
Mathematical Programming 33 (1985) 187 203
North-Holland

E F F I C I E N T D U A L S I M P L E X A L G O R I T H M S F O R T H E
A S S I G N M E N T P R O B L E M

D. GOLDFARB
Department of Industrial Engineering and Operations Research, Columbia University, New York,
N Y 10027, USA

Received 31 May 1984
Revised manuscript received 2 January 1985

Efficient algorithms based upon Balinski's signature method are described for solving the n × n
assignment problem. These algorithms are special variants of the dual simplex method and are
shown to have computational bounds of O(n3). Variants for solving sparse assignment problems
with m arcs that require O(m) spzce and O(mn + n 2 log n) time in the worst case are also presented.

Key words: Assignment Problem, Dual Simplex Method, Weighted Matching, Optimization,
Sparsity, Block Pivot

I. Introduction

The assignment problem is a fundamental problem in linear programming and
network flow theory. Because of its importance, it has been extensively studied and
numerous specialized algorithms have been developed to solve it. The most efficient
of these algorithms have computational bounds of O(r/3) for the n x n problem in
the dense case. These include effÉcient versions of Kuhn's Hungarian method [16]
(see [17, p. 205] for example), a hybrid algorithm due to Bertsekas [5] which combines
the Hungarian method with a related method, a relaxation method due to Hung
and Rom [15] which is very closely related to a method of Edmonds and Karp [9],
and an efficient version of Balinski and Gomory's [3] primal algorithm due to
Cunningham and Marsh [7]. All of the above O(r l 3) algorithms are 'dual' in nature
except the last, and none are network simplex algorithms.

Recently three polynomially bounded network simplex algorithms for the assign-
ment problem have been developed. Two of these, due to Roohy-Laleh [18] and
Hung [14] are primal simplex algorithms based upon Cunningham's [6] 'strongly
feasible' trees (see also Barr et al. [4], who call such trees 'alternating path bases').
Their bounds are respectively, O(n 5) and O(n s In A), where A is the difference
between the initial and final values of the objective. The third method, due to
Balinski [2], is an O(n 4) dual simplex algorithm based upon the 'signature' of a
dual feasible basis. In this paper we show how to implement it and a variance in
O(n 3) operations.

This research was supported in part by the National Science Foundation under Grant No. MCS-8006064
and by the Army Research Office under Contracts No. DAAG 29-82-K0163 and DAAG 29-83-K0106

187

188 19. Goldfarb / Efficient dual simplex algorithms for the assignment problem

The O(n 3) bound for our variants of Balinski's method is as good as the best
bounds known for any other algorithm for the assignment problem. This is significant

because no such statement can be made at the present time about the worst-case
computat ional complexity of any variant of the simplex method for any other class

of linear programming problems. Balinski's method is a dual simplex method since

it proceeds from dual feasible basis (vertex) to adjacent dual feasible basis. We

note that it does not, however, choose pivots in the usual way.
In the next section, we briefly describe Balinski's 'signature' method and introduce

the terminology and notation needed subsequently. Our new algorithms are presen-
ted in Section 3. Detailed computational analyses are given in Section 4. In Section

5, we discuss how to modify our algorithms when some assignments are not

admissible. In Section 6 we show how to implement these algorithms so that they
require only O(rn) storage and at most O (m n + nZlog n) computat ional time on
problems with rn admissible assignments. Finally, in Section 7, various matters

relevant to the practical implementation of our algorithms and areas for future

investigations are discussed.

2. The basic signature method

Consider a complete bipartite graph G = (R, C, E) with E = R x C and IRI = Ic I =
n. By an assignment or matching, we mean a subset X of arcs (i , j) ~ E such that

there is exactly one arc in X for each row node i c R and each column node j c C.
Given a weight a U for each arc (i , j) c E, the n × n assignment problem is that of
finding an assignment amongst the n! possibilities X that minimizes ~(~.j)~X a!J.

It is well known that the n × n assignment problem can be formulated as the

linear programming problem:

minimize Y~ aijx~ (la)
t,J

subject t o e x o = 1 for all i = 1 , . . . , n, (lb)
J

(lc) x 0 = 1 for a l l j = l , . . . , n ,
i

xij~>0 fora l l i , j = l , . . . , n , (ld)

where at optimality xij = 1 if and only if (i , j) ~ X. The corresponding dual linear

program is:

maximize Y~ ui + ~ vj (2a)
i j

subject to u~+ vj ~< a~; for all i, j = 1 , . . . , n. (2b)

Consequently, the n x n assignment problem can be solved by applying some version
of the simplex method to either of these linear programs. Moreover, as the assignment

D. Goldfarb / Efficient dual simplex algorithms for the assignment problem 189

problem is a special case of the minimum cost network flow problem, so-called

network simplex algorithms can be used to obtain an optimal solution. (See Dantzig

[8] for the first such algorithm.)

We now recall that a set of columns of the constraint matrix corresponding to
(l b) - (l c) indexed by T_c E is a column basis for this matrix if and only if T is a
spanning tree of G. Given T, a unique solution to the primal constraints (l b) - (l c)

is obtained by setting xo.=O for all (i , j)~ T. If, in addition, we arbitrarily fix the

value of one of the dual variables (e.g. u~ = 0) then a dual solution is easily computed

from the equations

ui + vj = ao for all (i,j) • T.

Of course, for an arbitrary T, x (u and v) will not, in general, be primal (dual)

feasible; if x is (u and v are), then T will be called primal (dual) feasible. Henceforth,

we shall use the notation T to denote a tree, and P(v, w) to denote the unique path

in T between two nodes v and w in T. It should not cause confusion that T is used
to denote the set of arcs of a tree at certain times and the set of nodes at others.

We shall also consider trees to be rooted; i.e. there is a designated node r • T called
the root of T and the remaining nodes in T excluding r are parti t ioned into k > 0

disjoint subsets called subtrees of r, each of which is itself a tree.
In [2] Balinski defines the 'signature' of a tree T as the n-vector d = (d ~ , . . . , d,)

where di is the degree in T of row node i e R. Clearly the column, as opposed to

row, signature could also be defined. An important property of the signature of T
is that if it has only one component equal to 1 then the x corresponding to T is a

feasible assignment. To see that this is indeed the case, observe that all other

components must equal 2 since }~i d ~ = 2 n - 1 and dg~ > 1 for all i (T is a spanning

tree of 2n nodes and 2n - 1 arcs). Let r e R be the row node in T with dr -- 1 and let

X = {(i , j)[(i , j) = arc on path P(r, j) adjacent to j, for all j • C}.

Clearly each column node j • C is covered by X and since for all i • R, di = 2 except

for i = r (dr = 1) it is evident that each row node is covered by exactly one arc. See
Fig. 1.

• r o w nodes

o c o l u m n nodes

- - a rcs in a s s i g n m e n t

. . . . arcs n o t in a s s i g n m e n t

Fig. 1. An assignment corresponding to a basis tree with exactly one terminal row node.

I f a basis tree T has exactly one ' terminal ' row node (i.e. a row node with degree
one) and is also dual feasible then the assignment X that corresponds to T is
optimal. Hence, given a dual feasible basis tree T, an algorithm which reduces the
number of terminal row nodes while maintaining dual feasibility can be used
recursively to produce an optimal assignment. This is the basic step of a signature

190 D. Goldfarb / Efficient dual simplex algorithms for the assignment problem

method. As we shall now show, it can be achieved by a finite sequence of simplex
pivots. These pivots are performed without explicit reference to the values of the
primal variables; hence, the change in the primal (dual) objective function may be
positive, negative or zero, in contrast with standard variants of the simplex method.

2. The basic signature step

Let T be a given dual feasible tree with more than one terminal row node. Choose

one of these nodes, say I, as the 'target', and any row node ~ of degree d~ I> 3 (there
must be at least one such node) as the 'source'. Consider performing a simplex
pivot which removes from 7" the arc (~, {) on the path P(o, I), and replaces it so
as to maintain dual feasibility. Designate ~ as the root of i?, and let T ~ be the subtree
of T with root g and T ° = 7"\(T~w {(~, g)})--i.e., removing (6, {) from T divides it
into two components, T e and T t Let R e (C e) and R°(C °) be the sets of row (column)
nodes in T e and T °, respectively. It is easily verified that, as the dual nonbasic slack

%e = aoe- uo- ve is increased from zero to e,

~ increases by e, for i ~ R °, j c Ce,

~-~Jldecreases by e, for i c R e, j ~ C a,

(remains the same otherwise.

Consequently, if a dual simplex pivot is performed in which arc (~, g) is deleted

from i? and is replaced by arc(g, h), then g c N e and h e C °, and

~rgh = m i n { ~ i j l i e R e , j c C°}= e ~>0. (3)

If g was a terminal node in T, then our goal of reducing the number of terminal

nodes is achieved, and the basic step is complete. If this is not the case, we take g
as the source in place of ~, and repeat the above procedure with 7" replaced by T e.
Since IRel, the number of rows in Te, decreases by at least one (node g is removed)
on each repetition of the above simplex pivot, only a finite number of pivots is
required to complete the basic step. In fact, it is evident that, if 7" has k terminal
row nodes, then the number of simplex pivots required is, at most, n - k.

In Balinski's signature method [2], an initial dual feasible basis tree is constructed
with signature (n, 1, 1, . . . , 1). On each basic step, the degree of node 1 (the source)
is reduced by one, and some terminal row node's degree is increased by one. Clearlyl
n - 2 basic steps are needed to reach optimality, with the kth requiring at most k
simplex pivots. Thus, as shown in [2], a total of at most of 5~ ~-z k = (n - 1) (n - 2)/2
pivots is needed. The O(n 4) computational bound given by Balinski arises
from the fact that straightforward computation of (3) to determine the incoming
arc on each simplex pivot is O(n2). In the next section, we show how each basic
signature step can be accomplished using only O(n 2) operations. Since Balinski's
method requires only n - 2 basic steps, this results in an O(n 3) dual simplex

algorithm.

19. Goldfarb / Efficient dual simplex algorithms for the assignment problem 191

Before presenting this algorithm, it should be stressed that the basic signature

step can be carried out as long as the row signature contains more than one ' l ' - - i . e . ,

terminal row node. In Balinski's method, at the start of a basic step, all row nodes

except the source have degree one or two. This ensures that the primal variable xoe

that leaves the basis on a simplex pivot is less than or equal to zero. (See [2] for

proof of this.) In the general case, the leaving primal basic variable may also be
positive; hence, the dual objective function (2a) may increase, decrease, or remain

unchanged on a dual simplex pivot step.

3. O(n 3) signature algorithms

The key to the efficiency of the algorithms given below is the use of labels 3'i on
all row nodes i~ R e. These enable the algorithms to use information already

computed on previous simplex pivots during the current basic signature step.

To be specific, the computat ion

77"g h = min{eru [i c R e j 6 C a} = e (3)

that is required to determine the arc (g, h) to enter the basis on a simplex pivot can
be performed as

e = rain {Yi} = yg (4a)
i c R g

where

7i = min {Trij}, i ~ Re. (4b)
j e C °

The column index which gives the minimum in (4b) for each i e R t is also needed.
It is easily verified that the dual variables before and after (indicated by an overbar)

a simplex pivot are related as follows:

ui = ui + e, i c R e, ui = ui, otherwise.

~j = vj - e, j ~ Ce , ~j = vj, otherwise.

Furthermore, since /~ec R e and C°D C °, it follows that

~?~=min{y~-e, min {iro}}ic/~e.
j ~ ~ ' ~ \ C ~

Consequently, no matter how many simplex pivots are carried out during a basic

signature step, each 7ro needs to be computed and compared only once. Since the
rest of the work required by a simplex pivot is O(n) and there are at most n - 2
pivots per basic signature step, the step can be accomplished using only O(n 2)
operations. 1 An O(r/3) signature algorithm which combines the above observations
with Balinski's method [2] follows:

i The use of the row node labels y, to reduce the computational requirements of Balinski's method
has independently been suggested by W. Cunningham [Balinski; private communication].

192 D. Goldfarb / Efficient dual simplex algorithms for the assignment problem

Signature Algorithm 1
Input: n x n matr ix a o

Output: An opt imal match ing (ass ignment) for the bipart i te g raph G(R, C, E) ;
E = R X C , IRI--IC[--n, tEl=n 2.

Step (0) Initialization: Compute initial dual feasible solution (u, v), and basis

tree 7". Set T ~- O and Q~-R\{1} .

(i) Set Ul <- 0 and p <-- 1.
(ii) For e v e r y j c C, set v) ~ al) and T<-- T u { (1 , j) }

(iii) For every i ~ Q, compute minj~c {a 0 - vj}-= a i k - vk and set ui

aik--Vk and T<-- T u { (i , k)}.
Step (1) Reduce the number of terminal row nodes, Q, by one. I f IQI = 1 (or the

ass ignment X is feasible) 2 STOP; otherwise, choose a target node t c Q.

Set o ~ p and T~- T.
Step (2) Dual Simplex Step

(a) Choose edge to leave basis tree. Choose 6 as the root o f T. Let

(6, {) be the edge on the unique pa th P(o, t) in T f rom o to t that is
adjacent to 6. Let T e be the subtree of T with root g, and T ° =

7" \ (rew{(o ,g)}) ; i.e., removing arc (o, t ') f rom T creates two com-
ponents , T e and T °. Let R e (c e) and R°(C ~) be the row (column) nodes

in the current T e and T ~, respectively. I f ~ = p, set Y~ ~ oe for all i c R e.
(b) Choose edge to enter basis tree. For every i c R e and j e C a, ((i,j)

E) compu te ~r 0 = a~j - ui - vj. 3 I f ~ j < % set -/~ ~- 7r~ and col(i) ~-Z Com-

pute e = m i n ~ # { - / ~ } ~ - 7g and let h ~ c o l (g) .

(c) Update Dual (and Primal) Variables and Basis Tree.
For every i~Y~ e, set u ~ u i + e and y~+-y~-e.
For every j c C e, set vj ~- vj - e.

Set T ~ (T \ { (6 , g)I)vo {(g, h)}.
(Upda te pr imal var iables; i.e., ass ignment X.)
I f g ¢ Q, set o <-- g, T<-- T e and go to Step (2). Otherwise, set Q ~ Q\{g}

and go to Step (1).

w e now give a s ignature a lgor i thm whose worst-case computa t iona l b o u n d is
slightly bet ter than the b o u n d for the a lgor i thm above. The i m p r o v e m e n t is ob ta ined
by solving a sequence of ass ignment problems, each larger than the preceding one
by a pair o f nodes, starting f rom a I x 1 problem.

Given an op t imal solut ion to a (k x k) ass ignment p rob lem and basis tree T having
exactly one terminal row node, T is first ex tended to the (k + 1) x (k + 1) p rob lem
mainta in ing dual feasibility. Then, if necessary, one basic s ignature step is executed

to reduce the n u m b e r of terminal row nodes f rom two to one. Because this step
requires at most O (k + 1) 2) ra ther than O(n 2) operat ions , there is a reduct ion in the
coefficient o f n 3 in the worst-case computa t iona l bound. This a lgor i thm follows.

2 As Balinski [2] points out, it is not necessary to compute primal variables during the course of a
signature method.

3 Here C ~ is what was previously denoted by t~°\C °.

D. Goldfarb / Efficient dual simplex algorithms for the assignment problem 193

Signature Algorithm 2
Input and Output: Same as Algorithm 1

Step (0) Compute an optimal solution to the (1 x 1) assignment problem.
Set Ul~-0, v l ~ a j l , T+-{(1, 1)} and Q~-{1}.

Step (1) Do for k = 1 , . . . , n - l ,
Call procedure: EXTEND(k)

Procedure: EXTEND(k)
Input: Optimal solution (u, v, x) to a k x k assignment problem, and basis tree T

having exactly one terminal row node, i.e., IQI = 1.
Output: Optimal solution to (k+ 1) x (k + 1) assignment problem obtained by

adding (k+ 1)st pair of nodes and their associated edges.
Step (0): Extend k x k dual feasible solution and tree to (k + 1) × (k + 1) problem :

(i) Compute minl ,~,k {ak+lj - vj} =- ak+l, q - Vq

and set uk+l ~ ak+l,q -- Vq, r ~ r w {(k+ 1, q)},
and Q ~ Q u { k + l } .

(ii) Compute minl~i~k+l {ai, k+l -- Ui} ~- ap, k+l -- Up

and set Vk+a~-ap, k+l--Up and T ~ T u { (p , k + l) }
If p ~ Q, set Q~-Q\{p}; otherwise execute Step (1) of Algorithm 1.

4. Detailed computational analysis

The upper bound of l(n - 1)(n - 2) on the number of simplex pivots required by
algorithm 1 is shown in [2] to be attained for the particular matrix a~ = (n - i) (j - 1).
In this section, we shall derive strict upper bounds on the computational requirements
(i.e., arithmetic operations and comparisons) for algorithms 1 and 2 and exhibit
matrices for which these bounds are achieved.

Let us consider a basic signature step starting from a basis tree with k terminal
row nodes. The computational cost of a basic step comes for the most part from
steps (2b) and (2c) on each simplex pivot. We shall first analyze the maximum
amount of work required by step (2b) for choosing the edge to enter the basis.
Clearly, this work is maximized when IC ~1 and]Rel are as large as possible on each
pivot and the maximum number of pivots is performed. Since IC e] i>1 and]R~I i>1
(o c R°), and at least one node must be added to C ~ and deleted from R e on each
pivot it follows that the number of dual slacks ~'0 (reduced costs) that must be
computed during the at most n - k pivots required by a basic step starting with k
terminal nodes is

n--k--1
k (n - 1) + 2 (n - l - i) = (n - 1) 2 - ½ (n - k) (n - k - 1) .

i = l

Consequently, the total computational cost of computing the ~'~ in step 2b for an

1 9 4 D. Goldfarb / Efficient dual simplex algorithms for the assignment problem

n × n assignment problem is at most

rl--I

E [(n - l) 2 - ½ (n - k) (n - k - 1)] = ~ (n - 2) (n - 1) (5 n - 3)
k=2

5 n 3 - 1 8 n 2 + 1 9 n - 6

6

where here we are considering 2 additions and 1 comparison as one unit of cost.

The work required by step (2c) of algorithm 1 is roughly proport ional to the

number of nodes in T e. This is because only the dual variables corresponding to

nodes in T e are updated and the work required to update the list structures used

to represent the basis tree T, is proportional to I Tel. On the other hand there are
only]Re] labels yi updated in step (2c).

As in the analysis above, the amount of work required is greatest if]Tel (i.e. IRq)
is chosen as large as possible at the start of a basic step and is decreased as slowly
as possible. In particular the worst case occurs when IRel = n - 1 initially. In this
case if the number of terminal nodes in T is k, then [Cel = n - k and Irq-- 2n - k - 1
since the non-terminal nodes in T e are all of degree 2. Since there are at most n - k

pivots and each reduces the number of nodes in T e by at least 2 an upper bound
on the number of dual variable updates required by a basic step starting with k

terminal nodes is

n k - I

E
i = 0

(2 n - k - 1 - 2 i) = n (n - k) .

Consequently the total work required by step (2c) to solve an n x n assignment

problem is approximately proportional to

n--1

2
k = 2

n (n - k) = ½ n (n - 1) (n - 2) =½(n 3 - 3 n 2 + 2 n)

in the worst case.

Let us now consider procedure EXTEND(k) . In the worst case k - 1 pivots are
required by the signature step to reduce the number of terminal row nodes from

two to one. As each pivot in this case results in Ic°l increasing by one and IRe[
decreasing by one starting from [C°] = 2 and [eq ; k, we obtain

k-1 k 2 + 3 k _ 2
2 k + ~ i -

i = 2 2

as an upper bound on the number of vrij that need to be computed and compared

by EXTEND(k) . Since procedure E X T E N D (k) is called for k = 1 , . . . , n - 1 we

obtain

n-1
y

k = l

½ (k 2 + 3 k - 2) = ~n(n + S)(n - 2) + l =1(n3 + 2 n 2 - 1 0 n + 6)

19. Goldfarb / Efficient dual simplex algorithms for the assignment problem 195

as an upper bound on the total computations and comparisons of ~-~ that are needed

to solve an n x n assignment problem.
Further the number of dual variable updates required by EXTEND(k) is at most

k--1

Y~ (2 j+ 1) = k 2 - 1.
j - - 1

Therefore the total work required by step (2c) of the basic signature step in algorithm

2 is approximately proportional to

n 1

(k 2- 1) =~(2n +3) (n - 1)(n --2) =½n 3-½n2-~n + 1
k = l

in the worst case.
The only other major computational demands in our algorithms occur in the

computation of e in step (2b). One can verify that in algorithms 1 and 2, respectively,
a total of ~(2n - 3) (n - 1)(n - 2) and 16n(n - 1)(n - 2) comparisons are needed in the
worst case. As we shall see in Section 6, these upper bounds on the cost of computing
e and those involved in step (2c) can be reduced by using sophisticated data
structures and block pivots, respectively.

It is easy to show that the upper bounds for algorithm 1 are attained for the

matrix aq = (n - i) (j - 1) (or equivalently a0 = - / j) by expanding on the arguments
given in [2]. Algorithm 2, however, solves this problem trivially using only O(n 2)
operations. On the other hand, both algorithms achieve their worst-case bounds for
the matrix aq = / j first used by R. Silver in [19] as a worst-case example for the
Hungarian method. Dual feasible trees for this problem have the property that all
nonadjacent edges 'cross'. If (i , j) and (h, k) are in T and T is dual feasible then

ui + vj = ij, Uh + Vk = hk , ui + vk <~ ik, U h -{- Vj ~ hi.

Adding the inequalities and subtracting the equations yields

(h - i) (j - k) >t 0

which implies that edges (i , j) and (h, k) cross if i # h and j # k i.e.

i h h i

o r

k i i k

In contrast, dual feasible trees for the matrix ao = (n - i) (j - 1) have 'no crossings'
as shown in [2].

196 D. Goldfarb / Efficient dual simplex algorithms for the assignment problem

5. I n a d m i s s i b l e arcs

The algorithms presented in Section 3 assume that all assignments are admissible.
I f this is not the case (i.e., G is not a complete bipartite graph) then in order for

algorithms 1 and 2 to be used as given, inadmissible arcs must be replaced by

artificial arcs with very large weights. In this section we describe how to modify
algorithms 1 and 2 to take advantage of any sparseness in G directly. Let us assume

that G is connected; otherwise, the assignment problem decomposes into a collection
of smaller problems and our task becomes easier. Further, we assume that G has
a complete matching (i.e., one with cardinality equal to n).

Our first appoach is based upon modifying algorithm 1. In the initialization step

of that algoirthm an initial basis tree, T, is grown out of row node 1 with all column
nodes at level one and all row nodes other than node 1 at level two. Here we are

using level to denote the distance of a node in T from the root (i.e., row node 1).

When there are inadmissible arcs (i.e., sparsity), it may be necessary to construct

an initial basis tree that has more than two levels in addition to the root. Starting

from a particular row node one simply grows T one level at a time where the nodes
added to level k + 1 of T are just those nodes, connected by an arc in E to nodes

in level k of T, that have not yet been added to T. Specifically, the initialization

step for the modified algorithm 1 becomes:

Initialization: Compute initial dual feasible solution (u, v) and basis tree T.

(i) Set T ~ O , C ~ - C , / ~ { 1 } , / ~ - g \ / ~ , Q ~ R , P~-~ and u l ~ 0 .
(ii) I f C = ~ , go to step (1);

else set C ~ - { j ~ C I (i , j) ~ E for some ic/~}, and

for every j c C, set vj <-- m i n i ~ {ao - ui} = ak~ - Uk and T~- T u {(k,j)}.
I f k ~ Q, set Q <- Q\{ k}; else if k ~ P, set P <- P u { k}

(iii) I f / ~ =~, go to step (1);

else set R = { i c R l (i , j) ~ E for s o m e j ~ C}, and

for every i c/~, set ui ~- mini~d {ai~ - vj} = aik -- Vk and T ~ T w {(i, k)}.
Set C~- (~ \C and R , + - R \ R and go to (ii).

In the above procedure/~ and C are the sets of row and column nodes, respectively,
that have not yet been added to T. In step (ii) the next level of column nodes C _~
to be added to T are determined. These are just those nodes in C that are connected

by an arc to the last level of row nodes,/~, in T. Moreover, the choice of vj in step

(ii) ensures that 7r 01> 0 for all i c /~ and j c C and ~r o = 0 for the arc added to T.
The above statements about step (ii) apply to step (iii) if the roles of column and
row, C and R, and v and u are interchanged. Consequently, the dual solution
produced by this procedure is both basic and feasible. Note that when this initializ-
ation step is finished, P and Q are, respectively, the sets of candidate source nodes
(row nodes with degree >/3) and target nodes (terminal row nodes).

D. Goldfarb / Efficient dual simplex algorithms for the assignment problem 197

Step (1) o f algori thm 1 remains the same except that prior to setting s ~ p we

must insert the instruction ' choose a source node p ~ P ' .

Besides the initialization step the other major change to algori thm 1 that is required

involves step (2b). Because o f sparsity there may be no admissible arcs f rom which

to choose an entering arc. (i.e., e = ~) . I f this happens we can in t roduce an artificial

arc f rom the target node t to any column node h in T \ T e, assign it a prohibit ively

large weight M, and set g <-- t. By choosing g = t we complete a basic signature step;

consequently, the number o f artificial arcs that may have to be in t roduced is less

than the number o f initial terminal nodes. Also, in contrast to replacing all inadmiss-

ible arcs by artificial arcs, there is no need to store a full n x n matrix o f weights.

See the discussion in the next section on data structures that require O(m) space

for the weights a~ in problems with m = [E I arcs.

In the above method we found it necessary to allow the introduct ion o f artificial

arcs when there were no admissible arcs f rom which to choose an arc to enter the

basis tree. One might think that, when this happens , one need only choose an

alternative source or target node, if any exist, and cont inue the algorithm. Unfor tu-

nately, it is not obvious how to do this and obtain an algori thm with a low order

worst-case time bound.

We now show how algori thm 2 can be modif ied to give an efficient algori thm that

does not require the in t roduct ion o f artificial arcs. The only catch is that we must

first find a complete matching in G. Since this preprocessing step can be done in

O(n l /2m) t ime [12] it does not affect the worst case time b o u n d for an efficient

implementa t ion (see the next section); on the other hand its cost is not negligible.

After this step is completed we choose any matched pair o f row and column nodes

and compute the trivial opt imal solution to this (1 x 1) assignment problem as in

step (0) o f a lgori thm 1. Before calling procedure E X T E N D (k) in step (1) we must

first find an arc (i , j) in G with i~ T and j 6 T. (T is the basis tree for the current

k x k ass ignment problem.) I f such an arc is found, then i and its matched column

node are treated as the (k + 1)st pair o f nodes and E X T E N D (k) is executed with

the change that minimizat ions in it are taken only over admissible arcs in E and
the new row node is chosen as the target t . 4 I f no such arc exists, then the full

problem decomposes into two simpler problems: a k x k problem whose optimal

solution we have already found an (n - k) x (n - k) problem which we can at tempt

to solve with algori thm 2.

6. Efficient algorithms for sparse assignment problems

I f the algori thms described in the preceding section are to be efficient both in

space and time, then care must be exercised in their implementa t ion and in the

4 Because there is an arc from row node i to its matched column node, the set of admissible arcs that
can enter the basis during any simplex pivot in EXTEND(k) is never empty; in particular, throughout
the signature step, t = i remains in R e and its matched column node remains in C °.

198 D. Goldfarb / Efficient dual simplex algorithms for the assignment problem

choice of data structures used. In this section we consider how to (i) store the
problem data using only O(m) locations while ensuring that the total time spent
accessing this data is O(mn), (ii) update the dual variables, row node labels and
basis tree in O(n) time per basic signature step even if such a step requires O(n)

simplex pivots, and (iii) choose the entering arc on a simplex pivot in less than
O(n) time.

(i) Data Structures for Problem Data: The standard way to store arc data for a

sparse graph is with one adjacency list for each node. This approach requires O(m)

storage but is inefficient timewise because we may have to scan the entire list for

node i to find the weight a~ or determine that arc (i , j) is inadmissible. Clearly, we

need a data structure with constant access time. The full n × n adjacency matrix of

weights a# has constant access time for all n 2 possible arcs but requires O(n 2) storage.
Recently, Fredman et al. [10] devised a clever method for storing ni integers from

the set 1 , . . . , n which uses O(ni) space and requires constant time for accesses.
This scheme is based upon two levels of hashing; specifically a perfect hashing

function is used at the second level to resolve collisions caused at the first level.
Construction of this data structure can be done in expected time O(ni) and in O(n~n)
time in the worst case. Consequently, if used for all adjacency lists (n~ is the
cardinality of the list for node i), this structure can be constructed in at most O(mn)
time.

Unfortunately, constant access time is not enough to guarantee that no more than

O(m) amount of time is spent computing all dual nonbasic slacks ~-~j required during

a basic signature step. The problem with the above scheme, and the full adjacency
matrix as well, is that we have no way of knowing whether a candidate arc is
admissible or not other than trying to access it. Hence, since all arcs(i,j) with i ~ R e
and j ~ C s are candidates in step (2b) of our algorithms, as many as O(n2), (O(k 2)

in versions of Algorithm 2) accesses may be required during one basic signature
step even if there are only O(n) admissible arcs.

Applying the sparse variant of algorithm 1 to a problem with 3 n - 2 admissible
arcs, with a , = i, al~ = a , = 1, for all i = 1 , . . . , n requires a total

n - 1 (n 2 - 1)(n --2)
2 (n - 1) k - -O(n 3)

k - 2 2

accesses, even though only n - 2 simplex pivots (one per basic signature step) are
needed. The initialization step produces a basis tree T consisting of the arcs (1, 1)
and (1, i) and (i, 1) for all i -- 1, . . . , n. It is easily verified that on the kth iteration
of the algorithm R e = { 2 , 3 , . . . , n} and C ° = { k + l , k + 2 , . . . , n} and a r c (l , k) in T

is replaced by arc (k + 1, k + 1). (See Fig. 2.)
For the sparse variant of algorithm 2 we can obtain similar results for an assignment

problem containing 3 n - 2 arcs with weights

a~,~=l, i = l , . . . , n , a , = 2 , i = 2 , . . . , n , ai,~_2=l, i = 3 , . . . , n , and a2~=l .

(See Fig. 3.) It is easy to show that on the call EXTEND(k) , after arcs (k + 1, k - 1)

D. Goldfarb / Efficient dual simplex algorithms for the assignment problem 199

1 2 3 4 5

1 2 3 4 5

(a)

1 2 4 5

1 2 3 4 5

(b)

Fig. 2. (a) Graph for sparse 5 x5 assignment problem with a u =min(i,j) for all admissible arcs. (b)
Basis tree T after two iterations of the sparse variant of algorithm 1 on the problem in (a).

2 3 4 5

2 3 4 5

(a)

1 2 3 4 5

1 2 3 4 5

(b)

Fig. 3. (a) Graph for sparse 5 x 5 assignment problem with all = 2 for i = 2 , . . . , 5 and aq = 1 for all other
admissible arcs. (b) Basis tree T at the start of the kth call to procedure EXTEND(k) for the problem

in (a).

and (1, k + 1) are a d d e d to T, a s implex p ivo t rep laces arc (1, k - 1) by (k + 1, k + 1)

to comple t e a bas ic s igna ture step. Moreover ,

(p + l) if k is even and k = 2 p ,

[R e I ' [C ° I = (p + 1) 2 - 1 if k is o d d and k = 2 p + l .

Consequen t ly , that s tep requi res O (k 2) accesses even though the k × k s u b p r o b l e m

has only O (k) arcs.

Clear ly , we need a da t a s t ructure that a l lows us to access in cons tan t t ime all

admiss ib le arcs (i, j) ~ E with i ~ R e and j ~ C s in s tep (2b) and only those arcs.

The fo l lowing s torage scheme meets these requi rements . I t is pe rhaps best v iewed

as a scheme for s tor ing a sparse ad j acency mat r ix A which a l lows rows to be de le t ed

efficiently. The entr ies o f A and thei r row and co lumn indices are s to red row-by- row

in three m length arrays. Pointers to the s tar t o f each row are s to red in a separa te

(n + 1) length array. (The (n + 1)st e lement o f this a r ray has the va lue m + 1 and is

i nc luded as a conven ien t de l imi te r o f the nth row.) Two add i t i ona l m- leng th ar rays

o f po in te r s are used to l ink toge ther e lements in the same co lumn as a doub ly - l i nked

list. F ina l ly , we need n po in te r s to the start o f each o f these co lumn lists. These are

a p p e n d e d to one o f the o ther po in t e r a r rays as shown in Fig. 4 be low to make

de le t ion o f the first e l emen t in a co lumn no different f rom any o ther e lement .

Because all e lements in the same row are s to red toge the r and co lumns are s tored

as d o u b l y - l i n k e d lists, all e lements o f rows tha t are r emoved f rom R e after a s implex

p ivo t can a lso efficiently be r emoved f rom the i r co lumn lists (i.e., in t ime p r o p o r t i o n a l

200

A =

m
0

a21

a31

0

a51

D. Goldfarb / Efficient dual simplex algorithms for the assignment problem

a12 a13 0 0

0 0 a24 0

0 a33 0 a35

a42 0 0 0

a52 0 a54 0 j

Rowstart

A

Row

Col

Up

Down

Fig. 4. A 5 x 5

I l l 3 15 18 19 [12}
1 2 3 4 5 G 7 8 9 i0 II

l a ,l l la , l
Ii11 12 L 21 B ;3 1 3 1 4 15 15 I 5

12L3 11 1 41, ~ I B IS 12 I~ 1 2 I 4

113114 i 12 1151 B 12 116 11 15 18 14 Cols~a~

1 8 1 6 t 5 1 1 1 I 9 I 0 I 0]io I0 i 0 I0 B I1 1 2 1 4 ~ 7 I

sparse matr ix and its representat ion by a file o f p a c k e d rows with e l ements in the same
c o l u m n l inked together as a d o u b l y - l i n k e d list.

to the number of such elements.) It fol lows that in a basic signature step each
nonzero element of A (i.e., each admissible arc) is accessed at most once, and no
zero elements are accessed if the computation of ~'ij in step (2b) is implemented by
scanning those column lists currently indexed by the set C °. The structure of each
column initially contained in the pointer arrays UP and D O W N is at least partially
destroyed during a signature step. However, because the structure o f A is also
maintained (rowwise) in the other arrays, it is easy to reconstruct these doubly-linked
column lists in O(m) time at the start of each basic signature step.

(ii) Block Updates: Since in the sparse case O(n 2) simplex pivots may be required
by the sparse variants of algorithms 1 and 2, and the computation o f e (i.e., the
minimum yi) in step (2b) and the updating o f the dual variables, the row node
labels, and the basis tree in step (2c) all require O(n) time per pivot, some further
modification of these algorithms are necessary if we are to obtain a worst-case time
bound that is better than O(n3).

We first observe that it is not necessary to update the dual variables and row
node labels until the end of a basic signature step in order to compute e and the
entering arc in step (2b). Since the changes in ui and vj cancel one another in the
computation of ~'ij, this dual slack will be correct if it is computed using the value
of the dual variables at the start of the basic signature step. The row node label y~
with which it is compared should have had the e computed in step (2b) subtracted
from it on every iteration since that label was last changed. The fol lowing version
of step (2b) accounts for this without changing the u~, vj and y~ on each iteration.

Step (2b')

D. Goldfarb / Efficient dual simplex algorithms for the assignment problem 201

For every j e ~ , 5 set ~3j~-vj-o-. and do: for every i~ R e, compute

~'0 = a~ - ui - 13~. I f ~'0 < Y~, set y~ <- -k~ and col(i) ~ j . Compute yg =

min~Re{y~} and set k ~ c o l (g) , e ~ y g - o', and o ' ~ yg.

Of course it is necessary to set o-, the cumulative sum of the e, to zero in step (1)

at the start of a basic signature step.
Our second observation is that because R e c T e (i.e., each new T e is nested within

the previous set Te), it is possible to postpone updating the basis tree until the
completion of a full basic signature step. I f we store the entering and leaving arcs
and e for each simplex pivot, we can do one 'block pivot ' at the end of a basic

signature step to update the basis tree and the dual variables in O(n) time.

The above two observations apply, of course, to the standard assignment problem

(i.e., the completely dense case). I f implemented in this fashion it shows that

Balinski's signature method behaves more like a dual simplex method which requires
O(n) pivots rather than one that requires O(n 2) pivots.

(iii) Choosing the Entering Arc: We need to introduce one more data structure

to obtain an improved worst-case bound for the running times of our algorithms
that is better than O(n3). In particular, we need a way to compute e in step (2b)

(yg in step (2b')) that does not require O(n) time. One way to do this is by keeping
the row node labels yi as a heap (priority queue) [1]. Quite recently, a new data

structure, the 'Fibonacci heap ' , was developed by Fredman and Tarjan [11] for

implementing heaps that is ideally suited to our needs. Fredman and Tarjan showed

how to use this structure to obtain an O (m n + n 2 log n) algorithm for the assignment

problem that is quite different from ours. A Fibonacci heap with k items allows an

arbitrary deletion, including the item with minimum value, in O(log k) amortized

time and all other heap operations, such as changing the value of an item and
finding the item with minimum value, in O(1) amortized time. For information on

heaps and amortized running times see [20] and [21], respectively.
The above amortized running times makes it possible to compute e in step (2b)

(and change the heap when Yi is changed) with a total cost of O(n 2 log n) in the

worst case, since the total number of simplex pivots (deletion of the item with
minimum value) and deletions of row modes from R e (arbitrary deletions from the

heap) is at most O(n2).
In [11] a Fibonacci heap is described as a 'collection of item-disjoint heap-ordered

trees'. In addition to the value (or key) 7i of each item it is shown in [11] how a

k-item Fibonacci heap can be represented using an additional four k-dimensional
arrays. These arrays enable each item to point to its parent and one of its children
and all siblings to be linked together in a doubly-linked circular list. For further
details of this representation and the algorithms for performing various operations

on Fibonacci heaps we refer the reader to [11].

5 We use the notation C~ to indicate the subset of column nodes in C~ that are connected by at least
one admissible arc to the subset of row nodes in R e Fortunately, the sparse matrix data structure
introduced above allows us to identify C°.

202 D. Goldfarb / Efficient dual simplex algorithms for the assignment problem

By combining all of the implementational techniques described above we obtain
algoirthms for the sparse assignment problem that have a worst-case running time
bound of O(rnn + n 2 log n). This bound is the same as the one given by Fredman
and Tarjan [11] and is the best that is currently known.

7. Practical matters and future work

Several of the implementational techniques described in the previous sections
have practical as well as theoretical value. This is certainly the case for the row
node labels Yi- It is also true for the technique of 'block pivots' and the use of step
(2b') in place of step (2b) which allows us to defer updating dual variables until
the end of a basic signature step. From the computational analysis given in Section
4, we see that this reduces the total cost of step (2c) from O(n 3) to O(n 2) in the
worst case.

On the other hand, the overhead involved in using Fibonacci heaps, probably
makes their use in our algorithms impractical. Moreover, we conjecture that the
number of pivots required by our algorithms for a sparse problem with m arcs can
be bounded above by O(m). This implies that the sparse assignment problem has
time complexity O(mn)--an intriguing open question.

The sparse matrix data structure depicted in Fig. 4 would probably only be efficient
in practice for problems that are fairly sparse. For problems that are only moderately
sparse, it would probably be better to access arc weights using a simple hashing
scheme, since the low overhead and storage requirements of such a method, would
compensate for the time spent.accessing nonexistant arcs.

We are in the process of programming our algorithms and intend to report the
results of computational tests which will enable us to evaluate the practical efficiency
of our algoirthms and the various implementational techniques already discussed.
We also intend to study the usefulness of switching from row to column signatures
after initialization when the latter has fewer terminal nodes.

From our perspective, the three most interesting open research problems raised
by signature methods are:

(i) Can the signature method be generalized to give an efficient algorithm for
the nonbipartite weighted matching problem, for which the current best bound is
O(min{mn log n,/73}) [12]?

(ii) Can the signature method be specialized to give an efficient algorithm for
the maximum cardinality matching problem?

(iii) Can the signature method be generalized to give a 'genuinely' polynomial
algorithm for the transportation problem?

Acknowledgement

I would like to thank Michel Balinski and Thomas McCormick for several
stimulating discussions and Robert Tarjan for bringing references [10] and [11] to
my attention.

D. Goldfarb / Efficient dual simplex algorithms for the assignment problem 203

References

[1] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The design and analysis of computer algorithms (Addison-
Wesley, Reading, MA, 1974).

[2] M.L Balinski, "Signature methods for the assignment problem", to appear in Operations Research.
[3] M.L. Balinskiand R.E. Gomory,"Aprimalmethodfortheassignment and transportation problems",

Management Science 10 (1964) 578-593.
[4] R. Barr, F. Glover and D. Klingman, "The alternating path basis algorithm for assignment problems",

Mathematical Programming 13 (1977) 1-13.
[5] D. Bertsekas, "A new algorithm for the assignment problem", Mathematical Programming 21 (1981)

152-171.
[6] W.H. Cunningham, "A network simplex method", Mathematical Programming 11 (1976) 105-116.
[7] W.H. Cunningham and A.B. Marsh, III, "A primal algorithm for optimum matching", Mathematical

Programming Study 8 (1978) 50-72.
[8] G.B. Dantzig, "Application of the Simplex Method to a Transportation Problem", in: T.C.

Koopmans, ed., Activity analysis of production and allocation (Wiley, New York, 1951) pp. 359-373.
[9] J. Edmonds and R.M. Karp, "Theoretical improvements in algorithmic efficiency for network flow

problems", Journal of the Association for Computing Machinery 19 (1972) 248-264.
[10] M.L. Fredman, J. Koml6s and E. Szemer6di, "Storing a sparse table with O(1) worst case access

time", Proceedings of the 23rd Annual IEEE Symposium on Foundations of Computer Science (1982),
165-169.

[11] M.L. Fredman and R.E. Tarjan, "Fibonacci heaps and their uses in improved network optimization
algorithms", preprint, January, 1984.

[12] Z. Galil, S. Micali and H. Gabow, "Maximal weighted matching on general graphs", Proceedings
of the 23rd Annual IEEE Symposium on Foundations of Computer Science (1982), 255-261.

[13] J.E. Hopcraft and R.M. Karp, "A n 5/2 Algorithm for maximum matchings in bipartite graphs",
SIAM Journal on Computing 2 (1973) 225-231.

[14] M.S. Hung, "A polynomial simplex method for the assignment problem", Operations Research 31
(1983) 595-600.

[15] M.S. Hung and W.O. Rom, "Solving the assignment problem by relaxation", Operations Research
28 (1980) 969-982.

[16] H.W. Kuhn, "The Hungarian method for the assignment problem", Naval Research Logistics
Quarterly 2 (1955) 83-97.

[17] E. Lawler, Combinatorial optimization, networks and matroids (Holt, Rinehart and Winston, New
York, 1976).

[18] E. Roohy-Laleh, Improvements to the theoretical efficiency of the network simplex method, Ph.D.
Thesis, Carleton University (Ottawa, 1981).

[19] D.D. Sleator and R.E. Tarjan, "Self-adjusting heaps", SIAM Journal on Computing, submitted.
[20] R.E. Tarjan, "Amortized computational complexity", SIAM Journal on Algebraic and Discrete

Methods, to appear.

