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Abstract 

New second order optimality conditions for mathematical programming problems and for the 
minimization of composite functions are presented. They are derived from a general second order 
Fermat's rule for the minimization of a function over an arbitrary subset of a Banach space. The 
necessary conditions are more accurate than the recent results of Kawasaki (1988) and Cominetti 
(1989); but, more importantly, in the finite dimensional case they are twinned with sufficient con- 
ditions which differ by the replacement of an inequality by a strict inequality. We point out the 
equivalence of the mathematical programming problem with the problem of minimizing a composite 
function. Our conditions are especially important when one deals with functional constraints. When 
the cone defining the constraints is polyhedral we recover the classical conditions of Ben-Tal-Zowe 
(1982) and Cominetti (1990). 

Keywords: Composite functions; Compound derivatives; Compound tangent sets; Fermat rule; Mathematical 
programming; Multipliers; Optimality conditions; Second order conditions 

The art of  mathematical  programming is intimately tied with the question of  optimality 

conditions. Since most algorithms yield critical points (or  Kuhn-Tucker  points) rather than 

local minimizers,  the exact meaning of  the optimality conditions which describe such points 

is crucial, even for numerical needs. From the theoretical point of  view it is largely recog- 

nized that the successive enlargements of  mathematical programming (from equality con- 

straints to equality and inequality constraints [13,14],  from a finite number of  such 

constraints [ 1,2,7-9,16,20,42-43,45],  to constraints defined by a cone or an inclusion [ 3 -  

6,10-12,17-25,28-38,44,46]  ) have lead not only to a better understanding of  the optimali ty 

conditions but also to a much wider field of  applications. In particular semi-infinite pro- 

gramming, calcul of  variations with constraints, optimal control with distributed parameters 

are amenable to the f ramework that we choose ( [28-30,44]  for instance).  The problem we 

treat is of  the form: 
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(~') minimize j ( x )  subject to x E B n k - I ( C )  , 

wherej:  X ~ ~, k: X--* Z are twice differentiable at some point a of F := B n k - 1 ( C ) ,  B and 
C being closed convex subsets of the Banach spaces X and Z respectively. 

Our necessary conditions involve multipliers depending not only on first order tangent 

directions as in [4] for instance, but also on second order tangent like vectors. They refine 
conditions given recently by Kawasaki [ 21 ] and Cominetti [ 10,11 ] in this sense that they 

are more exacting: the new "strange" term we introduce is greater than theirs. More 
importantly, to these necessary conditions can be associated sufficient conditions (in the 
finite dimensional case) which differ only by the replacement of an inequality by a strict 
inequality. 

Such a desirable featurejustifies the introduction of a new geometrical concept of tangent 
set of order two which is taylored to fit the data. We call it the compound tangent set of 
order two. The introduction of this set has been motivated by some expressions in the work 
[ 19] of A.D. Ioffe which show the way to find adapted tools. It is clear that a close study 
of this set has to be done in each particular application. Let us observe that such a notion 
has analytical counterparts and is also needed for the study of composite functions of the 

f o r m f = g  o h with h twice differentiable and g convex lower semicontinuous (1.s.c.) (but 
not necessarily finite). 

There is no great surprise in this fact since we show that .the problem ( ~ ' )  and the 
problem 

(~')  minimize f = g o h ,  

with g and h as above, are equivalent problems provided suitable rewritings are performed. 
Moreover the necessary condifions on one hand and the sufficient conditions on the other 
hand for each of these two problems correspond exactly under these rewritings. This last 
fact is not a consequence of the previous equivalence since even in finite dimensions a gap 
remains between necessary conditions and sufficient conditions: as usual an inequality has 

to be replaced by a strict inequality. Thus none of the two approaches is superior to the 

other one and one has the following diagram showing the implications between necessary 
conditions and sufficient conditions for problems ( ~ )  and ( ~ ) :  

c s ( ~ ' )  ** c s ( ~ )  

solution of ( ~ ' )  ~ solution of ( ~ )  
$ $ 

CN(f¢ ')  ** C N ( ~ )  
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It seems that up to now the equivalence between problems ( ~ ' )  and ( ~ )  was not clearly 
recognized, although the reduction procedure of [ 18 ] and exact penalization [ 16] are well- 
known links between the two problems (but require qualification conditions and involve 
quite different tools). Out use of indicator functions is crucial in this matter and justifies 
our attention to functions g taking the value + ~. This application to problem ( ~ )  is treated 
in Section 4. 

The first section deals with an abstract Fermat's rule for a general minimization problem 
with constraints. Here too the striking new feature is the sufficient condition and its strong 
analogy with the necessary condition. The second section is devoted to our geometrical 
tool, the compound tangent set and to its analytical counterpart. We believe that these 
notions have their own interests and can be used in other fields such as sensitivity analysis 
and optimal control theory. 

The main results are given in Section 3 under a familiar constraint qualification condition 

(see [6,22,27,34,35,40,46] ) extending the famous Mangasarian-Fromovitz constraint 
qualification condition (see [ 16] for instance) to the infinite dimensional framework of 
( ~ ' ) .  

Applications to semi-infinite programming and sensitivity analysis will be given else- 
where. 

1. Second order Fermat's rule 

Let us first consider the problem 

( ~ )  minimize f (x) :  x ~ F  

of minimizing a function over an arbitrary feasible subset F of a normed vector space 
(n.v.s.) X. In fact hefe X could be an arbitrary topological vector space. We supposef  is 
twice differentiable at some point a ~ F in the following broad sense: there exist a continuous 

linear m a p f  ' (a )  : X ~  R and a continuous bilinear m a p f  "(a)  :X×X--* ~ such that 

r(x) := f (a  +x )  - f ( a )  - f  ' ( a ) x -  ~ "(a)xx 

satisfies lim(t,ù) _~ (o,v)t-2r(tu) = 0 for each v ~X. 
The (superior) tangent cone to F at a ~ F (or contingent cone) is the set 

F ' (a )  :=lim sup t - l ( F - a )  . 
r-*O+ 

The (superior) second order tangent set to F at a ~ F in the direction v ~ X is the set 

F"(a,  v ) :=l im sup 2 t - 2 ( F - a - t v )  . 
t---*O+ 

Thus F ' ( a )  = F " ( a ,  0) and F"(a ,  v) is the set of limits of sequences (wù) such that for 
some sequence (th) of P := (0, ~)  with limit 0 one has for each n ~ ~q a + tù v + ½ t~ z wù ~ E 
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These sets are usually larger than the inferior tangent sets (or incident sets) 

Ti(F, a) :=  lim inf t -  ~ ( F -  a)  
t~.O+ 

and 

Tii(F, a, v):--- lim i n f 2 t - 2 ( F - a - t v )  
t ~ 0 +  

respectively. When F is convex F ' ( a )  = Ti(F,  a) is convex but F"(a ,  v) may be strictly 
larger than Tii(F, a, v).  This fact happens frequently with subsets of functional spaces. But 

it already appears in two dimensional situations as the following example shows. On the 
other hand it must be added, because it is important for a comparison with the work of R. 
Cominetti [ 11 ], that the computation of F"(a ,  v) is offen more difficult than the compu- 
tation of Tii(F, a, v) (see [21] for instance). 

1.1 Example.  Let (rn) be a sequence of ~ : =  (0, +oo) such that for some c ~  (0, 1), 

rn + l <~ crù for each n and let F = { ( xl, x2 ) ~ R2: Vn ~ N, x2 >~ ( r~ + rn + l ) xl - r~rn + l } . Then 
one can check that for a = (0, 0), v = ( 1, 0), w =  (0, 2) one has v ~ F ' ( a ) ,  w ~ F " ( a ,  v) 
but wff  T i i ( F ,  a ,  v). 

1.2 Theorem. Suppose f : X ~  R is twice differentiable at a and that f attains on F c X  a 

local minimum at a. Then 

(a) f ' ( a )v  >~O for  each v ~ F ' ( a ) ;  

(b) ~ " ( a ) v v +  l iminf  f ' ( a ) t - l ( u - v )  >~0 
(t,u) ---, (O+ ,v) 

a + t u ~ F  

for  each v ~ F ' ( a )  (3 k e r f  ' ( a ) .  

Introducing the set Sv,F of r ~ N such that there exists a sequence (th, Un, In )  in P × X × R 

(where P = ( O ,  oo)) with limit (0, v, r), satisfying a + t n v n ~ F ,  f ( a ) + f ' ( a ) t ù v ù +  
1 2 ~tnrn <~f(a) for each n ~ N, condition (b) can be written 

(b')  f " ( a) uv >1 sup au, F . 

Let us give another interpretation of the preceding conditions using the second order epi- 

derivative of the indicator function iF of F (where iF(X)=0 for x ~ F ,  iF(X)= + ~  for 
x ~X'xF)  given by 

i'~(a, a*,  v) = lim inf 2 t - 2 [ i F ( a + t u )  - - iF(a) - -<a*,  tu)] 
(t,u) ---, (O+,v) 
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for a *  ~ X * ,  v ~X.  Condition (a) can be written - f  '(a) ~ OiF(a) for OiF(a) :=N(F ,  

a) .'= F ' ( a )  °, and condition (b) reads f "(a) vv + i~(a, a*, v) >10 for a*  = - f  ' ( a )  or 

f , ,  t a " v) >i 0 for fF = f +  iF, a very natural condition. F \  ~ [J» 

The proof we give below does not use the (easily established) calculus r u l e f  ~(a, 0, 

v) = f  "(a)vv + i~(a, - f  ' (a),  v) and the optimality condi t ionf  ~(a, 0, v) ~> 0. It relies on 

a simple direct argument. 

Proof.  The first assertion is immediate and well-known. The second one is a consequence 

of  the relation t - ~f '  (a)  v = 0 and of  the following inequalities valid for t ~ D:=  (0, ~ ) and 
u - v small enough with a + tu ~ F: 

O < ~ t - 2 ( f ( a + t u ) - f ( a )  ) = t - l f ' ( a ) u +  ~ " ( a ) u u + é ( u ,  t) 

with «( t, u ) -> O as t ---> O + , u ---> v. [] 

The following statement is an immediate consequence. 

1.3 Corollary.  Suppose f : X ~  R is twice differentiable at a and that f attains on F a X  a 
local minimum at a. Then 

(a) f '(a)v>~Ofor each v ~ F ' ( a ) ,  

(b) f "(a) vv + f ' (a )w >10 for  any v ~ F ' ( a )  n k e r f  ' ( a ) ,  and any w ~ F"(a ,  v). 

A similar result was given in [ 10,11 ] with F '  (a) ,  F "(a, v) replaced by the smaller sets 
Ti(F, a), Tii(F, a, v), so that our conditions are more exacting, even when F is convex. 

For instance, let F be as in Example 1.1, with rn=c ", c ~  (0, 1) and let f(xl ,  xz) =x2 - 
bx 2 with b ~ R. For a = (0, 0),  v = ( 1, 0),  w = (w 1, w2) we have w E F "  (a, v) whenever 

w2 >~ 2 but w ~ T 2 (F, a, v) when w2 < 4. Therefore the necessary condition of  Corollary 1.3 

yields - 2b + w2 >~ 0 for w2 >/2, henee b ~< 1 and this condition is sufficient as F c  { (x» 
x2): x2 -x21 >~ 0} whereas the corresponding condition with F"(a,  v) replaced by Tii(F, a, 

v) cannot give more than b ~< 2 and the condition is not sufficient. 

This corollary seems to be easier to apply than Theorem 1.2 but it rules out situations in 

which Theorem 1.2 allows to conclude, as the following example shows. Moreover Theorem 

1.2 is closer to the sufficient condition which follows. 

1.4 Example.  Let F = { ( x» x2) ~ • 2: x 6 = x 4 }, X = ~ 2, a = 0, so that F '  ( a ) = R X { 0 }. The 

first order optimality condition is Dl f (0 ,  0) = 0. Since F"(a ,  0) = R × {0} and F"(a ,  v) is 
empty for each v ~ F ' ( a ) \ { 0 }  the second order optimality condition of  the preceding 

corollary does not give anything else than Dl f (0 ,  0 ) = 0 ,  whereas Theorem 1.2 yields 
Dl f (0 ,  0) = 0, D2f(0, 0) = 0 and D2f(0, 0) i> 0. Let us note that the conditions Dl(0, 0) = 0, 

D12f(0, 0) > 0 are sufficient to ensure that (0, 0) is a local minimizer. 

The preceding example suggests the following corollary. 
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1.5 Corollary. Suppose f : X--* ~ is twice differentiable at a and attains on F a local minimum 

at a. Then for  each v ~ F ' ( a ) with f ' ( a ) v = O, for  each s ~ ] O, 1 [ and for  each w in 

TI'~(F, a, v) = { w ~ X :  3(t l ,  wi) ---> (0+,  w): a+t i v+t ]+~w i ~F ,  V i ~ N }  

one h a s f  ' ( a ) w  >1 O. 

Proof. In fact if we h a d f  ' ( a ) w  < 0 we would have 

"(a)  vv + lim i n f f  '(a)t~- 1 (v + tSwi - -  V )  = - -  ~ .  
i 

[] 

1.6 Corollary. Suppose f attains on F a local minimum at a and suppose f ' ( a )  = 0, which 

is the case when the closed convex hull ~-ö( F '  (a)  ) o f  F '  (a) is X. Then for  each v ~ F '  ( a) 

one has f " ( a ) vv >~ O. 

Now ler us turn to sufficient optimality conditions. 

1.7 Theorem. Suppose X is finite dimensional. Suppose f : X  ~ R is twice differentiable at 

a and that 

(a) f ' (a)v>~Ofor each v ~ F ' ( a ) ;  

(b) ~ " ( a ) v v +  l iminf  f ' ( a ) t - l ( u - v ) > O  
(t,u) ~ (O+,v) 

a + t u ~ F  

for  each v ~ F ' ( a )  \ {  0} A k e r f  ' ( a ) .  
Then f attains on F a strict local minimum at a. 

Proof. Suppose on the contrary there exists a sequence (an) in F with lim an=a, 

f (an)  < f ( a )  ; an ~ a for each n. Let tn = [lan- all, vù = t~- 1 ( a  n _ a ) .  Without loss of gener- 
ality we may suppose that the sequence (vn) of unit vectors ofX has a limit v. Then we get 

f ' (a )v<~O,  v ~ F ' ( a )  and by ( a ) , f ' ( a ) v = O .  
Moreover 

lim inf [t;af'(a)vù + ~f "(a)VnVn] =lim inft;2[f(a+tùvù) - f ( a )  ] ~<0, 
n n 

a contradiction with our assumption, as f " (a)  vùvù--*f " (a)  vv and t~ l f ' ( a )  vù = 

f ' ( a ) t n l ( V n - - V ) .  [] 

Although the preceding condition is extremely simple, it seems that it has not yet been 
pointed out. Its usefulness depends on the possibility of couching the required inequality in 
simple terms associated with the problem at hand. We will turn to such a task for the 
mathematical programming problem after introducing adapted tools. 
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2. Compound tangent sets and compound derivatives of order two 

It is common sense to observe that when a problem has some structure, it is fruitful to 

use tools which are adapted to this structure, even when they appear to be complex at the 

first glance. The ones we introduce here are inspired by some expressions in [ 19] : they 

take into account the occurrence of  two spaces and of  a mapping between them. 

2.1 Definition. LetX, Y be n.v.s., let D and E be subsets of  X and Yrespectively, let h : X  ~ Y 

be a mapping which is differentiable at • ~ D, with 37 := h(Y) ~ E. Then for v ~ D ' ( $ )  the 

second order compound tangent set to E at (37, v) (with respect to h and D) is the set 

E"  t=  v) = lim sup 2 t - 2 ( E - y - t h ' ( x - ) u )  h,D~,y, 
(t,u) ~ D(0+,v) 

In other words, w~E~,D( f ,  V) iff there exists a sequence ((tn, Vù, Wù)) with limit (0, v, 

w) s u c h t h a t $ + t n v ù ~ D a n d f + t ù h ' ( x - ) V n  + ~t~wùl 2 ~ E f o r  e a c h n ~  ~q. Denoting by ~ the 

set of  sequences of  D .'= (0, oo) with limit 0 and, for s .'= (Sn) ~ 5 ,  V ~ X ,  denoting by D(s,  

v) the set of  sequences Ü:= (vù) with limit v such that y + SnVù ~ D for each n ~ N, we have 

w~E'~.D(#, v) iff there exist s : =  (sù) ~ 5 ,  F=  (vù) ~ D ( s ,  v) with 

w E E~,o,«(y, v-') := lim inf 2 s n - 2 ( E -  37- sùh'(x-) vù) . 
n 

We set 

E" «.v v ) : = U t E "  t=  v - ) : F ~ D ( s , v ) } .  h,D,skY~ I h,D,skY~ 

We observe that these definifions (which contain some abuse of  notations) depend on 

rather than on )7 and on the derivative h ' ($ )  o f h  atY and not on h itself. When there is no 

risk of  confusion we simplify this notation by dropping some of  its elements. In particular 

when D = X we omit X. 

The (second order) compound tangent s e t  E~,D(f, v) is always larger than E"()7, h '(X) v) 
when • + to ~ D for t > 0 small enough. When the rank of  h ' ($ )  is low they coincide, as the 

following lemma shows. 

2.2 Lemma.  When h ' ( Y ) ( X )  c_~h' (£)  (v)  one has E~(~, v) = E"(y ,  h ' ( £ ) v ) .  

Proof. The assertion is obvious if h ' ( y ) = 0 .  Suppose h ' ( Y O ( X ) = K h ' ( X ) ( v )  with 

E t t / -  h'(YO (•) v~ { 0}. Let w ~ h(Y, V) and let s := (sn) ~ 5 ,  (vn) ~ D(s,  v),  (wn) --> w be such 
that ~+s~h'(x-)v~ + ½s2w~ G E  for each n ~ ON. We can write h ' ($ )  v~ = rnh'(Y)v for some 

r n ~ R  and (r~) must converge to 1. Then for tn:=r~sn we have (r~-2wn) ~ w  and 3T+ 
tnr~ 1 h'(x-) v + ½t2~r~2wn ~ E for each n ~ ~ so that w ~ E"(y,  v). []  

The following example shows that E ~ 0  7, v) may be much larger than E"(y,  h ' ( g ) v ) ;  

this fact will be crucial for the optimality conditions we have in view. 



232 J.-P. Penot / Mathematical Programming 67 (1994) 225-245 

2.3 Example.  Suppose E, 37, vare  such that, for some r >  0 and some sequences (tù), (vù) 

rtù) with center 37 + tnh ' ( Y~ ) Vn with limits 0+ and v respectively the ball B(37+tnh'($)v n, 1 2 
1 2 and radius ~rtù is contained in E for n large enough. Then E~(37, v) contains the ball B(0, 

r). However E"(37, v) may be empty. 
Let us take for instance X =  R 2, Y= R 3, 2 =  0, 37 = 0, v = ( 1, 0) and let us define h and E 

by h(x»  x 2 ) =  (Xl, x2, 0), E =  {(Yl, Y2, Y3):Yl ~>0, y2>~f(ya)}, where f ( t ) = t  «+1 with 
a ~ (0, 1 ). Let/3 ~ (0, « ) .  Given any (tù) ~ ~ let us set vù := ( 1, tff). Then, for each r > 0, 
B(37+tnh'(Y)vù, 1 z ~rtù) C_E for n large enough, so that E~(37, v) = Y. However E"(37, v) is 

empty. 

Another case in which E~(37, v) is large is given in the following proposition. 

2.4 Proposit ion.  Suppose h ' ( ~) is an open mapping f rom X onto Y. Then i f  E ~ (y, v) is 

nonempty it is the whole space Y. 

Proof.  Let w ~ E Z ( y ,  v) and let S:=(Sn)~:=~,  (Vn)" '~V , (Wn)" '~W be such that 37+ 
sùh'(x--) vù + ½s2wù ~ E for each n ~ ~q. Given z ~ Y let u ~ X  be such that h' (Y)  u = w -  z. 

Since h'(Y) is open we can find a sequence (uù) with limit u such that h ' ( Y ) u ù = W n - Z .  

Then V'n := Vn + ½SùUù converges to v and 

f + s ù h ' ( x - ) v ' +  l z _ -  , 1 2 ~ S n Z - y + s ù h  (X-)Vn + ESùWù G E  

f o r e a c h n ~ N  sothatz~Eg(37,  v). []  

Let us now consider convexity issues which are important for the sequel. We remark that 

E"  «--: v) is not always convex. However we can select when D and E are convex the set h.D~.Y, 

a convex subset by choosing a fixed sequence, as the following lemma shows. Its proof is 

an easy consequence of  the definitions. 

2.5 Lemma.  When D and E are convex, f o r  each v ~ D '  ( ~) and each s ~ ~ the set 

E" t--: v ) : =  U ' E  . . . .  ~ E D ( s ,  v)} h,O,s~,Y, I h,D,s(Y, U-') ; 

is convex. 

When Y= Z X fl~ and E is the epigraph of  some function q~: Z ~ R' . '= ~ U { ~ } we observe 

that E~.D(f, v) and E)~.».s(y, v) are epigraphs because they are closed and stable by addition 

of  elements of  { 0} X R +. This leads us to give the following definition close to a proposal 

in [ 19]. 

2.6 Definition. Given g:  Y ~ ~" U { 0 }, h :X --* Y differentiable at some ~ ~ D «X,  v ~ D '  (2), 

y. '= h (2) ~ Y with g(y)  < ~, 37" ~ Y*, w ~ Y, A.'= h ' (~) ,  the compound second order deriv- 

ative of  g at 37, 37", v, w with respect to h and D is defined by: 
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" - -* w ) =  l iminf  gha)(Y, Y , v, 
( t ,u ,y)  ~ (O+,v ,w)  

) ? + t u ~ D  

2 t - z  [g(37+ tAu + ½tZy) - g(y-) 

- < y * ,  tau+ ½t~y>]. 

When D = X  we write g~ instead of g'~,x. When D = x +  Rv, or x +  R+v one sees easily 

that 

g~~o(37, 37., v, w) =g"(37, )7", h'(x-)v, w) , 

where the mixed second derivative of g is given by 

g" ( f ,  37., z, w) = lim inf 2 t - Z [ g ( f + t z +  ½t2y) -g(y- )  - ( f * ,  tz+ ½t2y>] , 
( t ,y )  ~ (O+ ,rv) 

what somewhat justifies our notation. The preceding equality also occurs when h' (Y)  = 0 
or when h' (Y)  has rank one with h ' ($)  v v~ 0. On the other hand, when A := h'(Y) is an open 
mapping from X onto Y we have 

gZ() 7, 37", v, w) =g~(37, 37", v, 0) 

for any w in Y, a property which is similar to what occurs when g is twice differentiable at 
y, in which case we have, with y*  = g ' ( y ) ,  

g~(f ,  f * ,  v, w) =g"(y-) .h'(x--)v .h'(x-)v = g"(37, 37", Av) , 

what justifies our choice. Let us observe that we have g~.o(f, Y*, v, w) >/0 whenever g is 
convex and y*  e 0g(y),  a desirable feature for a second order derivative. The analogy of 
the proofs of some of the preceding assertions with the proofs of Lemma 2.2 and Proposition 
2.4 sterns from the relationships between the geometrical and the analytical concepts we 
introduced. This analogy is strengthened by the following two results. The proof of the first 
one is immediate. 

2.7 Lemma.  I f  g is the indicator function ie o f  E ( given by iE(Y) = 0 if  y ~ E, + oo otherwise ) 
then g~,»(f, O, v, • ) is the indicatorfunction of  E~,D(f, v). 

2.8 Lemma.  I f  E « Y : = Z X R  is the epigraph o f  some g : Z ~ ~ U { ~ } ,  /f h := (k ,  

j )  :X ~ Z X  R with j ' ( Y )  =Z* ok'(Y) for  some Z* ~ Z *  then for  y :=h(Y) ,  Z:=k($),  v ~ X  
the set E~~ (f ,  v) is the epigraph of  g~ ( z, Z*, v, • ) + < ~*, • >. In particular, if h = ( k, O) then 
EZ(f ,  v) is the epigraph o f  g~(Z O, v, • ). 

Proof. One has (w, r) ~ E ~ ( f ,  v) ifffor some sequences (sù), (vù), (wù), (1"ù) with limits 
0 +, v, w, r respectively one has 

g(z+sùh'(x--)Vn + ½seùwù) <~g(y-) +Snj'(x--)Vù + ½sZrù 

iff 

ppv~ o gkt , Z*, v, w) + ( ~ * ,  w>~<r [] 
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3. Mathematleal programming under a constraint qualifieatlon eonditlon 

In the sequel we tackle problems (M e) and (~ ' ) ,  with 

(Me) minimize j (x )  subject to x ~ B N k - l ( c ) ,  

(~')  minimize f ( x ) ;=g(h (x ) )  subject t o x ~ D ,  

where j :X ~ R, k :X ~ Z are twice differentiable at some point a of F.'= B n k - 1 (C), B and 
C being closed convex subsets of the Banach spaces X and Z respectively and where h: X ~ Y 
is twice differentiable, g: Y--* RU { + ~ }  is a closed proper convex function and D is a 

closed convex subset of X. 

3.1 Theorem. Problems (Me) and (~') are equivalent. 

Proof. Let us first observe that (Me) can be rewritten in the form of ( ~ ) .  Setting D=B, 
Y= ZX ~, h(x) = (k (x ) , j ( x )  ), g(z, r) = ic(z) + r, where ic is the indicator function of C, 
we have g(h(x) ) =j (x )  + ic(k(x) ) for x EX, so that the objective functions of (Me) and 
( ~ )  coincide and the two problems have the same sets of solutions. 

Conversely, problem (~')  can be transformed into the form of problem (Me). To see 
this, let us set 

Z=Y×Y×IR,  J~=X× Y×N, B=D×Y×IR,  C={O}XEg, 

where Eg={(y, r ) ~ Y × N :  r>~g(y)} is the epigraph of g and let j :X×Y×IR~IR ,  
k:X× Y× N ~ Z b e  given by 

j(x,  y, r) = r,  

k(x, y, r) = (h(x) - y ,  y, r) . 

Then (x, y, r) ~ 3~ is feasible for (Me) iff x ~ D, y = h(x), r >1 g(h(x) ), so that 

inf { j(x,  y, r): (x, y, r) ~ B N k - I (  C) } =inf  {g(h(x) ): x ~ D }  

and ( ~ )  and (Me) have the same values. Moreover • is a solution to ( ~ )  iff a := (~, 37, f),  
with 37:= h(X), ~:=f(£) is a solution to (Me). [] 

To treat problem (Me) it will be convenient to introduce the following notations. Given 
a solution a of (Me) we denote by L(a) the set of Lagrange-Karush-Kuhn-Tucker multi- 
pliers for (Me) at a: 

L(a) = {z* ~ Z * :  z* ~Nk(a) C, 0 ~j ' (a )  +z* ok'(a) +Naß} 

where N,,B ( = N ( B , a ) )  = B ' ( a )  ° =  {x* ~X*:  V v ~ ß ' ( a )  (x*, v} ~<0} is the normal cone 
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to B at a and Nk(~)C has a similar meaning. Let  us abbreviate the notation for the compound 

tangent set to E-'= C ×  ( - oo, j (a)  ] at ( ( k ( a ) , j ( a ) ) ,  v) w.r.t, h .'= (k,j)  and B into: 

So,B.'= l im sup 2t-2[C× (j(a) - R + )  - ( k , j ) (a )  - t ( k , j ) ' ( a ) ( u ) ]  . 
(t,u) -* (O+ ,v) 

a + t u ~ ß  

We remark that the set S~,F introduced after Theorem 1.2 corresponds to the case j  = f ,  B = F, 

C =  {0}, k = 0 ,  identifying {0} × R with R. 

The following lemma is crucial for the treatment of  problem ( ~ ' ) .  In it we use the 

following notion. The mapping k: X--* Z is said to be metrically regular at a with respect to 

(w.r.t.) B and C if  there exist c > 0 and a neighborhood U of a such that 

d(x, B n k - l ( c ) ) < ~ c d ( k ( x ) ,  C) f o reachx~U(qB .  

3.2 L e m m a .  Suppose k is metrically regular at a w.r.t. B and C. Let u ~ B ' ( a ) ,  
v E B ' ( a ) f 3 k ' ( a ) - l ( C ' ( k ( a ) ) )  with j ' (a )v=O and ler (z, r)~S~~ be such that 
w:=k"(a)vv + k ' ( a ) u - z ~  C'(k(a) ). Then 

j"(a)  vv +j ' (a)  u -  r >1 O. 

P r o o f .  Let (tn, Vù, (Zù, rù) )ù~~ be a sequence in • X X X  ( Z X E )  with limit (0, v, (z, r ) )  

as in Definition 2.1, with D := B, h := (k, j )  : for each n ~ ~q we have a + tùvù ~ B, h(a) + 
tùh'(a)vù + lt2" rn) GE. As u ~ B ' ( a )  Ti(B, a), w ~ C ' ( k ( a ) )  = T l ( C ,  k ' (a) )  we B n~Zn,  = 

can find sequences (un), (Wn) in X and Z with limits u and w respectively such that 

a + lt~un ~ B  and k(a) + ½tnw~ ~ C for each n ~ ~q. We can write 

k"ra" +k'(a)un ' Wn ~ k ) U n V n  - - Z n  

for some sequence ( z ' )  with limit z. By convexity of B and C we have, for v" := ( 1  - 

tn)vù + ½tùuù, 

a+tùv" = (1 - tù) (a+tùvù)  +th(a+ ½tnUn) ~ B ,  

en = k ( a )  +tnk'(a)V'n + ½tZ~(k"(a)vnvù + (1 -tù)zù - z ' )  

= ( 1 - tù) (k(a) + tùk'(a) vù + ½t2Zn) + tù(k(a) + ½tnW,) C C. 

Then, for some constant c > 0, we have for each n large enough 

d(a+t , ,v ' ,  B n k - l ( c )  ) <~cd(k(a+tnv" ), C) ~<c[[cù -k(a+tùv ' )[[  

<~cllk(a) +tùk'(a)v" + 1 2 , ~Htù( (1--tn)Zù--Z')[[ ~t,k (a ) vnv , , - k (a+tùv ' ) l l+  I 2 

<.< E( tù) t~n 

for some e ( .  ) with e( t )  ~ 0 as t ~ 0 since (vn) ~ v, ( v ' )  --* v, (zù) ~ z, ( z ' )  ~ z. It follows 

that there exists a sequence (v'ù') with t n  1 ]IV~--V'II ~<2e(tù) such that a+tùv" ~ B O  
k - l ( C )  for each n~~q.  Then by Theorem 1.2 and the inclusion j ( a ) + t , j ' ( a ) v ù  + 
½t2rn ~ (-~, j (a)  ] we get 
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O<~j"(a)vv + 2  lim inf t ~ l j ' ( a )  (V"n - v) 
n 

«. j"(a)vv+ 2 lim inf t ~ l j ' ( a ) v "  
n 

<<.j"(a)vv+ 2 lim inf (1 - t ù ) t ~ l j ' ( a ) v .  +lim j ' ( a )u .  
n n 

< ~ j " ( a ) v v - r + j ' ( a ) u .  [] 

We need a form of the Lagrange multiplier rule which is close to the classical statement 
of [26] but uses a weaker qualification condition. It could be derived from [5] but we 

prefer to present a proof based on the following form of the famous Farkas lemma. 

3.3 Lemma  ( [22], [34] Theorem 2.3, [35] Corollary 2.4, [46] ). Let P and Q be closed 

convex cones of  the Banach spaces X and Z respectively and let A : X--* Z , f  : X ~ ~ be linear 
and continuous such that f (x )  >~O for each x E P N A - I ( Q ) .  Then if Zo=A(P)  - Q  is a 
closed vector subspace of Z there exists some z * ~ QO such that 

O ~ f  + z * o A  + p  ° .  

In fact this statement can easily be reduced to the usual case Z = A (P) - Q. The following 
form of the Lagrange multiplier theorem is adapted to our needs. 

3.4 Corollary (Lagrange multiplier theorem). With the data of the preceding lemma 
suppose that for some m ~ R and some b ~ Zo one has 

f(x)>~m f o r x ~ R : = { x ~ P : A x - b ~ Q } .  

Then there exists z* ~ QO such that for each x ~ P  

f (x)  + (z*, A x - b )  >~m. 

Proof. Since b ~ A ( P ) - Q ,  R is nonempty. Moreover for xo~R and any 

v ~ R ~ : = P N A - ~ ( Q )  we have Xo+V~R so that f (v )  >/0, R~ being a cone and f being 
bounded from below by m - f ( x o )  on R=. Now for any (x, t) ~ P X  (0, ~) ,  such that 
A x -  bt ~ Q we have t -  lx ~ R hencef(t  - ax) >~ m andf(x) - mt >~ O. Thereforef(x) - mt >~ 0 
for any (x, t ) ~ P X E +  such that A x - b t ~ Q .  Since A ( P ) - E + b - Q = Z o  Lemma 3.3 
yields some z* ~ QO, x*  ~pO, r E  R+ such that 

f (x )  - ro t+  (z*, A x - b t )  + (x*, x)  = rt 

for each (x, t) ~ P X ~ +. Taking t = 1 we get the announced inequality. [] 

Let us observe that the preceding inequality implies that f +  z* oA ~ - p O  as this linear 
functional is bounded below on P. 
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3.5 Theorem.  Let a be a local solution to problem ( ~ / ) .  Suppose k is metrically regular 

at a w.r.t. B and C and 

(R) k ' ( a ) B ' ( a )  - C ' (k (a)  ) = Z .  

Then the set L( a ) of  Lagrange-Karush-Kuhn-Tucker multipliers is nonempty and for  each 

v in the critical cone 

K(a)  : = { v E B ' ( a ) :  k ' ( a ) v E C ' ( k ( a )  ) , j ' ( a ) v = O }  

and each (z, r) E S»,B one can find some z ' E N ( C ,  k( a) ) such that for l = j  + z * o k  one 

has 

- l ' (a)  EN(B ,  a) , 

l"(a)vv>~r + (z*,  z} • 

In other words: for each critical vector v, i.e. each v E K(a) ,  one has 

j"(a)vv>~sup{r+ min (z*, z - k " ( a ) v v ) :  (z, r) ESv,B} • 
z 'EL(a) 

Proof. Let (z, r) ESv.B and let us set P = B ' ( a ) ,  Q = C ' ( k ( a ) ) ,  f = j ' ( a ) ,  A = U ( a ) ,  
b = z - k " ( a ) v v ,  m = r - j " ( a ) v v ,  so that, in view of  Lemma 3.2, Corollary 3.4 yields 

z* E C ' ( k ( a )  ) ° = N (  C,k(a) ) such tha t j ' ( a )  + z *  ok'(a)  E _ p O =  - N ( B , a )  andforeach 

u E B ' ( a )  one has 

j '  ( a)u + (z*, k ' (  a ) u - z  + k"( a)vv)  >i r - j " (  a)vv . 

Taking u = 0 we get the result. [ ]  

Remark .  If  instead of  condition (R) we suppose the weaker condition 

(Ro) Zo := k ' (a )B ' (a )  - C ' ( a )  is a elosed vector subspace of  Z 

then for any v E K(a)  the conclusion l" (a)  v v i> r + (z *, z ) holds for any (z, r) E S»,B such 

that z -  k"(a)  vv E k ' ( a ) B ' ( a )  - C' (a) .  

3.6 Corollary.  Let a be a local solution to problem ( ~ ' )  . Suppose 

(R r) k ' ( a ) ~ +  (B - a )  - R+ ( C - k ( a )  ) = Z  

holds or, more generally, suppose (R) holds and k is metrically regular at a w.r.t. B and 

C. Let v E K ( a ) . Then for  any convex subset H of  So,» one can find z* EN(C,  k ( a ) ) such 

that for l = j  + z * ° k one has 

OEl ' (a )  +N(B,  a) , 

l"(a)vv>~sup{r+(z*,  z): (z, r) EH}  . 
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In particular, for any convex subset T of ( B X C)"( a» Vk), where ak = ( a, k( a) ), vk = ( v, 

k ' ( a ) v) one can find z* ~ N ( C, k ( a ) ) such that 0 ~ l ' ( a ) + N ( B , a) and 

l"(a)vv>~sup{ (z*, z ) - l ' ( a ) w :  (w, z) ~T}  . 

Proof. The fact that (R r) implies that k is metrically regular w.r.t. B and C is weil known 
(see [40,34,35] for instance). Thus the first assertion follows from the classical minsup 
theorem of Moreau, the set of multipliers of ( ~ ' )  being weak* compact under assumption 
(R) (see [35] Corollary 3.7 for instance). 

In order to prove the last assertion it suffices to observe that for any (w, z) ~ (B X C)"(a» 

Vk) orte has ( z - k ' ( a ) w ,  - j ' ( a ) w )  ~Sv,»: in fact taking a sequence ((tù, wù, Zn)) in 
P X X × Z  with limit (0, w, z) such that for Vn:=V+½tnwù orte has a+tnVn~ß, k(a) + 
tnk'(a)vù + lt2" ~ ù t z ù - k ' ( a ) w ù ) ~ C  one sees that r ù : = - j ' ( a ) w ,  is such that 
(rù) ~ - j ' ( a ) w  and tnj '(a)vù + 1 2 ~tùrn =0.  [] 

In order to facilitate the application of Corollary 3.6 let us give some possible choices 
for H and T. 

_ _  t l  - -  (a) For any S : = ( S n ) ~ $  we can take H-Ev,»,~(y, v), with E = C × ( - %  j ( a ) ] ,  
37 = ( k ( a ) , j ( a ) ) ,  which is a convex subset of Sv,». This choice explains the prominent role 
of sequences in [ 19]. 

(b) Let z~ be a fixed element of the set L(a) of Lagrange multipliers at a and let 

Q := { z ~ C: (z~,  z) = 0 }. Then for any convex subset Qo of Q ~,»(k(a), v) the set H := { (w, 
- (z* ,  w)):  w ~ Qo} is easily seen to be a convex subset of Sv~ so that for some z* ~ L(a) 
one has 

l"( a)vv >~ sup{ (z * - z * ,  w): w ~  Qo } • 

(c) Given s =  (sù) in ~ one can take for Tthe set 

Ts = lim inf 2s~-2(B X C -  (a, k(a) ) - sù(v, k '(a) v) ) 
n 

which is convex and contained in (B × C) "(ak, Vk). This set contains the intersection Tii(B, 
a, v) X Tii(c,  k(a),  k ' (a)  v) of all the T~'s for s in ~. Thus Corollary 3.6 is stronger than 

the main result of [ 1 1 ]. 
(d) In particular, for any convex subset Tc of C"(k(a),  k ' (a)v)  we ean take T=Bii(a, 

v) XT«. 
(e) When v ~ R + ( B - a )  is such that k ' ( a ) v ~ C ' ( k ( a ) )  a n d j ' ( a ) v = 0 ,  we can take 

for T the set {0} X Tc where Tc is any convex subset of C"(k(a) ,  k ' (a)v)  (in particular 
Tc={0} when k ' ( a ) v ~ R + ( C - k ( a ) )  or more generally when O~C"(k(a) ,  k ' (a)o) 
which is the case when C is polyhedral). Thus, taking T=  { (0, 0) }, we recover the results 

of [3,4] and [41]. The following example shows that Corollary 3.6 applies in cases these 
results cannot be used. 
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Example.  Let us take C=E, k=h, where E and h are as in Example 2.3. Then C"(k(a),  
k ' (a)v)  is empty, but as C~(k(a), v) =Z one can easily ensure that S».» is nonempty. 

Taking for C the cone generated by E X { 1 } and k = (h, 1), we may suppose C is a convex 

cone. 

Now let us turn to sufficient optimality conditions for the mathematical programming 

problem ( ~ ' ) .  

3.7 Theorem.  Suppose X is finite dimensional, j and k are twice differentiable at a and the 
set L(a) of Lagrange-Kuhn-Tucker multipliers at a is nonempty. I f  for each 
v ~ K ( a )  :=B'(a) n k ' ( a ) - l ( C ' ( a ) )  n j ' ( a ) - 1 ( 0 )  and each (z, r) ~S~,» one can f n d  
z* ~ L( a) such that, for l =j  + z* ° k the condition 

l"(a) vv > r + (z*, z) 

is satisfied, then a is a strict local minimizer of j on F = B n k - 1 (C). 

In particular a is a local strict minimizer when for any v ~ K(a) one has 

j " (a)vv>sup{r+ inf (z*, z - k " ( a ) v v ) :  (z, r) ~S~,»} . 
z* ~ L(a) 

Proof.  Suppose on the contrary that for some sequence (aù)in F\{a}  with limit a we have 

j(an) <~j(a). Let tn = I l a ù -  a l l ,  V n = t~- 1 ( a n  - -  a )  ; without loss ofgenerality we may suppose 
(vn) converges to some unit vector v ~ F ' ( a )  with j ' (a )v  <~0. Let z* ~L(a) .  We have 

j ' ( a ) v + ( z * ,  k'(a)v)>~O since v ~ B ' ( a ) ,  j ' ( a ) + z * o k ' ( a ) ~ - N ( B ,  a) and (z*,  

k'(a) v) <~ 0 since z* ~ N (  C, k(a) ) and k'(a)v ~ C'(k(a) ). Therefore j ' (a )v  = 0. Taking 

z = k"(a) vv, r =j"(a)  vv, so that (z, r) ~ Sv,n by definition ofthis set and choosing z* ~ L(a) 
such that 

(J+Z* ok)"(a)vv > r+ (z*, z) 

we get a contradiction. []  

Let us observe that the sufficient condition of  Theorem 3.7: 

j " (a)vv>sup{r+ inf (z*, z - k " ( a ) v v ) :  (z, r) ~S~,n} 
z* ~ L(a) 

for v ~ K(a) corresponds to the necessary condition of  Theorem 3.5 through the replacement 

of  an inequality by a strict inequality. Such a situation is looked for by optimizers since it 

already prevails in the unconstrained case and as it cannot be improved. 
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4. Application to eomposite minimization 

The study of functions of the form f =  g o h with h :X--* Y of class CZ between two B anach 
spaces, g:Y--* N U { ~ } convex lower semicontinuous (1.s.c.) and proper has been a topic 
of wide interest during the last few years. Here we intend to show that the results of the 
preceding sections apply to the problem (~')  of minimizingfon a closed convex subset D 
of X. Such a constraint is not taken into account in the existing literature but it is clear that 
it does appear in situations of interest in which the variables are usually subject to natural 
restrictions such as nonnegativity. 

Let us impose the following qualification condition which reduces to a condition intro- 

duced by R.T. Rockafellar for the finite dimensional case, with D = X and g piecewise linear- 
quadratic [42] 

(RD) R+ (dom g - y - )  -h ' (x - )  (R+ (D-x - ) )  = Y, 

where ~ ~ D is a solution to ( ~ )  and y =  h(2). This condition is obviously satisfied when 
g is finite everywhere. 

Let us set 

MD(X-- ) = {y* ~ Og(y-): - y *  o h'(x-) ~ N ( D ,  x-) } 

where Og(y) is the subdifferential of g at 37. 
The following statement which is the main result of [ 39 ] will be deduced from Theorem 

3.5. Let us note that it is shown there that conversely this result implies the necessary 
condition of Theorem 3.5. Here g'(37, • ) denotes the contingent derivative of g at 37 given 
by 

g'(37, y):=inf{r:  (y, r) ~Eg(37, g(y--)) }, 

where E 8 is the epigraph of g. 

4.1 Theorem. Let ~ be a ( local) minimizer of  f = g o h on D. Suppose (RD) holds. Then the 
set MD(Y) is nonempty and for  each v~D'(Y~) such that g'(37, h ' ($)v )  = 0  and for  each 

y ~ Y one can find some y*  ~ Mo (2) such that 

0<~(~*, h " ( x - ) v v - y ) +  lim inf 2t-Z(g(~j+th'(x-)u+½t2z) -g(y'-)) 
(t,u,z) ~ D(O+,v,y) 

where ( t, u, z) ---> ° (0+ ,  v, y) means ( t, u, z) ~ (0+, v, y) with $ + tu~  D. 

Proof. Let us transform (~')  into problem ( ~ ' )  as in Theorem 3.1, changing X into 
J~=X× Y× R, and taking Z =  YN YN R, B = D  × Y× N, C =  {0} ×Eg, j (x ,  y, r) = r, k(x, y, 

r) = (h(x)  - y ,  y, r),  a = (2, y, f) = (2, h(Y),f(X) ). It is easy to see that condition (RD) is 
equivalent to 

(R r) R+ ( C - k ( a )  ) - k ' ( a ) ( N + ( B - a )  ) = Z .  
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Let us identify the set L(a) of  Lagrange-Kuhn-Tucker  multipliers of  ( l g ) .  Given 

z* = (Y*, Yl,* r * )  in N(C, k(a))  such that - ( j ' ( a )  + z *  ok'(a)) ~N(B,  a) =N(D, 
Y ) × { ( 0 , 0 ) } , w e h a v e y * -  * r*  - y  , = - I  and (y* ,  - 1 )  ~N(E«, (37, f ) )  i.e.y*~Og(37), 
and - y *  oh'(~) ~N(D,  £), so that y *  ~MD(YO. Conversely for any y* ~MD(Y) one sees 
easily that (y*,  y *, - 1) is a multiplier for problem ( ~ ' ) .  

Now let v ~ D '  (Y) with g'(37, h '  (Y) v) = 0 and let y ~ Y, r ~ R with 

r>~ lim inf 2t-2(g(~+th'(x-)u+ ½t2z) -g(y-) ) . 
(t,u,z) ~ D(O+,v,y) 

We can find a sequence ( (th, vn, Yn, rn) ) in P × X ×  Y× N with limit (0, v, y, r) such that 
1 2  1 2  £+tnvn~D and g(~+tnh'(x-)vn + ~tny~) <~g(y-) + ~t=rn for each n ~  N. Let t):= (v, 

h'($)v, 0), so that O~B'(a) ,  k ' ( a ) f ~  C ' (k (a) ) , j ' (a )O=O and le tz  = (0, y, r) .  Let us 
show that ( z, 0) belongs to So,». In fact t)=:= ( v~, h ' ( ~) vn, 0) ~ 0, z~ = ( O, yn, r,) ~ z with 

a "FtnÜ n ~ B = D  X Y× N,  

(0, y, r-) +tnk'(a)ü" + l ' 2 (n  . . . . .  y ù , r ù ) ~ C ,  

j (a)  +j'(a)tù6n + 1 2 • ~tùO<~J(a) 

for each n ~ ~ ,  since 

(2f, r-) +tn(h'(x-)v~, O) +½tZn(yù, r~) ~Eg 

by our choice of  (t~, vn, y~, r~). 
Then it follows from Theorem 3.5 that we can associate to ô and (z, 0) some z* = (y* ,  

y*,  - 1) withy*~Og(y) ,  - y * o h ' ( ~ )  ~N(D,Y)  such that 

y* oh"(x-)vv =j"(a)6ü + z* ok"(a)ôô>~ (z *, z) = (y*, y) - r. 

Therefore 

O< r +  (y* ,  h" (x - ) vv -y ) .  [] 

Taking D = X  in Theorem 4.1 we get the following consequence. 

4.2 CoroUary.  Suppose ~ is a local minimizer of f =  g o h on X and (Ro) holds with D = X. 
Then the set 

M(x-) = {y* ~ Og(y-): y* oh'(x-) =0}  

is nonempty and for each v ~ X  with f '(~, v ) = 0  and each y ~  Y one can find some 
37* ~M(Y)  such that 

0<~ ( f* ,  h"(x-)vv) +g~(f,  f* ,  v, y) . 

Let us observe that when g is twice differentiable the preceding inequality is independent 
of  y and amounts to the classical condition 
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O<~g'(y-)h"(x-)vv + g"(y-)h ' (x-)vh ' (x-)v=f  "(x-)vv . 

It is shown in [ 39 ] that one can give a sufficient condition which differs from the condition 
of Theorem 4.1 by the replacement of the inequality by a strict inequality (and does not 
require Mo(2) if one uses y = h"(2)vv  only). Although the proof of [39] Proposifion 1.2 
is direct and simple while the following proof is rather tedious, we now show that this 
sufficient condifion is a consequence of Theorem 3.7. Along with the proof of Theorem 4.1 
it will give an opportunity to show the concrete use of compound tangent sets. 

4.3 Theorem. Let • E D be such that M D (2) is nonempty and such that for any v E D' (2)  
with g'  (29, h '  (2) v) = 0 and any y E Y one can f ind some y*  E M» (2) for  which 

0 <  (37", h " ( x - ) v v - y )  + lim inf 2t -2(g(2 f+th ' (x - )u+ lt2z) -g(y- )  ) . 
(t,u,z) - ~  D(O+,v,y) 

Suppose X is finite dimensional. Then 2 is a local minimizer of  f on D. 

Proof. Let us rewrite ( ~ )  as a mathematical programming problem as in the proof of 
Theorem 4.1 of which we keep the notations. 

Let t3 = (v, w, s) E B ' ( a )  with k ' (a )  0 E C ' (k (a )  ) , j ' ( a )  ô = 0. This means that v E D ' (2) ,  

w = h ' ( 2 ) v ,  s = 0 ,  g ' (y ,  h ' (2 )v )  = g ' ( y ,  w) ~<0. Now for any y* EM»(2)  we have 

g'(y,  h'(x-)v) >~(y*, h'(x-)v) >~O 

since - y *  oh'(2)  E N ( D ,  2) and v E D ' ( 2 ) .  Therefore g'(y ,  h ' (2 )v )  =0: v is critical for 
( ~ ) .  

Now let us show that for any (z, r) = (y',  y", q, r) E S~.~ we have 

g)~~D(Y--, 0, V, y'  + y")  <<. q--  r . 

Taking y = y' + y" and setting z* = (y*, y*, - 1) with 37* E M D(3~) given by our assumption, 

that will show (z*, z )+r<(29* ,  h" (2 )vv )= l" (a )vv .  Since (z, r )ESôa ~ we can find a 
sequence (tn, On, Zù, rù) in P × J ~ × Z × ~  with limit (0, ô, z, r), such that a+tn~ùEß,  
k(a)  +tnk'(a)Où 1 2 +~tnz~ EC ,  tùj'(a)On + 1 2 ~rntù <~0. Setting 0n = (Vn, Wù, Sù), Zù = ( y ' ,  
y'ù', qù) we get for each n E  N: 2+tùvnED,  tùs, + 1 2 ~tùrù <~ 0 and 

1t.2 I" t (0, y, r-) +t=(h'(a)v~ - w ù ,  Wn, Sn) "3 I- 5°~,y~, y" ,  qù) E {0} ×Eg 

o r  

wù =h ' (a )Vn  + l tny~,  

1 t2  tt~ 1 2 g(y+tnWn + ~'nYn~ <~g(Y-) +tnsn + ~tùqù, 

SO that 

l i m i n f 2 t ; Z [ g ( g + t n h , ( a ) v n +  l 2 , , 7tn(Yn +Yn) ) --g(Y-) ] ~<lim (qn --rn) = q - - r  
n n 

and the announced inequality. [] 
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Converse ly  it can be shown (see [39]  Theorem 4.4) that the preceding sufficient con-  

dit ion implies  the sufficient condi t ion  of  Theorem 3.7 for p rob lem ( ~ / ) .  

Let  us also observe that al though the condi t ion  of  Theorem 4.3 is not  as s imple as the 

sufficient condi t ion  of  [39]  Proposi t ion 1.2, it has a double interest: it shows the l inks 

be tween the opt imali ty  condi t ions  for problems ( ~ )  and ( ~ / )  and it shows that the nec- 

essary condi t ion  of  Theorem 4.1 is close to a sufficient condit ion.  
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