
Mathematical Programming 67 (1994) 247-264

A trust region algorithm for nonsmooth optimization

T. Bannert

lnstitut fiir Numerische und Angewandte Mathematik. Georg-August-Universitat G6ttingen, Lotzestrafle 16-18,
D-37083 GOttingen, Germany

Received 7 May 1993; revised manuscript received 11 April 1994

Abstract

A trust region algorithm is proposed for minimizing the nonsmooth composite function
F(x) =h(f(x)) , wherefis smooth and h is convex. The algorithm employs a smoothing function,
which is closely related to Fletcher's exact differentiable penalty functions. Global and local conver-
gence results are given, considering convergence to a strongly unique minimizer and to a minimizer
satisfying second order sufficiency conditions.

Keywords: Trust region; Nonsmooth optimization; Exact differentiable penalty function; Maratos effect

1. Introduction

This paper presents a trust region algorithm for solving the unrestricted, nonsmooth

optimization problem

Minimize F (x) = h (f (x)) , x ~ n , (1)

where f : Rn--* R" is (at least) once continuously differentiable and h:ff~m~ R is convex.

Trust region algorithms for problems of this kind have been considered by Madsen [9],

when h is the maximum norm, and by Fletcher [6] , Yuan [13], and various other authors

for the general case. From the current iteration point Xk, the iteration step is defined by

minimizing a model function in a certain range around xk, called the trust region. The size

A k of the trust region is adjusted after every step. The iteration step dk in [6] as well as in
this paper is defined as a solution of the subproblem

Minimize tTibk(d) := h(f(xk) + f ' (xk)d) + ½drBkd (2)

s.t. Ildil ~< zi k

0025-5610 © 1994---The Mathematical Programming Society, Inc. All rights reserved
SSD10025-5610 (94) 00031 -N

248 T. Bannert / Mathematical Programming 67 (1994) 247-264

with some symmetric matrix Bk ~ ~n × n and some norm I1" II on R n, However, we use a
different condition to decide whether dk should be accepted, so xk + ~ := xk + d» or one prefers
to define xk+ 1 '= xk and reduce the trust region radius. Usually, dk is accepted if it leads to a
reduction of the objective function, while in this paper a reduction of a smoothing function
is demanded. This smoothing function is the direct analogon to Fletcher's exact differentia-
bie penalty functions for equality or inequality constrained smooth optimization problems
[3-5]. A slightly different version of these penalty functions was used by Powell and Yuan
[10] for a trust region algorithm for equality constrained smooth problems, which greatly
influenced this paper.

The reason for introducing a smoothing function is the so-called Maratos effect, which
can prevent superlinear convergence of the sequence {Xk} generated by the algorithm
to a local solution x* of (1) satisfying second order sufficiency conditions. An example
has been presented by Yuan [12]. The point is that, in spite of second order sufficiency
conditions holding, there may exist a sequence {Zk}a~" such that Zk~X *,
Il zk÷ ~ - x* II 2 = o (Il z k - x * 1122), but F(Zk+ 1) ~> F(Zk) for infinitely many k, resulting from
nondifferentiability of F. The steps dk produced by subproblem (2) yield

Ilxk + d k - x * II 2 = o (Ilxk- x * II 2) or better, if Bk is properly chosen and A k has the right
magnitude. Nevertheless, they may fail to reduce F and thus will not be accepted.

The usual way to overcome this difficulty (see Fletcher [7], Yuan [14]) is to put in a

second order correction step clk whenever F(xk+dk) is larger than it should be. dk is a
solution of the subproblem

Minimize (~k(d) :-~hOe(Xk -]-dk) + f '(Xk)d) q- l (d k -I-d)TBk(dk +d) (3)

subject to Ildk +al l ~< Ak,

and Xk+~ is defined as xk+dk+dk, if this choice reduces F. In general, Xk+dk+dk is not
substantially closer to x* than Xk + d» so the correction step does not accelerate convergence
by itself. Hence we obtain the same order of convergence without a correction step, allowing
that dk may be accepted even if F(xk + dk) > F(x,O. In order to maintain global convergence
properties, a reduction of the smoothing function is demanded instead. The given analysis
as weil as our numerical tests suggest that the use of the smoothing function may be a real
alternative to the second order correction step in order to avoid the Maratos effect.

In the next two sections, the smoothing function and the algorithm are presented. The
following three sections consist of global and local convergence proofs, considering local
convergence to a strongly unique solution and to a solution that satisfies second order
sufficiency conditions. In the last section, the costs to evaluate the smoothing function are
compared with the costs of the correction step.

Throughout this paper, we use the following notations: Uxll= denotes the Euclidean norm
of a vector x, and UAll2.'= sup{ IIAxll2:IIxll2 = 1} for any matrix A. x T and A T denote the
transpose. Let imA:= {Ax:x~ R t} for AG ~k×t. The gradient of a function g : ~ n ~ R is

denoted by Vg(x) and regarded as a column vector, the Hessian is denoted by Wg(x) . For
f : R n ~ ~m,f/denotes the/th component, a n d f '(x) denotes the m × n-matrix with the rows

T. Bannert / Mathematical Programming 67 (1994) 247-264 249

Vfi(x) r. We further use directional derivatives and subdifferentials of nonsmooth functions
(cf. e.g. [2]). For the convex function h,

Oh(p) = {~'ERm: h (p + q) >~h(p) +qrrq, V q ~ R m } .

For the composite function F, the chain rules

F ' (x ; d) = h ' (f (x) ; f ' (x)d) , óF(x) = f '(x)rOh(f(x))

hold. Finally F '(x; d) >~ u rd holds for all u ~ OF(x) and the same for h. A point x* ~ R n is

called a stationarypoint for (1), i f 0 ~ OF(x*).

2. The smoothing funetlon

Let o-> 0 be fixed. For any x ~ R n, let 6(x) denote the unique solution of the problem

Minimize ~b~(d):=h(f(x) + f ' (x)d) + ½~rdrd, d ~ Kn (4)

and define the smoothingfunction

~b(x) .'= h(f(x) + f ' (x) 8(x)) + «8(x) Z8(x) . (5)

A necessary and sufficient condition for 8(x) to be the solution of (4) is that

0 ~ Oq~~(8(x)) = f '(x) rOh(f(x) + f '(x) 8(x)) + o'8(x)

or, equivalently,

3~r~Oh(f(x) + f '(x) 8(x)): f ' (x)rcr+trS(x) = 0 . (6)

Lemma 2.1. For any x ~ K ~,
(a) ~b(x) <~F(x),
(b) 6(x) = 0 if and only if x is a stationary point for (1),
(c) II 8(x)112 ~< (1/o ') I[f '(x)112" min{ II *rll2: , r e Oh(f(x)) },
(d) ~bx(d) >~qb~(6(x)) + ½~rlld-6(x) ll ~, V d E ~ n.

Proof. (a) can easily be derived from (5) and (6):

t#(x) = h(f(x) + f '(x) 6(x)) - 7rrf '(x) 6(x) <~ h(f(x)) = F(x) .

The chain rule for subdifferentials provides

Oqbx(O) = f '(x) rOh(f(x)) = OF(x).

This proves (b), because 8(x) = 0 holds if and only if 0 ~ 0~bx(0), while 0 ~ OF(x) is the
condition for x to be a stationary point for (1).

For any ~-~ Oh(f(x)), we have

F(x) >1 ¢(x) >~ h(f(x)) + ~rrf ' (x)6(x) + o-6(x)r6(x) .

250 T. Bannert / Mathematical Programming 67 (1994) 247-264

Hence lid(x)112< (l/c)Itf'(x)U211~II» and the minimum in (c) is attained, because
öh(f(x)) is a closed convex set.

Finally, (d) follows from the fact that ~b~ is uniformly convex: (6) implies

qbx(d) - qb~(~(x)) = h(f(x) + f ' (x)d) - h(f(x) + f '(x) ~(x))

+ ½crlldll ~ - ½~rll ~(x)II

i> ~-~f '(x) (d - 8(x)) + ~rô(x)~(d - ~(x)) + ~~rlld- ~(x)U

= ½~rUd- ~(x) II

for any d E R n, which completes the proof. []

L e m m a 2.2. The functions ~ and ~b defined by (4) and (5) are continuous.

Proof . It is sufficient to show that ~ is continuous. For any fixed x ~ ~n, let U be a small
neighbourhood o f x and y ~ U. Part (d) of the previous lemma implies

thx(~(y)) >/thx(8(x)) + 1 ~rll ~(x) - ~(y) II ~,

~y(~(X)) ~ (~y(8(y)) + ½ ~rll ~(x) - ~(y) II ~.

Taking the sum, we obtain

~rll ~(x) - 8(y)II ~< [~by(~(x)) - ~bx(~(x)) I + I q~y(~(Y)) - 6x(~(y)) I

= [h (f (y) + f ' (y)~(x)) - h (f (x) + f ' (x) ~(x)) I

+ I h (f (y) + f ' (y)~(y)) - h (f (x) + f ' (x) ~ (y)) I .

Since h as a convex function is locally Lipschitz, the subdifferentials { Oh(f(y)): y ~ U} are
uniformly bounded, and so are {ô(y): y ~ U} from part (c) of Lemma 2.1. Therefore all
arguments of h appearing in the above inequality are elements of a bounded set, on which
we can choose a Lipschitz constant L for h. Now

crll ~(x) - ~(y) II
y---~X

<~2L'lLf(x)-f(y)ll2 +L'ltf'(x)-f'(y)ll2"(ll~(x)llz +llô(y)ll2) , 0 ,

which means that ~ is continuous. []

I f h is a polyhedral function, f ~ C k, and for some x ~ R n nondegeneracy and strict
complementarity conditions hold in the solution of (4) , then ~b is C k- ~ in a neighbourhood
ofx. This corresponds to a property of Fletcher 's [5] penalty function for smooth problems
with inequality constraints. Since we will not explicitly use smoothness of ~b, we omit the

T. Bannert / Mathematical Programming 67 (I 994) 247-264 251

proof; the main arguments are given in Section 6, applying to the case when x is a local
solution satisfying second order sufficiency conditions.

There is a second version of the smoothing function: Define 6(x) as above and let

~b(x) .'= 4 ,x(6(x)) = ¢~(x) - ½ « 6 (x) ~ 6 (x) .

~Ô ean be used for a trust region algorithm in almost the same manner as ~b and has even
better smoothness properties [1]. However, ~b seems to be the more natural choice, because
applied to a smooth function F(x) =f(x) (with h(p) =p) , we have 0 = F, while ~ ~ F.

3. The algorithm

Let I1" II be an arbitrary norm on R n and let p ~ (0, 0.5), ~'~ ~ (0, 1), and ~'2 > 1 be constant
parameters. Consider the following algorithm:

Algorithm 3.1.
step O: Choose arbitrary starting values Xo~~ n, Ao>0, at>0, calculate ~o:=6(Xo), let

k.'= 0.
step 1: I f ök = O: Stop, xk is a stationary point for (1).
step 2: Choose Bk ~ R n ×ù symmetric.

I f o'< IIBk[[2: Let cr,= 2[IBkll» recalculate 3»

step 3a: I f Il 6«[1 > A» define db := 6k;
3b: otherwise let dk be a solution o f the subproblem

Minimize qbk(d) :=h(f(xk) + f ' (x k) d) + ½drBkd

s.t. [Idll ~< Ak.

step 4: Let sk :=4 . I F(xk + dk) -- ~k(dk) l / lldkll ~.
I f o'< Sk: Let tr:= 2Sk, recalculate 6k.

step 5: Calculate 6(xk + dk) and qk := (~b(x«) - ~b(Xk + dk)) / (~b(Xk) -- qJk(dk)) .

step óa: I f qk >~ p, let xk + a := Xk + dk, 6k+a := 6(Xk + dk) ,

and c hoo s e A k + 1 ~ [IId«ll, max(~'zlldkll,/tD];
6b: otherwise let xk + l := Xk, 6k +1 := 6k, Ak+l := ~'~lldkll.

step 7: Increment k by one, go to step 1.

In steps 0, 2, 4, and 5, calculate 6(.) and ~b(.) according to (4) and (5), using the
current value of the parameter tr.

In step 2, it is not necessary to calculate [[Bk[[z exactly. The following theorems remain
valid, if [[Bkll2 is replaced by any sequence {bk} of upper bounds for []Bk[[2 satisfying
bk< C. [[B«[I2 for some constant C.

The iteration step db is normally defined in step 3b, which consists of the usual trust
region subproblem (2). Note that Bk is not demanded to be positive semidefinite. The
alternative step selection in step 3a is seldom used, but important for convergence analysis.

252 T. Bannert/Mathematical Programming 67 (1994) 247-264

It is motivated by Lemma 4.3: Since dg= Œ always yields a sufficient descent, a step within

the trust region radius Ag would be less efficient in case Ag< II ~gll.
The main difference to Fletcher's algorithm [6], however, is the definition of the ratio

qg in step 5. The success of the step dg is valued by the change in the smoothing function
instead of F. qg is the ratio of the actual reduction ~b(Xk) -- ~b(xg+dg) and the predicted
reduction $(Xk) - tI)g(dg). ~g(dg) turns out to be an even better estimate for ~(Xk+dg)

than for F(xg + dk), at least in the situation considered in Section 6, which may give rise to
the Maratos effect.

In steps 2 and 4 the parameter 0- is adjusted, if necessary. Roughly spoken, the quadratic
term 10-drd in (4) must dominate all other second order terms occurring.

4. Global convergence

If Algorithm 3.1 terminates in step 1 of the kth iteration, then xg is a stationary point for
(1) according to Lemma 2.1. From now on we assume that an infinite sequence {xg} is
generated. Our aim is to show that every accumulation point of {xg} is a stationary point
for (1). We assume that

• the sequences {xg} and {Bg} are bounded,
• f ' is Lipschitz on a convex superset of {xg} with Lipschitz constant L I.

As a consequence of the first assumption and Lemma 2.1, the trust region radii {Ag} and

the sequence { gg} remain bounded, too. Hence all arguments ofh appearing in the following
will be contained in a bounded set, on which h as a convex function is also Lipschitz with

some Lipschitz constant Lh.

Lemma 4.1. The parameter 0- is changed only a finite number o f times.

Proof. Since o- is at least doubled with every change, it is sufficient to show that it remains
bounded. Let/~ be an upper bound for { IIBgll 2}. Then o-< 2/~ after a change in step 2, and

0-=8 IF(xg+dk) -- q0g(dg) I
Ildgll~ <~ 4(LhLf + b)

after a change in step 4. Thus o- remains bounded and the lemma is proved. []

Lemma 4.2. For all k,

~b(xg) - q~g(dg) >i ½o-II~g II 2 2

holds, so the denominator in step 5 is nonzero.

Proof. From step 3 of the algorithm, qbk(d«) < @k(6k) holds for all k. Therefore,

~b(Xk) __ t~k(dk) >~ t#(Xk) _ qbk(6k) = 0-6~ 6k 1 ~ -- ~6kBkök >t ~0-11 ~g II

T. Bannert / Mathematical Programming 67 (1994) 247-264 253

regarding that o-f> Ilßkll2 from step 2. []

Lemma 4.3. I f dk = 6k and tr is not changed in step 4, then dk will be accepted. This means

the algorithm does not infinitely loop with a constant x»

Proof. I fdk = 8k, from Lemma 2.1 (a) and Lemma 4.2 we have

~b(Xk +6k) --@k(6k) F(x« +~k)--Clgk(6k)

1 - q k = ~b(xk) -- 45k(~«) ~< ½~rll~«ll~ <½ '

because we assumed o" to be unchanged in step 4. Therefore qk >~ ½ > P, and 8k will be

accepted. []

Theorem 4.4. Let the sequences {xk} and {Bk} f rom Algorithm 3.1 be bounded, and let f '

be Lipschitz on a convex superset o f {xt}. Then every accumulation point o f {xk} is a

stationary point for (1).

Proof. Without loss of generality, o-can be regarded as a constant. From the previous lemma

we know that there is an infinite number of k for which qk >~ P. For each of these,

O(xk) - O(Xk + I) >~ p" (O(Xk) -- clak(dk)) >I ½p,rll ~k Il ~

from Lemma 4.2. Since { O(xk) } is monotone and bounded, we obtain the limit ~k ~ 0 (note

that ~k = ~k+ 1 if qk < P)" Now continuity of ~ from Lemma 2.2 supplies that ~ (x*) = 0 for
every accumulation point x* of the sequence {xk}, which completes the proof. []

5. Local convergence to a strongly unique solution

Let x* ~ R n be a strongly unique solution of (1), that is, there exist constants a > 0, • > 0

such that

F(x)-F(x*)>--~'llx-x*ll2 Vx~Rn: IIx-x*ll2 < • . (7)

We assume that
• x k ~ x * , the sequence {Bk} is bounded,
• f ' is Lipschitz in a neighbourhood of x* with Lipschitz constant L?

Thus we can keep on using the Lipschitz constant L h for h from the previous section.
Because of Lemma 4.1, o- can be regarded as a constant. We start with an easy consequence
of the trust region adjustment strategy in step 6.

Lemma 5.1. I f the sequence {xt} generated by Algorithm 3.1 converges to a stationary
point, then dk ~ O.

Proof. Let ~g .'= { k ~ ~q: qk >i P} denote the set of all iteration indices belonging to accepted

254 T. Bannert / Mathematical Programming 67 (1994) 247-264

steps. The statement is trivial for the subsequence {dk}k~~'. If, however, ~q\~¢ is infinite,
even ,4«--, 0 holds: For every kG ~q\~', At is reduced by the constant factor ~-~ < 1, while
for k ~ ~ ¢ either Ak+l <~Ak or "4k+l ~ ~'~lld«ll--,o holds. "4k--->O implies d«--a'O, because
6k--> 0 comes from Lemma 2.2. []

Theorem 5.2. Let the sequence {x«} generated by Algorithm 3.1 converge to a strongly

unique minimizer x * of F, let f ' be Lipschitz in a neighbourhood of x*, and let the sequence
of matrices {Bk} be bounded. Then the order of convergence Xk ~ X* is at least quadratic.

Proof. The above made assumptions imply that

chx«(d) =F(Xk +d) + O(Ildl122),

ePk(d) = F(x« + d) + O(Ildl122)

uniformly for all k. Since 6k ~ 0, we have that

1
IIx« + 6« - x * l l z ~ - (F(x~ + 6«) - F (x *))

O/

1

O/
(Ck.k(6k) - -F (x*)) + o(116«11 z z)

1 <~-
Ol

(qbxk(X * -- Xk) -- F(X*)) + 0 (II 6« II z z)

= o (IIx« - x * II 22) + o(116« II 22).

Therefore

IIx« + 6« -x* l12 = O(llx« - x * II ~)

Similarly, dk ~ 0 implies

1
IIx« +d~ - x * l l z ~< -

OL
(F(xk +dk) - F (x *))

(8)

1

O/
(~«(dk) -- F(x*)) + O(lid« II z)

1 ~<-
O/

(q,«(6«) - F (x *)) + O(lld« II ~)

1

O~
(F(Xk + 6k) -- F(X*)) + O(lid« II z z) + o (Il 6« Il z z)

= o (Ilxk - -x* II z z) + O(lldk II 2) ,

which shows that

IIxk +d« - x * l l 2 = O(IIx« - x * l l ~) • (9)

T. Bannert/Mathematical Programming 67 (1994) 247-264 255

Finally, we have to show that dk is accepted, i.e. qk ~> P for large k. From step 4 of the
algorithm (note that cr was assumed to be constant) and Lemma 4.2, we have

O(xk +dk) --CI)k(dk) F(xk +dk)--~k(dk) lo-IId« II ~
1 - q k = O(Xk) -- q)k(dk) <~ O(Xk) - 4~«(dD <~ ~~ll~kll-------~"

S/nee IId4h/ll~4h-* 1 from (8) and (9),

lim inf qk t> ½ > P ,
k.---~ c~

which ensures that dk is accepted for sufficiently large k. Thus the proof is complete. []

6. Local convergence under seeond order sufficiency condiüons

In this section, let h be a polyhedral convex function:

h (p) = max g~+hrp, g / ~ R , h i e r m (i = 1 K), K > 0 .
i = 1 , . . , K

For any p ~ R" , let I(p) := { i: g~ + hTp = h(p) } denote the set of active components. The

derivatives of h are g/ven by

h'(p; q) =max{hTq: i~ I (p) } , Oh(p) =co{h/ : i~ I (p) } ,

where co A stands for the convex hull of a setA. We gradually state second order sufficiency
conditions on a point x * ~ Rn t o be a local solution for (1). Let p * . '=f(x*) . Since we will

be able to restrict ourselves to an arbitrarily small neighbourhood of p* , assume for sim-

plicity that I(p*) = { 1 K}. We call

~ ' (h) := {p ~ N'~: I(p) = I(p*) }

= {p~- Rm: (h i --hl)T(p--p *) =0 (i = 2 K) }

the edge of h through p *. By the corresponding edges of F resp. ~b x, we mean the sets

~"(F) := {x~[R": f (x) ~ g (h) } ,

~'(~bx) := {d~ R": f (x) + f ' (x)dE~ ' (h) } ,

respectively. Introducing a maximum subset {il it} _ {2 K} such that the matrix

R := (hil - h a [... [hi t - h l) ~ RrnXl (10)

has full rank l, we can write

~'(h) = {p~Rm: RT(p--p *) = 0 } ,

~ ' (F) = {x~ R": Rr (f (x) - p *) = 0} .

The first condition we impose on x* is that x* be a stationary point for (1) , i.e.

256 T. Bannert/Mathematical Programming 67 (1994) 247-264

(A1) 3"n'*~ah(p*): f ' (x*)rTr*=O.

Secondly, we demand the set ~ (F) to be regular at x*:

(A2) rank(R~ ' (x*)) = l (nondegeneracy) .

Note that the affine hull of Oh(p*) is 7r+ im R with an arbitrary q'rE Oh(p*). Hence (A2)
implies that 7r* is uniquely defined by (A 1). We demand that ~-* is contained in the relative

interior of Oh(p*), which means

(A3) 3 e > 0 : {qr~~-*+imR: [[~r-7r*ll2<<.e}c_Oh(p*)

(strict complementarity). Because f '(x*) r is a one-to-one mapping from Oh(p*) to

OF(x*), (A3) is equivalent to

3 e ' > 0 : {u~ imf ' (x*) rR: Ilull~ « . ~ ' } c _ O F (x *) , (11)

regarding f ' (x*)rTr * = 0. An arbitrary dE ~" can be partitioned into a component d"

parallel and a component d ± orthogonal to the tangent space to ~ (F) at x*:

d=d Il +d ± , d I ~ i m (f '(x*) rR) , Rrf '(x*)d" = 0 .

Then (11) gives

F ' (x * , d) > e ' ,~ l , , d=e' dJ-[[2. (12)
a 2]

That means there is a strict ascent in F when moving from x* into any direction that is not
contained in the tangent space to g°(F). Thus second order conditions must be imposed

only for the elements of the tangent space to g~(F) :

(A4) L e t f b e twice differentiable and let V2fbe Lipschitz in a neighbourhood of x*.

(A5) drW*d>O V d ~ ~ ' : d4:0, Rrf ' (x*)rd=O,

where W*:= ~ 7r* V2f/(x *) .
i=1

Ultimately, we assume

(A6) xk ~ x * , Bk--*W*

for the sequences from Algorithm 3.1.
The results of this section remain valid even without strict complementarity holding (see

[1]). The Lipschitz condition on VZfis needed only for second order convergence, while
Theorem 6.4 still holds if VZf is only supposed to be continuous. The proof can also be

modified in a way that only

(B~-W*)(x~-x*) / l l x~-x* l l2 ~ O , (Bk-W*)dk/l[dkll2~O,

T. Bannert/Mathematical Programming 67 (1994) 247-264 257

and relation (21) are required instead of Be ~ W*.
An important point of the proof is that for large k both 6k and dk are in the edge

8'((hxk) = 8~(@k)- This means that both subproblems (4) and (2) correctly predict the set
of components that are active in x*. Since these results are standard except from the influence
of the constraint in (2), we give only sketches of the proofs. For details, see [11].

For all x sufficiently close to x*, 8(x) is given by the system

~f '(x) 0 AA(x)] k R l " (p * - f (x))] "

Note first that the matrix is regular for x close to x* because of nondegeneracy condition
(A2). The right-hand side is zero for x = x*, and the solution (8(x), A (x)) is differentiable
as a function of x. From the second equation, we have

f (x) + f ' (x) 8 (x) ~8~(h) , so 8(x) ~8~(~bx) . (14)

The first equation yields

trS(x) + f '(x) r~(x) = 0 , (15)

defining

• r(x) := 7r* +RA(x) . (16)

From strict complementarity condition (A3), ~-(x) ~ Oh (p *) for x close to x *. Since (14)
implies Oh(f(x) + f '(x) 8(x)) = Oh(p *), (15) means that the solution 8(x) of (13) actu-
ally satisfies condition (6) and hence is the solution of (4). With a little more care, orte
can even derive strict complementarity for 8(x) in a uniform sense: For all x sufficiently

close to x*,

{~-~ ~(x) + im R: l ie f - ~-(x)112 < ½E} C_Oh(p*)

and

th'~(6(x);d)»½«'lld±ll2 V d ~ R " (17)

hold, using the constants and arguments from (A3) and (12), and defining d ± as the
orthogonal projection of d into im(/ ' (x) fR) . We further need

Lemma 6.1. There is a constant c > 0 such that 118(x) II 2 » c. I Ix- x* Il 2for all x sufficiently
close to x*.

Proof. We take first derivatives on both sides of system (13). Observing 6 (x *) = 0,
A(x*) = 0, we obtain

- W *

0 A , ~ ' (x *) / = k -

A short calculation gives

258 T. Bannert / Mathematical Programming 67 (1994) 247-264

~ ' (x *) = - 1 p I I w * - P ~- ,
O"

where P ± is the orthogonal projecUon into im (f ' (x *) TR), and P ii..= I - P ±. (A5) implies
that 8 ' (x*) is nonsingular, which proves the inequality stated in the lemma. []

Next we transfer these results to subproblem (2). Define dk* by the system

0] k I~k] = k R T(p * _ f (x ,))]"

From (A2) and (A5), the matrix is nonsingular for large k. As above, one has

f(Xk) + f ' (x k) d * ~ ~ (h) , d* E ~ (~ k) , (19)

and 0 ~ ä~k(d*) with strict complementarity holding, which leads to

r * . C-bk(d k , d) >~ ½é'lld ± 112 Vd~ R n (20)

for all sufficiently large k. d ± denotes the orthogonal projecfion of d into im(f '(xk)TR).
From second order condifion (A5) and Bk ~ W * one can derive a constant r/> 0 such that

drB~d>~~Tlldll 2 Vd~ ~n: Rr f ' (xk)d=O (21)

holds for large k. Altogether, d* satisfies conditions (A1) to (A5) for @« and thus is a
local minimizer for qO» Note however that qb k is not convex if Bk has one or more negative
eigenvalues, hence d* is not a global minimizer in general.

In order to estimate the difference between d* and the optimum step x * - x k leading
directly into the solution, multiply the vector (x* - x » 0) by the matrix from system (18)
and compare the result with the right-hand side of (18) (cf. [11]). This leads to

IIx~ +d* - x * 112 = O(Ilxk -x*112 • (Ux« -x* lh + I[Bk - W*l12)) • (22)

Hence the algorithm converges superlinearly, if we can prove that dk = d~' and qk ». p for
large k. We start with the first and show that dk = d* except it is prevented by a too small
trust region radius A» The theorem holds for the standard algorithm, too, ignoring the third
alternative.

Theorem 6.2. Let h be polyhedral, and let (A 1) - (A6) be satisfied. Then for all sufficiently
large k, at least one of the following alternatives is true:

(I) dk=d *,

(xI) Ildkll =AkandAk< IId~ II,
(III) dk=~«andAk< II~kll.

Proof. If for some k both (I) and (III) are false, then dk is a solution of subproblem (2)
and dk v~ d~. We show that

q,~(d~; d~' -dk) <0 ,

T. Bannert / Mathematical Programming 67 (1994) 247-264 259

so (II) must hold, because otherwise d* - dk were a feasible direction from d» so dk were
non-optimal for (2). First we have

• ~(dk; d~" - d k) + ' * • ~ (d k , d k - d *)

= h'(f(xk) + f ' (xk)dk;f '(Xk) (d* - dk)) + d~Bk(d* - db)

--dk)) +dk Bk(d« --dk) +h'(f(xk) + f ' (x«)d* ; f ' (xk)(d k * *T *

<. - (dk -d*)rBk(dk - d ~) (23)

because h is convex. We partition

d k - d * =:a~- + a ~ , a~- ~ im(f ' (xk) rR) , Rr f '(xk)a~ = 0 .

Note that a~ ~ 0 and a~- ~ 0 because d k p 0 from Lemma 5.1 and d* -~0 from (22).
From (20), we have

t q ~ k (d k ; d k - d *) 1 , ~ > /~e Ilak 112. (2 4)

We subtract (24) from (23) and replace from (21):

q~'~(dk; d* --dk) ~ - ½E'lla~- 112 - (a~ +a2)rB«(a~ - +a2)

,< (_ 1 ~ , + IIßk I1= Ila~- 112 + 21IRk 112 Ila2 I1=)Ila~- 112 -- ~~,kJcm Il ~~»,_,kù k~ II

-< - l e ' l l a ~ 112 - ~lla2 II 22 < 0

for large k. Thus (II) holds and the theorem is proved. []

Since for large k, 8k and d* are in ~(qbk), the same holds for dk if alternative (I) or (III)
becomes true. However, there seems to be some hope that d k ~ g (~ k) also in case (II),
because ~k is within the trust region whenever step 3b of Algorithm 3.1 is performed. This
is not entirely correct, but close to:

Lemma 6.3. Let e« ~ R ~ be of minimum Euclidean norm satisfying

dk +ek ~~(qbk) , i.e. Rr(f (Xk)+f ' (Xk)(dk + e k) - - p *) = O .

Then Ilekll2 = O(I lxk-x*l122) .

Proof. Note first that ~» d* and d« are of order O(llxk-x*ll2) from (13), (22), and
Theorem 6.2. If I1~~11 > A » then dk = ~« and ek=O, SO there is nothing more to prove.
Otherwise, we have q~~(dk; ~k-dk) >~ O, because dk is optimal and ~k is feasible for (2).
Frorn (17),

th'«(~k; dk -- ~«) >i ~~'llekll2 • (25)

For suitable constants c» c2 > 0 we have

th'«(~k; d~ - tSk) - qO~,(Sk ; d« - ~~) = ~~(trI--Bk) (db -- ~k) <~ C~" IIx~ -x*l122 (26)

260

and

T. Bannert / Mathematical Programming 67 (1994) 247-264

• £(dk; 8k -dk) + ~£(~k; dk - - ~k) ~ - - (d k - - 8 k) ~ ß k (d k -- ~«) < C 2 " I[Xk --X*II z

(27)

like in (23). Adding (26) to (27) and subtracting (25) yields

0 ~ q~~(dk; 8k - d k) -< - ½ ~'llek I1= + (ca +c2)Ilxk -x*l122,

so Ilekll2 = O(llxk--x*]l~) is proved. []

Now we are able to prove our main result:

Theorem 6.4. Ler h be polyhedral, assume (A 1) - (A6) are true. Then dk = d ~ and qk >/P
hold for all sufficiently large k, and the sequence {Xk} converges to x* superlinearly.

Proof. Assume for the moment we had already proved that q« ~> p for all sufficiently large

k. Then we can show that dk=d * holds from some ko on: For such k alternative (II) or
(III) from Theorem 6.2 hold, step 6 of the algorithm implies Ak+ 1 ~> A k. Since 8k ~ 0 and
d* --* 0, after a finite number of iterations (I) must hold. If, however, (I) holds for some

large enough k, it will hold for k + 1, too: Both lid*+1 II and II~k+lll will be of magnitude
O (I[xk + 1 - x * II 2), while A~ + 1/> II d~ II, which is much larger because of (22). Thus, neither
(II) nor (III) can hold, and dk=d * will hold for all following k. Now (22) provides the
bound

[Ixk+ 1 -x*l12 = O(llx~ -x* l l z" (llx~-x*l12 + Ilßk - W * l l z)) , (28)

so the proof will be complete if we show that qk >~ P for large k.

From Lemmas 4.2 and 6.1,

~b(xk + dk) -- clgk(dk) $(Xk + dk) -- @k(dk)
1 - q k = $(Xk) --qOk(dk) <~ ½«c211xk-x*ll~ (29)

for large k. Let zk ~ R n be of minimum norm satisfying zk ~ ~(@~k+a«), i.e.

Rr(f(xk + dk) + f '(xk + dk)zk - -p*) = 0 .

Remembering [[dk[[2=O(]]Xk--x*[[2), which came from Theorem 6.2, we derive from
Lemma 6.3

O=Rr(f(x«) + f '(xk)(d« +ek) - -p*) =RT(f(xk--dk) - -p*) +O(llxk-x*ll~) ,

so Ilzk I1= = O(II x~ - x * II ~). Lemma 2.1 gives the bound

T. Bannert / Mathematical Programming 67 (1994) 247-264 261

~b(Xk + dk) = qbxk+d«(6(Xk + dk)) + ~~rll~(xk +d~)II

-< ~xk+ d«(Zk) -- l o'llzk -- ~(Xk + d k) I I 22 + ½o'11 ~(xk +dk)II

= h(f(xk +dk) + f '(Xk +dk)zk) + O'Z~8(Xk +db)

= h (p *) + ~*r(f (x k +dk) + f '(xk +dk)zk --p*) +crzT6(xk +dk) ,

because h(p) = h(p*) + ~r*T(p --p*) for all p ~ ~ (h) . A lower bound for @k(dk) is

qbk(dk) =h(f(xk) + f '(xk)dk) + 1 r 1dkBkdk

>~h(p*) + ~*r(f(xk) + f '(x«)dk - p *) + ~dkBkd k l T .

Thus the numerator in (29) can be estimated by

¢(xk + dk) - ~k(dk)

<~ ~*T(f(xk +dk) + f '(xk +de)z« - f (xk) - f '(xk)dk)

+ T 1 T o'z, ~(x~ + dk) -- ~dkBkdk

= ~ ~ * ~ (x k +d~) --f~(Xk) -- Vf~(Xk)rdk-- ½d~V2f~(Xk)dk)
i = 1

+ Tr*Tf '(xk +dk)Zk +O'Z~~(xk +dk) --I r ~dk(Bk - Wk)dk

=o(l lx~-x*ll~)

observing Ildklh = O(Ilxk--x*ll2), Ilzklh = O(Ilxk--x*ll~), the Lipschitz condition on V2f,
7r*rf ' (x*) = 0, and the fact that the matrices Bk as weil as

W~ .'= ~ It* ~f~(x~)
i = l

converge to W *. Substitution in (29) gives lim infk-~~ qkm> 1, so qk>~ p for large k, and the
theorem is proved. []

Corollary 6.5. If the matrices B, are chosen according to

B~ := ~ 7r~ k) V2fi(xk) ,
i = 1

where 7r (k) denotes the multiplier to ~~ defined in (6), then the order of convergence xk ~ x *
is at least quadratic.

Proof. (16) implies II ~(k~ - ~*lh = o (IIx~-x* Ih). Hence IIB«- W*lh = O(l lx , -x* Ih),
and second order convergence follows from (28). []

An alternative choice for B» which turned out to be slightly superior in practical tests, is

262 T. Bannert / Mathematical Programming 67 (1994) 247-264

Bh := ~ 3,? » Wf,.(x~)
i ~ l

with the multipliers y}k) to dk as a solution of (2). Like in [14], we cannot show that
y<k» ~ 7*; however, the opposite case seems negligible for practice. Under the assumption

y(k) ~ ~.., one can derive

lind+ 1 - W*l12 = O(IIx~ -x*l12" (llxk - x * Il= + IIß~ - W*l l=)) ,

which implies second order convergence (x» Bk) ~ (x*, W*).

7. Discussion

The algorithm was tested with a variety of problems including Yuan's [12] counterex-
ample for only linear convergence of Fletcher's basic algorithm, discrete nonlinear approx-
imation problems, and some hand-made polynomials of size up to 50. The matrices Bk were
chosen as mentioned at the end of the previous section, using exact second order derivatives.
The tests yielded no significant differences between Algorithm 3.1 and Fletcher's algorithm
with correction step, comparing the number of steps until a certain neighbourhood of a
solution was reached. Hence the more interesting point are the expenses per step. Table 1
shows the number of evaluations o f f a n d f ' and the number of subproblems to be solved
per step of Fletcher's basic algorithm [6], Fletcher's algorithm with correction step [7],

Algorithm 3. I, and a modification of Algorithm 3.1, which is proposed below. There is a
decision made between accepted and rejected steps. Note that about 80-90% of all steps
are accepted steps on average.

First regard the number of function evaluations. Fletcher's algorithm needs one more
evaluation of f whenever a correction step is performed, while in Algorithm 3.1, f ' is
evaluated also in rejected steps for the calculation of 6(xk + dk) and ~0(xk + d~). If one is
willing to avoid this evaluation at the price of solving another additional subproblem, the
following modification is possible: In step 5 of Algorithm 3.1, first calculate an estimate qk

to q» us ingf '(xk) instead o f f ' (xk+dk) for the calculation of ~(xk+dk). If qk<p, reject

Table 1
Expenses per step of several algorithms

Algorithm Accepted step Rejected step

subprob, eval. f eval. f ' subprob, eval. f eval. f '

Fletcher [6] 1 1 1 1 1 0
Fletcher [7] 1-2 1-2 1 2 2 0
Algorithm 3.1 2 1 1 2 1 1
Modification 3 1 1 2 1 0

7". Bannert / Mathematical Programming 67 (1994) 247-264 263

dk and go to step 6b, otherwise continue with step 5 and 6, evaluatingf ' (Xk+dk) and q«
exactly and testing qk >~ P again. Numerical tests showed that the estimated test and the exact
test seldom yield different results. The expenses per step are shown in the last line of Table
1. The analysis of Sections 4 to 6 can be adapted.

Beside these function evaluations, most of the time is spent solving the subproblems (2),
(3) and (4) for d» ät k, and 6k- In most applications, h is a polyhedral convex function and
I1" II is a polyhedral norm, frequently the maximum norm; so the subproblems can be solved
via quadratic programming. The number of subproblems to be solved per step, as noted in
Table 1, is not too significant, because the processing time needed to solve one subproblem
varies quite much and it is hard to give exact proportions. In the following, we assume that
a primal quadratie programming procedure with some active set strategy is used (see e.g.
[8]) .

Calculating 6k is less expensive than calculating d» because the matrix of the correspond-
ing quadratic program is essentially the identity matrix. A second reason is that o'> IIB~II2
causes 6k to be considerably smaller than dk in most steps, so fewer changes of the active
set may be necessary to solve the quadratic program.

Another important point is what starting points are available for the quadratic program-
ming procedure. The second order correction a«, calculated by (3), is often found in one
step when starting with the active set from the solution of (2), in which case the costs can
almost be neglected. The best starting point for (2) is harder to state. In the end phase of
the algorithm, starting with the active set from the last step is surely favourable. In Algorithm
3.1, one can alternatively start in the point 6k from the solution of (4). By this choice,
problems arising from nonconvexity of q)k are excluded: The quadratic programming pro-
cedure will find a local solution dk satisfying Cbk(dk) <~ ~k(~«), which is sufficient for the
analysis given in Sections 4 and 5 (in particular, if one defines dk: = 3k in every step, the
results of Sections 4 and 5 remain valid).

The parameter o- in Algorithm 3.1 is normally changed at most once or twice until it
attains its final value. In Table 1, we neglected the additional subproblem that must be
solved when o- is changed. If there is no good estimate for tr available, it is preferable to
start with a small value, because a too big value is not reduced by the algorithm and may
slew down convergence.

Acknowledgement

I wish to thank Professor J. Werner for many helpful suggestions and his constant
guidance and encouragement. I further am grateful to a referee, whose detailed suggestions

led to improvement.

References

[1] T. Bannert, "Ein Trust-Region-Verfahren basierend auf der Glättung nichtdifferenzierbarer Funktionen,"
Ph.D. Thesis, Georg-August-Universität Göttingen (Göttingen, 1993).

264 T. Bannert/Mathematical Programming 67 (1994) 247-264

[2] F.H. Clarke, Optimization and Nonsmooth Analysis (John Wiley & Sons, New York, 1983).
[3] R. Fletcher, "A class of methods for nonlinear prograrnming with termination and convergence properties,"

in: J. Abadie, ed., Integer and Nonlinear Programming (North-HoUand, Amsterdam-London, 1970) pp.
157-175.

[4] R. Fletcher, "A class of nonlinear programming IlI: Rates of convergence," in: F. Lootsma, ed., Numerical
Methodsfor Nonlinear Optimization (Academic Press, London-New York, 1972) pp. 371-381.

[5] R. Fletcher, "An exact penalty funcüon for nonlinear programming with inequalities," Mathematical
Programming 5 (1973) 129-150.

[6] R. Fletcher, "A model algorithm for composite nondifferentiable optimization problems," Mathematical
Programming Study 17 (1982) 67-76.

[7] R. Fletcher, ' 'Second order corrections for non-differentiable optimization," in: G.A. Watson, ed., Numerical
Analysis Proceedings (Springer, Berlin, 1982) pp. 85-114.

[8] R. Fleteher, Practical Methods ofOptimization (John Wiley & Sons, New York, 1987).
[9] K. Madsen, "An algorithm for minimax-solution of overdetermined systems of nonlinear equations,"

Journal of the Institute of Mathematics and its Applications 16 (1975) 321-328.
[10] M.J.D. Powell and Y. Yuan, "A trust region algorithm for equality constrained optimization," Mathematical

Programming 49 (1990) 189-211.
[11] R.S. Womersley, "Local properties of algorithms for minimizing nonsmooth composite functions," Math-

ematical Programming 32 (1985) 69-89.
[12] Y. Yuan, "An example for only linear convergence of trust region algorithms for non-smooth optimization,"

IMA Journal of Numerical Analysis 4 (1984) 327-335.
[13] Y. Yuan, "Conditions for convergence of trust region algorithms for nonsmooth optimization," Mathemat-

ical Programming 31 (1985) 220-228.
[14] Y. Yuan, "On the superlinear convergence of a trust region algorithm for non-smooth optimization,"

Mathematical Programming 31 (1985) 269-285.

