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Efficient algorithms based upon Balinski's signature method are described for solving the n × n 
assignment problem. These algorithms are special variants of the dual simplex method and are 
shown to have computational bounds of O(n3). Variants for solving sparse assignment problems 
with m arcs that require O(m) spzce and O(mn + n 2 log n) time in the worst case are also presented. 
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I. Introduction 

The assignment problem is a fundamental problem in linear programming and 
network flow theory. Because of its importance, it has been extensively studied and 
numerous specialized algorithms have been developed to solve it. The most efficient 
of these algorithms have computational bounds of O(r/3)  for the n x n problem in 
the dense case. These include effÉcient versions of Kuhn's Hungarian method [16] 
(see [17, p. 205] for example), a hybrid algorithm due to Bertsekas [5] which combines 
the Hungarian method with a related method, a relaxation method due to Hung 
and Rom [15] which is very closely related to a method of Edmonds and Karp [9], 
and an efficient version of Balinski and Gomory's [3] primal algorithm due to 
Cunningham and Marsh [7]. All of the above O(r l  3) algorithms are 'dual' in nature 
except the last, and none are network simplex algorithms. 

Recently three polynomially bounded network simplex algorithms for the assign- 
ment problem have been developed. Two of these, due to Roohy-Laleh [18] and 
Hung [14] are primal simplex algorithms based upon Cunningham's [6] 'strongly 
feasible' trees (see also Barr et al. [4], who call such trees 'alternating path bases'). 
Their bounds are respectively, O(n 5) and O(n s In A), where A is the difference 
between the initial and final values of the objective. The third method, due to 
Balinski [2], is an O(n 4) dual simplex algorithm based upon the 'signature' of a 
dual feasible basis. In this paper we show how to implement it and a variance in 
O(  n 3) operations. 
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188 19. Goldfarb / Efficient dual simplex algorithms for the assignment problem 

The O(n 3) bound for our variants of  Balinski's method is as good as the best 
bounds known for any other algorithm for the assignment problem. This is significant 

because no such statement can be made at the present time about the worst-case 
computat ional  complexity of  any variant of  the simplex method for any other class 

of  linear programming problems. Balinski's method is a dual simplex method since 

it proceeds from dual feasible basis (vertex) to adjacent dual feasible basis. We 

note that it does not, however, choose pivots in the usual way. 
In the next section, we briefly describe Balinski's 'signature'  method and introduce 

the terminology and notation needed subsequently. Our new algorithms are presen- 
ted in Section 3. Detailed computational analyses are given in Section 4. In Section 

5, we discuss how to modify our algorithms when some assignments are not 

admissible. In Section 6 we show how to implement these algorithms so that they 
require only O(rn) storage and at most O ( m n +  nZlog n) computat ional  time on 
problems with rn admissible assignments. Finally, in Section 7, various matters 

relevant to the practical implementation of our algorithms and areas for future 

investigations are discussed. 

2. The basic signature method 

Consider a complete bipartite graph G = (R, C, E)  with E = R x C and IRI = Ic I  = 
n. By an assignment or matching, we mean a subset X of arcs ( i , j )  ~ E such that 

there is exactly one arc in X for each row node i c R and each column node j c C. 
Given a weight a U for each arc ( i , j )  c E, the n × n assignment problem is that of  
finding an assignment amongst  the n! possibilities X that minimizes ~(~.j)~X a!J. 

It is well known that the n × n assignment problem can be formulated as the 

linear programming problem: 

minimize Y~ aijx~ ( la)  
t,J 

subject t o e  x o =  1 for all i =  1 , . . . ,  n, ( lb)  
J 

( lc)  x 0 = 1  for a l l j = l , . . . , n ,  
i 

xij~>0 fora l l  i , j = l , . . . , n ,  ( ld)  

where at optimality xij = 1 if and only if ( i , j )  ~ X. The corresponding dual linear 

program is: 

maximize Y~ ui + ~ vj (2a) 
i j 

subject to u~+ vj ~< a~; for all i, j = 1 , . . . ,  n. (2b) 

Consequently, the n x n assignment problem can be solved by applying some version 
of the simplex method to either of these linear programs. Moreover, as the assignment 
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problem is a special case of  the minimum cost network flow problem, so-called 

network simplex algorithms can be used to obtain an optimal solution. (See Dantzig 

[8] for the first such algorithm.) 

We now recall that a set of  columns of the constraint matrix corresponding to 
( l b ) - ( l c )  indexed by T_c E is a column basis for this matrix if and only if T is a 
spanning tree of  G. Given T, a unique solution to the primal constraints ( l b ) - ( l c )  

is obtained by setting xo.=O for all ( i , j )~ T. If, in addition, we arbitrarily fix the 

value of one of the dual variables (e.g. u~ = 0) then a dual solution is easily computed 

from the equations 

ui + vj = ao for all (i,j) • T. 

Of course, for an arbitrary T, x (u and v) will not, in general, be primal (dual) 

feasible; if x is (u and v are), then T will be called primal (dual) feasible. Henceforth,  

we shall use the notation T to denote a tree, and P(v, w) to denote the unique path 

in T between two nodes v and w in T. It should not cause confusion that T is used 
to denote the set of  arcs of  a tree at certain times and the set of  nodes at others. 

We shall also consider trees to be rooted; i.e. there is a designated node r • T called 
the root of  T and the remaining nodes in T excluding r are parti t ioned into k > 0 

disjoint subsets called subtrees of  r, each of which is itself a tree. 
In [2] Balinski defines the 'signature'  of  a tree T as the n-vector d = ( d ~ , . . . ,  d,)  

where di is the degree in T of row node i e R. Clearly the column, as opposed to 

row, signature could also be defined. An important  property of  the signature of  T 
is that if it has only one component  equal to 1 then the x corresponding to T is a 

feasible assignment. To see that this is indeed the case, observe that all other 

components  must equal 2 since }~i d ~ = 2 n - 1  and dg~ > 1 for all i (T  is a spanning 

tree of  2n nodes and 2n - 1 arcs). Let r e  R be the row node in T with dr -- 1 and let 

X = {(i , j)[(i , j)  = arc on path P(r, j)  adjacent to j, for all j • C}. 

Clearly each column node j • C is covered by X and since for all i • R, di = 2 except 

for i = r (dr = 1) it is evident that each row node is covered by exactly one arc. See 
Fig. 1. 

• r o w  nodes  

o c o l u m n  nodes 

- -  a rcs  in a s s i g n m e n t  

. . . .  arcs n o t  in a s s i g n m e n t  

Fig. 1. An assignment corresponding to a basis tree with exactly one terminal row node. 

I f  a basis tree T has exactly one ' terminal '  row node (i.e. a row node with degree 
one) and is also dual feasible then the assignment X that corresponds to T is 
optimal. Hence, given a dual feasible basis tree T, an algorithm which reduces the 
number  of  terminal row nodes while maintaining dual feasibility can be used 
recursively to produce an optimal assignment. This is the basic step of a signature 
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method. As we shall now show, it can be achieved by a finite sequence of simplex 
pivots. These pivots are performed without explicit reference to the values of the 
primal variables; hence, the change in the primal (dual) objective function may be 
positive, negative or zero, in contrast with standard variants of  the simplex method. 

2. The basic signature step 

Let T be a given dual feasible tree with more than one terminal row node. Choose 

one of these nodes, say I, as the 'target', and any row node ~ of degree d~ I> 3 (there 
must be at least one such node) as the 'source'. Consider performing a simplex 
pivot which removes from 7" the arc (~, {) on the path P(o, I),  and replaces it so 
as to maintain dual feasibility. Designate ~ as the root of i?, and let T ~ be the subtree 
of T with root g and T ° = 7"\(T~w {(~, g)})--i.e., removing (6, {) from T divides it 
into two components, T e and T t  Let R e ( C  e) and R°(C °) be the sets of row (column) 
nodes in T e and T °, respectively. It is easily verified that, as the dual nonbasic slack 

%e = aoe-  uo-  ve is increased from zero to e, 

~ increases by e, for i ~ R °, j c Ce, 

~-~Jldecreases by e, for i c R e, j ~ C a, 

( remains the same otherwise. 

Consequently, if a dual simplex pivot is performed in which arc (~, g) is deleted 

from i? and is replaced by arc(g,  h), then g c N e  and h e  C °, and 

~rgh = m i n { ~ i j l i e R e , j c  C°}= e ~>0. (3) 

If g was a terminal node in T, then our goal of reducing the number of terminal 

nodes is achieved, and the basic step is complete. If  this is not the case, we take g 
as the source in place of ~, and repeat the above procedure with 7" replaced by T e. 
Since IRel, the number of rows in Te, decreases by at least one (node g is removed) 
on each repetition of the above simplex pivot, only a finite number of pivots is 
required to complete the basic step. In fact, it is evident that, if 7" has k terminal 
row nodes, then the number of simplex pivots required is, at most, n - k. 

In Balinski's signature method [2], an initial dual feasible basis tree is constructed 
with signature (n, 1, 1, . . . ,  1). On each basic step, the degree of node 1 (the source) 
is reduced by one, and some terminal row node's degree is increased by one. Clearlyl 
n - 2  basic steps are needed to reach optimality, with the kth requiring at most k 
simplex pivots. Thus, as shown in [2], a total of at most of 5~ ~-z k = ( n -  1 ) ( n -  2)/2 
pivots is needed. The O(n 4) computational bound given by Balinski arises 
from the fact that straightforward computation of (3) to determine the incoming 
arc on each simplex pivot is O(n2). In the next section, we show how each basic 
signature step can be accomplished using only O(n 2) operations. Since Balinski's 
method requires only n - 2  basic steps, this results in an O(n 3) dual simplex 

algorithm. 
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Before presenting this algorithm, it should be stressed that the basic signature 

step can be carried out as long as the row signature contains more than one ' l ' - - i . e . ,  

terminal row node. In Balinski's method, at the start of  a basic step, all row nodes 

except the source have degree one or two. This ensures that the primal variable xoe 

that leaves the basis on a simplex pivot is less than or equal to zero. (See [2] for 

proof  of  this.) In the general case, the leaving primal basic variable may also be 
positive; hence, the dual objective function (2a) may increase, decrease, or remain 

unchanged on a dual simplex pivot step. 

3. O(n 3) signature algorithms 

The key to the efficiency of the algorithms given below is the use of  labels 3'i on 
all row nodes i~ R e. These enable the algorithms to use information already 

computed on previous simplex pivots during the current basic signature step. 

To be specific, the computat ion 

77"g h = min{eru [ i c R e j 6 C a} = e (3) 

that is required to determine the arc (g, h) to enter the basis on a simplex pivot can 
be performed as 

e = rain {Yi} = yg (4a) 
i c R  g 

where 

7i = min {Trij}, i ~ Re. (4b) 
j e C  ° 

The column index which gives the minimum in (4b) for each i e R t is also needed. 
It is easily verified that the dual variables before and after (indicated by an overbar) 

a simplex pivot are related as follows: 

ui = ui + e, i c R e, ui = ui, otherwise. 

~j = vj - e, j ~ Ce ,  ~j = vj, otherwise. 

Furthermore, since /~ec  R e and C°D C °, it follows that 

~?~=min{y~-e, min {iro}}ic/~e. 
j ~ ~ ' ~ \  C ~ 

Consequently, no matter how many simplex pivots are carried out during a basic 

signature step, each 7ro needs to be computed and compared only once. Since the 
rest of  the work required by a simplex pivot is O(n)  and there are at most n - 2  
pivots per basic signature step, the step can be accomplished using only O(n 2) 
operations. 1 An O(r/3) signature algorithm which combines the above observations 
with Balinski's method [2] follows: 

i The use of the row node labels y, to reduce the computational requirements of Balinski's method 
has independently been suggested by W. Cunningham [Balinski; private communication]. 
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Signature Algorithm 1 
Input: n x n matr ix  a o 

Output: An opt imal  match ing  (ass ignment)  for  the bipart i te  g raph  G(R, C, E ) ;  
E = R X C ,  IRI--IC[--n, tEl=n 2. 

Step (0) Initialization: Compute initial dual feasible solution (u, v), and basis 

tree 7". Set T ~- O and Q~-R\{1} .  

(i) Set Ul <- 0 and  p <-- 1. 
(ii) For  e v e r y j c  C, set v ) ~  al) and T<-- T u { ( 1 , j ) }  

(iii) For  every i ~ Q, compute  minj~c {a 0 -  vj}-= a i k -  vk and  set ui 

aik--Vk and T<-- T u { ( i ,  k)}. 
Step (1) Reduce the number of terminal row nodes, Q, by one. I f  IQI = 1 (or the 

ass ignment  X is feasible) 2 STOP;  otherwise,  choose a target  node  t c Q. 

Set o ~ p  and  T~- T. 
Step (2) Dual Simplex Step 

(a) Choose edge to leave basis tree. Choose  6 as the root  o f  T. Let 

(6, {) be the edge on the unique pa th  P(o,  t) in T f rom o to t that  is 
adjacent  to 6. Let T e be the subtree of  T with root  g, and T ° =  

7" \ ( rew{(o ,g)} ) ;  i.e., removing  arc (o, t ' )  f rom T creates two com- 
ponents ,  T e and T °. Let R e ( c  e) and R°(C ~) be the row (column)  nodes  

in the current  T e and T ~, respectively.  I f  ~ = p, set Y~ ~ oe for  all i c R e. 
(b) Choose edge to enter basis tree. For  every i c R e and j e C a, (( i,j) 

E )  compu te  ~r 0 = a~j - ui - vj. 3 I f  ~ j  < % set -/~ ~- 7r~ and col( i)  ~-Z Com-  

pute  e = m i n ~ # { - / ~ } ~ -  7g and let h ~ c o l ( g ) .  

(c) Update Dual (and Primal) Variables and Basis Tree. 
For  every i~Y~ e, set u ~ u i + e  and y~+-y~-e. 
For  every j c C e, set vj ~- vj - e. 

Set T ~ ( T \ { ( 6 ,  g)I)vo {(g, h)}. 
(Upda te  pr imal  var iables;  i.e., ass ignment  X.) 
I f  g ¢  Q, set o <-- g, T<-- T e and go to Step (2). Otherwise,  set Q ~  Q\{g} 

and  go to Step (1). 

w e  now give a s ignature a lgor i thm whose  worst-case computa t iona l  b o u n d  is 
slightly bet ter  than  the b o u n d  for  the a lgor i thm above.  The i m p r o v e m e n t  is ob ta ined  
by solving a sequence  of  ass ignment  problems,  each larger than  the preceding  one 
by a pair  o f  nodes,  starting f rom a I x 1 problem.  

Given  an op t imal  solut ion to a (k x k) ass ignment  p rob lem and basis tree T having 
exactly one terminal  row node,  T is first ex tended to the ( k +  1 ) x ( k +  1) p rob lem 
mainta in ing  dual  feasibility. Then,  if  necessary,  one basic  s ignature step is executed 

to reduce the n u m b e r  of  terminal  row nodes  f rom two to one. Because this step 
requires at most  O ( k +  1) 2) ra ther  than  O(n  2) operat ions ,  there is a reduct ion in the 
coefficient o f  n 3 in the worst-case computa t iona l  bound.  This a lgor i thm follows. 

2 As Balinski [2] points out, it is not necessary to compute primal variables during the course of a 
signature method. 

3 Here C ~ is what was previously denoted by t~°\C °. 
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Signature Algorithm 2 
Input and Output: Same  as Algorithm 1 

Step (0) Compute an optimal solution to the (1 x 1) assignment problem. 
Set Ul~-0, v l ~ a j l ,  T+-{(1, 1)} and Q~-{1}. 

Step (1) Do for k =  1 , . . . ,  n - l ,  
Call procedure: EXTEND(k) 

Procedure: EXTEND(k) 
Input: Optimal solution (u, v, x) to a k x k assignment problem, and basis tree T 

having exactly one terminal row node, i.e., IQI = 1. 
Output: Optimal solution to (k+  1) x ( k +  1) assignment problem obtained by 

adding (k+  1)st pair of nodes and their associated edges. 
Step (0): Extend k x k dual feasible solution and tree to (k  + 1) × (k  + 1) problem : 

(i) Compute minl ,~,k {ak+lj - vj} =- ak+l, q - Vq 

and set uk+l ~ ak+l,q -- Vq, r ~  r w  {(k+ 1, q)}, 
and Q ~ Q u { k + l } .  

(ii) Compute minl~i~k+l {ai, k+l -- Ui} ~- ap, k+l -- Up 

and set Vk+a~-ap, k+l--Up and T ~  T u { ( p ,  k + l ) }  
If p ~ Q, set Q~-Q\{p};  otherwise execute Step (1) of Algorithm 1. 

4. Detailed computational analysis 

The upper bound of l(n - 1)(n - 2 )  on the number of simplex pivots required by 
algorithm 1 is shown in [2] to be attained for the particular matrix a~ = (n - i ) ( j  - 1). 
In this section, we shall derive strict upper bounds on the computational requirements 
(i.e., arithmetic operations and comparisons) for algorithms 1 and 2 and exhibit 
matrices for which these bounds are achieved. 

Let us consider a basic signature step starting from a basis tree with k terminal 
row nodes. The computational cost of a basic step comes for the most part from 
steps (2b) and (2c) on each simplex pivot. We shall first analyze the maximum 
amount of work required by step (2b) for choosing the edge to enter the basis. 
Clearly, this work is maximized when IC ~1 and ]Rel are as large as possible on each 
pivot and the maximum number of pivots is performed. Since IC e] i>1 and ]R~I i>1 
(o c R°), and at least one node must be added to C ~ and deleted from R e on each 
pivot it follows that the number of dual slacks ~'0 (reduced costs) that must be 
computed during the at most n -  k pivots required by a basic step starting with k 
terminal nodes is 

n--k--1 
k ( n - 1 ) +  2 ( n - l - i ) = ( n - 1 ) 2 - ½ ( n - k ) ( n - k - 1 ) .  

i = l  

Consequently, the total computational cost of computing the ~'~ in step 2b for an 
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n × n assignment problem is at most 

rl--I  

E [ ( n - l )  2 - ½ ( n - k ) ( n - k - 1 ) ] = ~ ( n - 2 ) ( n - 1 ) ( 5 n - 3 )  
k=2 

5 n 3 - 1 8 n 2  + 1 9 n - 6  

6 

where here we are considering 2 additions and 1 comparison as one unit of  cost. 

The work required by step (2c) of algorithm 1 is roughly proport ional  to the 

number  of  nodes in T e. This is because only the dual variables corresponding to 

nodes in T e are updated and the work required to update the list structures used 

to represent the basis tree T, is proportional to I Tel. On the other hand there are 
only ]Re] labels yi updated in step (2c). 

As in the analysis above, the amount of work required is greatest if ]Tel (i.e. IRq) 
is chosen as large as possible at the start of  a basic step and is decreased as slowly 
as possible. In particular the worst case occurs when IRel = n - 1 initially. In this 
case if the number  of terminal nodes in T is k, then [Cel = n - k and Irq-- 2n - k -  1 
since the non-terminal nodes in T e are all of  degree 2. Since there are at most n - k 

pivots and each reduces the number  of nodes in T e by at least 2 an upper  bound 
on the number  of  dual variable updates required by a basic step starting with k 

terminal nodes is 

n k - I  

E 
i = 0  

( 2 n -  k -  1 - 2 i )  = n ( n - k ) .  

Consequently the total work required by step (2c) to solve an n x n assignment 

problem is approximately proportional to 

n--1 

2 
k = 2  

n ( n -  k) = ½ n ( n -  1 ) ( n - 2 )  =½(n 3 - 3 n 2 + 2 n )  

in the worst case. 

Let us now consider procedure EXTEND(k) .  In the worst case k -  1 pivots are 
required by the signature step to reduce the number  of  terminal row nodes from 

two to one. As each pivot in this case results in Ic°l increasing by one and IRe[ 
decreasing by one starting from [C°] = 2 and [eq ;  k, we obtain 

k-1 k 2 + 3 k _ 2  
2 k + ~  i -  

i = 2  2 

as an upper  bound on the number  of  vrij that need to be computed and compared 

by EXTEND(k) .  Since procedure E X T E N D ( k )  is called for k =  1 , . . . ,  n - 1  we 

obtain 

n-1 
y 

k = l  

½ ( k 2 + 3 k - 2 )  = ~n( n + S)( n - 2 ) + l =1( n3 + 2 n 2 - 1 0 n  + 6) 
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as an upper bound on the total computations and comparisons of ~-~ that are needed 

to solve an n x n assignment problem. 
Further the number of dual variable updates required by EXTEND(k)  is at most 

k--1 

Y~ (2 j+  1) = k 2 -  1. 
j - - 1  

Therefore the total work required by step (2c) of the basic signature step in algorithm 

2 is approximately proportional to 

n 1 

(k 2-  1) =~(2n +3) (n  - 1)(n --2) =½n 3-½n2-~n + 1 
k = l  

in the worst case. 
The only other major computational demands in our algorithms occur in the 

computation of e in step (2b). One can verify that in algorithms 1 and 2, respectively, 
a total of ~(2n - 3 ) ( n  - 1)(n - 2 )  and 16n(n - 1)(n - 2 )  comparisons are needed in the 
worst case. As we shall see in Section 6, these upper bounds on the cost of computing 
e and those involved in step (2c) can be reduced by using sophisticated data 
structures and block pivots, respectively. 

It is easy to show that the upper bounds for algorithm 1 are attained for the 

matrix aq = ( n -  i ) ( j - 1 )  (or equivalently a0 = - / j )  by expanding on the arguments 
given in [2]. Algorithm 2, however, solves this problem trivially using only O(n 2) 
operations. On the other hand, both algorithms achieve their worst-case bounds for 
the matrix aq = / j  first used by R. Silver in [19] as a worst-case example for the 
Hungarian method. Dual feasible trees for this problem have the property that all 
nonadjacent edges 'cross'. If ( i , j )  and (h, k) are in T and T is dual feasible then 

ui + vj = ij, Uh + Vk = hk ,  ui + vk <~ ik, U h -{- Vj ~ hi. 

Adding the inequalities and subtracting the equations yields 

(h  - i ) ( j  - k )  >t 0 

which implies that edges ( i , j )  and (h, k) cross if i # h and j # k i.e. 

i h h i 

o r  

k i i k 

In contrast, dual feasible trees for the matrix ao = (n  - i ) ( j -  1) have 'no crossings' 
as shown in [2]. 
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5. I n a d m i s s i b l e  arcs  

The algorithms presented in Section 3 assume that all assignments are admissible. 
I f  this is not the case (i.e., G is not a complete bipartite graph) then in order for 

algorithms 1 and 2 to be used as given, inadmissible arcs must be replaced by 

artificial arcs with very large weights. In this section we describe how to modify 
algorithms 1 and 2 to take advantage of any sparseness in G directly. Let us assume 

that G is connected; otherwise, the assignment problem decomposes into a collection 
of smaller problems and our task becomes easier. Further, we assume that G has 
a complete matching (i.e., one with cardinality equal to n). 

Our first appoach is based upon modifying algorithm 1. In the initialization step 

of that algoirthm an initial basis tree, T, is grown out of  row node 1 with all column 
nodes at level one and all row nodes other than node 1 at level two. Here we are 

using level to denote the distance of a node in T from the root (i.e., row node 1). 

When there are inadmissible arcs (i.e., sparsity), it may be necessary to construct 

an initial basis tree that has more than two levels in addition to the root. Starting 

from a particular row node one simply grows T one level at a time where the nodes 
added to level k +  1 of T are just those nodes, connected by an arc in E to nodes 

in level k of  T, that have not yet been added to T. Specifically, the initialization 

step for the modified algorithm 1 becomes: 

Initialization: Compute initial dual feasible solution (u, v) and basis tree T. 

(i) Set T ~ O ,  C ~ - C , / ~ { 1 } ,  / ~ - g \ / ~ ,  Q ~ R ,  P~-~  and u l ~ 0 .  
(ii) I f  C = ~ ,  go to step (1); 

else set C ~ - { j ~  C I ( i , j ) ~ E  for some ic/~},  and 

for every j c C, set vj <-- m i n i ~  {ao - ui} = ak~ - Uk and T~- T u  {(k,j)}. 
I f  k ~ Q, set Q <- Q\{ k}; else if k ~ P, set P <- P u { k} 

(iii) I f / ~  =~,  go to step (1); 

else set R = { i c R l ( i , j ) ~ E  for s o m e j ~  C}, and 

for every i c/~, set ui ~- mini~d {ai~ - vj} = aik -- Vk and T ~  T w  {(i, k)}. 
Set C~- (~ \C  and R , + - R \ R  and go to (ii). 

In the above procedure/~ and C are the sets of  row and column nodes, respectively, 
that have not yet been added to T. In step (ii) the next level of  column nodes C _~ 
to be added to T are determined. These are just those nodes in C that are connected 

by an arc to the last level of row nodes,/~,  in T. Moreover, the choice of  vj in step 

(ii) ensures that 7r 01> 0 for all i c /~ and j c C and ~r o = 0 for the arc added to T. 
The above statements about step (ii) apply to step (iii) if the roles of  column and 
row, C and R, and v and u are interchanged. Consequently, the dual solution 
produced by this procedure is both basic and feasible. Note that when this initializ- 
ation step is finished, P and Q are, respectively, the sets of  candidate source nodes 
(row nodes with degree >/3) and target nodes (terminal row nodes). 
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Step (1) o f  algori thm 1 remains the same except that  prior  to setting s ~ p  we 

must  insert the instruction ' choose  a source node  p ~ P ' .  

Besides the initialization step the other major  change to algori thm 1 that  is required 

involves step (2b). Because o f  sparsity there may  be no admissible arcs f rom which 

to choose  an entering arc. (i.e., e = ~ ) .  I f  this happens  we can in t roduce an artificial 

arc f rom the target node  t to any column node  h in T \  T e, assign it a prohibit ively 

large weight M, and set g <-- t. By choosing g = t we complete  a basic signature step; 

consequently,  the number  o f  artificial arcs that  may have to be in t roduced is less 

than the number  o f  initial terminal nodes. Also, in contrast  to replacing all inadmiss- 

ible arcs by artificial arcs, there is no need to store a full n x n matrix o f  weights. 

See the discussion in the next section on data structures that require O(m)  space 

for the weights a~ in problems with m = [E I arcs. 

In the above method  we found  it necessary to allow the introduct ion o f  artificial 

arcs when there were no admissible arcs f rom which to choose an arc to enter the 

basis tree. One might  think that, when this happens ,  one need only choose  an 

alternative source or target node,  if any exist, and cont inue the algorithm. Unfor tu-  

nately, it is not  obvious how to do this and obtain an algori thm with a low order  

worst-case time bound.  

We now show how algori thm 2 can be modif ied to give an efficient algori thm that 

does not  require the in t roduct ion o f  artificial arcs. The only catch is that  we must  

first find a complete  matching in G. Since this preprocessing step can be done in 

O(n l /2m)  t ime [12] it does not  affect the worst case time b o u n d  for an efficient 

implementa t ion  (see the next section);  on  the other  hand  its cost is not  negligible. 

After this step is completed  we choose any matched  pair  o f  row and column nodes 

and compute  the trivial opt imal  solution to this (1 x 1) assignment problem as in 

step (0) o f  a lgori thm 1. Before calling procedure  E X T E N D ( k )  in step (1) we must  

first find an arc ( i , j )  in G with i~ T and j 6  T. ( T  is the basis tree for the current 

k x k ass ignment  problem.)  I f  such an arc is found,  then i and its matched  column 

node  are treated as the ( k +  1)st pair  o f  nodes  and E X T E N D ( k )  is executed with 

the change that  minimizat ions in it are taken only over admissible arcs in E and 
the new row node  is chosen as the target t .  4 I f  no such arc exists, then the full 

problem decomposes  into two simpler problems:  a k x k problem whose optimal 

solution we have already found  an ( n -  k) x ( n -  k) problem which we can at tempt 

to solve with algori thm 2. 

6. Efficient algorithms for sparse assignment problems 

I f  the algori thms described in the preceding section are to be efficient both in 

space and time, then care must  be exercised in their implementa t ion  and in the 

4 Because there is an arc from row node i to its matched column node, the set of admissible arcs that 
can enter the basis during any simplex pivot in EXTEND(k) is never empty; in particular, throughout 
the signature step, t = i remains in R e and its matched column node remains in C °. 
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choice of  data structures used. In this section we consider how to (i) store the 
problem data using only O(m) locations while ensuring that the total time spent 
accessing this data is O(mn),  (ii) update the dual variables, row node labels and 
basis tree in O(n) time per basic signature step even if such a step requires O(n) 

simplex pivots, and (iii) choose the entering arc on a simplex pivot in less than 
O(n) time. 

(i) Data Structures for Problem Data: The standard way to store arc data for a 

sparse graph is with one adjacency list for each node. This approach requires O(m) 

storage but is inefficient timewise because we may have to scan the entire list for 

node i to find the weight a~ or determine that arc (i , j)  is inadmissible. Clearly, we 

need a data structure with constant access time. The full n × n adjacency matrix of  

weights a# has constant access time for all n 2 possible arcs but requires O(n 2) storage. 
Recently, Fredman et al. [10] devised a clever method for storing ni integers from 

the set 1 , . . . ,  n which uses O(ni) space and requires constant time for accesses. 
This scheme is based upon two levels of  hashing; specifically a perfect hashing 

function is used at the second level to resolve collisions caused at the first level. 
Construction of this data structure can be done in expected time O(ni) and in O(n~n) 
time in the worst case. Consequently, if used for all adjacency lists (n~ is the 
cardinality of  the list for node i), this structure can be constructed in at most O(mn) 
time. 

Unfortunately, constant access time is not enough to guarantee that no more than 

O(m) amount  of  time is spent computing all dual nonbasic slacks ~-~j required during 

a basic signature step. The problem with the above scheme, and the full adjacency 
matrix as well, is that we have no way of knowing whether a candidate arc is 
admissible or not other than trying to access it. Hence, since all arcs(i,j) with i ~ R e 
and j ~ C s are candidates in step (2b) of  our algorithms, as many as O(n2), (O(k 2) 

in versions of  Algorithm 2) accesses may be required during one basic signature 
step even if there are only O(n) admissible arcs. 

Applying the sparse variant of  algorithm 1 to a problem with 3 n - 2  admissible 
arcs, with a ,  = i, al~ = a ,  = 1, for all i = 1 , . . . ,  n requires a total 

n - 1  (n 2 -  1)(n --2) 
2 ( n - 1 ) k -  -O(n 3) 

k - 2  2 

accesses, even though only n -  2 simplex pivots (one per basic signature step) are 
needed. The initialization step produces a basis tree T consisting of the arcs (1, 1) 
and (1, i) and (i, 1) for all i -- 1, . . . ,  n. It is easily verified that on the kth iteration 
of the algorithm R e = { 2 , 3 , . . . ,  n} and C ° = { k + l ,  k + 2 , . . . ,  n} and a r c ( l ,  k) in T 

is replaced by arc ( k +  1, k +  1). (See Fig. 2.) 
For the sparse variant of  algorithm 2 we can obtain similar results for an assignment 

problem containing 3 n - 2  arcs with weights 

a~,~=l, i = l , . . . , n ,  a , = 2 ,  i = 2 , . . . , n ,  ai,~_2=l, i = 3 , . . . , n ,  and a2~=l .  

(See Fig. 3.) It is easy to show that on the call EXTEND(k) ,  after arcs ( k +  1, k - 1) 



D. Goldfarb / Efficient dual simplex algorithms for the assignment problem 199 

1 2 3 4 5 

1 2 3 4 5 

(a) 

1 2 4 5 

1 2 3 4 5 

(b) 

Fig. 2. (a) Graph for sparse 5 x5 assignment problem with a u =min(i,j) for all admissible arcs. (b) 
Basis tree T after two iterations of the sparse variant of algorithm 1 on the problem in (a). 

2 3 4 5 

2 3 4 5 

(a) 

1 2 3 4 5 

1 2 3 4 5 

(b) 

Fig. 3. (a) Graph for sparse 5 x 5 assignment problem with all = 2 for i = 2 , . . . ,  5 and aq = 1 for all other 
admissible arcs. (b) Basis tree T at the start of the kth call to procedure EXTEND(k) for the problem 

in (a). 

and  (1, k +  1) are a d d e d  to T, a s implex  p ivo t  rep laces  arc  (1, k -  1) by  ( k +  1, k +  1) 

to comple t e  a bas ic  s igna ture  step. Moreover ,  

( p + l )  if  k is even and  k = 2 p ,  

[ R e I ' [ C ° I =  ( p + 1 ) 2 - 1  if  k is o d d  and  k = 2 p + l .  

Consequen t ly ,  that  s tep requi res  O ( k  2) accesses  even though  the k × k s u b p r o b l e m  

has  only  O ( k )  arcs. 

Clear ly ,  we need  a da t a  s t ructure  that  a l lows us to access in cons tan t  t ime all 

admiss ib le  arcs (i, j ) ~  E with i ~  R e and  j ~ C s in s tep (2b) and  only those  arcs. 

The fo l lowing  s torage  scheme meets  these  requi rements .  I t  is pe rhaps  best  v iewed  

as a scheme for  s tor ing a sparse  ad j acency  mat r ix  A which  a l lows rows to be de le t ed  

efficiently. The  entr ies o f  A and  thei r  row and  co lumn  indices  are s to red  row-by- row 

in three  m length  arrays.  Pointers  to the s tar t  o f  each  row are s to red  in a separa te  

(n + 1) length  array.  (The (n + 1)st e lement  o f  this  a r ray  has  the  va lue  m + 1 and  is 

i nc luded  as a conven ien t  de l imi te r  o f  the  nth  row.)  Two add i t i ona l  m- leng th  ar rays  

o f  po in te r s  are  used  to l ink toge ther  e lements  in the  same co lumn as a doub ly - l i nked  

list. F ina l ly ,  we need  n po in te r s  to the  start  o f  each o f  these co lumn  lists. These  are 

a p p e n d e d  to one  o f  the  o ther  po in t e r  a r rays  as shown in Fig. 4 be low to make  

de le t ion  o f  the  first e l emen t  in a co lumn no different  f rom any o ther  e lement .  

Because  all  e lements  in the same row are  s to red  toge the r  and  co lumns  are s tored  

as d o u b l y - l i n k e d  lists, all  e lements  o f  rows tha t  are r emoved  f rom R e after  a s implex  

p ivo t  can a lso  efficiently be  r emoved  f rom the i r  co lumn  lists (i.e., in t ime p r o p o r t i o n a l  
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sparse  matr ix  and  its representat ion  by  a file o f  p a c k e d  rows with e l ements  in the same  
c o l u m n  l inked together  as a d o u b l y - l i n k e d  list. 

to the number of  such elements.) It fol lows that in a basic signature step each 
nonzero element of  A (i.e., each admissible arc) is accessed at most once, and no 
zero elements are accessed if the computation of  ~'ij in step (2b) is implemented by 
scanning those column lists currently indexed by the set C °. The structure of  each 
column initially contained in the pointer arrays UP and D O W N  is at least partially 
destroyed during a signature step. However,  because the structure o f  A is also 
maintained (rowwise) in the other arrays, it is easy to reconstruct these doubly-linked 
column lists in O(m)  time at the start of  each basic signature step. 

(ii) Block Updates: Since in the sparse case O(n 2) simplex pivots may be required 
by the sparse variants of  algorithms 1 and 2, and the computation o f  e (i.e., the 
minimum yi) in step (2b) and the updating o f  the dual variables, the row node 
labels, and the basis tree in step (2c) all require O(n)  time per pivot, some further 
modification of  these algorithms are necessary if we are to obtain a worst-case time 
bound that is better than O(n3). 

We first observe that it is not necessary to update the dual variables and row 
node labels until the end of  a basic signature step in order to compute e and the 
entering arc in step (2b). Since the changes in ui and vj cancel one another in the 
computation of  ~'ij, this dual slack will be correct if it is computed using the value 
of  the dual variables at the start of  the basic signature step. The row node label y~ 
with which it is compared should have had the e computed in step (2b) subtracted 
from it on every iteration since that label was last changed. The fol lowing version 
of  step (2b) accounts for this without changing the u~, vj and y~ on each iteration. 
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For every j e ~ , 5  set ~3j~-vj-o-. and do: for every i~ R e, compute 

~'0 = a~ - ui - 13~. I f  ~'0 < Y~, set y~ <- -k~ and col(i) ~ j .  Compute  yg = 

min~Re{y~} and set k ~ c o l ( g ) ,  e ~  y g -  o', and o ' ~  yg. 

Of  course it is necessary to set o-, the cumulative sum of the e, to zero in step (1) 

at the start of  a basic signature step. 
Our second observation is that because R e c T e (i.e., each new T e is nested within 

the previous set Te),  it is possible to postpone updating the basis tree until the 
completion of a full basic signature step. I f  we store the entering and leaving arcs 
and e for each simplex pivot, we can do one 'block pivot '  at the end of a basic 

signature step to update the basis tree and the dual variables in O(n) time. 

The above two observations apply, of  course, to the standard assignment problem 

(i.e., the completely dense case). I f  implemented in this fashion it shows that 

Balinski's signature method behaves more like a dual simplex method which requires 
O(n) pivots rather than one that requires O(n 2) pivots. 

(iii) Choosing the Entering Arc: We need to introduce one more data structure 

to obtain an improved worst-case bound for the running times of our algorithms 
that is better than O(n3). In particular, we need a way to compute e in step (2b) 

(yg in step (2b')) that does not require O(n) time. One way to do this is by keeping 
the row node labels yi as a heap (priority queue) [1]. Quite recently, a new data 

structure, the 'Fibonacci  heap ' ,  was developed by Fredman and Tarjan [11] for 

implementing heaps that is ideally suited to our needs. Fredman and Tarjan showed 

how to use this structure to obtain an O ( m n  + n 2 log n) algorithm for the assignment 

problem that is quite different from ours. A Fibonacci heap with k items allows an 

arbitrary deletion, including the item with minimum value, in O(log k) amortized 

time and all other heap operations, such as changing the value of an item and 
finding the item with minimum value, in O(1) amortized time. For information on 

heaps and amortized running times see [20] and [21], respectively. 
The above amortized running times makes it possible to compute e in step (2b) 

(and change the heap when Yi is changed) with a total cost of  O(n 2 log n) in the 

worst case, since the total number  of simplex pivots (deletion of the item with 
minimum value) and deletions of row modes from R e (arbitrary deletions from the 

heap) is at most O(n2). 
In [11] a Fibonacci heap is described as a 'collection of item-disjoint heap-ordered 

trees'. In addition to the value (or key) 7i of  each item it is shown in [11] how a 

k-item Fibonacci heap can be represented using an additional four k-dimensional 
arrays. These arrays enable each item to point to its parent and one of its children 
and all siblings to be linked together in a doubly-linked circular list. For further 
details of  this representation and the algorithms for performing various operations 

on Fibonacci heaps we refer the reader to [11]. 

5 We use the notation C~ to indicate the subset of column nodes in C~ that are connected by at least 
one admissible arc to the subset of row nodes in R e Fortunately, the sparse matrix data structure 
introduced above allows us to identify C°. 
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By combining all of the implementational techniques described above we obtain 
algoirthms for the sparse assignment problem that have a worst-case running time 
bound of O(rnn + n 2 log n). This bound is the same as the one given by Fredman 
and Tarjan [11] and is the best that is currently known. 

7. Practical matters and future work 

Several of the implementational techniques described in the previous sections 
have practical as well as theoretical value. This is certainly the case for the row 
node labels Yi- It is also true for the technique of 'block pivots' and the use of step 
(2b') in place of step (2b) which allows us to defer updating dual variables until 
the end of a basic signature step. From the computational analysis given in Section 
4, we see that this reduces the total cost of step (2c) from O(n 3) to O(n 2) in the 
worst case. 

On the other hand, the overhead involved in using Fibonacci heaps, probably 
makes their use in our algorithms impractical. Moreover, we conjecture that the 
number of pivots required by our algorithms for a sparse problem with m arcs can 
be bounded above by O(m). This implies that the sparse assignment problem has 
time complexity O(mn)--an  intriguing open question. 

The sparse matrix data structure depicted in Fig. 4 would probably only be efficient 
in practice for problems that are fairly sparse. For problems that are only moderately 
sparse, it would probably be better to access arc weights using a simple hashing 
scheme, since the low overhead and storage requirements of such a method, would 
compensate for the time spent.accessing nonexistant arcs. 

We are in the process of programming our algorithms and intend to report the 
results of computational tests which will enable us to evaluate the practical efficiency 
of our algoirthms and the various implementational techniques already discussed. 
We also intend to study the usefulness of switching from row to column signatures 
after initialization when the latter has fewer terminal nodes. 

From our perspective, the three most interesting open research problems raised 
by signature methods are: 

(i) Can the signature method be generalized to give an efficient algorithm for 
the nonbipartite weighted matching problem, for which the current best bound is 
O(min{mn log n,/73}) [12]? 

(ii) Can the signature method be specialized to give an efficient algorithm for 
the maximum cardinality matching problem? 

(iii) Can the signature method be generalized to give a 'genuinely' polynomial 
algorithm for the transportation problem? 
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