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Abstract 

We consider a new algorithm, an interior-reflective Newton approach, for the problem of minimizing 
a smooth nonlinear function of many variables, subject to upper and/or lower bounds on some of the 
variables. This approach generates strictly feasible iterates by using a new affine scaling transformation 
and following piecewise linear paths (reflection paths). The interior-reflective approach does not 
require identification of an "activity set".  In this paper we establish that the interior-reflective Newton 
approach is globally and quadratically convergent. Moreover, we develop a specific example of 
interior-reflective Newton methods which can be used for large-scale and sparse problems. 
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1. Introduct ion 

This paper  is concerned  with min imiz ing  a smooth  nonl inear  funct ion subject  to bounds  

on the variables:  

min  f ( x ) ,  l < x < ~ u ,  (1 .1)  
x ~ g ~  n 
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where l ~ { ~ tO { - ~} }", u ~ { ~ tO { ~} }", l ~< u, and f :  ~"  ~ R 1. We denote the feasible set 
3-  = {x: 1 ~<x ~< u} and the strict interior i n t ( J )  = {x: l < x  < u}. 

Minimization problems with upper and/or lower bounds on some of the variables form 
an important and common class of problems. There are many algorithms for this type of 

optimization problem, some of which are restricted to quadratic (in some cases convex 
quadratic) objective functions and some are more general (e.g., [2,5,11,12,14,15,18,20- 

23,29 ] ). Compared to most of the existing approach for nonlinear minimization subject to 
bounds, the new interior-reflective Newton approach proposed in [ 101 has the following 
three distinctive features. Firstly, the iterates {xk} generated by the new approach are always 
in the strictly feasible region int(3-) .  This is done using a new affine scaling transformation, 
different from the affine scaling transformation used in the linear programming context 

[ 281. Secondly, unlike the affine scaling method for linear programs, our new approach is 
able to achieve quadratic convergence. Finally, a novel reflective line search technique is 
used to accelerate convergence. 

The main purpose of this paper is to consider the convergence properties of the new 
interior-rettective Newton approach. In particular, here we establish that interior-reflective 
Newton methods, applied to twice continuously-differentiable nonlinear functions f, are 
globally and quadraticaUy convergent under reasonable assumptions. 

An interior-reflective Newton method appears to have significant practical potential for 
large-scale problems. Consider, for example, the results quoted in [ 10] for the "obstacle 
problem" on a square m-by-m mesh - see Table 1. The column " i t s"  refers to the number 
of iterations required to achieve an accurate solution. Full details are given in [ 101. 

A remarkable feature of this type of algorithm, illustrated by this typical example, is the 

very slow growth in required number of iterations. Given a class of problems and a "natural" 
way to increase the problem dimension, interior-reflective Newton methods appear to be 
strikingly insensitive to problem size. Experiments reported in [ 101 are restricted to quad- 

ratic problems; we are currently experimenting on more general nonlinear problems and 
prelirninary results continue to support this claim. 

The presentation of this paper is organized as follows. In Section 2, we motivate our new 
affine scaling transformation. In Section 3, we discuss our unusual reflective path line search 
idea. The usual acceptance conditions for straight line search algorithms are generalized to 
our reflective path line search. In Section 4, we discuss important consequences of our new 
affine scaling transformation which allow us to establish convergence results for a broader 

Table 1 
Obstacle problem: Lower and upper bounds 

m n its 

30 900 11 
40 1600 12 
50 2500 14 
60 3600 13 

100 10000 14 
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class of methods. In Section 5, we establish first order convergence properties of our interior- 
reflective algorithms (second order information is not required). In Section 6, second order 
convergence properties of interior-reflective Newton methods are obtained. An example of 
interior-reflective Newton method with strong convergence properties, which can be used 
for large problems, is given in Section 7. Concluding remarks and a look ahead are given 

in Section 8. 
X d e f ~  X def  . x clef Throughout the presentation, we denote g=g(  ) =  7f( ); gk =gtxk); g ,  = g ( x . ) =  

Vf(x,), where x .  is a specified (usually optimal) point. Following Matlab notation, for 
any s ~ ~", diag(s) denotes an n-by-n diagonal matrix with the vector s defining the diagonal 
entries in their natural order. Moreover, as a general rule, we use a superscript to denote 
additional meaning of a quantity and a subscript to denote a component of a vector, except 
that a subscript k suggests the iteration k. For example,/)i and vk, denote the ith component 
of v and Vk respectively. More notations will be introduced when necessary. 

The following assumptions are made throughout the presentation. 

Compactness and smoothness assumption. Given an initial point xl ~ Y ,  it is assumed 
that the level set ~ = {x: x ~ ~-  and f (x)  <~f(xl) } is compact. Moreover, we assume f (x)  
is twice continuously-differentiable on an open set D D~@-. 

2. Motivation of the new affine scaling transformation 

Our approach [ 10] uses a new affine scaling transformation to maintain strict feasibility 
and a novel reflective path line search to achieve efficiency. We remark that many of the 
basic ideas behind the interior and reflective Newton approach originated in previous work 

on various convex optimization problems [ 6-9,19]. 
We first motivate the desirability of our new affine scaling transformation. 
Currently, there are two distinct ways of handling linear constraints in linear and nonlinear 

programs. One approach, illustrated in Fig. 1, is to follow the boundary of the feasible 
region using an active set technique. The alternative philosophy, also illustrated in Fig. 1, 
is to approach a solution by going through the middle of the feasible region. The interior 
point approach is more recent and has primarily been applied to linear programs, e.g., [27]. 
By going through the middle, interior point methods can eliminate the combinatorial nature 
of many active set methods by handling the linear constraints in a simultaneous manner. 

The simplest interior point method for linear programs is the affine scaling method 
[28,13]. To illustrate the affine scaling idea, assume that we have a strictly feasible point, 
x~int(~7"),  i.e., l<xk<u. As indicated in Fig. 2, the sides of the box can restrict the 
movement from the current point xk. Hence it is reasonable to change units of each variable 
so that, in the new coordinates, the current feasible point xk becomes equally distant to all 
the nearest sides of the box: 

min(£ k - ( D ~  f f ine )  - Ilk, ( D ~  f t ine )  - l t t k  - 3~/¢) = (Dk afn'~) -lmin(xk - lk, tt k - -Xk)  = e 
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Simplex Meßod Trajeetory 

Fig. 1. Trajectories of the interior point method and simplex method. 

X, 

where 

D~ mne + diag (min(xk - lk, uk -- x~) ) .  

The benefit of centering is that sufficient reduction of the objective function can be obtained 
before a variable bound is reached. 

In particular, the best direction to take for linear programs (with bound constraints only), 
in the new coordinates, is steepest descent: dk = - (Dffnne)g« • This corresponds to the 
scaled steepest descent direction dk = -- (D~nne)2gk in the original variable space. This 
direction is angled away from the approaching bound, see Fig. 2. Moving along d» a step 
is determined from the current point to the nearest boundary and a large fraction (e.g., 0.9) 
is taken to stay strictly feasible. 

The idea of using a local transformation as described above can also be applied to 
nonlinear problems, with bound constraints, in a straightforward manner. The notion of 
angling away from nearby constraints is an attractive one. However, the resulting algorithm 
will be linearly convergent at best. How can the affine scaling ideas be used for nonlinear 
problems to generate strictly feasible iterates converging globally and quadratically? 

_ Dattine29~ 

',.q 

Xk+ 1 ~ Xk 

X - space 

Fig. 2. Effect of affine scaling transformation 2 = D ~ne- 'x .  

B» 1 

B -  space 
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To answer this question we begin with a review of  optimality conditions. First-order 
necessary optimality conditions for problem (1.1) are: 

t 
r ( g . ) i = O  if li< (x . ) i  <ui, 

first order: ( g * ) i  < 0  if (X~g)i =Ui, (2.1) 

. (g*)i  >10 if ( X . )  i =l i . 

Second-order conditions involve the Hessian matrix of  f, H =  H(x)~ f  V2f(x). Let Free.  
denote the set of  indices corresponding to " f ree"  variables at point x . :  

Free.  = {i: l i < (x . ) i  <ui} • 

Seeond-order necessary conditions can be written: If  a feasible point x .  is a local mini- 
T4Fr«* is the mizer of  (1.1) then D2.g.  = 0 and ...uFr«* is positive semi-definite where _ .  

submatrix of  H .  = H ( x . )  corresponding to the index set Free.. 
These conditions are necessary but not sufficient. Sufficiency conditions that are achiev- 

able in practice often require a nondegeneracy assumption. This is the case here. 

Definition 1. A point x ~ R" is nondegenerate if, for each index i: 

gi=O =~ li <x i  <(Ui . 

With this definition we can state second-order sufficiency condltions: i fa nondegenerate 
feasible point x .  satisfies D 2 g .  = 0  and ...]r'tFree* is positive definite, then x .  is a local 

minimizer of  (1.1). 

The crucial observation, for our purposes, is that the first-order optimality conditions 

(2.1) can be written as a nonlinear (diagonal) system of equations. From this system comes 

a local Newton process, yielding local quadratic convergence, and from this process comes 

a natural connection with affine scaling ideas and, ultimately, a global method. 
The diagonal system 

D(x)  2 Vf(x) = 0 (2.2) 

is equivalent to the first-order optimality conditions (2.1), where v is defined below and D 
is given by 1, 

D(x) = d i a g ( I v ( x )  11/2) . (2.3) 

Definition 2. The vector u(x) ~ ~" is defined: 

def 
(i) I f  Vf(x)i<Oand u i < ~ t h e n  oi = x l - u i .  

i Notation: Ifz is a vector then Izl 1/2 denotes a vector with the ith component equal to Iz/I 1/2. 
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(ii) 

(iii) 

(iv) 

If  Vf( x ) i >~ 0 and l; > - oo then via«= xi __ li" 

def 
I f  Vf(x)i <O and u i = ~  then vi = - 1. 

rief 1 I f  Vf( x ) i >~ O and li = - - o o  then U i ~--" . 

System (2.2) is continuous but not everywhere differentiable. Nondifferentiability occurs 
when vl = 0. Since only the strictly feasible points xk ~ i n t ( J )  will be generated, this is not 
a concern. Assume that x k ~ i n t ( J ) .  Let JV(x) ~ ~n)<n be the Jacobian matrix of [v(x) I 

whenever [ v (x) I is differentiable. The function [ v (x) I is not differentiable at a point where 
there exists some 1 ~< i ~< n or 1 ~<j ~< n with vi(x) = 0 or g~(x) = 0. Since strict feasibility is 
maintained, I v(x)kl > 0 always. If  some gi = 0, we define the/ th  row J~ of jv  to be zero, 

v def 
i.e., J~ = 0. Nondifferentiability of this type is not cause for concern because, for such a 
component, it is not significant which value vi takes. Moreover, vl is discontinuous at such 

a point but the product vi(x)g~(x) is continuous. 
A Newton step for (2.2) satisfies 

/}«ct~ v = - ~ ~  (2.4) 

where är~ = D k l d ~  is a Newton step in the new coordinates under the new affine scaling 

transformation $~fD ~- i x and 

Bk def D~gk =d iag (  [ v k l l/2) gk , 

/~k «e__f D k H k D k  + diag(gk)J~.  (2.5) 

A local, quadratic, and feasible method can be based on (2.4). Feasibility requirements 
may prohibit a full (unit) step from being taken; however, as we indicate in Section 6, it is 
possible to set Xk+a =X~ + akd~ such that {xk} is strictly feasible and c~ k ~ 1 sufficiently 
fast to ensure quadratic convergence. Beyond yielding a local Newton method, Eqs. (2.4) 
and (2.5) suggest a minirnization process. To appreciate this consider Lemma 1. 

Lemma 1. Assume that x .  ~ 9-.  

(a)  I f  x .  is a local minimizer of  ( 1.1 ), then ~ .  = O. 
(b)  I f  x .  is a local minimizer, then B .  is positive semi-definite and ~ .  = O. 

(c)  I f B .  is positive definite and ~ .  = O, then x .  is a local minimizer o f  (1.1).  

This result is easily proved - it follows directly from the optimality conditions. 
Lemma 1 indicates that computing a local minimizer of a bound-constrained problem 

(1.1) is equivalent to locating a point such that ~ .  = 0  a n d / ~ ,  positive semidefinite. 
Therefore, loosely speaking, we have transformed a bound-constrained problem ( 1.1 ) to a 
problem of finding a local minimizer for some unconstrained problem. 
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Though ~ and/~ do not correspond to the gradient and Hessian of a specific nonlinear 
function, Lemma 1 suggests that, in the new coordinates, a solution of the following trust 
region subproblem is a reasonable step 

min{t~«(g): [lellz < ~~} (2.6) 

where 

d e f  ^ T ^ - -  
q4(g) = g k s +  ½ffBkg. 

Let s = DE and Hk = H(xk). Subproblem (2.6) is equivalent to the following problem in 
the original variable space: 

min {~k(s): I[Dk-ls[[z <~ Ak,} (2.7) 
s 

where 

q,k( s) Re s~gk + ½s~ß~s , 

Ck dem D~- 1 diag(gk)J~D~ 1 , (2.8) 

Bk ~f  Hk + G . 

It is clear that C(x) is a positive semi-definite diagonal matrix. This matrix contains the 
constraint information. Moreover, in the neighborhood of a local minimizer, the Newton 
step with respect to (2.2) is a solution to the trust region subproblem (2.7) if the trust 
region size Ak is sufficiently large. 

Our affine scaling transformation.f = D k- l x differs from the affine scaling transformation 
used for linear programming problems in two regards: Dk depends on the current gradient 
gk and a diagonal component is the squareroot of the distance of the corresponding variable 
to its closest bound, if this bound is correct according to g» In this case, the scaled steepest 
descent direction, 2 - D k gk, and the solution of trust region subproblem (2.7), are sufficiently 
angled away from the approaching correct bound. Our choice of Dk comes naturally from 
the Newton step with respect to the nonlinear systems characterizing the first order optimality 
conditions of (1.1). Note that, if/~k is positive definite and the ellipsoidal constraint is 
inactive, then the solution to the reduced trust region problem is N _ ^N sk--Dksk where 

gf  = - / ~ k  l gk. (2.9) 

In a neighborhood of sufficiently nondegenerate point satisfying second-order sufficiency, 
s~ is a Newton step for system (2.2). Therefore a global step blends automatically into a 
Newton step locally and achieves fast local convergence. 

At the current point xk some variables may be approaching the wrong bounds according 
to the gradient, i.e., Iv«il # m i n ( u / - x t , ,  xk, - l l ) ,  for some i. In this case there is no angle 
property and it is quite possible to reach this bound after only a short step along s» However, 
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this is where the notion of a reflection, introduced in the next section, plays its part to ensure 
sufficient decrease. 

The theory we develop in later sections allows for some latitude in the manner in which 
a descent direction is obtained; we often determine Sk, at Xk, by solving a subspace trust 
region subproblem. In addition, in order to be able to use the trust region subproblem when 
a problem is degenerate, we replace the second order matrix B k in (2.8) by M, which is a 
slight modification of B» More precisely, we consider a solution of the following trust 
region subproblem 

min{srgk + ½sTM«s: IIDflslh < A» s~SPk} (2.10) 
,¢ 

where Sak is a subspace of ~2 n, 

Mk def Hk..kC ~- , C~ de f D~_ 1 d i a g ( g ~ ) J g D f  ~ , (2.11) 

and the vector g + (x) is an"extended gradient' ', extended to deal with possible degeneracy. 
In particular, 

g/+ ~f f l g i [ + %  if ] g i [ + l v i l l / 2 < ~ ~ ,  (2.12) 
I ,  I gi I otherwise, 

where ~-, is a very small positive number, e.g., ~ and % is the machine precision. Through- 
out the remaining presentation, we will refer to a point satisfying [v(x) [ + Ig(x) I > % as 
a sufficiently nondegenerate point. Clearly if x is a sufficiently nondegenerate point, then 
g + =  Igl, C+ = C a n d B ( x )  =M(x).  

Using definition (2.3), problem (2.10) can be written 

min{grgk + ½gr~tkg: Ilglh < A» Dkg~  ~ k  } (2.13) 
e 

where 

~lk =DkMkDk =DkHkDk ~ r °  rJg+ --Jk'- 'k , ~k =Dkgk ,  g = D k l s ,  (2.14) 

and D g ÷ is a diagonal matfix, D g + d=efdiag(g +). Similarly, if x is a sufficiently nondege- 
nerate point, then ~/---/}. 

Typically subspace SPk is small, e.g., I~kl = 2; the issues concerning how to choose Sak 
appropriately are addressed in Section 7. A related reduced trust region idea has been 
explored in the unconstrained minimization setting [ 3,25 ]. The solution to (2.10) is of low 
cost, provided I S°kl is small. 

3. Reflecüve line search 

We employ an unconventional line search technique for our approach. The traditional 
line search follows a straight line path. We search for an improved point along a reflective 
path. A two dimensional reflective path is illustrated in Fig. 3. 
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71 

ù.." 

X 2 ---~ U 2 

P ~ . ~ ~ ~  x~ = b ° 

b 1 

2 3 4 5 6 

X2 ----- 12 

F i g .  3. A re f tec t ive  path.  

The piecewise reflective path can be described, recursively, as follows. Given any descent 

direction sk ~ R", define the vector 2 

BRk = max[ ( l - -xk) . /sk ,  (u --Xk)./Sk) ] , (3.1) 

where the notation " . / "  indicates componentwise division. Component i of vector BRk 
records the positive stepsize from Xk to the breakpoint corresponding to variable Xk, in the 

direction sc The piecewise linear (reflective) path is defined by the reflective path described 

in Fig. 4. Since only a single outer iteration is considered, we do not include the subscript 

k with the variables in our description of the reflective path below - dependence on k is 

assumed. 

Le tp« (« )  denote the reflective path as defined in Fig. 4: For/3~-1 ~< a < Ô~, 

pk(a)  =b~, -~ + (o~- ôiZ~)p ~ . (3.2) 

Note that the reflective pa thp«(a )  is defined with respect to the current point and direction 

under consideration. This dependence is understood and will not be explicitly denoted in 

the presentation. 

A model interior-reflective method is described in Fig. 5. 

The notion of a reflective path line search may seem a bit odd at first glance. However, 

the reflective path line seareh supports out objective of staying relatively centered. More- 

2 For the purpose of cornputing BR we assume the following rules regarding arithmetic with infinities. If a is a 
finite scalar then a + oo = co, a - oo = _ 0% oo/a = oo. sgn(a), - o~/a = - oo. sgn(a), a/O = sgn(a) • o% ~/0 = 0% and 
- ~ / 0 =  -0% where sgn(a) = + 1 ifa~>0, sgn(a) = - I ifa<0. 



198 T.F. Coleman, Y. Li / Mathematical Programming 67 (1994) 189-224 

The refleetive path: [ Let/3 0 = 0, p 1 = s, set b o = x» ] 

For i = 1: oQ 

1. Let/3 i be the distance to the nearest breakpoint along pi: 

/3 ~ = min{BR: B R >  0} .  

2. Define ith breakpoint: bi = b i -  l + (/3i_ f r -  l)pi. 

3. Reflect to get new direction and update BR: 
(a)  p i + l = p  i 

(b) For eachj  such that (b i ) j  = u~ (or (bl)j = lj) 

o B R ( j )  = B R ( j )  + [ u j -  Ij/ ( s ) j  I . 
• ( p i + l ) j _ ~ _  - -  ( p i ) j .  

Fig. 4. Determine the linear reflective path p. 

over, as we indicate next, there is a familiar straight line interpretation of  the reflective path 
line search. To see this we introduce the notion of  a reflective mapping. For a problem with 

nonnegativity constraints only, ~~-= {x: x >~ 0 }, a reflective mapping is merely the absolute 
n O n t o  . 

value function, R : ~ ~ 9-,  l.e., x = R (y) = ] y 1, where the absolute value notation is meant 
to apply to each component. More generally, a reflective mapping (or transformation) for 

problem (1.1) is an open mapping R : ,~no_%oj defined in Fig. 6. An illustration of  a 1- 

dimensional reflective transformation is given in Fig. 7. Using this reflective transformation 

R (y), (1.1) can be replaced with the unconstrained piecewise differentiable problem: 

min f ( y )  (3.3) 
y ~ R  n 

where B(y) = f ( R ( y )  ),  

A model  interior-reflecfive method 

Choose x I ~ int(~c~-). 
For k = 1, 2 . . . .  

1. Determine an initial descent direction Sk forfa t  xk ~ int (9- ) .  Determine the reflective 

pa thpk(a)  as in Fig. 4. 

2. Perform an approximate piecewise line minimization off(xk +Pk(« )  ), with respect 

to a, to determine an acceptable stepsize ak (such that a k does not correspond to a 
breakpoint). 

3. Xk+ 1 = xk + pk(  Otk). 

Fig. 5. A model interior-reflective algorithm. 
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Case 1: ( l i >  - ~ ,  ui < ~ )  

To evaluate xi = R ( y )  i: 

wi  = I Yi - li I mod [ 2 ( ul - Il) ], xi = min (wl, 2 ( ui - li) - wl)  + li 

Case 2: ( l i >  - ~ ,  u i = ~ )  

To evaluate xi = R ( y  ) i: I f  yi >~ Il, xi = Yi, else xi = 21i - yi. 

Case 3: (Il = - ~ ,  ui < ~ ) 

To evaluate xi = R ( y )  i: I f  yi <~ ui, xi  = Yi, else xi = 2 u i -  Yi. 

Case4 :  (l i  = - ~ ,  u i = o o ) .  

In this case there are no constraints on xi and so xi = yi. 

Fig. 6. The reflective transformation R. 

11,,,6 

1=,4 

y 

Fig. 7. A l-dimensional reflective transformation example. 

An interior-reflective algorithm for the original problem (1.1) is a descent direction 
algorithm with a (straight) line search 3 for j?(y) - see Fig. 8. This straight line search 

descent algorithm generates the sequence {Yk}; the strictly feasible sequence {xk} can be 

obtained from the relation Xk = R ( y k ) .  (Note: strict feasibility is maintained because the line 
search does not accept breakpoints - breakpoints correspond to points on the boundary.) 

The difference between the algorithm in Fig. 8 and the interior-reflective method in Fig. 

5 is purely notational. The view presented by Fig. 5 has the advantage that it is in the original 

space - visualization of  the reflective process is natural. The advantage of  the second view, 

the method in Fig. 8, is that the algorithm is a straight line descent direction algorithm, a 

3 Direction s y is a descent direction for3~(y) at Yk if3~(Yk + as{) <f(Yk) for all positive sufficiently smaU et. 
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A descent dlrecüon algorithm for f (y )  
Choose Yl ~ int(~r) • 

For k = 1, 2 . . . .  
1. Determine a descent direction s y for f (y )  at Yk 
2. Perform an approximate line minimization of f (Yk  + aSt,), with respect to «, to 

determine an acceptable stepsize ak (such that «k does not correspond to a break- 
point) 

3. Yk + l --- Yk + °~ksYk 

Fig. 8. Descent direction algorithm forf(y). 

familiar structure. It is probably useful for the reader to keep both views in mind. In this 
paper we will primarily work in the original space (x-space). 

The Line Search Condltions: An exact line search is seldom adopted. Instead, an approx- 
imate line search satisfying conditions which guarantee convergence is used. 

In the unconstrained setting, min f ix ) ,  several such sufficiency conditions have been 
proposed. For example, Goldfarb [ 16] uses the modified Armijo [ 1 ] and Goldstein [ 17] 
conditions: Given 0 < o'1 < o-~ < 1 and a descent direction sk with Xk+ ~ = Xk + C~kS» ak satisfies 
the modified Armijo/Goldstein conditions if 

f ( x k + l )  <f(xk) +trl(c~kgrs~ + l a 2 m i n ( s r H « s k ,  0 ) )  (3.4) 

and 

f ( X k + l  ) > f ( X k )  T 1 2 " T + O'u(«kgks k + ~ « k m m ( S k H k S k ,  0))  . (3.5) 

Roughly speaking condition (3.4) can be interpreted as restricting the step length from 
being too large relative to the decrease in f; condition (3.5) can be interpreted as restricting 
the step length from being relatively too small. Both conditions can be combined to form a 
single expression: If  we define 

f ( x k +  1) - f ( x « )  (3.6) 
qbk(ct) = akg~sk + ~ 2 . T ~ a k m m ( s k H k s k ,  O) 

conditions (3.4) and (3.5) can be expressed as 

o"1 < ~bk(m) <o'u.  (3.7) 

We establish that conditions (3.4) and (3.5) can be satisfied for the relative path mini- 

mization process where X«+l =xk+Pk(«k) and Pk is defined by (3.2). In particular, we 
prove that there is an interval ( «» oB), depending on k, such that for all a ~ ( el, OB ), (3.7) 
is satisfied. 
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T h e o r e m  2. Assume that f ( x )  has two continuous derivatives and either g~sk < 0 or 

g ~sk = 0 and s ~HkSk < 0 where Xk ~ int(o~-). Then either f is unbounded below along the 
reßectivepath Pk( a) or, for  0 < o'1 < o'u < 1, there exists an interval ( a» oB), depending on 

k, such that condition (3.7) is satisfied. 

Proof. First we denote that lim«_~O~bk(a)= 1. To see this consider that from Taylor 's  

theorem, for a </3~, 

c ~ g f s k  i 2 ~ ' -  + ~c¢ skH«sk 

qbk( a) = ag~sk + ½ a2min(s~Hksk, O) ' 

where 

Bk = H(Xk + O(a) aSk), 0 <~ 0(«) <~ 1. 

d e f  . 
Therefore, ifg~sk 4=0, ~bk(0) = hm«_~o~bk(a) = 1 and so ~b«(0) > o'u > o"1; ifg~sk = 0  then 

d e f  . d e f  • 
s~Hksk < 0  and clearly ~bk(0 ) = hm«_.o~b«(a) = 1 and so ~b«(0) = hm«_~o~b«(a) = 1. 

Assume ~bk(a) ~< 0-1 for some a > 0. Let OB be the smallest positive a such that ~bk(«) = o'1. 

Since ~bk(0) > 0.u > o"1 it follows that ~bk(a) > 0.1 for all a ~ (0, au). Therefore by continuity 

there exists a positive «1 < au such that ~b«(a) < 0.u for all a E (al, oB). Therefore (3.7) is 

satisfied on (a»  au). 

Now assume the contrary; i.e., ~bk(a) > al for all positive a. But since either g~s« < 0 or 

S~gk = 0 and s(Hksk < 0, it follows that 

lim ~ 1 2 .  agks k + ~a mm(skHksk,  O) = - - ~ .  

Therefore to achieve qök(Ot ) > al, for all positive a, it rnust be that 

lim f (xk +Pk(a) ) --f(Xk) = -- ~ . 
«--.oo 

Consequentlyfis  unbounded below along the path pk(a)  as a ~ c¢. []  

The interval (al, au) contains a finite number of  breakpoints. Consequently, we can 

choose ak~  (a»  OB) such that OB is not a breakpoint. 
A basic interior-reflective algorithm can now be stated. To allow for flexibility, especially 

with regard to the Newton step, we do not always require that both (3.4) and (3.5) be 

satisfied. Instead, we demand that either both conditions are satisfied or (3.4) is satisfied 
and ak is guaranteed to be bounded away from zero, e.g., ak > p > 0. The latter conditions 

are used to allow for the liberal use of  Newton steps and do not weaken the global conver- 
gence results. 

An interior-reflective method is described in Fig. 9. Note that since xl ~ int(Y-), it follows 
that x« ~ int (Y ' ) .  

We conclude this section with two comments on the economy of the line search. First we 
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An interior-reflective algorithm [p is a positive scalar.] 
Choose Xl ~ in t (~r ) .  
For k = 1,2 .... 

1. Determine an initial descent direction Sk for f at Xc. Note that the piecewise linear 
path Ph(OZ) is defined by x» Sc. 

2. Perform an approximate piecewise line minimization of f (xk  d-pk(C~) ) ,  with respect 
to «, to determine ak such that: 
(a)  a k does not correspond to a breakpoint 
(b)  condiUon (3.4) is satisfied 

(c) Either 
(i) ctk satisfies condition (3.5),  or 

( i i )  Otk~ p~O 

3. Xk + l == Xk-'}- pk(  Olk). 

Fig. 9. An interior-reflective algorithm satisfying line search conditions. 

mention that it is not necessary to implement a line search in a left-to-right fashion; it is not 
necessary to predetermine the reflective path. For example, a simple bisection strategy can 
be quite effective in some cases [ 10]. Second, as indicated in Section 6, distances to the 
breakpoints that correspond to variables tight at the solution converge to unity (under 
nondegeneracy assumptions).  This indicates that in a neighbourhood of a minimizer it is 

unnecessary to reflect. 

4. Constraint compatibility and consisteney 

Satisfaction of the conditions (3.4) and (3.5) is not sufficient to ensure convergence for 
(1.1).  In this section, we attempt to capture the effect of  our new affine scaling transfor- 
mation :f = Dkx on the steepest descent direction - gk and the solution of the trust region 

subproblem (2.7).  We indicate that the scaled steepest descent { - D 2 g ~  } and the trust 
region solution {Ph } of  (2.7) share two properties, constraint compatibility and consistency, 

which are enough to obtain first-order convergence, i.e., to guarantee that {D2gc } ~ O. 

We begin with a discussion of constraint-compatibility. Recall that the diagonal matrix 

Dk is defined by (2.3),  i.e., D~ = D(Xk) 2= diag( l ucl ). 

Definition 3. A sequence of vectors (Sk} is constraint-compatible if the sequence 
{Dk2Sk } is bounded. 

Constraint-compatibility of  {Sk} is important because it facilitates a sufficiently long step 
along Sk. In particular, ifxk is close to a boundary then a direction satisfying only g~s k < 0 
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may not guarantee that sufficient progress can be made to obtain a convergence result. In 
particular, sk may point directly at a nearby constraint and descent beyond this first break- 
point, along Pc is not guaranteed. (Conditions (3.4) and (3.5) can still be satisfied though.) 
For constraint-compatible directions, we prove the following. 

Theorem 3. I f  {Sk} is a constraint-compatible sequence then {BRk(j): BRk( j )= 
I%1/I%1 } is bounded away from zero. 

Proof. By constraint compatibility there exists X > 0 such that, for all iterations k and all 
indicesj, 

I%1 <x-  
Ivkjl 

Clearly i fBRk( j )= Ivk j l / I sk j l , thenBR«( j )>~l /x .  [] 

In other words, constraint-compatibility helps avoid the problem of running directly into 
a bound by ensuring that the stepsizes to breakpoints, corresponding to "correct sign 
conditions", remain bounded away from zero. Specifically, if { sk } is constraint-compatible 
then the positive distance to constraint j along s» BRk(j)=max{(/j--Xk~)/Skj, (Uj-- 
X«j)/S«j }, is bounded away from zero for anyj with the correct "sign condition". The "sign 
condition" refers to a consistency between vj and max{ (lj - Xkj) ~Ski, ( Uj -- Xkj) ~Ski }. The 
"sign condition" holds when S~gkj <0, and so BRk(j) = I v«jl /Iskjl. 

When the "sign condition" is violated, i.e., when Skjg«~ > 0, then it is possible to hit a 
bound after only a short step along Sk. However, the reßective line search guarantees that 
the new direction passing this breakpoint will maintain descent if the bound is encountered 
soon enough (since -skjgkj < 0). This reflection is essential for convergence: see Lemma 
7. 

Summarizing the above discussion, constraint-compatibility together with the reflective 
line search guarantee sufficient progress from the current point. 

A technical lemma is required to establish constraint-compatibility of some useful direc- 
tions. 

Lemma 4. Let { Sk} be a sequence of vectors and assume { Sk} is bounded. Assume that for 
each iteration k and each index i such that 0 < I v k, I < 1, 

ekis«i : Il)kl I zki , (4.1) 

where ek~ satisfies [ ekl [ >~ g ~. Assume {z«} is bounded. Then {Sk} is constraint-cornpatible. 

Proof. Consider any subsequence, denoted by indices/~. If { v/~ } is bounded away from 

zero then {s~/Iv~ I } is bounded since, by assumption, {sk} is bounded. On the other hand, 
if {v~} ~ 0 then by (2.12), le~ I >t % >0. But {zk,} = {ekiSki/I Vki [ } is bounded by assump- 
tion; therefore, {s~/Iv~ I } is bounded. Since every subsequence of {Ski/ I Vkl [ } is bounded, 
the sequence itself is bounded. [] 
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Theorem 5 below establishes that several useful directions satisfy the constraint 
compatibility requirement. The sequences {DkUk: )(4kUk= IXkUk for some /~k<0} and 
{ --DZsgn(gk) } play an important role in forming subspaces of  a reduced trust region 
subproblem (2.10) (see Section 7).  

Theorem 5. Assume 0 < A1 <~ Ak <~ Au < 0% where AI and A u are positive scalars satisfying 
A 1 < Au. Under the compactness and smoothness assumption, the following definitions yield 

constraint-compatible sequences { Sk} : 
(1) sk = --D2gk, 
(2) Sk = --D2sgn(gk),  4 

(3) Sk = DkUk, where Uk with Iluklh = 1 is an eigenvector of  ~'lk corresponding to a non- 
positive eigenvalue, 

(4) sk =Dkg~ where g~ is the Newton step in the scaled space, gl~ = _)( l  ~ k ,  ~,k = 

Dkgk,  II gN 11 <~ Ak < Au and ~Ik posi t ive  definite, 

(5) sk ----DkSk̂ N/IlskAN II, S~'N II >1 Ak >/ml and'('lk positive definite, 
(6) sk is the solution to (2.10) with Sak= ~ ~. 

Proof.  Constraint-compatibility of the first two choices for sk follows directly from the 

definition and boundedness of {gk}" 
For case 3, let/zk ~< 0 be a nonpositive eigenvalue of A~tk and 2Q~uk = I~kUk. Then 

v g +  __ 2 (tzj--JkDk )Sk--DkHkDkUk, tZk ~ < 0 ,  

v _ o, r _ l v o g +  where D g+ =diag(g~-) .  For each index i with Irk, I < 1, Jk, -- 1 and I t~ki- ~ki k [ t> 
gk + . Using compactness, {HkDku~} and {sk} = {DkUk} are bounded. Therefore, by Lemma 
4, {sk} is constraint-compatible. 

For case 4, note that Sk satisfies 

J~D g+ sk = --D2(gk + HkDkg~) • 

But if IIg~'[[ < Ak < Au D ^Nk, then, using compactness, both { gk + Hk kS j and { s,} are bounded. 
Constraint-compatibility then follows from Lemma 4. 

In case 5, 

J~DZ + Sk = - D 2 {  
H k D k ~ l  gk 

~lllY7l I + ilYUll 2" 

But IIgNII /> Ak ~>A~ >0; therefore, using compactness, {g#llY~ll +nkDkg~/ll~¢ll} is 
bounded. The sequence {Sk} is bounded since s~ =DkY~'/IIY~II; constraint-compatibility 
follows from Lemma 4. 

Finally in case 6 note that Sk satisfies 

4 I f  Z is  a vec to r ,  t hen  w = s g n  ( z )  is  a vec tor ;  w i =  1 i f  zi1> 0, wl = - 1 i f  z~ < 0. 
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(J~D~ + + t x j ) s k  = --D~(gk +HkDcgc) (4.2) 

for some /zc~>0 and ~ c = D k - l s  k. But Ilgdl ~<Ak~<Au and so, using compacmess, both 
{gk+H«Dkgk} and {sc} are bounded. Therefore, Lemma 4 can be applied to yield constraint- 
compatibility. [] 

Note that a constraint-compatible sequence {sc} can be obtained by mixing the various 
steps sk given in Theorem 5. Constraint-compatibility is not sufficient to guarantee conver- 
gence: It is also important that first-order descent, represented by g~sk, be consistent with 
first-order optimality, represented by D~g«. The following definition captures this concept. 

Definition 4. A sequence {sc} satisfies the consistency condition if {s~gk } ~ 0 implies 

{ Dkgk } --> O. 

In Theorem 6 we give five useful examples of sequences that satisfy consistency. 

Theorem 6. Under the compactness and smoothness assumption, the following definitions 

yield sequences {sc} satisfying the consistency condition. 
= D z (1) Sc - kgc, 

(2) SC = --D~sgn(gc) ,  
(3) sc = D«g~ where g~¢ = - IVI ~ 1 ge, assuming ÄIk is symmetric positive definite, 

(4) sk is a solution to (2.10) where Sac has the property that Wk=Dcrük~~C for  

somevector rPk such that { II~cll } is bounded away f rom zero and {Wk} is consistent, 
i.e., {w~gc} --*0 implies {Dkg«} w0,  

(5) Sc is a solution to (2.10) with S~c= ~ ". 

Proof. 
(1) The first case is clear since srg« = IIDcgc 1122. 
(2) In this case s ~'gc = s gn (gk) rD ~gc = II Dclgcl  1/z II, and so the result follows. 
(3) I f sc  is the Newton step, then 

- g~Sk = (Dcgc) rl~lZ 1 (Dcgc) • 

But by compactness )Qc is bounded, i.e., there exists a finite bound XM such that liMo 112 -« 
XM- Therefore, r - g c sc >1 ( 1/Xm) IIDcgk U 2 The result follows. 

(4) Let 5ac = (Vc) for some full-column rank matrix Vc; let Yk be an orthonormalization 
of the columns of D i  IVc. Since wc ~ 5°c we can assume, without loss of generality, that 
one of the columns of Yc is rüc/II~cll. We can write the solution to (2.10) as sc =DcYcsl,k, 
where 

s,.« = - ( Y L ~ «  rc  + m z )  + t '~gc  + o~cu~' 
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where u~ is a unit eigenvector corresponding to the most negative eigenvalue of r ~ YkMkYk 
and ( r^  t l _  Y~gk) Uk --O. Using a trust region solution characterization, e.g., [26], the matrix 
Y~I~IkY« + IXk I is positive semi-definite and (Y~gk) ~range(Y~MlkYk + tzkI). Since 
Ak>~Al>0, it follows that {/xk} is bounded above. Therefore, using compactness, 
{ Y~2~Ik Yk + tZ~I} is bounded and so there exists a positive scalar XM such that 

[[ Y~)14k Yk q-/~klII2 < XM. 

Therefore, 

1 
- g ~sk = (YkDkgk) ~(Y~Mk Y~ + ~kI) + Y~(Dkg~) >1 - ~  II Y~Dkg~ II 2 

Therefore { s ~gk } ---> 0 implies { II Y~Dkgk II } --> 0. However, ~k/II~kll is a column of Yk and 
{11~«11} is bounded from zero. Therefore, {llY~D~gkll} ~ 0  implies {w~gk} ~ 0  which 
implies {Dkg~} ~ 0 since {Wk} is consistent (by assumption). 

(5) The proof follows from the above case 4 by letting SPk = ~" and Yk = L [] 

5. First-order convergence of the interior-reflective algorithm 

In this section we establish that constraint-compatibility and consistency allow the inte- 
rior-reflective algorithm in Fig. 9 to achieve first-order convergence. Recall that a feasible 
point x is a first- order point if and only if D 2 ( x ) g ( x ) = 0 where D is defi ned by (2.3) 

The main result of this section is that, assuming that {Sk} satisfies the constraint-compat- 
ible and consistency conditions, every limit point generated by an interior-reflective method 
in Fig. 9 is a first-order point. We first state a technical result which says that the change in 
f along the reflective path Ph («) is primarily represented by linear term g krSk as Ctk--* O. 

Lemma 7. Assume that {xt} is generated by the interior-reßective algorithm in Fig. 9. Let 
{ Sk} be a sequence satisfying the constraint-compatibility conditions. Assume { Otk} "->0. 
Then, 

f(x~+ l) - f (x~)  = akg~s~ + 0 («~)  . 

Proof. From Theorem 3 and {ak} --*0, if 0 <  fl~ < «k corresponding to variable xj, then 
Skjgkj >~ 0 where /3~, is defined by the reflecUve path in Fig. 4. Moreover, the compactness 
assumption implies that a sequence of con straint-compatible direction { s k} is bounded. 

Without loss of generality, and for notational simplicity, suppose that the ordering of the 
breakpoints along sk corresponds to the natural variable ordering. Note that since { «k} ~ 0 
we can assume that the indices corresponding to 0 </3~, < ak are distinct and so /3~ = 
BRk(i) where BR is defined by (3.1). Assume that 

0~<B~<ak</3~, k+l, j = l : t h .  (5.1) 
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Therefore, 

sk~gkj>~O, / = 1 : 6 .  (5.2) 

By definition of the reflective path Pc (see Fig. 4) and using (5.2), 

g~sk T y >~gkPk, J = l  6 + 1 "  (5.3) 

NOW using the definition of the breakpoints b~ (see Fig. 4) and applying Taylor's theorem 
(repeatedly), 

f(xk + 1) --f(Xk) 

=f(x«+ 0 - f (b~)  + 
tk 

~_, [f(b{) - f ( b { - ' )  ] +f(b~) - f ( x k )  
j = 2  

tk 
= (œk -- ffk k) Vf(b~«)rP~ +' + E [fl{ - f lJ- ' ]  Vf(b{-1)rPJ 

1 = 2  

+ ~1 Vf(xk)Tpt +O(a21  

tk 
13tk'lùTùtk+ 1 + O(012)  - flk ]gkPk + ~'(Olk t"lk)'~klJk + E [~Œ--  j - - I  T j n l  T 1 PkgkPl,  

j = 2  

Now apply (5.3) to get 

tk 

f(xk+ 1) - f ( x D  <~ («k - ~~k)grsk + ~ [ô{ -- ~{- l lg~s~ + ~~grsk + O(a2)  
j = 2  

= ctkg~s k + O(a~)  . [] 

The main result in this section is first-order convergence, i.e., {D2gk } ~ 0. This result is 
established in Theorem 8 where we also show that { «2min(s~Hksk, 0) } ~ 0; the latter is 
not part of the first-order conditions but is useful subsequently. 

Theorem 8. Assume that {xk} is a sequence generated by the interior-reflective path 
algorithm in Fig. 9 and that {sk} is the corresponding sequence satisfying both the consis- 
tency and constraint-compatibility conditions. Then the corresponding sequences { D2 gk } 
and 2 • { ot k mln ( s k Hksk, O) } converge to zero. 

Proof. Since condition (3.4) is satisfied, 

m--1 

f (Xm)- - f ( x l )  = ~_~ ( f ( xk+l ) - - f ( xk ) )  
k = l  

m--1 

< E  
k = l  

T 1 2 " T (O'lOtkgkS k "{- ~O'totkmln(s«Hks k, O)) 

<~0. 
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By the compactness and smoothness assumption, {f(x) } is bounded on Sa; therefore, 

lim (OrlOtkgTSk + 1 2 " T ~O'l«kmm(SkHkSk, 0 ) )  = O. 

But 

T 
O'lOlkgkS k 4 0  

hence 

and O'la~min(S~HkSk, O) <~0, 

lim «kg~Sk=O and lim «~min(s~HkSk, 0 ) = 0 .  
k ~ ~  k - -«~  

Now we establish that {D~gk } converges to zero by contradiction. Suppose this is not true. 
Since { Sk} satisfies the consistency condition, {g~sk } does not converge to zero. Hence 
g~Sk < -- X for some X> 0. Therefore, { «k} converges to zero. Using Lemma 7, 

f ( X k +  1) - - f ( x k )  
lim ~bk(ak)= lim 
k-~~ k-~~ «kgTSk + I 2 • r ~akmln(SkHkSk, O) 

>/ lim 
akg~Sk + O( a~) 

k--,= akg~Sk + 1 2 " T gœkmln(SkHkSk, O) 

= 1 .  

This contradicts (3.5); hence, {D~gk} converges to zero. [] 

Theorems 5 and 6 provide several examples of directions satisfying consistency and 
constraint-compatibility; therefore, by Theorem 8, first-order convergence is achieved by 
the interior-reflective path algorithm in Fig. 9 with these choices. As an example, if we let 
Sk = --D~gk in the interior-reflective approach described in Fig. 5, the resulting method 
generates iterations {xt} with the property that, at every limit point, the first order necessary 
conditions are satisfied. In order to achieve better convergence properties, we need to use 
more sophisticated directions such as solutions of trust region subproblems (2.10). 

6. Seeond-order eonvergenee 

In order to achieve a second-order algorithm (i.e., guarantee convergence to a second- 
order point; obtain quadratic convergence) we further restrict the descent direction Sk in the 
interior-reflective algorithm in Fig. 9. In particular, we now assume that when,Qk is positive 

definite and Ilgf II ~< Æk then the Newton direction Sk = Dkg~ is taken; if Mk is not positive 
definite, the dilection Sk is defined by a reduced trust region problem 5: Sk solves 

min{sTgk + lsTMks: liDS-~sllz ~ zX» s ~ ~ « } .  (6.1) 
s 

We do not (yet) specify how Sk might be 4etermined when ~/k is positive definite and IIg~ II > Ak- 
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An interior-reflective Newton algor i thm: Given A~ < Aù. 
C h o o s e  x I ~ in t (9- ) .  
F o r k =  1,2 . . . . .  

1. Determine an initial descent direction sc for f at xt: If  )l?/c is positive definite and 
IIgUII < zx» choose sc = Dcg~. If )Qc is not positive definite, choose Ac ~ lA» Aù], 
choose subspace ,9~» and solve (6.1) to get s» 

2. Determine cec: If sk = s~ and xt+pc(1) satisfies (3.4),  then set ac = 1; otherwise, 
perform an approximate piecewise line minimization off(xc + P c ( a )  ), with respect 
to a, to determine ak such that 
(a) ac is not a breakpoint; 
(b) «c satisfies (3.4) and (3.5).  

3. xc+l =xk +pc( Otk). 

Fig. 10. A second-order interior-reflective Newton algorithm. 

Fig. 10 describes a (second-order) interior-reflective Newton algorithm. 

Note. If o~ c = 1 is accepted by the line search but corresponds to a breakpoint, then modify 
= ~« ~=efl _ Œk : Œk e k where äk is not a breakpoint, ti c satisfies (3.4),  and ec < X« [] Dkgc 1] for 

some X« > 0. 
The f rs t  important result of  this section (Theorem 10) is that the method in Fig. 10 

generates points {xt} such that the second-order necessary conditions are satisfied at every 
sufficiently nondegenerate limit point of  {Xc}, provided {sc} is constraint-compatible, sat- 
isfies the consistency conditions, and 2,~c is chosen so that negative curvature of/Qc is 
' 'well-represented' '. 

A preliminary technical result is required. We denote the smallest eigenvalue of a real 
symmetric matrix A by A~ù(A).  So if A(A) = {Al, /~2 . . . . .  An} , with Al ~<A2~< "'" <An, 

then A~in(A) = A1. 

L e m m a  9. Assume that {xt} is generated by the interior-reßective Newton algorithm in 
Fig. 10 where the initial point is strictly feasible. Let {sc} satisfy the consistency and 
constraint-compatibility conditions. Ler 5;°« = ( Y«), for some orthonormal matrix Y» be 
chosen such that when A~n(/Qc) <~ 0, 

An~n(Y~/~tkYc) ~<max( - e,,«, TAmiù(/Qc)) , (6.2) 

for some ent>0,  ~->0. Then for any subsequence satisfying {min(s~Hksk, 0)} ~ 0 ,  the 
corresponding subsequence satisfies limo._, ~ { min (A ~n (~/«), 0 ) } = 0. 
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Proof. In this proof the subscript k is identified with the subsequence under consideration. 
By definition sk satisfies 

s~HkSk "or  vrn~+ -o~«.~~.« Y~sy~+ t~~lls~,«ll : = - s ~Y« ~~'CD~g~. 

But by Theorem 8 limk_~Mg~gk=0. By assumption limk_~~{min(s~Hks«,O)}=O, and 
D~ + is positive semidefinite by definition (2.12). Moreover, since Sk solves (6.1), 
IISy«ll = Æ~ >/A~ > 0; therefore ,  

lim {/zk} = 0 .  
k ----> oo 

However, 

0<~ --min( A~~(Y~ÄlkYk), O) <~ IXk, 

hence 

lim {min(A~n(Y~lVlkYk), 0)} = 0 ,  
k---~ oo 

and applying assumption (6.2), 

lirn {min(max( - e~c, ~'A~a~(A~tk)), 0) } = 0 .  

Therefore 

lim {min(A~a~(,Qk), 0) } = 0.  [] 
k - ~  or~ 

Theorem 10. Assume that x .  is a nondegenerate limit point of {Xk}. If the assumptions of 
Lemma 9 hold, then )t n~n (]f/I.) is positive semi-definite. 

Proof. Our proof is by contradiction. Assume A ~ n ( ~ . ) < 0 .  Applying Lemma 9, this 
means that there exists a subsequence with 

lim min(S~HkSk, O) < 0 .  
k ----~ oo 

Using Theorem 8, limk-~ ~ akmin(srHksk, 0) = 0; hence, limk__,=Olk = 0. 
By Theorem 8, D . g .  = 0, and by assumption, x .  is a nondegenerate point; therefore, for 

k sufficiently large, sgn(gkj) --sgn(g.j) i f j  ~ Free.. Hence, for any j q~ Free,, BRk(j) = 
Ivkjl/Iskjl- Alternatively, if j~Free . ,  then [BRk(J) I ~ w .  By Theorem 3, 
{BRk(j) : BRt(j) = I vkj I / [s~j ] } is bounded away from zero. It follows, since ak-* 0, that 
0 ~ ak < /31 for sufficiently large k, where/3 is defined in Fig. 4. Therefore, due to the 
absence of breakpoints on (0, tx~), Taylor's Theorem can be applied straightforwardly to 
yield, for some subsequence: 
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f(xk + «~sk) -f(xk) 
lim ~bk(ak) = lim 
k~~ k-~~ akg~Sk + ½«~min(s~Hksk, O) 

o~kg~Sk + I 2 ~akSkH(X k + O( ak) )Sc 
= lim 0 ~< 0(ak) ~< ak 

k-~o~ akg~sk + 1 2 r ' "~OlkS k HkS k 

= 1 .  

This contradicts condition (3.5). Hence we conclude that every nondegenerate limit point 

is a second order point. []  

Next we work toward establishing convergence of the entire sequence {Xk}. 

First we establish that there is a natural (local) Newton process for problem ( 1.1 ). This 
view is similar to the development given in [6] for the convex quadratic problem. Let x .  
be a specified nondegenerate point satisfying the second-order sufficiency conditions. 

Consider a finite set ~ of  functions defined by x . :  

F~(x)  = D ~ ( x ) g ( x )  (6.3) 

where D~(x)  = d iag(v(x)  ) and u(x) is a vector defined 

f+lor-lorui-xiorxi- i i f g * = 0  
vi = ~  u i - x i  i f g *  < 0  (6.4) 

[ x i  - li if g *  > 0 .  

Note. When g *  = 0 the choice l) i = U i - -  X i is valid only when ui is finite; the choice ~i = xi - l; 
is valid only when li is finite. 

Each function F~ is continuously differentiable; furthermore, F u ( x . )  = 0 for every pos- 
sible v. Of  course, F~ cannot be used computationally since x .  is not known a priori. 
However, locally each step of  our proposed algorithms is an approximate Newton step for 
exactly one set of  equations based on the definition of v (x ) ,  i.e., v(x)  = I v (x )  I. Therefore, 
~e- and F~ are useful in a theoretical sense to help establish asymptotic convergence results 

of  our proposed algorithm. 
The next result formalizes the simple observation that any member  of ~" can be used 

interchangeably with any other, at any iteration, and there remains a neighborhood around 
« .  retaining quadratic convergence properties of a Newton process. 

T h e o r e m  11. Let ~ ' =  {F~: R" ~ R"} be a f ini te set o f  functions satisfying the following 

assumptions: 

• Each F~ is continuously differentiable in an open convex set ~ .  

• There is a x .  in ~ such that F v ( x . )  = 0 and V F u ( x . )  is nonsingularfor all Fu ~ S a. 

• There is a constant K o such that for  all F v E ~ ,  

II VF~(x) - VF~(x.)II  ~< Ko IIx-x. II, (6.5) 
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f o r x ~ ~ .  

Let {xk} and {sk} be sequences such that Xk + l =Xk + Sk and suppose 

Ilsk + s~ '~~ II = O(  Ilxk - x .  11)2, 

where s~ ~ is the Newton step for  one o f  the functions F ~  ~ v at Xk, i.e., 

s~ ~ = -- (VF~«(Xk) ) - 1F~(xk) . 

Then, for  ~ sufficiently small, {xk} converges quadratically to x*.  

Proof.  The argument is 

IIXk÷l - - x .  II = IIx~ 

= IIx« 

Ilxk 

straightforward and uses a standard result in the last step, e.g., [24] : 

+ s k - x .  II 

+ s ~ ~ - x .  + s k - s f ~ l l  

+ s ~ ~  - x .  Il + IIs~ - s~'~ l[ 

=O(llx«-x.ll) 2. [] 

Our next main result is that the local interior-reflective Newton method is locally and 
quadratically convergent. The local reflective Newton method, given in Fig. 11, is merely 
the interior-reflective algorithm in Fig. 9 with ,Qk replaced by/~« (compare (2.14) and 
(2 .5)) ,  direction sk specified as the Newton step and «k chosen so that 

I o~k-  11 = O (  IID~dl)-  W e  assume that xl ~ i n t ( $ r ) .  
Note that the kth iteration is computable provided x« is sufficiently close to x .  and xk ¢ x . .  

To see this note that the Newton direction and the step size ak are always computable in a 
neighborhood o f x . .  In particular,/~k is positive definite in a neighborhood o f x . ,  assuming 
x .  is nondegenerate and satisfies second-order sufficiency, and ~k :~ 0 unless xk = x . .  Step- 
size «k = 1 satisfies the stepsize condition (step 2 in Fig. 10) unless Xk+pk(1) is on the 
boundary, i.e., (xk +Pk(1) )j is tight for some index j. In this case ct k can be chosen slightly 
smaller than unity, satisfying [ ak--  1 I = O( IIDkg«ll ), and strict feasibility will be main- 

tained. It is clear that IID~kll = O(  I l x k - x .  II )- Hence l o k -  11 = o (  I l xk -x .  II)- 
A key observation is that, provided x .  satisfies nondegeneracy and secon d-order suffi- 

ciency and Xl is sufficiently close to x . ,  the search direction dk generated by the local 

A local inter ior-reflect ive Newton  a lgor i thm 

Choose x~ ~ in t (9 - ) .  
F o r k =  1,2 . . . . .  

1. Solve/~kä~f = - gk = -- Dkgk, set dk = DkäVf. 
2. Determine ak s.t. [ ak--  1 [ = O( IIDkgd[ ) and Xk+p«(ak) ~ in t (9- ) .  

3. xk + l = Xk d-Pk( Otk). 

Fig. 11. A local interior-reflective Newton method. 
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Newton algorithm in Fig. 11 is a Newton step for one of the functions in ~'. Therefore, to 
establish quadratic convergence we focus on the relationship between Pk(ak) and d» The 
following result provides the necessary connection. 

Lemma 12. Let x .  be a nondegenerate point satisfying second-order sufficiency conditions. 
Assume that v(x) is chosen such that v(x) = [v(x) 1. Ler dN(x) be the corresponding 
Newton direction, i.e., 

dir(x) = - ( D2H + JVD g) -ID2g (6.6) 

where Dg=Dg(x)  = diag(Ig[),  D2=D(x)2=diag(  [v(x) I), JV=JV(x) is the diagonal 
Jacobian matrix of  I v(x) [. There exists an open neighborhood ~ containing x .  such that 
for all x ~ int (9-) N ~', dN ( x ) is weil deßned and for each j f~ Free . ,  

I 1 - 3 ~ ' ( x )  I = O(llx. -xll) (6.7) 

where 13 7 = I vj(x) I / [ d~(x) 1. 

Proof. Since x .  satisfies nondegeneracy and second-order sufficiency, it follows that the 
matrix D2H+JVD g is nonsingular in a neighborhood o f x ,  and so dN(x) is well-defined. 
From the definition of the Newton step (6.6) it follows that i f j  ~ Free., 

d~ = - I v i I .sgn(&) - I vj [ (HdN)j 
Igj[ 

which implies 

Iv«l-  I°t!" I (HdN)« I < Id~'l < Iv;I + ~ I (HdN)« I • (6.8) gj 

The first inequality in (6.8) uses the fact that g* 4= 0 (by nondegeneracy), and HdlV~ 0 as 
x ~ x*. Therefore, 

I (HdN)« I < .---:-Id~'l I (Hd~)j I (6.9) l -  
Igel Ivjl <~1+ Igsl 

But, by nondegeneracy and continuity, [ gj [ is bounded away from zero in a neighborhood 
of x. ;  H is bounded; [[dN[[ = O([[x-x.[[);  therefore, from (6.9) it is easy to show that 

11-[3B[=O(llx-x.[[). [] 

Theorem 13. Let x .  be a nondegenerate point satisfying the second-order sufficiency 
conditions. Assume that {xk} is generated by the local Newton algorithm in Fig. 11. Then, 
for xl ~ int(~')  and sufficiently close to x . ,  {xk} ~ int(~ r)  and {xk} converges quadratically 
to X.. 

Proofo Let/3~ be the steplength to the first breakpoint along direction dk. If ak < fl~ then 
p«(a,) = a«dk where d« is the Newton step. However, [ak-- 11 -----O( Ilxk--X.II ) and since 
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dk is the Newton step for some function in 9-v, [Idkll=O(llx~-x.ll); therefore, 
IIPK s c )  - d o l l  = O (  I l x k - x .  II 2 ) and so Theorem 11 applies and the result follows. 

Assume that/3~k < ak < /3~k+ 1. From the definition of the reflective process, we can write 

p k («~ )  - d ~  = 
tk 

E ( / 3 ~ - / 3 i - ' ) P i  + ( « ~ -  ~ ) p ~ + l  + / 3 1 d ~ _ d ~ .  
i = 2  

But applying Lemma 12, 

IIPk(O~«) - dk II = O ( Ildk I1" Ilxk -- x .  II) • 

But dk is the Newton step for some function in ~-~; hence, IId«ll = o (  I lxk-x.  II). It follows 
that IlPk(o~k) - dk[I = O (  I l xk -  x .  II 2); applying Lemma 11 the result follows. [] 

We have established global convergence results for the interior-reflective method in Fig. 
9 (and therefore the second order method in Fig. 10) and we have established that the local 
interior-reflective Newton method described in Fig. 11 yields quadratic convergence. We 
now show that the second-order method in Fig. 10 reduces to the local Newton algorithm 
(Fig. 11) in a neighborhood of a nondegenerate second-order point: global and quadratic 
convergence properties follow. In particular, we show that in a neighborhood of a nonde- 
generate point satisfying second-order sufficiency conditions, a Newton step will satisfy 
line search condition (3.4). 

Theorem 14. Assume x .  is a nondegenerate point satisfying second-order sufficiency 
conditions. Let 0 < o-1< 1. Suppose {xk} is generated by the local Newton Algorithm in Fig. 
11. Then for xl sufficiently close to x .  and k sufficiently large, 

f(Xk +pk(«k) ) <f(Xk) + tr~(gT[dk + lmin(d~H«dk, O) ) . (6.10) 

Proof. Suppose there are 6 -  1 breakpoints bi, b2 . . . . .  btk - -  1, to the left of ag corresponding 
to step lengths flk x, /3 2 . . . . .  /3~k-1. For notational sirnplicity let us label xk+pk(ak) with 
b~ k. Clearly, 

tk--1 

f(Xk +pk(a«) ) --f(xk) =f(b~) - f (xk)  + ~., [f(b~ +l) --f(b~k) ] • (6.11) 
i~l  

Note that p ~+ 1 = D ~ + 1 dk where D ~ + 1 is a diagonal matrix with each diagonal entry equal 

to _+ 1; therefore, IIp~ +111 =O(]ldkll). Consequently, applying Lemma 12, for any 
l <~i<~tk--1, 

f(bik +~) - f (b~)  

=(/3~+1 , , ~ ,+1 - /3k)g(bk)  Pk + ½(/31 +1 -/3ik)2(pik+i)rHikpi+l 

+ o ( l[ (/31 +1 - / 31 )P l  +1 Il 2) 
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_ ( f l ~ + ,  ~ ~ ) g ( b ~ ) r p ~ + l + ½ ( f l ~ + l  -~ .2 .  ;+ l -T . .  ;+1 - - - tJc) t p «  ) n c p c  +o(lld«ll2) 

= ( ~ ~ + 1  _ fl~)g~p~k+l + ½(fl~+, _ ~~k)2(p~k+l)TH~kP~k+l + 0 (  lid« II z) 

=(f l~+,  f l~)g~p~+l  +½(Ö~+I , z T o~+, , o~+, 
- -Aß«)  (dk) Dk  H«D« d c + o ( l l d « l l  2) 

-- (13~ +1 - 13~)gTp~ +~ + o( l ldc  II z) .  

Moreover, using Taylor's theorem and Lemma 12, 

f ( b ~ ) - - f ( X k ) =  a T l 1 2 T [3kgkdk ÷ ~ ( f l k )  d«H«dc + o(  lid« I12) 

= g ~ d  k + 1 r ~ d c H c d c  + o (  Ig~dk I ) +o(  Ildc II 2) 

The most difficult term to deal with is r ~+ 1. g k P c  , however, we can show that Ig~pik +1 I = 

O ( - - g ~ d k )  and this leads the way to the final result. To show this we use the fact that, due 
to second-order sufficiency, there exists/z > 0 such that for all suff iciently large, 

T d ,  Bcdk »- ~lldc II 2, (6.12) 

and 

^ T  ^ ^ 

But  since db is the Newton direction, 

gk = - Bkdc = -- D k l Bc D k l dk = -- D ; l g«ak  ; 

therefore, 

- g~dk = dTÆcdc >1 ~zllac Il 2 (6.13) 

B ut p ~+1 = D~+1 dc where D~+I is a diagonal matrix with each diagonal element equal to 
_ 1. Hen«e, using the boundedness of {/~k }, 

- -  . / T r ~ a ' i + l  D , 4  . , ~T l r~o" /+ l  i~ .~  2 )  • I gkrP~,+ll = UkL'C "«"Cl = "C'-'k "-'k"Cl =o([[acll (6.14) 

Therefore, combining (6.13) and (6.14), 

I _gT[p~+l  I = O ( - g ~ 4 )  • (6.15) 

Collecting together the terms above, and applying Lemma 12, (6.11) becomes 

f ( x«  + Pc( ak) ) - - f ( xk )  = «~dk + ½d~Hkdk + O( [ gT d c I ) + O( IIdc II 2).  

But - g ~ d c  =dTBkdc  >1 ~lld« II 2, from (6.12). Therefore, 

f (Xk + p c ( a t ) )  - - f (Xk)  = g[dk  + ½ d [  Hkdk + o (  Ig[dk I ) (6.16) 
- - 1  T 1 T - ~gkdk - + o (  ~ d , C « d «  IgZdkl) • 

But, for k sufficiently large, 

o(  I g~dk [ ) <~ -- ½ ( 1 -- 2 tr t )g~d k (6.17) 

and T " T - -dkCkdk  <~mm(d«Hcdk ,  0) and so, using (6.16), 
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f(Xk + pk(ak) ) --f(xk) < ~rld~gk + ½min(d~Hkdk, O) 

which implies for ~r~ < 1, 

f(xk +pk(ak) ) --f(xk) < O'~(d~gk + ½min(d~Hkdk, O) ) .  [] 

Theorem 15. Assume {xk} is generated by the interior-reflective Newton algorithm in Fig. 
10. Let {sk} satisfy constraint-compatibility and consistency. Suppose Irk is a matrix with 
orthonormal columns and let ~ k  = ( Yk) be chosen such that, when /~min(/~k) ~ 0, 

Amin(Y~ÄlkYk) <~ max(  -- ent, ~'Amin(/~«) ) , (6.18) 

for some én« > O, ~'> O. Then, 
• Every limitpoint of {Xk} is afirst-orderpoint. 
• Every nondegenerate limit point satisfies the second-order necessary conditions, pro- 

vided "co is sufficiently small (see (2.12) for the definition of  Te). 
• Assume that "co is sufficiently small. I fa  nondegenerate limitpoint x .  satisfies second- 

order sufficiency conditions then {xk} is convergent to x . .  The convergence rate is 
quadratic, i.e., 

IIx~+ 1 - x .  II = O(llx« - x .  112). 

Proof.  By Theorem 8 every limit point satisfies the first order necessary conditions. Assume 
that ~-« is sufficiently small, Mk=Bk for sufficiently large k. Hence, from Theorem 10, the 
second-order necessary conditions are satisfied. Let x .  be a limit point satisfying sufficient 
nondegeneracy and second-order sufficiency conditions. By Theorem 14 a unit step size 6, 

for some constant X« > 0 will satisfy (3.4) for I l xk -x .  II sufficiently small. Therefore, for 
Ilxk- x .  II sufficiently small, the interior-reflective Newton method in Fig. 10 reduces to the 
local Newton Algorithm in Fig. 11: quadratic convergence follows from Theorem 13. D" 

Clearly if we determine Sk by solving (6.1) at each iteration with SPk = ~ n ,  for example, 
then the assumptions of  Theorem 15 will be satisfied and so second-order convergence will 
be attained. We state this formally. 

Corollary 16. Assume Xa ~ in t (9-)  and let {xk} be generated by the interior-refiective 
Newton method in Fig. 10 with {sk} determined by solving (6.1) at each iteration with 
B «  = ~ n. Then, 

• Every limitpoint of {xk} is afirst-orderpoint. 
• Every nondegenerate limitpoint satisfies the second-order necessary conditions, pro- 

vided ~'« is sufficiently small. 
• Assume that ~'« is sufficiently small. I fa  nondegenerate limit point x .  satisfies second- 

6 If ce k = 1 corresponds to a breakpoint then etc = äk = 1 -- E k where äk is not a breakpoint, ~k satisfies (3.4), and 
E«< x«lIDkg«[I. 
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order sufficiency conditions then {xk} is convergent to x .  and the convergence rate is 

quadratic, i.e., 

Ilxk+ a - x .  Il = O(llxk - x .  Il 2 ) .  

Proof. By Theorems 5 and 6 the sequence {sk} satisfies constraint-compatibility and con- 
sistency. Since (6.1) is used to define sk with S:k= ~n, it foIlows that condition (6.18) is 
satisfied. Therefore, the assumptions of Theorem 15 are satisfied and the result follows. [] 

7. Compuüng descent directions by subspace trust region subproblems 

The interior-reflective Newton method described in Fig. 10 allows for some freedom in 
the determination of the direction Sc. As we have already remarked, if we determine sc be 
solving (6.1) at each iteration with Sah = R n, then second-order convergence ensues (Cor- 
ollary 16). However, this choice can lead to expensive subproblems (6.1), especially when 
n is large. Therefore, it is worthwhile exploring alternative choices for 5 :»  particularly if 
we can maintain the strong convergence properties for small dimensions of S % Below we 
propose a specific way to choose 5:c, restricting ] ~ c  [ ~< 2, whilst retaining strong second- 
order convergence properties. 

Constraint-compatibility plays a key role in the convergence of an interior-reflective 
algorithm. If a reduced trust region problem (6.1) 

min{ sr  gk + l srMcs: [[D~-lsll2 ~<,~» s~5~k} 
S 

is used to solve for a direction Sk-- which, in turn, defines the reflective path pk-  the subspace 
S:k must be chosen so that the solutions of the corresponding trust region subproblem yield 
constraint-compatibility. It is easy to see that if sc solves (6.1) for some subspace S:c then 
{D; I sc  } is bounded. This observation leads to the following two technical results. 

Lemma 17. Let { Yk} be a sequence of  matrices where each matrix Yk has orthonormal 

columns and suppose 5 :  c = ( D f f  c). Assume every column of  DcY c generates a constraint- 

compatible sequence. Let uc ~ ~ c ;  assume the sequence { D ; 1Uk } is bounded. Then, the 

sequence {uc} is constraint-compatible. 

Proof. If Uk~S:k then Uk=DffkWk for some vector w» But {D~luk} is bounded by 
assumption; therefore, { YkWk} is bounded and, by orthonormality of the columns of Y» the 
sequence {wk} is bounded. It is now easy to see that {uk} is constraint-compatible, i.e., 
{D~2Uk} is bounded. To see this notice that the sequence generated by any column of 
D~Z(DkYk) is bounded, by assumption, and we have already argued that {wc} is bounded. 
Therefore, since uk = DkYkwk, the result follows. [] 
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In the next lemma we indicate that the application of Lemma 17 is straightforward in the 
2-dimensional case - subsequently we will use it in this setting. 

Let ~ '  be a subspace and w a vector. We denote r(~¢, w) to be the residual vector of the 
orthogonal projection of w onto sO. If the columns of matrix Y form an orthonormal basis 
for ~¢, then r (~C,w)~fw-yyTw.  

Lemma 18. Let ak be a unit vector and suppose the sequences {Dkak} and {Dkbk} are 
constraint-compatible; assume there exists a constant "r> 0 such that r( ak, bk) > "c for all k. 
Then if Uk ~ ~ k  = (Dkak, Dkbk) and {D~ 1 u~ } is bounded, then { uk} is constraint-compat- 

ible. 

Proof. Let y~ = a k and so 

r(ak, bk) = bk - [ (y~)rb~]y~k . 

Since {Dky~} and {Dkbk } are both constraint-compatible, and {bk} is bounded due to 
constraint-compatibility of {Dkbk}, {Dkr~} is constraint compatible. Let y~ -~ rk/II rk U. From 
II rk II > r >  o, {Dky z } is constraint-compatible. Let Yk = [Y~, y2]. Since the columns OfDkY ~ 
are constraint-compatible and { Sak} = { (Deak, Dkbk) } = { (DkYk) }, it follows from Lemma 
17 that {sk} is constraint-compatible. [] 

The subspace descent direction procedure in Fig. 12 describes a particular way to choose 
Sk (and 5;~k, when appropriate) with the large-scale setting in mind. Each subspace SPk 
satisfies I S~kl ~< 2 and so problem (6.1) is inexpensive to solve. 

Two technical results pertaining to the subspace descent direction procedure in Fig. 12 
are needed before establishing the main theorem. Let XM be the maximum spectral radius 
of M(x) on S " =  {x: x ~ 9 -  andf(x) <~f(xl) }. Since the spectral radius p(iVl(x) ) of 20(x) 
is continuous on 2 ,  a compact set, the maximum XM exists. 

Lemma 19. Assume {xk} is generated by the interior-reflective Newton method described 
in Fig. 10 with {sk} calculated by the subspace descent direction procedure in Fig. 12. 
Then, 

(1) the subsequence { IlOksgn(gD II : A~o(M~) < 0} is bounded away from zero, 
(2) the subsequence {zk=Dk£k:h~a,(iPlk)<O} is constraint-compatible, where 

zk = Dksgn (gk) /[[Desgn(gk) II. 
Moreover, if we assume that ~'z < 1/(5XM), and that corresponding to any subsequence 

{5~'k } = { (D~sgn(gk)) }, {Dkg k :S~k = (D~sgn(gk)) andlimk~o~hmln(l~lD < 0} converges 
to zero, then 

^ T  ~ ~ 1 ~ T  A ^ 

ZkMkZ k < ~WkMkW k 

for sufficiently large k. 
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A subspace descent direction procedure [ Let ~- < 1, 7"» and ~2 be small positive constants. ] 
Case 0: A~t k is positive definite and I1~~11 < A »  

Set Sk = SNk = -- Dkl~'l ~ l ~k = Dkg N. 

Case 1: Mk is positive definite and I1~~11 > Ak- 

if IIr(~~', ~k)II > ~'~ 
B k  2 = ( D k g k ,  S ~ ) ,  solve (6.1) to ge ts»  

else 
set sc = -- D~gk 

end 
Case 2: AI k is not positive definite. Compute wk = DkP» where vPk is a unit vector such that 

{ Wk} is constraint-compatible and 

w~Alk~k ~<max{ -- ¢~c, ~'A~in(Mk) } • 

Let Zk = DkSgn(gk)  /[[Dksgn(gk)  Il. 
if  I I r ( ~ »  2~)II < m a x (  IIDkgkll, -- ~ '~~TMk~k)  

B k  = ( D ~ s g n ( g k ) ) ,  solve (6.1) to get s» 
else 

flak = (D~sgn(gk),  Dkr~k), solve (6.1) to get s» 
end 

Fig. 12. Determination of the descent direction sc 

Proof.  First assume there exists a subsequence with l i m k ~ ~ { D k S g n ( g k ) } = O  and 
)t~än(~/k) < 0. This implies limk_.~{ Vk} = 0 which implies that for k sufficiently large, ~~/k 
is positive definite (by virtue of the definition of "~/k), a contradiction. Hence the subse- 
quence {[IDksgn(gk) ll: ) t~n ( , ( ' l k )<0}  is bounded away from zero and it follows, using 
Theorem 6, that the corresponding subsequence {zk} is constraint-compatible. 

1 T To prove that 2~~1k2 k < ~v~ k l~lk~k for sufficiently large k, first notice that by the definition 
of Sk in Fig. 12, f l k  = ( D ~ s g n ( g k ) )  only when 

II r(wk, Zk) Il < m a x (  IIDkgk II, --  ~'2~~MkWk) • 

Since {Dkgk} converges to zero and limk~=hmiù(A~tk) <0 ,  IIDkgkll < --~'2W~~tkWk for 
sufficiently large k. Hence 

II rk II = II r(vPk, 2k) II < - ~'=W~£tkWk < ~'2PM • 

From r k = ff~k -- (Z~VPk)Zk, we have 

(zTWk) 22T'~1k Zk = VP T~l k Wk -- 2r  TÄt k wk + r ~IVI k rk .  

But 

^ T  ^ ^ 

[r~'~lkff~k I ~- PM II rk II < PM ~'2 I wkMkWk  I 
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and 

i r~~,lcrc I < pMII,~« ii 2 <p~,~.~ IwT~cwc I ,  

and so 

(£~rPk)2e~Mk£c < ~ü~')lätkrPk + (2OM'Cz +O~T~)IW/~kW« I .  

But re < 1 / (5pM) ; Therefore, 

Finally, since ~k and rPk are unit vectors, I £krWk I ~< 1 ; moreover, ~r)l)ku3 k < 0 which implies 
gkr3~rk£k < 0. Therefore, 

Theorem 20. Assume {xk} is generated by the interior-reflective Newton method in Fig. 10 
with {sk} generated by the subspace descent direction procedure in Fig. 12 and T2 < 
1 / (5pM). Then every subsequence { sc } sati»fies the consistency condition. Moreover, for 
any subsequence, if either { IIDkgc[I } or {max(0, A~n(/~/c) ) } is bounded away from zero, 
then the corresponding subsequence {sc} is constraint-compatible. 

Proof. Applying Theorem 6 to each case in Fig. 12, it is easy to see that {sk} satisfies 
consistency. 

Assume that either a subsequence { IID~d[ } or a subsequence { max(0, Amlù(3~/k) ) } is 
bounded away from zero. We prove next that the corresponding subsequence {sk} is con- 
straint-compatible. 

(i) Suppose there is a subsequence { IIDkgk[[ } bounded away from zero. If Am~n(Ä/k) > 0 
then by the subspace descent direction procedure in Fig. 12, there are three possible ways 
to compute s» All three possibilities clearly yield constraint-compatible sequences {sk} 
using Theorem 5 and Lemma 1 8. Assume then that A~n(37/k) ~< 0. Fig. 12 gives two possible 
ways to compute sk in this case: i.e., Sak=(D~sgn(gk))  and solve (6.1) to get s» or 
~ k  = (D ~ sgn (gk), Dkff@ and solve (6.1) to get s» In the first case constraint-compatibility 
of { ~k} follows from the fact that { IIDksgn (gk) II } is bounded away from zero. In the second 
case, since IIr(~» gk) Il/> IID~ßkll, it follows from Lemmas 17 and 18 that {sk} is constraint- 
compatible. 

(ii) Assume {D~gk} converges to zero, limk__,~Amiù(3~/k) <0, and ~'z< 1/(5pM). Again 
there are two possible ways in which the subspace descent direction procedure will determine 
the search direction. Either Sac=(D~sgn(gk))  and solve (6.1) to get s» or ~ c  = 
(D~sgn(gc), DcrPc) and solve (6.1) to get s» In the first case constraint-compatibility of 
{sc} follows from the fact that { [[Dksgn(gD II } is bounded away from zero. In the second 
case, since II r(~3c, Zk)II t> - ~-2~Lücr0k > 0, {sc} is constraint-compatible from Lemmas 17 
and 18. [] 
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The main result of this section follows. 

Theorem 21. Let {xk} be generated by the interior-reflective Newton method in Fig. 10 
with { sk} generated by the method in Fig. 12 with ~2 < 1/(5pM). Then 

• Every limitpoint of {Xk} is afirst-orderpoint. 
• Every nondegenerate limit point satisfies the second-order necessary conditions, pro- 

vided "co is sufficiently small. 
• Assume that % is sufficiently small. I fa  nondegenerate limitpoint x .  satisfies second- 

order sufficiency conditions, then {Xk} is convergent to x .  and the convergence rate is 
quadratic, i.e., 

liga÷ ~ - x .  II = O(llxk - x .  II 2 ) .  

Proof. Let {Sk} correspond to any subsequence such that either {max(0, Am~n(Ä/k))} or 
{ [[D~¢kll } is bounded away from zero. Then by Theorem 20, the corresponding subsequence 
{ sk} is constraint-compatible and satisfies the consistency condition. Therefore, by Theorem 
15, the result holds for such a subsequence. 

Clearly then every subsequence satisfies { IID~ßkll } ~ 0 and {max(0, Amln(Ä/k) ) } ~ 0. 
Hence every limit point of {Xk} satisfies first-order necessary conditions. Moreover, the 
second-order necessary conditions are satisfied at every nondegenerate point, provided that 
~-« is sufficiently small. Let x .  be a limit point satisfying nondegeneracy and second-order 
sufficiency conditions. By Theorem 14 a unit step size 7 will satisfy (3.4) for Ilxk-x.II 
sufficiently small. Therefore, for I lxk -x .  II sufficiently small, the interior-reflective Newton 
method in Fig. 10 reduces to the local algorithm in Fig. 11: quadratic convergence follows 
from Theorem 13. [] 

The only question yet to be addressed is the determination of a sequence of directions 
{Wk} which is constraint-compatible and contains sufficient negative curvature information 
when 2f/k is indefinite. In [ 3 ], the Lanczos process has been used to obtain negative curvature 
directions. Similarly, the Lanczos process can be used to obtain constraint-compatible 
negative curvature directions. 

8. Concluding remarks 

We have proposed a new method, an interior-reflective Newton method, for solving 
nonlinear minimization problems where some of the variables have upper and/or lower 
bounds. We have established strong convergence properties. In particular, interior-reflective 
Newton methods can achieve global and quadratic convergence. 

7 If ag= 1 corresponds to a breakpoint then «« = 5k = 1 - ~ where 5 k is not a breakpoint, ötk satisfies (3.4), and 
E < X« lIDkgkll, for sorne X« > 0. 
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The proposed interior-reflective Newton method involves the solution of a reduced trust 
region problem, (6.1). In (6.1), subspace ~ «  must be chosen with care to ensure the 
second-order convergence properties and to maintain practical viability in the large-scale 
setting. In this paper we show that a small dimensional subspace can be used, i.e., I S°k I ~< 2, 
and yet the attractive convergence properties obtained with ~ k  = ~n can be maintained. 

Experimental results for the case when the objective function is quadratic are provided 
in [ 10]. These computational results are extremely encouraging and indicate that interior- 
reflective Newton methods have strong potential for large-scale computations. Experimen- 
tation on general nonlinear functions is a current research activity and results will be 
available in a future paper. 

Research on two extensions of this work is underway. First, we are studying inexact 

interior-reflective Newton methods for problem ( I. 1). Our current implementation rests on 
a (partial) sparse Cholesky factorization of Ä/» A limitation with this approach is that a 
(partial) sparse Cholesky factorization is not always economical. Therefore, we are con- 
sidering an interior-reflective Newton procedure that only requires the iterative use of 3~/» 

Second, we are studying the adaptation of interior reflective Newton methods to bound- 
constrained problems with additional equality constraints: 

min{f(x): Ax=b,  l<~x~u}  . (8.1) 
X 

If we assume that xk is a feasible point then, following the lines in this paper, a feasible 
descent direction can be obtained by solving 

min{srgk + ½srMks: IID~-lsllŒ < A »  s~S~k} (8.2) 
s 

where M~ = Hk + Ck and ~ k  is contained in the null space of matrix A. We have already 
sketched a technique in this paper for solving such problems; however, this approach may 
not be practical hefe (in general) since in this case I SPk ] is not necessarily small. Therefore, 
a different sparsity-preserving method taust be used to solve (8.2) - Coleman and Hempel 
[4] have developed a technique based on the use of an "augmented" system that may have 
some potential hefe. 

A possible interior-reflective Newton approach to problem (8.1) is clear from a geometric 
point of view. After generating a search direction from a strictly feasible point x» using 
(8.2), a reflective path can be searched to find a new (improved) point. Nevertheless, 
despite this clear geometric picture, many research issues remain, not the least of which is 
the efficient calculation of this reflective path (while exploiting and maintaining sparsity), 
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