving the variational inequality 

z(~ ,~) (z -~)~0  vzc K(~). (6) 

(ii) Evaluation of the gradient vector of the objective function with respect to y 
at a point ~ (including the variation due to changes in x induced by changes in y 
through the variational inequality constraints (3)) requires solving the variational 
inequality (6) and performing a sensitivity analysis of x with respect to y. 

(iii) The problem (1)-(4) is a nonconvex minimization problem. The implicit 
function x = ~:(y) defined by the variational inequality constraints (3) is in effect a 
nonlinear equality constraint. 

(iv) The problem is a nonsmooth optimization problem. The implicit function 
x = ~:(y) is not differentiable everywhere. Because the problem is nonconvex, the 
standard subgradient methods do not apply. 

Many algorithms for (1)-(4) and related problems have been proposed in the 
literature. Kolstad (1985) suggests that the algorithms proposed can fit into the 
following typology: (i) extreme point search techniques, (ii) Kuhn-Tucker methods, 
and (iii) descent methods. In descent methods, the most difficult task is that of 
calculating derivatives of functions in the first level problem since these functions 
depend parametrically on decision variables from the second level problem. Several 
authors, including De Silva (1978), Magnanti and Wong (1984), Kolstad and Lasdon 
(1986) and Tobin and Friesz (1988), have proposed calculating such derivatives 
using results from nonlinear programming and variational inequality sensitivity 
analysis. In fact, De Silva (1978), Kolstad and Lasdon (1986) and Friesz, Tobin 
and Miller (1988) implement algorithms for bilevel mathematical programs which 
employ sensitivity analysis theory. 

Because of points (i) and (ii) mentioned above, methods are required that minimize 
the number of objective function evaluations or the number of objective gradient 
evaluations. Because of (iii), the best that can be hoped for with most computationaUy 
efficient procedures is a local minimum. Because of (iv), the gradient of the objective 
function does not exist everywhere. Additionally, the gradient vector can change 
discontinuously, and therefore the length of the gradient vector does not provide 
any information about appropriate step length. 

There is some theoretical basis for optimism, however. For many applications, 
the implicit function x = ~(y), even though not differentiable everywhere, is relatively 
smooth, and the objective function strongly convex in y. In these cases, a local 
minimum is likely to be a global minimum. As is shown subsequently, the points 
of non-differentiability of the implicit function ~ make up a set of measure zero, 
and therefore, points exist in a small neighborhood of a non-differentiable point at 
which the implicit function is differentiable. Therefore, rather than worry about 
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finding subgradients at points of non-differentiability, the step length or the step 
direction can be perturbed slightly, and the gradient calculated at the nearby point. 

The aim of  this work is to devise algorithms that do not require many objective 
function or gradient evaluations. Descent algorithms require either objective function 
evaluations, evaluation of  the objective gradient vector, or a similar evaluation to 
determine a descent direction. Therefore, in any primal approach, such information 
will be required at each step of  the algorithm, at least. The more difficult aspect of 
a descent algorithm for such problems is to determine step lengths. To guarantee 
improvement in the objective, some sort of search or line minimization is required 
along the descent direction to determine how far one can move and still improve. 
This generally requires many objective function evaluations. The step length determi- 
nation is further complicated by the fact that the derivatives of  the implicit function 
are discontinuous, and a descent direction may discontinuously become an ascent 
direction. 

To avoid the aforementioned complexities involved in determining step lengths 
that lead to an improvement at every step, it seems natural to employ heuristic 
methods that use a predetermined step length sequence. At this point, little can be 
said theoretically about the convergence of  such heuristics for the problem studied 
here, although empirical tests may provide evidence of  the usefulness of  such an 
approach. 

In this paper, we analyze three heuristic sensitivity analysis based algorithms for 
problem (1)-(4). The first heuristic is a descent algorithm which employs an Armijo- 
like step size rule designed to deal with the inherent nonconvexity of  problem 
(1)-(4); variational inequality sensitivity analysis is used to calculate derivatives of  
the objective function F(x,y) with respect to y-variables, recognizing that the 
x-variables are implicit functions of  y. This algorithm is included to demonstrate 
the difficulties in step length determination. The second heuristic, for which several 
variants are included, is similar to the first except that step sizes are determined a 
priori and decrease monotonically with the number of  iterations. The third heuristic 
presented in this paper is a generalization of  the "equilibrium decomposed optimi- 
zation" algorithm proposed by Suwansirikul et al. (1987). In particular, this generali- 
zation finds the descent direction along each coordinate axis through the use of  
derivatives calculated with variational inequality sensitivity analysis, and the step 
length is determined by a bisection rule as in a Bolzano search. 

After briefly presenting the necessary results from the theory of variational 
inequality sensitivity analysis, we give formal statements of  each of the three 
algorithms considered and present extensive numerical tests. 

2. Summary of key results from variational inequality sensitivity analysis 

This section contains results summarized from Tobin (1986) and Kyparisis (1987) 
which are presented without proof. More general results can be found in Pang 
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(1988) and Kyparisis (1989). However, the generality provided there is not required 
for our purposes. 

Let 
Z(x,  y) be once differentiable in (x, y), 
g(x, y) be concave in x and twice continuously differentiable in (x, y), 
h(x, y) be linear affine in x and once continuously differentiable in y. 
Now consider the following perturbed variational inequality, denoted as VI(y): 

find x* ~ K(y )  such that 

Z(x*, y)T(x- x*) >>- 0 

where 

for all x~  K(y )  (7) 

I( (y) : {xl g(x, y)  >>- o, h(x, y) = o}. (8) 

Theorem 1. 
VI(37): 

(a) 

Consider the following conditions on the perturbed variational inequality 

The constraints gi ( x, 37) are concave in x, and x* c K, A* ~ R m and ix* ~ ~ p satisfy 

Z(x*,  37) - Vg(x*, 37)TA* --Vh(x*, 37)Tix, = 0, (9) 

A*Tg(x *, 37) = 0, (10) 

A*~>0. (11) 

(b) Z(x*,  fi) is such that 

w~VZ(x *, y)w > 0 

for all w ¢ 0 such that 

Vgi(x*,37)w~O for i such that g~(x*,y) =0, 

Vgi(x*,fi)w=O for i such that Ai*>O, 

Vhi(x*,fi)w=O f o r i = l  . . . .  ,p. 

(b') VZ(x*, 37) is positive definite. 
(c) The gradients, Vgi(x*,37) for i such 

i = 1 , . . . ,  p, are linearly independent. 
(d) The strict complementary slackness conditions 

A * > 0  when gi(x*,37)=O 

are satisfied. 
We then have the following: 

(12) 

(13) 

(14) 

(15) 

that gi(x*,~)=O and Vh/(x*,~) for 

(i) I f  (a) is satisfied, then x* is a solution to VI(fi). 
(ii) If, in addition, (b) or (b') is satisfied, then x* is a locally unique solution to VI(37). 

(iii) If, in addition, (c) is satisfied, then A* and ix* are unique and for y in a 
neighborhood of fi, there exists a unique, directionally differentiable, Lipschitz continuous 
function Ix(y) T, A (y)T, ix (y)T]T where x(y ) is a locally unique solution to VI(y), A (y) 
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and Ix(y) are unique associated multipliers satisfying (a) and (b) above for VI(y), 
and with 

[x(y)T, ,~ (y)T, Ix(y)T]~ = [x,~,  A,T, Ix,~]~-. 

Additionally, in a neighborhood of .~, the set of  binding constraints is unchanged and 
the binding constraint gradients are linearly independent at x(y ). 

(iv) If, in addition, (d) is satisfied, then the function Ix(y) T, h(y)  T, Ix(y)T]T is 
differentiable in a neighborhood of ~. [] 

Theorem 2. I f  the vector x* is a solution to the variational inequality VI07) and the 
gradients Vgi(x*,~) for i such that g~(x*, )~)=0 and Vh~(x*,~) for i= 1 , . . .  ,p  are 
linearly independent, then there exists A* ~ • m, Ix* ~ g~ P such that (9), (10) and (11) 
are satisfied. [] 

Let x* be a solution to VI(p) satisfying Theorem 2. Then, f o ry  = p  and (x, h, IX) = 
(x*, A*, IX*) we have 

Z(X~y)-- ~ t~iVgi(x~y) T- ~, IxiVhi(x,y)T=o, (16) 
i = 1  i = l  

Aigi(x,y)=O f o r i = l , 2  . . . . .  m, (17) 

hi(x,y)=O f o r i = l , 2 , . . . , p .  (18) 

Let the Jacobian matrix of  the system (16), (17) and (18) with respect to w = (x, A, IX) 
be denoted as dr* and with respect to y as dry*. Then we may state the following results: 

Corollary 1. I f  the constraints g~(x, p) are concave and the conditions (b) (or (b')), 
(c) and (d) in Theorem 2.1 are satisfied, then the inverse of J*  exists and the derivatives 
of  (x*, A*, IX*) with respect to y are given by 

vyw(p) = Jw'(Y)[ - JAP)] .  [] (19) 

Furthermore, we may show that the points of nondifferentiability of the implicit 
function x = ~(y) defined by the variational inequality constraints (3) form a set of  
measure zero, and, therefore, points exist in a small neighborhood of  a nondifferential 
point at which this implicit function is differentiable. In particular, the following 
result holds: 

Fheorem 3. Suppose x* solves the variational inequality (7) and (8) for y =~ and the 
:onditions of (a), (b) (or (b')) and (c) of Theorem 1 are satisfied. Then in any open 
leighborhood of fi there exists points ~ such that the implicit function w(y)= 
x(y) T, A (y)X, Ix (y)T)]T is differentiable at Y. 
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Proof. By Theorem 1, w(y)  is Lipschitz continuous in an open neighborhood U(y) 
of y. By the theorem of Rademacher (e.g., see Rockafellar, 1981), w(y)  is differenti- 
able almost everywhere on U(y). [] 

Theorem 3 allows the development of algorithms for (1)-(4) using the gradient 
to determine a descent direction. If  at step k, yk  is such that w(y k) is not differentiable, 
then by a systematic search in an e-neighborhood of yk, a point ~k can be found 
where w(~ k) is differentiable. This may be accomplished by returning to yk-1 and 
perturbing the step length and/or  direction. In practice, it is not likely that a step 
will land on a point at which the implicit function is non-differentiable. If  it does, 
it is likely that a single change in the step length will be sufficient. 

3. Variations of a gradient projection descent algorithm 

In this section we propose several variations of a gradient projection descent 
algorithm for solving problems like (1)-(4). These algorithms are heuristics because 
the problem is nonconvex. Also, we cannot guarantee that certain derivatives needed 
for their implementation will always exist, although by Theorem 2.3 we do know 
that there will be a point in the neighborhood of the current iterate for which the 
required derivatives exist. The two descent algorithms proposed in this section differ 
from one another in the manner in which stepsizes are determined. Specifically, in 
the first algorithm considered, the stepsize is determined at each iteration according 
to the Armijo-like rule, which has been analyzed in great detail by Bertsekas 
(1982a, 1982b). In the others, step sizes are determined a priori and decrease 
monotonically with the number of iterations. 

If  the conditions (a) and (b) in Theorem 2.1 hold, we know that for each y such 
that L ~< y ~< U, the variational inequality (3)-(4) has a unique solution, x(y) .  Hence, 
we may rewrite the objective function F ( . ,  • ) of (1) as 

M ( y )  = F ( x ( y ) ,  y) .  (20) 

Then, (1)-(4) becomes 

minimize M ( y )  = F ( x ( y ) , y )  

subject to L<~y<~ U. (21) 

Let [. ]~ denote projection on the feasible region: i.e., for every y = [Yl, • --, Yn] T, 

L - [ rain[max[L1, yl], UI] ] U.] 

[Y]~ I m i n [ m a x [ } , , , y n ] ,  " 

The gradient projection algorithm uses iterations of the form 

y k + l = [yk _ O~k V M (yk)'r] ~ . 

In other words, the algorithm proceeds as follows. First, an initial feasible vectm 
yo is chosen. Then at each successive iteration (indexed by k), we determine th~ 
vector yk by moving in descent direction the distance a k V M ( y k ) .  Thus, there ar~ 
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two major aspects of the algorithm: determining the descent direction and determin- 
ing the stepsize. 

The algorithm using the Armijo-like type step length determination for solving 
the bilevel problem (1)-(4) is given as follows: 

Algorithm 1. 
Step O. Determine an initial value yO; set k = 0. 
Step 1. Solve the variational inequality problem, (3)-(4), for given yk and get x k. 
Step 2. Calculate the sensitivity information Vyx k. 
Step 3. Calculate • y M  using sensitivity analysis information and the chain rule. 
Step 4. Calculate the stepsize using the Armijo rule (Bertsekas, 1982b). 
Step 5. C a l c u l a t e  y k + l  ----- [ y k  - -  O t k V M ( y k ) T ] U .  

Step 6. If ly k+l --yk I < e for all i, then stop, otherwise let k = k + 1 and go to Step 1. 

We shall refer to Algorithm 1 as the sensitivity descent algorithm with Armijo-like 
steps, or SDAA for short. In Step 3, V y M  = ( . . . , OM/Oy i , . . .  ), 

a M  _ OF Oxj OF 
- - = L - -  - - 4  . 
oyi ~ oxj Oy~ Oy~ 

and Ox;/Oy~ are calculated using eq. (19). 
Step 4 of the algorithm may be replaced with a step size rule with a predetermined 

sequence of monotonically decreasing step sizes. We will consider three different 
step size sequences ak. For each of these, we will consider two different direction 
vectors dk: the gradient vector and the normalized gradient vector. This leads to 
the following general statement of a gradient projection algorithm with predeter- 
mined step size sequences: 

Algorithm 2. 
Step O. Determine an initial value yO; set k = 0. 
Step I. 
Step 2. 
Step 3. 

Step 4. 
Step 5. 
Step 6. 

Solve the variational inequality problem, (3)-(4), for given yk and get x k. 
Calculate the sensitivity information Vyx k. 

Calculate VyM using sensitivity analysis information and the chain rule. 
Determine d k according to either (i) d k = V y M  o r  (ii) d k = (1/[[VyMll)VyM. 

Calculate the stepsize ol k. 
Calculate yk+l = [yk _ a k V M ( y k ) T ] ~ .  

IflY k+l --Y~I < e for all i, then stop, otherwise let k = k +  1 and go to Step 1. 

In the case that the direction vector d k =VyM~ the Algorithm 2 is termed 
SDAP (sensitivity descent algorithm - -  predetermined). In the case that d k= 
(1/IlVyMII)VyM, it is termed NSDAP (normalized SDAP). For each of  these, we 
will investigate three step size sequences: 

1. a k = f l / ( k + l ) .  
2. ak = f l /2  k. 

3. a k - - - - f l / ( k q - 2 )  2. 
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The sum of  the first is a non-convergent series, and in general will require the 
most  iterations. Because, given enough iterations, it can move the solution to any 

point, the value of /3 and the starting solution Y0 are in one sense not critical. 
However,  a poor  choice of/3 could cause a prohibitively large number  of  iterations. 

The sums of  the second and third sequences converge, and therefore, if the values 
of  /3 and the starting solution y0 are not carefully chosen, some feasible point 

(perhaps optimal) may not be reachable. Both the second and third sequences are 
such that if the current solution is very near the minimum, and the next step is 
relatively large and takes the next solution to a point far from the minimum, the 
remaining steps can take the solution back to the minimum. 

Algorithms based on the non-normalized gradient direction and predetermined 

step sequence j ( j  = 1, 2, 3) will be referred to as SDAPj. Those based on the 
normalized gradient sequence and predetermined step sequence j will be referred 

to as NSDAPj. 
Unless otherwise noted, in all of  the computat ional  tests, the starting solution yO 

will be the center of  the region defined by L ~< y <~ U. This allows for the smallest 
initial step. 

For NSDAP1,/3 is chosen to allow the algorithm to travel to the furthest extreme 

point in approximately 11 iterations; that value of/3 is given as 

/3N, --~x/E ( U~ - L,) 2 
i 

since Z 1° ak  ~3/3 and the starting point is the center of  the feasible region. For k = 0  

SDAP1, we let 

/31 = ~/~ ( Ui - Zi)2/  ( 3 IIV y M  (y °) [I). 
i 

This is a heuristic and is based on the assumption that the norm of the gradient 
gets smaller as the algorithm progresses and is, on average, half  of  its value at yO. 
I f  this assumption holds, the first step will be twice as big as that in NSDAP1, and 
will reduce more quickly. In general, the non-normalized algorithms are unpredict- 
able since the gradient vector V y M ( y  k) can vary greatly, even discontinuously, over 
the feasible region. 

In the case of  the second step length sequence, the series 

ak = 23 
k=O 

and so for the normalized case NSDAP2, /3  is chosen to be 

/3N2 "~ ¼ 4 •  ( U i - L i )  2. 
i 

Using this value, if the algorithm always travels toward the most distant extreme 
point, it can reach it in the limit. Using the same reasoning as before about the 
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gradient, for SDAP2 we let 13 be 

/32 = x/~ ( Ui - t i ) 2 /  (2 II VyM (y°)II). 
i 

273 

Finally, the third step length is such that 

f C~k = (~7r 2 -  1)13 ~0.645/3. 
k=0 

In the third step sequence, as is the case with the other two, 

OLk ~< ~ Oli for a l lk ,  
i=k+l  

allowing for the recovery from too large a step. Thus, for NSDAP3 we take/3 to be 

1 
/3N3 --  s f Z  ( Ui -- L i )  2, 

1.14 i 

which is based on the desire to be able to reach the vicinity of  the furthest point in 
not too many (say 12) iterations and the fact that ~1~ Ctk ~0.57fl. Then, similarly k=0 
to the previous case, for SDAP3 we take/3 to be 

[33 = ~/~,, ( U~ - Li)2/  (O.5711VyM(y °) [I)" 
i 

In the case of  the first algorithm, SDAA with the Armijo-like steps, we employ 
as a value of/3, 

/3a = 4 ~  ( U~ - Li)2/  ( lOl lVxM (Y °)[]). 
i 

Here, each step is smaller than those in previous cases, since it is not systematically 
reduced, and we desire to limit the number of times the step must be reduced by 
the Armijo rule. 

4. An interior point, bisection heuristic 

The third heuristic for problem (1)-(4) is a generalization of the decomposition 
scheme suggested by Suwansirikul et al. (1987) for the equilibrium network design 
problem. It is similar to that scheme in its strategy of  applying simultaneous one 
zlimensional searches along each coordinate axis. It is different in that actual 
terivatives are calculated in conjunction with a Bolzano search method. In the 
tecomposition scheme of  Suwansirikul et al. (1987), when the Bolzano search was 
:mployed, approximate derivatives were used that assume the contribution from 
he lower level problem is small. Otherwise, Suwansirikul et al. (1987) employed a 
imultaneous Golden Section search which does not require derivatives. In the 



274 T.L. Friesz et al. / Sensitivity based heuristic algorithms 

decomposition heuristic proposed here, the feasible region is reduced at each 
iteration and the current solution is at the center of the region. The descent direction 
is in the direction of one of the extreme points of the region and the step length is 
half the distance to the extreme point. In particular, the step length is determined 
by using simultaneous Bolzano line searches along each coordinate axis. 

The algorithm is as follows: 

Algorithm 3. 
Step O. Set y°=[y°]=[½(L~+ U~)], L°= L~, o U~ = Ui and set k = 0. 
Step 1. Solve the variational inequality problem (3)-(4) for given yk and get x k. 
Step 2. Calculate the sensitivity information Vyx k. 
Step 3. Calculate VyM using sensitivity analysis information and the chain rule. 
Step 4. Calculate L k+~ and U k+~ according to 

if OM/Oy, <~ O, set L k+l = yk, uk+1 = U k, (22) 

i f 0 M / 0 y i > 0 ,  set U k+l=y~,  L k+~=L k. (23) 

Step 5. Calculate yk+~ as 

Y~+l=l~rrk+la-L~ -- Vi. (24) 

Step 6. If[y~ +1 -Y~I < e for all i, then stop, otherwise let k --- k +  1 and go to Step 1. 

Since Suwansirikul et al. (1987) refer to their heuristic as "equilibrium decomposed 
optimization", we refer to this generalization as generalized equilibrium decomposed 
optimization, or GEDO for short. 

5. Numerical examples 

In this section we present several numerical examples drawn from equilibrium 
network design, hierarchical mathematical programming and game theory, which 
are solved using the algorithms presented here. 

In these algorithms, most of the computational effort is in solving the variational 
inequality at each iteration. Therefore, the number of variational inequalities solved 
is used as the measure of comparison. This also allows us to compare our results 
to the method using Hooke-Jeeves pattern searches (Abdulaal and LeBlanc, 1979) 
(referred to as H-J),  and to the equilibrium decomposed optimization method 
(EDO) (Suwansirikul, Friesz and Tobin, 1987). 

Examples 1, 2 and 3 are specific cases of  the well-known equilibrium network 
design problem, wherein network-wide congestion costs are minimized subject to 
flow conservation, budget and nonnegativity constraints, as well as variational 
inequality constraints which force the flow pattern to be a user equilibrium. As such 
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the equilibrium network design problem is a leader-follower game on a network. 
The equilibrium network design problem employs the following notation: 

f - -  vector of arc flows, 
c-- vector of arc unit travel costs, 
y = vector of arc capacity improvements, 
G = vector of  arc improvement costs, 
~2 = set of  feasible flow patterns satisfying conservation and nonnegativity 

constraints, 
I - - a n  identity matrix. 

This notation leads to the following problem statement: 

minimize c(f, y ) f  + OGI 

subject to c ( f , y ) ( f - f ) ~ O  V f  ~ O(y), 

/'~ O(y), 

y~>0, 

where 0 is an approximate dual variable for the budget constraint. Note that 
successful application of the heuristic algorithms introduced in this paper to the 
equilibrium network design problem requires that the nonuniqueness of path vari- 
ables be dealt with in a manner which preserves the regularity conditions stated in 
Section 2, as in Tobin and Friesz (1988). 

Examples 1, 2 and 3 are taken from Suwansirikul, Friesz and Tobin (1987) and 
appear there in complete detail. Example 1 corresponds to their test network 1, 
Example 2 corresponds to their test network 3 and Example 3 corresponds to their 
test network 4. 

Example 1. In this example, which has 5 arcs and 4 nodes, the traffic demand 
between the single origin-destination pair was varied from 100 to 300, creating four 
different levels of  traffic congestion. Table 1 shows the results of  applying the 
algorithms to these four problems. 

Example 2. In this example, which has 16 arcs and 6 nodes, the traffic demand 
between one O-D pair (node 1 to node 6) was varied from 2.5 to 10.0 and the 
demand between the other (node 6 to node 1) was simultaneously varied from 5.0 
to 20.0, creating three different levels of  traffic congestion. Tables 2 shows the results 
for these problems. 

Example 3. This example is based on the aggregate network of  Sioux Falls, South 
Dakota, has 76 arcs and 24 nodes. Only 10 of  the 76 arcs are candidates for 
improvements. The traffic demands on the 552 O-D pairs represent peak hour flow. 
The results for the algorithms are shown in Tables 3a and 3b. Table 3b shows the 
effect of a different starting point for the NSDAP algorithms. Because of  implementa- 
tion difficulties with the special methods required to satisfy the uniqueness requir- 
ments, the sensitivity analysis information required for this example was generated 
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Table 3b 

Results for the Sioux Falls network design problem 

Initial value of y NSDAP1 NSDAP2 NSDAP3 

9.0 9.0 9.0 

YI6 5.14 5.19 5.25 
Y17 1.60 1.65 1.73 
Y19 5.17 5.19 5.28 
Y20 1.59 1.55 1.60 
Y25 2.76 2.81 2.79 
Y26 2.76 2.86 2.86 
Y29 4.67 4.68 4.58 
Y39 4.43 4.32 4.40 
Y48 4.75 4.72 4.59 
Y74 4.41 4.35 4.30 
Z 83.33 82.97 82.91 
#VI  a 66 8 19 

aNumber of variational inequality problems solved. 

using finite differences rather than eq. (19). This, of course, defeats the intention 
of developing algorithms with minimal number of solutions of the variational 
inequality, but indicates how the algorithm would perform in terms of number of 
iterations if eq. (19) had been used; the solutions of the variational inequality used 
for the finite differences (ten per iteration) are not reported in the tables. 

Example 4. This example is the following bilevel nonlinear programming problem 
studied by De Silva (1978): 

minimize y2 _ 2yl + y ~ -  2y2 + x~(y)2 + x2(y)2 

subject to 0 ~  Yl, Y2 ~< 2, 

where x ( y ) =  [x~(y)x2(y)] T solves E ( y )  which is defined below. 

E(y):  minimize ( x l - y l ) 2 + ( x 2 - y 2 )  2 

subject to  0 .25- (x i -1 )2~>0,  i = 1 , 2 .  

This program has a point of  nondifferentiability at the optimal solution (y*, y*) = 
(0.5, 0.5). The results are presented in Table 4. 

Example 5. This example is a Stackelberg 
Henderson and Quandt (1980); it is stated as 

max 7rl = q lF (q l  + q2) - Cl(ql)  
ql~O 

subject to 

max 7r2 = qaF( ql + q2) - C2(q:), 
q2/0 

leader-follower game studied by 
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where ~'1 denotes the profit of  the leader and ~r2 denotes the profit of  the follower. 
The following functions are employed: 

inverse market demand: p = F ( q l  + q2) = 100-0.5(ql  + q2); 

leader's total cost: Cl(ql) = 5ql ; 

follower's total cost: C2(q2) = 0.5q22. 

The exact solution is known to be (ql, 7r~) = (931, 32662). The results are presented 
in Table 5. 

6. Discussion of results 

One important result that is not presented in the tables should be discussed first. 
As discussed in point (iv) of  Section 1, nondifferentiable points were, in fact, 
encountered in the 16 arc example. A nondifferentiable point is easily detected, 
since the Jacobian matrix Jw in eq. (19) is not invertible. As implemented, failure 
of the inversion routine triggered an adjustment of the step size (as per Theorem 
2.3). As would be expected, these nondifferentiable points were only encountered 
for some starting points. 

Another observation is that for the larger problems, local optima clearly exist, 
and the choice of starting point has an effect on the solution found. 

Rather than discuss the results for each example, it is more instructive to look at 
patterns over all examples. The gradient projection method using the Armijo step 
size rule was expected to require, on average, solving more than one variational 
inequality problem to determine the step length for one iteration. However, for the 
value of/3 chosen for these numerical examples, except for a few cases (e.g., Example 
1, demand 200), re-evaluation of step size was not required, and the algorithm 
performed better than expected. 

The first of  the predetermined step length algorithms, based on the sequence 
[ 3 / ( k +  1), as expected did not perform well in terms of number of iterations, but 
did well in terms of objective values. The algorithm SDAP1 requires fewer iterations 
than NSDAP1, since in general the norm of  the gradient decreases as the solution 
progresses, and the change in the solution satisfies the termination criterion sooner. 
The algorithm NSDAP1 is predictable, however, since the magnitude of the change 
in the solution vector is known a priori. Because of the slow decrease in the step 
size, many iterations are required to obtain stopping accuracy. 

The gradient projection algorithms based on the second step size sequence (/3/2 k) 
and the third step size sequence ( f l / ( k + 2 )  2) worked well. The second sequence 
requires fewer iterations than the third, and the additional iterations of the third 
sequence do not provide significantly improved solutions. 

As is the case for the first step size sequence, the non-normalized step algorithms 
converged more rapidly than the normalized in many cases, but for the network 
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design examples, increased congestion eliminated or reversed this. This occurs 

because the congestion level has little impact on the normalized step, but has a 

large impact on the non-normalized step. In Examples 2 and 3, the normalized steps 

converged to different local solutions than the non-normalized steps, and had poorer 

objective values. When the normalized steps were run from a different starting point 

(Table 3b), they found the same local optima as the non-normalized steps. 

Another interesting comparison is between GEDO and NSDAP2. These 
algorithms have the same step length sequence, but different step direction. One 

would expect NSDAP2 to perform better than GEDO since it uses a steepest descent 

direction and the descent direction in G E D O  is restricted. This is the case when 

they both converge to the same local solution, but in Examples 2 and 3, NSDAP2 

converged to poorer solutions. The performance of  GEDO is comparable to that 

of  EDO. 
It appears that these algorithms can be useful for solving mathematical programs 

with large scale variational inequalities as constraints. A suggested approach, which 

will be tested in future work, is based on the observation that quite good solutions 

can be obtained in very few iterations. The approach is to use SDAP2 and NSDAP2 

at several widely separated starting points, and then select the best solution obtained. 

This solution is then used as a starting point for the algorithm using the Armijo 

step length rule. Since the Armijo rule guarantees improvement at each step, and 

the predetermined step algorithm has put the starting point close to the local 
optimum, the local optimum should be found in few Armijo iterations. Careful 

selection of/3, however, will be required for the Armijo steps. This approach is easy 

to implement since the same algorithmic structure, except for step length rule, is 

used throughout. 
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