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Abstract 

A trust region algorithm is proposed for minimizing the nonsmooth composite function 
F(x) =h(f(x)) ,  wherefis smooth and h is convex. The algorithm employs a smoothing function, 
which is closely related to Fletcher's exact differentiable penalty functions. Global and local conver- 
gence results are given, considering convergence to a strongly unique minimizer and to a minimizer 
satisfying second order sufficiency conditions. 
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1. Introduction 

This paper presents a trust region algorithm for solving the unrestricted, nonsmooth 

optimization problem 

Minimize F ( x ) = h ( f ( x ) ) ,  x ~  n , (1) 

where f :  Rn--* R"  is (at least) once continuously differentiable and h:ff~m~ R is convex. 

Trust region algorithms for problems of  this kind have been considered by Madsen [9],  

when h is the maximum norm, and by Fletcher [6] ,  Yuan [ 13], and various other authors 

for the general case. From the current iteration point Xk, the iteration step is defined by 

minimizing a model function in a certain range around xk, called the trust region. The size 

A k of  the trust region is adjusted after every step. The iteration step dk in [6] as well as in 
this paper is defined as a solution of  the subproblem 

Minimize tTibk(d ) := h(f(xk) + f  ' (xk)d)  + ½drBkd (2) 

s.t. Ildil ~< zi k 
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with some symmetric matrix Bk ~ ~n × n and some norm I1" II on R n, However, we use a 
different condition to decide whether dk should be accepted, so xk + ~ := xk + d» or one prefers 
to define xk+ 1 '= xk and reduce the trust region radius. Usually, dk is accepted if it leads to a 
reduction of the objective function, while in this paper a reduction of a smoothing function 
is demanded. This smoothing function is the direct analogon to Fletcher's exact differentia- 
bie penalty functions for equality or inequality constrained smooth optimization problems 
[ 3-5 ]. A slightly different version of these penalty functions was used by Powell and Yuan 
[ 10] for a trust region algorithm for equality constrained smooth problems, which greatly 
influenced this paper. 

The reason for introducing a smoothing function is the so-called Maratos effect, which 
can prevent superlinear convergence of the sequence {Xk} generated by the algorithm 
to a local solution x* of (1) satisfying second order sufficiency conditions. An example 
has been presented by Yuan [ 12]. The point is that, in spite of second order sufficiency 
conditions holding, there may exist a sequence {Zk}a~" such that Zk~X *, 
Il zk÷ ~ -  x*  II 2 = o (  Il z k - x *  1122 ), but F(Zk+ 1) ~> F(Zk) for infinitely many k, resulting from 
nondifferentiability of F. The steps dk produced by subproblem (2) yield 

Ilxk + d k -  x *  II 2 = o ( Ilxk- x *  II 2) or better, if Bk is properly chosen and A k has the right 
magnitude. Nevertheless, they may fail to reduce F and thus will not be accepted. 

The usual way to overcome this difficulty (see Fletcher [7], Yuan [ 14] ) is to put in a 

second order correction step clk whenever F(xk+dk) is larger than it should be. dk is a 
solution of the subproblem 

Minimize (~k(d) :-~hOe(Xk -]-dk) + f  '(Xk)d ) q- l (d k -I-d)TBk(dk +d) (3) 

subject to Ildk +al l  ~< Ak, 

and Xk+~ is defined as xk+dk+dk, if  this choice reduces F. In general, Xk+dk+dk is not 
substantially closer to x*  than Xk + d» so the correction step does not accelerate convergence 
by itself. Hence we obtain the same order of convergence without a correction step, allowing 
that dk may be accepted even if F(xk + dk) > F(x,O. In order to maintain global convergence 
properties, a reduction of the smoothing function is demanded instead. The given analysis 
as weil as our numerical tests suggest that the use of the smoothing function may be a real 
alternative to the second order correction step in order to avoid the Maratos effect. 

In the next two sections, the smoothing function and the algorithm are presented. The 
following three sections consist of global and local convergence proofs, considering local 
convergence to a strongly unique solution and to a solution that satisfies second order 
sufficiency conditions. In the last section, the costs to evaluate the smoothing function are 
compared with the costs of the correction step. 

Throughout this paper, we use the following notations: Uxll= denotes the Euclidean norm 
of a vector x, and UAll2.'= sup{ IIAxll2:IIxll2 = 1} for any matrix A. x T and A T denote the 
transpose. Let imA:=  {Ax:x~ R t} for AG ~k×t. The gradient of a function g : ~ n ~ R  is 

denoted by Vg(x) and regarded as a column vector, the Hessian is denoted by Wg(x) .  For 
f :  R n ~ ~m,f/denotes the/th component, a n d f  '(x) denotes the m × n-matrix with the rows 
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Vfi(x) r. We further use directional derivatives and subdifferentials of nonsmooth functions 
(cf. e.g. [2] ). For the convex function h, 

Oh(p) = {~'ERm: h ( p + q )  >~h(p) +qrrq, V q ~ R m }  . 

For the composite function F, the chain rules 

F ' ( x ;  d) = h ' ( f ( x ) ; f  ' (x)d)  , óF(x) = f  '(x)rOh(f(x) ) 

hold. Finally F '(x; d) >~ u rd holds for all u ~ OF(x) and the same for h. A point x* ~ R n is 

called a stationarypoint for (1),  i f 0 ~  OF(x*). 

2. The smoothing funetlon 

Let o-> 0 be fixed. For any x ~ R n, let 6(x) denote the unique solution of the problem 

Minimize ~b~(d):=h(f(x) + f  ' (x)d)  + ½~rdrd, d ~  Kn (4) 

and define the smoothingfunction 

~b(x) .'= h(f(x)  + f ' (x) 8(x) ) + «8(x)  Z8(x) . (5) 

A necessary and sufficient condition for 8(x) to be the solution of (4) is that 

0 ~ Oq~~(8(x) ) = f  '(x) rOh(f(x) + f  '(x) 8(x) ) + o'8(x) 

or, equivalently, 

3~r~Oh(f(x) + f  '(x) 8(x) ): f ' (x)rcr+trS(x) = 0 .  (6) 

Lemma  2.1. For any x ~  K ~, 
(a) ~b(x) <~F(x), 
(b) 6(x) = 0 if and only if x is a stationary point for (1), 
(c) II 8(x)112 ~< (1/o ')  I[f '(x)112" min{ II *rll2: , r e  Oh(f(x) ) }, 
(d) ~bx(d ) >~qb~( 6(x) ) + ½~rlld-6(x) ll ~, V d E ~  n. 

Proof. (a) can easily be derived from (5) and (6): 

t#(x) = h(f(x)  + f '(x) 6(x) ) - 7rrf '(x) 6(x) <~ h(f(x)  ) = F(x)  . 

The chain rule for subdifferentials provides 

Oqbx(O) = f  '(x) rOh(f(x) ) = OF(x).  

This proves (b),  because 8(x) = 0 holds if and only if 0 ~ 0~bx(0), while 0 ~ OF(x) is the 
condition for x to be a stationary point for (1). 

For any ~-~ Oh(f(x) ), we have 

F(x) >1 ¢(x)  >~ h(f(x)  ) + ~rrf ' (x )6(x)  + o-6(x)r6(x) . 
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Hence lid(x)112< (l/c)Itf'(x)U211~II» and the minimum in (c)  is attained, because 
öh(f(x) ) is a closed convex set. 

Finally, (d) follows from the fact that ~b~ is uniformly convex: (6) implies 

qbx(d ) - qb~( ~(x) ) = h(f(x)  + f ' (x)d) - h(f(x) + f '(x) ~(x) ) 

+ ½crlldll ~ - ½~rll ~(x)II 

i> ~-~f '(x) ( d -  8(x))  + ~rô(x)~(d - ~(x)) + ~~rlld- ~(x)U 

= ½~rUd- ~(x) II 

for any d E R n, which completes the proof. [] 

L e m m a  2.2. The functions ~ and ~b defined by (4)  and (5) are continuous. 

Proof .  It is sufficient to show that ~ is continuous. For any fixed x ~  ~n, let U be a small 
neighbourhood o f x  and y ~ U. Part (d) of  the previous lemma implies 

thx(~(y) ) >/thx(8(x) ) + 1 ~rll ~(x) - ~(y) II ~, 

~y(~(X) ) ~ (~y(8(y) ) + ½ ~rll ~(x) - ~(y) II ~. 

Taking the sum, we obtain 

~rll ~(x) - 8(y)II ~< [ ~by(~(x)) - ~bx(~(x)) I + I q~y(~(Y)) - 6x(~(y) )  I 

= [ h ( f (y )  + f  ' (y)~(x))  - h ( f ( x )  + f  ' (x)  ~(x))  I 

+ I h ( f (y)  + f  ' (y )~(y) )  - h ( f ( x )  + f  ' ( x ) ~ ( y ) )  I . 

Since h as a convex function is locally Lipschitz, the subdifferentials { Oh(f(y) ): y ~ U} are 
uniformly bounded, and so are {ô(y):  y ~  U} from part (c) of  Lemma 2.1. Therefore all 
arguments of  h appearing in the above inequality are elements of  a bounded set, on which 
we can choose a Lipschitz constant L for h. Now 

crll ~(x) - ~(y) II 
y---~X 

<~2L'lLf(x)-f(y)ll2 +L'ltf'(x)-f'(y)ll2"(ll~(x)llz +llô(y)ll2) , 0 ,  

which means that ~ is continuous. [] 

I f  h is a polyhedral function, f ~ C  k, and for some x ~ R  n nondegeneracy and strict 
complementarity conditions hold in the solution of (4) ,  then ~b is C k- ~ in a neighbourhood 
ofx.  This corresponds to a property of  Fletcher 's  [5] penalty function for smooth problems 
with inequality constraints. Since we will not explicitly use smoothness of ~b, we omit the 
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proof; the main arguments are given in Section 6, applying to the case when x is a local 
solution satisfying second order sufficiency conditions. 

There is a second version of the smoothing function: Define 6(x) as above and let 

~b(x) .'= 4 ,x(6(x))  = ¢~(x) - ½ « 6 ( x ) ~ 6 ( x ) .  

~Ô ean be used for a trust region algorithm in almost the same manner as ~b and has even 
better smoothness properties [ 1 ]. However, ~b seems to be the more natural choice, because 
applied to a smooth function F(x )  =f(x)  (with h(p)  =p) ,  we have 0 =  F, while ~ ~  F. 

3. The algorithm 

Let I1" II be an arbitrary norm on R n and let p ~ (0, 0.5), ~'~ ~ (0, 1 ), and ~'2 > 1 be constant 
parameters. Consider the following algorithm: 

Algorithm 3.1. 
step O: Choose arbitrary starting values Xo~~ n, Ao>0, at>0, calculate ~o:=6(Xo), let 

k.'= 0. 
step 1: I f  ök = O: Stop, xk is a stationary point for  (1). 
step 2: Choose Bk ~ R n ×ù symmetric. 

I f  o'< IIBk[[2: Let cr,= 2[IBkll» recalculate 3» 

step 3a: I f  Il 6«[1 > A» define db := 6k; 
3b: otherwise let dk be a solution o f  the subproblem 

Minimize qbk(d) :=h(f(xk) + f ' ( x k ) d )  + ½drBkd 

s.t. [Idll ~< Ak. 

step 4: Let sk :=4 . I F(  xk + dk) -- ~k( dk) l / lldkll ~. 
I f  o'< Sk: Let tr:= 2Sk, recalculate 6k. 

step 5: Calculate 6( xk + dk) and qk := ( ~b( x«) - ~b( Xk + dk) ) / ( ~b( Xk) -- qJk( dk) ) . 

step óa: I f  qk >~ p, let xk + a := Xk + dk, 6k+a := 6( Xk + dk) , 

and c hoo s e A k + 1 ~ [ IId«ll, max(~'zlldkll,/tD ]; 
6b: otherwise let xk + l := Xk, 6k +1 := 6k, Ak+l := ~'~lldkll. 

step 7: Increment k by one, go to step 1. 

In steps 0, 2, 4, and 5, calculate 6(. ) and ~b(. ) according to (4) and (5),  using the 
current value of the parameter tr. 

In step 2, it is not necessary to calculate [[Bk[[z exactly. The following theorems remain 
valid, if [[Bkll2 is replaced by any sequence {bk} of upper bounds for []Bk[[2 satisfying 
bk< C. [[B«[I2 for some constant C. 

The iteration step db is normally defined in step 3b, which consists of the usual trust 
region subproblem (2). Note that Bk is not demanded to be positive semidefinite. The 
alternative step selection in step 3a is seldom used, but important for convergence analysis. 
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It is motivated by Lemma 4.3: Since dg= Œ always yields a sufficient descent, a step within 

the trust region radius Ag would be less efficient in case Ag< II ~gll. 
The main difference to Fletcher's algorithm [6], however, is the definition of the ratio 

qg in step 5. The success of the step dg is valued by the change in the smoothing function 
instead of F. qg is the ratio of the actual reduction ~b(Xk) -- ~b(xg+dg) and the predicted 
reduction $(Xk) - tI)g(dg). ~g(dg) turns out to be an even better estimate for ~(Xk+dg ) 

than for F(xg + dk), at least in the situation considered in Section 6, which may give rise to 
the Maratos effect. 

In steps 2 and 4 the parameter 0- is adjusted, if necessary. Roughly spoken, the quadratic 
term 10-drd in (4) must dominate all other second order terms occurring. 

4. Global convergence 

If  Algorithm 3.1 terminates in step 1 of the kth iteration, then xg is a stationary point for 
(1) according to Lemma 2.1. From now on we assume that an infinite sequence {xg} is 
generated. Our aim is to show that every accumulation point of {xg} is a stationary point 
for (1). We assume that 

• the sequences {xg} and {Bg} are bounded, 
• f '  is Lipschitz on a convex superset of {xg} with Lipschitz constant L I. 

As a consequence of the first assumption and Lemma 2.1, the trust region radii {Ag} and 

the sequence { gg} remain bounded, too. Hence all arguments ofh appearing in the following 
will be contained in a bounded set, on which h as a convex function is also Lipschitz with 

some Lipschitz constant Lh. 

Lemma 4.1. The parameter 0- is changed only a finite number o f  times. 

Proof. Since o- is at least doubled with every change, it is sufficient to show that it remains 
bounded. Let/~ be an upper bound for { IIBgll 2}. Then o-< 2/~ after a change in step 2, and 

0-=8 IF(xg+dk)  -- q0g(dg) I 
Ildgll~ <~ 4( LhLf + b) 

after a change in step 4. Thus o- remains bounded and the lemma is proved. [] 

Lemma 4.2. For all k, 

~b(xg) - q~g(dg) >i ½o-II~g II 2 2 

holds, so the denominator in step 5 is nonzero. 

Proof. From step 3 of the algorithm, qbk(d«) < @k(6k) holds for all k. Therefore, 

~b( Xk) __ t~k( dk) >~ t#( Xk) _ qbk( 6k) = 0-6~ 6k 1 ~  -- ~6kBkök >t ~0-11 ~g II 
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regarding that o-f> Ilßkll2 from step 2. [] 

Lemma 4.3. I f  dk = 6k and tr is not changed in step 4, then dk will be accepted. This means 

the algorithm does not infinitely loop with a constant x» 

Proof.  I fdk = 8k, from Lemma 2.1 (a)  and Lemma  4.2 we have 

~b(Xk +6k) --@k(6k) F(x« +~k)--Clgk(6k) 

1 - q k =  ~b(xk) -- 45k(~«) ~< ½~rll~«ll~ <½ '  

because we assumed o" to be unchanged in step 4. Therefore qk >~ ½ > P, and 8k will be 

accepted. [] 

Theorem 4.4. Let the sequences {xk} and {Bk} f rom Algorithm 3.1 be bounded, and let f ' 

be Lipschitz on a convex superset o f  {xt}. Then every accumulation point o f  {xk} is a 

stationary point for  (1).  

Proof. Without loss of  generality, o-can be regarded as a constant. From the previous lemma 

we know that there is an infinite number of  k for which qk >~ P. For each of these, 

O(xk) - O( Xk + I ) >~ p" ( O( Xk) -- clak( dk) ) >I ½p,rll ~k Il ~ 

from Lemma 4.2. Since { O(xk) } is monotone and bounded, we obtain the limit ~k ~ 0 (note 

that ~k = ~k+ 1 if qk < P)" Now continuity of  ~ from Lemma 2.2 supplies that ~ (x*)  = 0 for 
every accumulation point x*  of  the sequence {xk}, which completes the proof. [] 

5. Local convergence to a strongly unique solution 

Let x*  ~ R n be a strongly unique solution of ( 1 ), that is, there exist constants a > 0, • > 0 

such that 

F(x)-F(x*)>--~'llx-x*ll2 Vx~Rn: IIx-x*ll2 < • .  (7) 

We assume that 
• x k ~ x * ,  the sequence {Bk} is bounded, 
• f '  is Lipschitz in a neighbourhood of x*  with Lipschitz constant L? 

Thus we can keep on using the Lipschitz constant L h for h from the previous section. 
Because of Lemma 4.1, o- can be regarded as a constant. We start with an easy consequence 
of the trust region adjustment strategy in step 6. 

Lemma 5.1. I f  the sequence {xt} generated by Algorithm 3.1 converges to a stationary 
point, then dk ~ O. 

Proof. Let ~g .'= { k ~ ~q: qk >i P} denote the set of  all iteration indices belonging to accepted 
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steps. The statement is trivial for the subsequence {dk}k~~'. If, however, ~q\~¢ is infinite, 
even ,4«--, 0 holds: For every kG ~q\~', At is reduced by the constant factor ~-~ < 1, while 
for k ~ ~  ¢ either Ak+l <~Ak or "4k+l ~ ~'~lld«ll--,o holds. "4k--->O implies d«--a'O, because 
6k--> 0 comes from Lemma 2.2. [] 

Theorem 5.2. Let the sequence {x«} generated by Algorithm 3.1 converge to a strongly 

unique minimizer x * of F, let f ' be Lipschitz in a neighbourhood of x*, and let the sequence 
of matrices {Bk} be bounded. Then the order of convergence Xk ~ X* is at least quadratic. 

Proof. The above made assumptions imply that 

chx«(d) =F(Xk +d) + O( Ildl122), 

ePk( d) = F(x« + d) + O(Ildl122) 

uniformly for all k. Since 6k ~ 0, we have that 

1 
IIx« + 6« - x * l l z  ~ - (F(x~ + 6«) - F ( x * )  ) 

O/ 

1 

O/ 
(Ck.k(6k) - -F (x* ) )  + o(116«11 z z) 

1 <~- 
Ol 

( qbxk(X * -- Xk) -- F(X*) ) + 0 ( II 6« II z z) 

= o (  IIx« - x *  II 22) + o(116« II 22). 

Therefore 

IIx« + 6« -x* l12  = O(llx« - x *  II ~) 

Similarly, dk ~ 0 implies 

1 
IIx« +d~ - x * l l z  ~< - 

OL 
(F(xk +dk) - F ( x * )  ) 

(8)  

1 

O/ 
(~«(dk) -- F(x*)  ) + O( lid« II z) 

1 ~<-  
O/ 

(q,«(6«) - F ( x * ) )  + O(lld« II ~) 

1 

O~ 
(F(Xk + 6k) -- F(X*) ) + O( lid« II z z) + o (  Il 6« Il z z) 

= o (  Ilxk - -x*  II z z) + O(lldk II 2 ) ,  

which shows that 

IIxk +d«  - x * l l 2  = O(  IIx« - x * l l  ~) • (9)  
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Finally, we have to show that dk is accepted, i.e. qk ~> P for large k. From step 4 of  the 
algorithm (note that cr was assumed to be constant) and Lemma 4.2, we have 

O(xk +dk) --CI)k(dk) F(xk +dk)--~k(dk) lo-IId« II ~ 
1 - q k  = O(Xk) -- q)k(dk) <~ O(Xk) - 4~«(dD <~ ~~ll~kll-------~" 

S/nee IId4h/ll~4h-* 1 from (8) and (9),  

lim inf qk t> ½ > P ,  
k.---~ c~ 

which ensures that dk is accepted for sufficiently large k. Thus the proof is complete. []  

6. Local convergence under seeond order sufficiency condiüons 

In this section, let h be a polyhedral convex function: 

h ( p ) =  max g~+hrp,  g / ~ R ,  h i e r  m ( i = 1  . . . . .  K),  K > 0 .  
i =  1 , . . , K  

For any p ~ R" ,  let I(p) := { i: g~ + hTp = h(p) } denote the set of active components. The 

derivatives of  h are g/ven by 

h'(p; q) =max{hTq: i~ I (p )  } , Oh(p) =co{h/ :  i~ I (p )  } , 

where co A stands for the convex hull of  a setA. We gradually state second order sufficiency 
conditions on a point x * ~ Rn t o  be a local solution for ( 1 ). Let p * . '=f(x*) .  Since we will 

be able to restrict ourselves to an arbitrarily small neighbourhood of  p* ,  assume for sim- 

plicity that I(p*)  = { 1 . . . . .  K}. We call 

~ ' (h)  := {p ~ N'~: I(p) = I(p*) } 

= {p~- Rm: (h i --hl)T(p--p *) =0 ( i = 2  . . . . .  K) } 

the edge of h through p *. By the corresponding edges of  F resp. ~b x, we mean the sets 

~"(F) := {x~[R": f (x )  ~ g ( h )  } ,  

~'(~bx) := {d~  R": f (x)  + f ' ( x )dE~ ' (h)  } ,  

respectively. Introducing a maximum subset {il . . . . .  it} _ {2 . . . . .  K} such that the matrix 

R :=  (hil - h a  [... [hi t - h l )  ~ RrnXl (10) 

has full rank l, we can write 

~'(h) = {p~Rm: RT(p--p *) = 0 } ,  

~ ' (F )  = {x~ R": Rr ( f (x )  - p * )  = 0}  . 

The first condition we impose on x* is that x* be a stationary point for (1) ,  i.e. 
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(A1) 3"n'*~ah(p*): f ' (x*)rTr*=O. 

Secondly, we demand the set ~ ( F )  to be regular at x*: 

(A2) rank(R~ ' ( x* ) )  = l  (nondegeneracy) . 

Note that the affine hull of Oh(p*) is 7r+ im R with an arbitrary q'rE Oh(p*). Hence (A2) 
implies that 7r* is uniquely defined by (A 1 ). We demand that ~-* is contained in the relative 

interior of Oh(p*), which means 

(A3) 3 e > 0 :  {qr~~-*+imR:  [[~r-7r*ll2<<.e}c_Oh(p*) 

(strict complementarity). Because f '(x*) r is a one-to-one mapping from Oh(p*) to 

OF(x*), (A3) is equivalent to 

3 e ' > 0 :  {u~ imf ' ( x* ) rR:  Ilull~ « . ~ ' } c _ O F ( x * )  , (11) 

regarding f ' (x*)rTr * =  0. An arbitrary dE  ~"  can be partitioned into a component d" 

parallel and a component d ± orthogonal to the tangent space to ~ ( F )  at x*: 

d=d Il +d ± , d I ~ i m ( f  '(x*) rR) , Rrf '(x*)d" = 0 .  

Then (11) gives 

F ' ( x * , d ) >  e ' ,~ l , ,  d=e'  dJ-[[2. (12) 
a 2] 

That means there is a strict ascent in F when moving from x* into any direction that is not 
contained in the tangent space to g°(F). Thus second order conditions must be imposed 

only for the elements of the tangent space to g~(F) : 

(A4) L e t f b e  twice differentiable and let V2fbe Lipschitz in a neighbourhood of x*. 

(A5) drW*d>O V d ~ ~ ' :  d4:0, Rrf ' (x*)rd=O,  

where W*:=  ~ 7r* V2f/(x *) . 
i=1 

Ultimately, we assume 

(A6) xk ~ x *  , Bk--*W* 

for the sequences from Algorithm 3.1. 
The results of this section remain valid even without strict complementarity holding (see 

[ 1 ] ). The Lipschitz condition on VZfis needed only for second order convergence, while 
Theorem 6.4 still holds if VZf is only supposed to be continuous. The proof can also be 

modified in a way that only 

(B~-W*)(x~-x*) / l l x~-x* l l2  ~ O ,  (Bk-W*)dk/l[dkll2~O, 
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and relation (21) are required instead of Be ~ W*. 
An important point of the proof is that for large k both 6k and dk are in the edge 

8'((hxk) = 8~(@k)- This means that both subproblems (4) and (2) correctly predict the set 
of components that are active in x*. Since these results are standard except from the influence 
of the constraint in (2), we give only sketches of the proofs. For details, see [ 11 ]. 

For all x sufficiently close to x*, 8(x) is given by the system 

~f '(x) 0 AA(x)] k R l " ( p * - f ( x ) ) ]  " 

Note first that the matrix is regular for x close to x* because of nondegeneracy condition 
(A2). The right-hand side is zero for x = x*, and the solution (8(x),  A (x)) is differentiable 
as a function of x. From the second equation, we have 

f ( x )  + f ' ( x ) 8 ( x )  ~8~(h ) ,  so 8(x) ~8~(~bx) . (14) 

The first equation yields 

trS(x) + f  '(x) r~(x)  = 0 ,  (15) 

defining 

• r(x) := 7r* +RA(x) . (16) 

From strict complementarity condition (A3), ~-(x) ~ Oh (p * ) for x close to x *. Since (14) 
implies Oh(f(x) + f  '(x) 8(x) ) = Oh(p *), (15) means that the solution 8(x) of (13) actu- 
ally satisfies condition (6) and hence is the solution of (4). With a little more care, orte 
can even derive strict complementarity for 8(x) in a uniform sense: For all x sufficiently 

close to x*, 

{~-~ ~(x) + im R: l ie f -  ~-(x)112 < ½E} C_Oh(p*) 

and 

th'~(6(x);d)»½«'lld±ll2 V d ~ R "  (17) 

hold, using the constants and arguments from (A3) and (12), and defining d ± as the 
orthogonal projection of d into im( / ' ( x ) fR) .  We further need 

Lemma 6.1. There is a constant c > 0 such that 118(x) II 2 » c. I Ix-  x* Il 2for all x sufficiently 
close to x*. 

Proof. We take first derivatives on both sides of system (13). Observing 6 ( x * ) =  0, 
A(x*) = 0, we obtain 

- W *  

0 A , ~ ' ( x * ) / = k  - 

A short calculation gives 
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~ ' ( x * )  = -  1 p I I w * - P  ~- , 
O" 

where P ± is the orthogonal projecUon into im ( f ' ( x * )  TR), and P ii..= I -  P ±. (A5) implies 
that 8 ' (x*)  is nonsingular, which proves the inequality stated in the lemma. [] 

Next we transfer these results to subproblem (2). Define dk* by the system 

0 ] k I~k ] = k R T(p * _ f ( x , )  ) ]" 

From (A2) and (A5), the matrix is nonsingular for large k. As above, one has 

f(Xk) + f ' ( x k ) d *  ~ ~ ( h ) ,  d* E ~ ( ~ k ) ,  (19) 

and 0 ~ ä~k(d*)  with strict complementarity holding, which leads to 

r * .  C-bk(d k , d) >~ ½é'lld ± 112 Vd~ R n (20) 

for all sufficiently large k. d ± denotes the orthogonal projecfion of d into im(f  '(xk)TR). 
From second order condifion (A5) and Bk ~ W * one can derive a constant r/> 0 such that 

drB~d>~~Tlldll 2 Vd~ ~n: Rr f ' ( xk )d=O (21) 

holds for large k. Altogether, d* satisfies conditions (A1) to (A5) for @« and thus is a 
local minimizer for qO» Note however that qb k is not convex if Bk has one or more negative 
eigenvalues, hence d* is not a global minimizer in general. 

In order to estimate the difference between d* and the optimum step x * - x k  leading 
directly into the solution, multiply the vector (x* - x »  0) by the matrix from system (18) 
and compare the result with the right-hand side of (18) (cf. [ 11 ] ). This leads to 

IIx~ +d* - x *  112 = O( Ilxk -x*112 • (Ux« -x* lh  + I[Bk - W*l12)) • (22) 

Hence the algorithm converges superlinearly, if we can prove that dk = d~' and qk ». p for 
large k. We start with the first and show that dk = d* except it is prevented by a too small 
trust region radius A» The theorem holds for the standard algorithm, too, ignoring the third 
alternative. 

Theorem 6.2. Let h be polyhedral, and let (A 1 ) - (A6)  be satisfied. Then for all sufficiently 
large k, at least one of the following alternatives is true: 

(I) dk=d  *, 

(xI) Ildkll =AkandAk< IId~ II, 
(III) dk=~«andAk< II~kll. 

Proof. If for some k both (I) and (III) are false, then dk is a solution of subproblem (2) 
and dk v~ d~. We show that 

q,~(d~; d~' -dk) <0 ,  
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so (II) must hold, because otherwise d* - dk were a feasible direction from d» so dk were 
non-optimal for (2). First we have 

• ~(dk; d~" - d k )  + ' * • ~ ( d k ,  d k - d * )  

= h'(f(xk) + f  ' (xk)dk;f  '(Xk) (d* - dk) ) + d~Bk(d* - db) 

--dk ))  +dk Bk(d« --dk ) +h'(f(xk) + f  ' ( x« )d* ; f  ' (xk)(d k * *T * 

<. - ( dk -d*)rBk(dk  - d ~ )  (23) 

because h is convex. We partition 

d k - d *  =:a~- + a ~ ,  a~- ~ im( f ' ( xk ) rR)  , Rr f  '(xk)a~ = 0 .  

Note that a~ ~ 0  and a~- ~ 0  because d k p 0  from Lemma 5.1 and d* -~0 from (22). 
From (20), we have 

t q ~ k ( d k ; d k - d * )  1 , ~ > /~e  Ilak 112. ( 2 4 )  

We subtract (24) from (23) and replace from (21): 

q~'~(dk; d* --dk) ~ - ½E'lla~- 112 - (a~ +a2)rB«(a~ - +a2) 

,< ( _ 1 ~ , +  IIßk I1= Ila~- 112 + 21IRk 112 Ila2 I1=)Ila~- 112 -- ~~,kJcm Il ~~»,_,kù k~ II 

-< - l e ' l l a ~  112 - ~lla2 II 22 < 0  

for large k. Thus (II) holds and the theorem is proved. [] 

Since for large k, 8k and d* are in ~(qbk), the same holds for dk if alternative (I) or (III) 
becomes true. However, there seems to be some hope that d k ~ g ( ~ k )  also in case (II), 
because ~k is within the trust region whenever step 3b of Algorithm 3.1 is performed. This 
is not entirely correct, but close to: 

Lemma 6.3. Let e« ~ R ~ be of  minimum Euclidean norm satisfying 

dk +ek ~~(qbk) , i.e. Rr( f (Xk)+f ' (Xk)(dk  + e k ) - - p * ) = O .  

Then Ilekll2 = O(I lxk-x*l122) .  

Proof. Note first that ~» d* and d« are of order O(llxk-x*ll2) from (13), (22), and 
Theorem 6.2. If I1~~11 > A »  then dk = ~« and ek=O, SO there is nothing more to prove. 
Otherwise, we have q~~(dk; ~k-dk) >~ O, because dk is optimal and ~k is feasible for (2). 
Frorn (17), 

th'«(~k; dk -- ~«) >i ~~'llekll2 • (25) 

For suitable constants c» c2 > 0 we have 

th'«(~k; d~ - tSk) - qO~,(Sk ; d« - ~~) = ~~(trI--Bk) (db -- ~k) <~ C~" IIx~ -x*l122 (26) 
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• £(dk; 8k -dk )  + ~£(~k; dk - -  ~k) ~ - -  ( d k  - -  8 k ) ~ ß k ( d k  --  ~«) < C 2 "  I[Xk --X*II z 

(27) 

like in (23). Adding (26) to (27) and subtracting (25) yields 

0 ~  q~~(dk; 8k - d k )  -< - ½ ~'llek I1= + (ca +c2)Ilxk -x*l122, 

so Ilekll2 = O(llxk--x*]l~) is proved. [] 

Now we are able to prove our main result: 

Theorem 6.4. Ler h be polyhedral, assume (A 1 ) - (A6)  are true. Then dk = d ~ and qk >/P 
hold for all sufficiently large k, and the sequence {Xk} converges to x* superlinearly. 

Proof. Assume for the moment we had already proved that q« ~> p for all sufficiently large 

k. Then we can show that dk=d * holds from some ko on: For such k alternative (II) or 
(III) from Theorem 6.2 hold, step 6 of the algorithm implies Ak+ 1 ~> A k. Since 8k ~ 0 and 
d* --* 0, after a finite number of iterations (I) must hold. If, however, (I) holds for some 

large enough k, it will hold for k +  1, too: Both lid*+1 II and II~k+lll will be of magnitude 
O ( I[xk + 1 - x * II 2), while A~ + 1/> II d~ II, which is much larger because of (22). Thus, neither 
(II) nor (III) can hold, and dk=d * will hold for all following k. Now (22) provides the 
bound 

[Ixk+ 1 -x*l12 = O(llx~ -x* l l z"  (llx~-x*l12 + Ilßk - W * l l z ) ) ,  (28) 

so the proof will be complete if we show that qk >~ P for large k. 

From Lemmas 4.2 and 6.1, 

~b(xk + dk) -- clgk(dk) $(Xk + dk) -- @k(dk) 
1 - q k =  $(Xk) --qOk(dk) <~ ½«c211xk-x*ll~ (29) 

for large k. Let zk ~ R n be of minimum norm satisfying zk ~ ~(@~k+a«), i.e. 

Rr(f(xk + dk) + f '(xk + dk)zk - -p*)  = 0 .  

Remembering [[dk[[2=O(]]Xk--x*[[2), which came from Theorem 6.2, we derive from 
Lemma 6.3 

O=Rr(f(x«) + f  '(xk)(d« +ek) - -p*)  =RT(f(xk--dk) - -p*)  +O(llxk-x*ll~) , 

so Ilzk I1= = O( II x~ - x *  II ~). Lemma 2.1 gives the bound 
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~b(Xk + dk) = qbxk+d«( 6(Xk + dk) ) + ~~rll~(xk +d~)II 

-< ~xk+ d«(Zk) -- l o'llzk -- ~(Xk + d k ) I I  22 + ½o'11 ~(xk  +dk)II 

= h(f(xk +dk) + f  '(Xk +dk)zk) + O'Z~8(Xk +db) 

= h ( p * )  + ~*r( f (x  k +dk) + f  '(xk +dk)zk --p*) +crzT6(xk +dk) , 

because h(p) = h(p*) + ~r*T(p --p*) for all p ~ ~ (h ) .  A lower bound for @k(dk) is 

qbk(dk) =h(f(xk) + f  '(xk)dk) + 1 r 1dkBkdk 

>~h(p*) + ~*r(f(xk) + f  '(x«)dk - p * )  + ~dkBkd k l  T . 

Thus the numerator in (29) can be estimated by 

¢(xk + dk) - ~k( dk) 

<~ ~*T(f(xk +dk) + f  '(xk +de)z« - f (xk)  - f  '(xk)dk) 

+ T 1 T o'z, ~(x~ + dk) -- ~dkBkdk 

= ~ ~ * ~ ( x k  +d~) --f~(Xk) -- Vf~(Xk)rdk-- ½d~V2f~(Xk)dk) 
i = 1  

+ Tr*Tf '(xk +dk)Zk +O'Z~~(xk +dk) --I r ~dk(Bk - Wk)dk 

=o(l lx~-x*ll~)  

observing Ildklh = O(Ilxk--x*ll2), Ilzklh = O(Ilxk--x*ll~), the Lipschitz condition on V2f, 
7r*rf ' (x*)  = 0, and the fact that the matrices Bk as weil as 

W~ .'= ~ It* ~f~(x~) 
i = l  

converge to W *. Substitution in (29) gives lim infk-~~ qkm> 1, so qk>~ p for large k, and the 
theorem is proved. [] 

Corollary 6.5. If the matrices B, are chosen according to 

B~ := ~ 7r~ k) V2fi(xk) , 
i = 1  

where 7r (k) denotes the multiplier to ~~ defined in (6), then the order of convergence xk ~ x * 
is at least quadratic. 

Proof. (16) implies II ~(k~ - ~*lh  = o (  IIx~-x* Ih). Hence IIB«- W*lh = O( l lx , -x*  Ih), 
and second order convergence follows from (28). [] 

An alternative choice for B» which turned out to be slightly superior in practical tests, is 
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Bh := ~ 3,? » Wf,.(x~) 
i ~ l  

with the multipliers y}k) to dk as a solution of (2). Like in [14], we cannot show that 
y<k» ~ 7*;  however, the opposite case seems negligible for practice. Under the assumption 

y(k) ~ ~.., one can derive 

lind+ 1 - W*l12 = O( IIx~ -x*l12" (llxk - x *  Il= + IIß~ - W*l l=) ) ,  

which implies second order convergence (x» Bk) ~ (x*, W*).  

7. Discussion 

The algorithm was tested with a variety of problems including Yuan's [ 12] counterex- 
ample for only linear convergence of Fletcher's basic algorithm, discrete nonlinear approx- 
imation problems, and some hand-made polynomials of size up to 50. The matrices Bk were 
chosen as mentioned at the end of the previous section, using exact second order derivatives. 
The tests yielded no significant differences between Algorithm 3.1 and Fletcher's algorithm 
with correction step, comparing the number of steps until a certain neighbourhood of a 
solution was reached. Hence the more interesting point are the expenses per step. Table 1 
shows the number of evaluations o f f a n d f  ' and the number of subproblems to be solved 
per step of Fletcher's basic algorithm [6], Fletcher's algorithm with correction step [7], 

Algorithm 3. I, and a modification of Algorithm 3.1, which is proposed below. There is a 
decision made between accepted and rejected steps. Note that about 80-90% of all steps 
are accepted steps on average. 

First regard the number of function evaluations. Fletcher's algorithm needs one more 
evaluation of f whenever a correction step is performed, while in Algorithm 3.1, f '  is 
evaluated also in rejected steps for the calculation of 6(xk + dk) and ~0(xk + d~). If  one is 
willing to avoid this evaluation at the price of solving another additional subproblem, the 
following modification is possible: In step 5 of Algorithm 3.1, first calculate an estimate qk 

to q» us ingf  '(xk) instead o f f  ' (xk+dk) for the calculation of ~(xk+dk).  If  qk<p, reject 

Table 1 
Expenses per step of several algorithms 

Algorithm Accepted step Rejected step 

subprob, eval. f eval. f '  subprob, eval. f eval. f '  

Fletcher [6] 1 1 1 1 1 0 
Fletcher [7] 1-2 1-2 1 2 2 0 
Algorithm 3.1 2 1 1 2 1 1 
Modification 3 1 1 2 1 0 
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dk and go to step 6b, otherwise continue with step 5 and 6, evaluatingf ' (Xk+dk) and q« 
exactly and testing qk >~ P again. Numerical tests showed that the estimated test and the exact 
test seldom yield different results. The expenses per step are shown in the last line of Table 
1. The analysis of Sections 4 to 6 can be adapted. 

Beside these function evaluations, most of the time is spent solving the subproblems (2), 
(3) and (4) for d» ät k, and 6k- In most applications, h is a polyhedral convex function and 
I1" II is a polyhedral norm, frequently the maximum norm; so the subproblems can be solved 
via quadratic programming. The number of subproblems to be solved per step, as noted in 
Table 1, is not too significant, because the processing time needed to solve one subproblem 
varies quite much and it is hard to give exact proportions. In the following, we assume that 
a primal quadratie programming procedure with some active set strategy is used (see e.g. 
[8]) .  

Calculating 6k is less expensive than calculating d» because the matrix of the correspond- 
ing quadratic program is essentially the identity matrix. A second reason is that o'> IIB~II2 
causes 6k to be considerably smaller than dk in most steps, so fewer changes of the active 
set may be necessary to solve the quadratic program. 

Another important point is what starting points are available for the quadratic program- 
ming procedure. The second order correction a«, calculated by (3), is often found in one 
step when starting with the active set from the solution of (2),  in which case the costs can 
almost be neglected. The best starting point for (2) is harder to state. In the end phase of 
the algorithm, starting with the active set from the last step is surely favourable. In Algorithm 
3.1, one can alternatively start in the point 6k from the solution of (4). By this choice, 
problems arising from nonconvexity of q)k are excluded: The quadratic programming pro- 
cedure will find a local solution dk satisfying Cbk(dk) <~ ~k(~«), which is sufficient for the 
analysis given in Sections 4 and 5 (in particular, if one defines dk: = 3k in every step, the 
results of Sections 4 and 5 remain valid). 

The parameter o- in Algorithm 3.1 is normally changed at most once or twice until it 
attains its final value. In Table 1, we neglected the additional subproblem that must be 
solved when o- is changed. If there is no good estimate for tr available, it is preferable to 
start with a small value, because a too big value is not reduced by the algorithm and may 
slew down convergence. 
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