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A nonempty  closed convex polyhedron X can be represented either as X = {x: Ax ~< b}, where 
(A,b) are given, in which case X is called an H-cell, or in the form X =  
{x: x = UA + V/~, ~ Aj = 1, A ~> 0, ~/> 0}, where ( U, V) are given, in which case X is called a 
W-cell. This note discusses the computational  complexity of  certain set containment  problems. 
The problems of  determining if X ~ Y, where (i) X is an H-cell and Y is a closed solid ball, (ii) 
X is an H-cell and Y is a W-cell, or (iii) X is a closed solid ball and Y is a W-cell, are all 
shown to be NP-complete,  essentially verifying a conjecture of  Eaves and Freund. Furthermore, 
the problem of determining whether there exists an integer poir~ in a W-cell is shown to be 
NP-complete,  demonstrat ing that regardless of  the representation of  X as an H-cell or W-cell, 
this integer containment  problem is NP-complete. 

Key words: Computat ional  Complexity, NP-Complete,  Linear Program, Polyhedron, Cell. 

1. Introduction and preliminaries 

A nonempty  closed convex polyhedron X can be represented either in the form 

X = {x: A x  <~ b}, where (A, b) are given, in which case X is called an H-cell ( H  for 

halfspaces), or in the form X = {x: x = UA + V/z, ~ A t = 1, h t> 0,/z >/0} where ( U, V) 

are given, in which case X is called a W-cell ( W for weighting of points). When X 

is represented as a W-cell, the columns of U and V contain the extreme points and 
extreme rays of  X, respectively. The computat ional  complexity of many problems 

related to polyhedra depend on the polyhedral representation as an H-cell or a 
W-cell. For example,  consider a linear program, which can be stated as 

maximize ctx subject to x ~ X, 

where X is a polyhedron. I f  X is an H-cell, this is the usual linear program, whose 
solution time, while polynomial,  is by no means negligible. However, if X is 

represented as a W-cell, the linear programming problem becomes trivial. As another 
example, consider the problem of testing if ff ~ X for a given if, where X is a 
polyhedron. I f  X is an/-/-cell ,  the problem is trivial, whereas if X is a W-cell, the 
problem reduces to solving a linear program. 

This note discusses the complexity of  two types of  problems. The first problem 
is the set containment problem (SCP), that of  determining if X _~ Y, where X (resp. 
Y) is a cell, defined to be either a polyhedron (an H-cell or a W-cell), or a closed 
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solid ball of the form {x: ( x -  c ) t ( x -  c) ~< r2}, in which case X (resp. Y) is called 
a B-cell. There are nine forms of SCP corresponding to X and Y each being given 
as an H-cell, W-cell, or B-cell. For notational convenience, a particular form of 
SCP will be denoted, e.g., by (W, B), where X is a W-cell and Y is a B-cell. In 
Eaves and Freund [1], SCP is shown to be solvable as a linear program for the six 
forms (HH),  (WH), (BH), (WW), (WB), and (BB), thus showing that these problems 
are solvable in polynomial time. Eaves and Freund also conjectured that the forms 
(HW), (BW), and (HB) are 'intractable'. In Section 2 of this article, we show that 
these three forms of SCP are co-NP-complete, (i.e., that the corresponding noncon- 

tainment problems are NP-complete), thus essentially confirming the conjecture. 
Section 3 addresses the computational complexity of the integer containment 

problem (ICP), that of finding an integer point in a given polyhedron X in the case 
that X is a W-cell. Karp [4] showed that when X is an H-cell, the corresponding 
ICP is NP-complete. Herein, it is shown that ICP is also NP-complete when X is 
a W-cell. 

The notation used is standard. Let ~ be n-dimensional Euclidean space. The 
Euclidean norm of x e R "  is represented by ]]x]l. Let e = (1, 1, 1 , . . . ,  1) where the 
dimension is clear from the context. Let Qm×,, Q,  be the set of rational m x n 
matrices and n-vectors, respectively. Define 

{a, b } " =  {x E R": x j = a  or b , j =  l,  . . . , n}. 

2. Three NP-complete cases of the set containment problem 

The three set containment problems of  interest, forms (HB), (HW), and (BW), 

can be stated in their noncontainment form, as:. 

(HB) Given: (a ,  b, e, r 2) ~ (Q"×",  Qm, Q, ,  Q1). 

Question: Is X ¢ Y, where X = {x c Rn: A x  <<- b} and 
Y = {x e ~": ( x -  c ) t ( x -  c) < r2}? 

(HW) Given: (A,b, U, V ) e ( Q " × ' , Q " , Q " × k , Q " × ~ ) .  

Question: I s X ~  Y, w h e r e X = { x ~ n : A x < ~ b } a n d  
Y = { x c E n :  x =  UA+ V/.~, eta = 1, A i>0,/.~ ~> 0}? 

(BW) Given: (c,-r 2, U, V ) e ( Q  n, Q1, QnXk Qnxp). 

Question: Is X ~ Y, where X = {x e ~": (x - c)t(x - c) ~< r z} and 
Y = { x  c ~": x = Uh + V/~, eta = 1, A ~>0,/~/>0}? 

Note that problems (HB), (HW), and (BW) are elements of NP. For a given 
instance of (HB) or (HW), the resolution of X ~  Y can be accomplished by 
determining an extreme point or extreme ray 2 of  X that is not an element or ray 
of Y, respectively; the size of 2 is polynomially bounded in the size of the input 
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data (see, e.g., Gantmacher  [2]) and so HB and HW are elements of  NP. For a 

given instance of (BW), suppose that X ~t y. Then, either c ~ Y or c ~ Y and there 

is an ( n - 1 ) - f a c e  F of Y such that the shortest Euclidean distance from c to the 
hyperplane Z containing F is less than r. I f  the former is true, the test c ~ Y amounts 

to solving a linear program, which is polynomially bounded in the size of  the input 

data. I f  the latter is true, there exists a submatrix U'  consisting of columns of U 
which are extreme points of  F, and submatrix V' consisting of columns of V which 

are extreme rays of F, such that the hyperplane Z dontaining F is determined by 

a unique (up to positive multiple) solution (~?, d) to ~rU'= ae, 1rV'-=O, ~rU<~ ae, 
~-V<~0, ~ -~0 ,  where Z = { x ] ~ - .  x = c~}. The size of  a solution (~-, ~) to the above 

system can be polynomially bounded in the data ( U, V) and the shortest Euclidean 

distance from c to Z is given by (~ - ~'. c)/~/-~. #. The test that (~ - # .  e)2/-~ • ~- < 
r 2 is also polynomially bounded in the data (~, ~, c, r 2) and so problem (BW) is in 

the class NP. 
Consider the following version of the integer containment problem: 

(ICP1) Given: A ~  Qm×,. 

Question: Is there a ~r ~ {-1,  1}" that satisfies/~zr ~< e? 

This classical integer linear inequalities problem is NP-complete,  even if m is 

restricted to be 2, as there is an elementary transformation from the number  partition 

problem. In order to prove that our three cases of  SCP are NP-complete,  we will 
demonstrate a transformation of ICP1 to our desired problem. 

Our main result in this section is the following: 

Theorem 1. The set eontainmentproblems (HB), (HW), and (BW) are NP-complete. 

Before proceeding to the proofs, we define a few more terms and we state an 
elementary property concerning linear programs defined over the rationals. 

For each matrix A, let P( / ( )  -~ {x: Ax <~ e, - e  <~ x <~ e}. Thus the integer contain- 

ment problem ICP1 can be stated as follows: Does P(/~) n {-1,  1}" ~ 0? 

For a given rational matrix A, we will let max (A) denote the maximum absolute 
value of a numerator  or denominator  of  a component  of A; e.g., max(~l, - ~ ) )  = 14. 
(The numerator  and divisor can have a common divisor.) 

For two sets S, T, let d(S, T) be the infimum of the distance between the two 

sets, where the supremum norm is used. In the proofs, we will use the following 
elementary lemma. 

Lemma 1. I f  P(,4) c~ {-1,  1}" = 0, then d (P (A) ,  {-1 ,  1}") > (2 max(fi.)~"3+'°n !)- ' .  

Proof. Let z* = d(P(A) ,  {-1,  1}"), and z*(y) = d(P(,4),  {y}); then 

z* = min(z*(y):  y c {-1 ,  1}"), 
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a n d  
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z*(y) = m i n i m u m  z, 

sub jec t to  z+(x j -y j )>-O,  j =  1 , . . . ,  n, 

z - (x~-yj)>~O, j = l , . . . , n ,  

x e P(fii). 

We now claim that  z*(y)> (2 max(A)("3+ ' ) (n  !)) -1 for  any y ~ { -1 ,  1}". To see this, 
let (x*, g) be  a point  in P(fi,) of  m i n i m u m  dis tance to y, and wi thout  loss of  general i ty 

we may  assume that  (x*, ~) is an extreme poin t  o f  the feasible region of  the above 
linear p rogram.  Therefore  (x*, 5) = B - i f  where  B is a row basis o f  the l inear  p rog ram 

and f is a vector  of  O's and l ' s  o f  the r ight -hand side componen t s  cor responding  
to B. B can be writ ten as B - -  d - l C  where d is a c o m m o n  d e n o m i n a t o r  of  B, and 

C is an integral  matrix.  Because B 1= dC-~= d(ad j (C) /de t (C) ) ,  a denomina to r  
for  B -1 is de t (C) .  Because d ~< max(fi~) ": and max(C)~< (max(fi~)'~+l), we obtain 

de t (C)  ~< m a x ( C ) " n  ! <~ (max(f i , ) '~+l ) 'n  ! 

= max(A)( '~+')n!< 2 max(fi~)('3+")n !. 

Because the n u m e r a t o r  of  5 is a posit ive integer,  we have ~ >  (de t (C) )  l, and so 

the above b o u n d  on d e t ( C )  provides a b o u n d  for  5 and hence z*. [] 

Hencefor th ,  for  each A ~ Qm×,, let M ( A )  = (2max(fi , ) ( '3+ ')n !). Note  that  the size 
of  M ( A )  is O(n  3 log(1 + m a x ( A ) ) ,  which is po lynomia l  in the size of  A. 

Proof that (HB) is NP-complete .  Let fi, be an instance of  ICP1,  and let e = [M(fi , ) ]  -1. 

Let X = P(fi,) and let Y = {y ~ R ' :  y~y ~< n - e}. Cons ider  the instance of  (HB)  of  

de termining if X ~i Y. 
Suppose  first that  X ___ Y. Then [tx]12<~ n - e < n for  any x ~ P(fi~) and thus P(fi~) 

{-1, 1}'=0. 
Conversely ,  suppose  that  X ~ Y. Let x c P ( A )  be selected so that  x ~ Y. Since 

- e ~ x < ~ e  and x t x>~n-e ,  it follows that  ]x~[~>l -e  for  each j and thus 
d(x, { -1 ,  1}')  ~ e. It  follows that  d(p(/7,) ,  { -1 ,  1} n) <~ e, and thus by  L e m m a  1, we 

conclude that  P ( A ) c ~ { - 1 ,  1 } ' # 0 .  [] 

P roof  that  ( H W )  is NP-complete .  Let ft. be an instance of  ICP1,  and let e = 
n 

[M(fi~)] 1. Let X = P ( f i , ) ,  and let Y - - { y : ~ j = l l y j l  < ~ n - e } .  Note  that  Y may  be 
po lynomia l ly  represented  as the W-cell {y: y = UA, h/> 0, e t a  = 1} by letting U = 

[(n - e)I, (n - e ) ( - I ) ] .  N o w  consider  the instance (H, W) of  de termining  if X ~ Y. 

Suppose  first that  X _ Y.. Then  any x c P(fi,) must  satisfy Y.j Ixjl ~< n - e and thus 

P(fi~) ~ { -1 ,  1}" =0 .  
Suppose  next  that  X ~ Y. Let x ~ X be chosen so that  ~j  ]xj[ > n - e. Since - e  <~ x ~< 

e, it fol lows that  1 - e  ~<lxj[~< 1 for  each j =  1 , . . . ,  n and thus d(x, {-1 ,  1}")<~ e. 
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Therefore d(P(fiO, {-1 ,  1} ") ~< e, and thus by Lemma 1 we conclude  that  P ( A )  n 

{ -1 ,  1}" # ~. []  

Proof that (BW) is NP-complete. Let fi~ be an instance o f  ICP1 and let e = M(f i0  -1. 

Let X = { x ~ E " :  I lxl l2<~l/(n-~)} and let Y = { y e ~ " :  ~-ty~<l for all ~r~P(fi0}.  

We first show that  Y can be represented as the W-cell Y ' =  
{y: y = A 1 _ A 2 + fit A 3, A 1, A 2, A 3 >/0, e t a  1 + eta 2 -t- e t a  3 = 1}. It is easy to see that Y' c__ 

Y by premult iplying any y e Y' by 7r ¢ P(fi0.  To show that Y c y ' ,  suppose that 
37 ¢ Y. Then 7rt37 <~ 1 for any )7 c P(fi0.  I f  y ~ Y',  the linear system A 1 -  3.2+ A'A 3= y, 

eta 1 q_ eta 2 -t- eta 3 = 1, A 1 >i 0, A 2 ~ 0, A 3/> 0 has no solution. In  this case, by a theorem 

of  the alternative, there exists ~-eR",  / x e E ,  such that  ~ ' - /~e<~0,  - ~ - - t z e ~ < 0 ,  

fi~Tr-/ze ~< 0, and "B't37--/& > 0. It is simply to verify that we must  have /x > 0, and 

thus we can assume t-~ = 1, whereby 7r e P(fi,) and ~rt37 > 1, i.e. 37 ~ Y, a contradict ion.  

Thus Y ' =  Y. 

Cons ider  the case o f  (BW) of  determining if X c__ y. Suppose first that  P(fi0 n 

{ -1 ,  1}" ¢ 0, and let v e P(f i0  ~ { -1 ,  1}". Let ~ = (n - ~)-l/211'vll iv. Note  first that  

13t~3 = ( n -  s) -~ and so ~3 ~ X. Also note that  v t13 = ( n -  v II > a, and so ~ Y. 

We conclude  in this case that  X ¢ Y. Thus if X __c_ Y, P(fi,) ~ { -1 ,  1}" = 0. 

Next  consider  the case that X ~ Y. In  this case there exists x e X and ~ e P ( A )  

such that ~rtx > 1. Moreover  the value o f  97 e X which maximizes ~rt)7 is uniquely 

given by ff = ( n -  e)-'/=ll~-II ' ~  whenever  ~" ¢ 0. Thus we may assume without  loss 

o f  generali ty that  x=(n-~)-I/=l[~l[-~. It follows that  1l~l l2=~t~= 
( n  -  )'/211 ll -tx > ( n -   )'/211 11, and thus 11~-112> n - ~. Since - e ~  < 7r~ < e, 1 - s ~< 
[Trjl<~l for  j = l  . . . .  , n  and thus d(Tr ,{-1 ,1}")~<e.  We conclude that 

d(P(fi,),  { - 1 ,  1} ") <~ e and thus by Lemma 1, P ( A )  n { -1 ,  1}" ¢ ~. []  

3. The complexity of finidng an integer element of a polyhedron 

It is well known  (see for example Garey  and Johnson  [3]) that  the problem of  

determining whether  there is an integer point  in an H-cell  is NP-complete .  In  this 

section we show an analogous  result for integral conta inment  in a W-cell. Consider  

ICP2: Given: ( D e  QnXk). 

Question: Is there an integral n-vector  ~" c X, where 

X = { X C ~ n :  X = Uh, eta = 1, h 1>0}? 

Theorem 2. The problem ICP2 is NP-complete 

Proof. Note  first that ICP2 is an element o f  N P  since if 7r ¢ X is integral, then the 
size o f  ~r is polynomial ly  b o u n d e d  in the size o f  U, and we can demonstra te  that 
~" ¢ X by solving a linear p rogram in polynomial  time. 
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TO show that ICP2 is NP-complete, we carry out a transformation from the 

following 0-1 knapsack problem. 

Input: Integers a~, . . . ,  a,,  b. 
Question: Is there a vector yc{0 ,  1}" such that Y~7_~ a~yi = b? 

The above problem is known to be NP-complete (see for example Garey and Johnson 

[3]). 
Suppose that a l , . . . ,  a,, b is an instance of the above knapsack problem. We 

transform this instance into a problem in modular arithmetic as follows: Are there 

vectors •, s satisfying: 

( j~l  ajAj-bAn+l) is integral, ( la) 

( n + l ) A  t is i n t e g r a l f o r j = l , . . . , n + l ,  ( lb)  

(2n)-a(,~t+sj-.~,+O is integral for j =  1 . . . .  , n, ( lc) 

Sa+" • "+s,  +3~1+" • • +)t,+l = 1, ( ld)  

s, ~/>0. (le) 

First note that ( l a ) - ( l e )  is a special case of ICP2 in which U has 2n + 1 columns 
each of which is in Q2,+2. 

We claim that there is a feasible solution to system (1) if and only if there is a 

solution to the knapsack problem. 
Suppose first that y e{0, 1}" is feasible for the knapsack problem. Let A t = 

y J ( n  + 1) for j = 1 , . . . ,  n and let s t = l / ( n  + 1) - 3.j. Finally, let )~,+~ = 1/(n + 1). It 

is easy to verify that ;t, s satisfy (1). 
Suppose next that A, s satisfy (1). If we subtract each of the n constraints of  (lc) 

from (2n) -~ of constraint ( ld) ,  we obtain the constraint 

((n + 1)/2n)A,+l -- 1/2n is integral. ( lf)  

Since 0<~ A,+I <~ 1, we conclude from (lf)  that 

~.+~ = 1 / ( n  + 1). (lg) 

We conclude from (lg), (lc) and (ld) that 

) t t + s t = l / ( n + l )  f o r j =  1 , . . . ,  n ( lh)  

and by ( lh)  and (lb) we conclude that 

Aj=0 or 1 / ( n + l )  f o r j = l  . . . .  ,n. (li) 

From (lg),  (li) and ( la)  we conclude that y = ( Y b . . - ,  Y,) is feasible for the 
knapsack problem, where yj = (n + 1)1j, j = 1 , . . . ,  n, completing the proof. [] 
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