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For a given pair of :finite point sets P and Q in some Euclidean space we consider two problems: Problem 
1 of finding the minimum Euclidean norm point in the convex hull of P and Problem 2 of finding a 
minimum Euclidean distance pair of points in the convex hulls of P and Q. We propose a finite recursive 
algorithm for these problems. The algorithm is not based on the simplicial decomposition of convex sets 
and does not require to solve systems of linear equations. 
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ratic program. 

1. Introduction 

Let  P and  Q be a given pa i r  o f  sets o f  finite poin ts  o f  ~ ' .  Let  us denote  the convex 

hull  o f  P by  C(P). We cons ider  the  fo l lowing two p r o b l e m s :  

Problem 1. F i n d  the po in t  o f  C(P) which has  the m i n i m u m  Euc l idean  norm.  

Problem 2. F i n d  a pa i r  o f  po in ts  o f  C(P) and  C(Q) which has the m i n i m u m  Eucli-  

dean  distance.  

In t roduc ing  the convex c o m b i n a t i o n  coefficients ~p P rob lem 1 reduces to the fol- 

lowing strictly convex quad ra t i c  p r o g r a m :  

min  Irxl] 2, 

s.t. x =  2 ~pP, 
pEP 

E 2 , = 1 ,  
p~P 

Ap>~0 for  a l l p ~ P .  
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Then Problem 1 has a unique solution, which we denote by Nr(C(P)). On the 
other hand, the solution of Problem 2 may not be unique. Take for example P = 
{(1, 1), (1,-1)} and Q--{(-1,  1), ( -1 , -1 )} ,  then (x~, x~)eC(P) and (xf, x2e)e 
C(Q) are a solution if x~=x~. Then we denote the set of pairs of points of C(P) 
and C(Q) which have the minimum Euclidean distance by Nr(C(P), C(Q)). 

For a point 2 and a real number R we denote the hyperplane {x[2tx = c2} by 
H(2, ~) and the half space {xl2tx >1 c~}by H+(2, ~). The following basic optimality 
condition is proved by Wolfe [9, Theorem 2.1]. 

Theorem 1.1. 2eC(P) is Nr(C(P)) if and only if 

Pc_H+(2, 11~ll2), 

or equivalently 

112112<~tp for every peP. [] 

Concerning the relation between Problem 1 and 2, Canon and Cullum [1] showed 
that Problem 2 is reduced to Problem 1 with the set P replaced by P - Q =  
{ p - q  ]peP, q~ Q}. Hence we see the following optimality condition for Problem 2. 

Theorem 1.2. 2e e C(P) and 2QeC(Q) are a minimum Euclidean distance pair if and 
only if 

p - Q ~ H + ( 2 e - 2  Q, 112P-2QII2). [] 

These two problems have been considered by Wolfe [9]. He provided several basic 
results and also proposed an algorithm based on the simplicial decomposition of the 
convex hull C(P). His algorithm forms a simplex being the convex hull of several 
affinely independent points of P. Solving a system of linear equations, it finds the 
minimum norm point on the affine hull of the simplex. When the point lies in the 
relative interior of the simplex, another point of P is chosen to form a simplex of 
one dimension higher than the current simplex. Otherwise, it drops a point to form 
a lower dimensional simplex. Fujishige and Zhan [5, 6] proposed a dual algorithm 
for these problems which is based on the dual formulation as well as the simplicial 
decomposition (see for example Freund [4] for the duality of the problems). Fuji- 
shige-Zhan's algorithm rotates a supporting hyperplane of C(P) which separates 
C(P) from the origin so that the distance between the hyperplane and the origin 
increases monotonically. Their algorithm also generates simplices of various dimen- 
sion and solves systems of linear equations to find the minimum norm point on the 
affine hull of each simplex generated. At the start the algorithm requires an initial 
hyperplane separating C(P) from the origin. Unless it is known in advance, they add 
another dimension and consider the problem for P x {1 } _~ Nn+l. 
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In Section 2 we propose a recursive algorithm for Problem 1 and show that it 
provides Nr(C(P) )  after a finite number of iterations. The algorithm has the advant- 

age that it can start with an arbitrary point of  C(P) and requires neither the initial 
separating hyperplane nor the additional dimension. Due to its recursive structure 
the algorithm does not require to solve linear equations. In Section 3 we show some 
norm monotonicity property of iterates and how the accuracy of  solutions to be 
obtained is affected by the computational error. In Section 4 an algorithm for Prob- 
lem 2 is proposed based on the equivalence of Nr(C(P) ,  C(Q)) to N r ( C ( P - Q ) ) .  
Some remarks are given in Section 5. 

2. Algorithm ~G for finding Nr(C(P)) 

In this section we consider Problem 1 of finding Nr(C(P))  for a given finite point 
set P. The algorithm first chooses a point x0 from the convex hull C(P). A point of  
P with the minimum norm of  all points of P is recommended. In the kth iteration 
with Xk-1 as the current point it generates a proper subset Pk of P being the set of 
points minimizing the linear function xtk_lp over all peP. Namely, Pk = 
{p [peP c~ H(xk-l, ak)}, where a~=min{xtk_lp IpeP}.  Then it calls itself with Pk as 
the input and sets y~ be the output of the recursive call. Note that C(P)~_ 
H+(xk- i ,  ak) and yke C(P) c~ H(xk l, ag). The hyperplane H(xk-1, ak) is rotated on 
yk by changing the normal vector from xk-~ toward Yk as long as it supports C(P). 
This is done by finding the maximum value of ~, such that 

{(1 --,)~)Xk 1 "-~ )~yk}tyk~ {(1 --  •)Xk I ~- Zy~}tP (2.1t 

holds for every peP. Since xtk_lp =xt~_lyk and []Y~ll2<~ytp for pePk, (2.1) holds for 

ever p e Pk and for A/> 0. Therefore we have only to consider the points of  P\Pk when 
finding the maximum ;L. 

Algorithm 
Step O. 
Step 1. 

Step 2. 

Step 3. 

Step 4. 

y,(e). 
Choose a point x0 from C(P) and k:= 1. 
ak := min {x~_lp ]peP}.  
If IlXk-I Hz~<ak, then 2:=Xk-l and stop. 
Pk := {plpeP and xtk_lp = ak}. 
Call Y~(Pk) and yk:=Nr(C(Pk)). 
ilk: = min {ytp I P e P\Pk }. 
If  ]ly,,~]p2<~flk, then 2:=yk and stop. 
,~:=max{,~[ {(1 -,~)xk i + ;-Yk}tYk~ < {(1 --)0Xk-I + 2yk}tp for every 
peP\P~}. 
Xg := (1 - )~g)Xg 1 + )~y~, k := k + 1 and go to Step 1. 

First we will show that the supporting hyperplane H(Xk-l, ak) can be rotated 
on yk. 
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Lemma 2.1. 0<A,k< 1 for k= 1, 2 . . . . .  

Proofl Clearly )~k is determined by 

'~k = min I- xtk-l(P--Yk) P ~ e \ e k  and } ((Yk-- Xk-l)t(yk--p) (Yk-  Xlc-1)t(yk--P) > 0 . (2.2) 

Since yksC(Pk), we see that t t t Xk-l(P--yk)=Xk-lp--Xk-lyk>O for every PeP\Pk.  
Therefore ,~k > 0. Since the algorithm did not stop at Step 3, there is a point p'E P\Pk 
such that IlYkll2>ytkp '. This means that )~k< 1. []  

By the above lemma we see that each point Xk-~ as well as Yk is contained in C(P). 
Then by applying Theorem 1.1 we will see that the point 2 obtained either in Step 1 
or in Step 3 is Nr(C(P)) .  

Lelnma 2.2. 2 = N r ( C ( P ) ) .  

Proofi Note that the initial point Xo is chosen from C(P), yk-l=Nr(C(Pk-l))e 
C(Pk-1) ~- C(P) and 0 < 2k-a < 1. Then we see Xk-1 ~ C(P) by induction. If  termina- 
tion occurs in Step 1, then 2 obtained there is N r ( C ( P ) )  by Theorem 1.1. To 
prove that 2 obtained in Step 3 is Nr(C(P))  we have only to point out 

that Pk ~-- H+(yk, IlYkII 2) because Yk = Nr(C(Pk)) and P\Pk ~-- H+(yk, I[Yk]12) because 

IlYkll2 <<,flk. [] 

We will see that the set Pk generated in Step 2 is a proper subset of  P. 

Lemma 2.3. l f  ll Xk-1112> a k, then Pk is a proper subset of P and C(Pk) is a proper face 
of C(P). 

ProoL Since Ilxk-i II 2 > a k  : min{x)~_lp IpsP}, there exists a point of P which does 
not lie on the affine hull of  Pk. Then dim C(Pk)<dim C(P). This proves the 
lemma. [] 

Lemma 2.4. There exists a point/5 of ek+l\P k such that/5¢H+(yk, ]lYkll2). 

Proof. Let us choose a point/5 from the point set attaining the minimum of (2.2) 
in the proof  of Lemma 2.1. Equivalently the point /5 of P\Pk satisfies 
(Yk-- Xk-l)t(Yk--/5) > 0 and 

X~-l(/5 -- Yk) A,k = (2.3) 
(y~-- X~_l)t(y~--p)" 
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We will see t h a t / s e P k + l .  In  fact for  a p o i n t p e P \ P k  we have 

{(1 - 2.~)Xk-1 + Akyk}t/5 = {(1 --/°Lk)Xk- 1 -[- ~kyk}tyk 

~< {(1 --/3bk)Xk- 1 -~ X~yg } tp 

by the definition o f  A,~. F o r  a poin t  p e P~ we also see f rom the definition o f  yg, 
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{(1 - &,k)Xk-I + A~yk }t/5 : {(1 -- ~k)Xk-~ + AkYk}tyk = (1 -- 2~)X~--lyk + ~LkllYkll 2 

= (1 -- A,~)X~-1 p + '~kllYkl/2 ~< (1 - ~k)Xtk_lp + ;c~ytkp 

= {(1 - Zk)x,~-~ + Aky~}tp. 

tha t  xtk_l(/5- yk) < 
[ ]  

Since ,~k<l  as shown in L e m m a  2.1, we see f rom (2.3) 

(yk--Xk-l) t (yk-- f i ) ,  which is equivalent  to pCH+(yk ,  Ilykl]2). 

L e m m a  2.5. yke;C(Pk+l) for  k =  1, 2, . . . .  

Proof .  Since yk = Nr (C(Pk) )  ~ C(Pk) ~ C(P) and we have seen 

{(1 - 2,)Xk-1 + Aky~}ty~ = min{ {(1 -- ~,k)Xk-i + £kyg}tp [p EP} (2.4) 

in the p r o o f  o f  L e m m a  2.4, the l emma  follows f rom the definition of  Pk+l. [ ]  

The  following l emma  is the key to finite convergence of  the algori thm. 

L e m m a  2.6. HY~+I II < IlYkll for k = 1, 2 . . . . .  

Proof .  F o r  the point /5  o f  L e m m a  2.4, we have yt(y~_/5)/IrYk-Pll  2> 0. Choose  a A 
such tha t  

, . [2y~(yk- /5 )  ; 
0 < ~ t < m m ]  ~ , 1 , 

J IFYk--PlJ 

and consider  the poin t  z = (1 - A)yk+ Aft. Then  z e  C(Pk+l) by  L e m m a  2.4 and  L e m m a  

2.5. Fu r the rmore  IIzH 2 = Ilykll = + ; t{2yI~(p-y~)  + AllP-y~II  2} < Ilykll 2. Therefore  we 

ob ta in  IlYk+tll = [ INr( f (ek+l ) ) l [  ~< Ilzll < IlY~ll. [ ]  

L e m m a  2.7. When P consists o f  a single point, the algorithm ~Arl terminates within a 
finite number o f  iterations. 

Proof .  Let  p be the point  o f  P. Then  x0 mus t  be p and  a~ = Ilpll 2, Therefore  the 
a lgor i thm J¢~ stops in Step 1 with 2=p.  [] 

Theorem 2.8. When P consists o f  finitely many points, the algorithm ~A/'1 provides the 
minimum norm point N r ( C ( P ) )  within a finite number o f  iterations. 
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ProoL We prove the theorem by induction over the number of points of P. By 
Lemma 2.7 we assume that ~A/~l(P ') is finite whenever P '  has fewer points than P 
has. Then by Lemma 2.3 we see that each step of the algorithm Y~ (P) is finite. Since 

HNr ( C(Pk+ 1 ) ) II = IlYk+ ill < IlYkll = II Nr (C(ek)  ) [1 from Lemma 2.6, no Pk is generated 
more than once. Thus we see that ~Arl(p) terminates within a finite number of 
iterations. [] 

When we are given a set P of m points on a plane, the convex hull C(P) has at 
most m vertices and at most m facets. This observation yields the following theorem. 

Theorem 2.9. The algorithm ~4#1 finds Nr(C(P))  with O(m 2) time complexity when 
pc_ R 2. 

Proof. Clearly the minimum norm point problem on a vertex, a single point, is solved 
in a constant time. We should remark that the minimum norm point problem on a 
1-dimensional polytope is solved within linear time of the number of points p in the 
polytope by applying the algorithm J~'I since X1 does not repeat Step 2 more than 
once for this problem. Hence each step of X I ( P )  is of at most O(m) time complexity. 
Since the algorithm JK~(P) does not generate the same facet or the same vertex of 
C(P), it provides Nr(C(P))  with O(m 2) time complexity. [] 

3. Example 

We illustrate the behavior of the algorithm for the example shown in Figure 3.1. The 
set P consists of four points pl . . . . .  p4 in N2. Suppose we have chosen p3 as the 
initial point x0 in Step 0. Since P is not contained in H+(xo, [Ix0112), the algorithm 
generates the subset P1 = {pl} which attains min{xtoplpeP} = a l .  Because P1 is a 
singleton, pl itself is Nr(C(PI))  and we let y~ =p~. Since P is not yet contained in 
H+(Y~, Ily~ 112), we go to Step 4. The algorithm rotates the hyperplane H(xo, a~) on 
yl by moving the normal vector of the hyperplane from xo toward y~ while keeping 
it supporting C(P). We let x~ be the normal vector of the hyperplane which would 
no longer support C(P) if rotated more and return to Step 1. Since P is not contained 
in H+(xl, ]IXl 112), we go to Step 2. The algorithm generates the subset P2 = {pl,pa}, 
which lies on H(xx, a2), where ct2=min{x]plp~P}. We solve the subproblem 
min { l[ x ll 21 x e C(P2) } by the recursive call and obtain y2 = Nr(C(P2)). Since P is not 
yet contained in H+(y2, 1[y2112), we go to Step 4. In the same way as the first iteration 
the algorithm moves the normal vector from xl towards y2 and rotates the hyperplane 
H(x~, a2) on Y2. Then we find x2 and return to Step 1. The algorithm generates the 
subset P3 = {p2, p3} lying on H(x2, a3), where a3 = min { x~p ]p ~ P }. By the recursive 
call with the set P3 as the input data we obtain y3 = Nr(C(P3)). Finally we see that 
P is contained in H+(y3, ]ly3l]2), and we have y3=Nr(C(P)). 
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4. Norm monotonicity and error analysis 

The monotonicity property of  norm I lYkl[ was crucial in proving the finite termination 
of the algorithm JV1. We will see the same monotonicity for another iterates xk. We 
denote the affine combination of xk-1 and yk with coefficient ~ by z()0, i.e., z(~) = 
(1 -2)xk-~ + )~y~. 

Theorem 4.1. [Ix~ll < IIx~-,[I for k= 1, 2 . . . . .  

t Proof. Since ykcC(Pk)  and ]]xk-ll[2 a k = x k - l p  for every p c P k ,  Xtk--l(Xk--I - - Y k )  > 0  

and x~-i vayk. We consider the point z()0 for ),=X~-l(Xk I--y~)/[IX~-1--yk[I 2. Note  
that 2~ > 0 and 

[[Z(/7~) I[ 2 = [ l Y k  - -  X k - 1  [ [ 2 { ~  x t k - - l ( X k  1 - - Y k ) 1 2  ]_ H X k _  1 [12 
~ y k )  ~ 2 

Ilx~-i -yk[I 2 J Ilxk_l -ykll 2 

= ][xk-1 [I 2 -  ~21lXk--1 - y k l [  2 < Ilx~-,  II 2. 

The equality (2.,4) implies from xk l e C(P) that 

{ ( 1  - -  ~k)Xk--i "~- Zkyk}tyk <~ {(1 -- ~k)Xk--1 + Zkyk}txk--1. 
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Therefore we see from Lemma 2.1 that 0 < / ~  ~< Xk_ 1 (Xk_ 1 -- yk) / I Ix~-~ -Ykll2 = ~ and 
X k = ( 1  --].,l)Xk- 1 -~-].AZ(,~) for some 0 < p  ~< 1. Hence Ilxkll = I[(1 -/.t)xk_~ +~tz()~)l[ < 

[ Ixk- , l l .  [ ]  

Computat ional  errors in evaluating ak, fl~ and norms Nxk-1 ]l and IlYkll are unavoid- 
able and some tolerance should be introduced to the termination criteria, e.g., 

1[ xk- ~ I[ 2 ~< a k be relaxed to 1[ xk- 1 II 2 ~< a k + 51 for some user-specified tolerance 51 > 0. 
We show in Corollary 4.4 and Theorem 4.5 how the solution to be obtained is 

affected by introducing the tolerance. The following theorem is proved by Wolfe 
[9, Theorem 2.2]. 

Theorem 4.2. I f  O# xeC(P) and a =min{xtp[peP}, then 
ot 

~< I I N r ( C ( e ) ) I r  ~ Ilxll. [] 
Ilxrl 

L e m m a  4.3. If  xEC(P) and a =min{xtp[p~P}, then 

I[x - N r ( C ( P ) ) I I  2 ~ I[xll 2 -  a .  

Proof. We see from Theorem 1.1 and the definition of a that 

I[x - N r ( C ( P ) ) I r  a = I[xII 2 - 2 x  t N r ( C ( P ) )  + ] [ N r ( C ( P ) ) [ I  2 

~< Ilxll 2 - 2 x  t N r ( C ( P ) )  + Nr(C(p))tx 

= []xH2-xtNr(C(e))<~ I l x l l 2 -  a .  [ ]  

I f  we cast Problem 1 into the convex quadratic program as in Section 1 and apply 
Theorem 2.2 or Corollary 2.4 of  Mangasarian and De Leone [7], we could obtain a 
similar error bound as above (see also Corollary 2.8 of  Mangasarian and Shiau [8]). 

The next result immediately follows from Lemma 4.3. It shows that the minimum 
norm point Nr (C(P) )  lies within distance ~ (or x~22) of  Xk-1 (or Yk) when tolerance 

51 (or 82) is introduced to the termination criteria. 

Corollary 4.4. I f  ax~ ]lXk-lH2 ~ a k  + (~l in Step 1, then 

][XK 1-Nr(C(P))I[2~< ill. 

I f  fl~ <~ {lykl[2~<flk+ 52 in Step 3, then 

HY~ - Nr(C(P))II  ~ ~< a 2 . [ ]  

The following theorem provides the absolute and relative errors of the norm of 

current point. 



K. Sekitani, Y. Yamamoto / Minimum norm point algorithm 

Theorem 4.5. Assume Xk-1 ~0 and yk ¢O. I f  ak <. [[Xk-l[[2~<ak+ fll, then 

{ fil l 0 4  llXk-lll- IINr(C(P))It ~<min x/~,  ~ f ~ , ~  • 

Moreover if ak:> 0 and Nr(C(P)) ¢0,  then 

0<~ Ilxk-lu IlNr(C(P))ll ~ <min  x / ~ , ~  • 
HNr(C(P)) II 

I f  ~k <<. Ily~ II 2 ~< j61~ + 62, then 

O <<. Uy~:ll - llNr( C( P) ) ll <<. min {,]~2 , flkx[~2 , ~ } . 

Moreover if flk > 0 and Nr(C(P)) ¢ O, then 

0~<~Ykll-IlNr(C(P))ll< . [lly~ll ~ f2} 
..~ m l n  - -  x / o 2 ,  

IlNr(C(P)) l] ~ flk 

2 4 1  

Proof. From Corollary 4.4 it holds that Ilxk-~ II - ][Nr(C(P))II ~ IlXk-i - Nr(C(P))11 ~< 
, f ~ .  We see from the assumption IIx~-~ 112~ ak + 61 that 

]lXk-~ II -- IINr(C(e))II ~ ~ - IINr(C(P))II ~ ~ fll. 

Theorem 3.2 implies that 

0 ~< IIx~-a II - [INr(C(P))II ~< Ilxk-1 II 

Hence we obtain 

LI xk-i II Ilxk-i II Ilxk-1 I[ 

II xk-, II) 

When ak > 0, we see that ~ < ~ and 

0~< IjXk-lll- IlNr(C(e))lj ~<min{x/~l, (~1 1/llSr(c(e))ll 
I[Nr(C(P)) U ][Xk-i ][ J 

~<][Xk-lak I[ m i n { ~ ,  f i ~ }  

=mint[[xk-'ll x/~l, f l }  
( ak ~ " 

The inequalities with respect to yk can be seen in the same way as Xk-l. [] 



242 K. Sekitang Y. Yamamoto / Minimum norm point algorithm 

The step size A,k in Step 4 could be another  measure to evaluate the error  o f  
current  point. Given a real number  ~, we consider the set P(xk-~, 2~) of  the affine 
combinat ions of  xk-1 and points p e P  with coefficient ~: 

P(xg-l ,  )L) = {p' Ip ' =  (1 - A)xg-i + A,p, p e P } .  

Lemma 4.6. I f  0 <<, ~ <<, 1 and z(,~)tyk ~< z(,~)tp for every p e P, then 

z( )l,) = Nr( C( e(xk-1, ~ ) ) ). 

Proof.  Let  p be an arbi t rary point  of  P. Then  

z(A,)t{ (1 - ~,)Xk-i + £p} -- Z(A,)t{ (1 -- ~,)Xk-~ + A,yk} = A,Z(2)t(p -- Yk) >~ 0, 

by the assumption.  This means that  C(P(Xk_l,,~))~_H+(z(;,), IIz(,~)l12). Since 
Yk~ C( P) and 0 <~,~ <~ 1, z( )~) = (1 - )~)x~_ j + &Yk E C( P(xg_1, ,~)). Hence it follows f rom 
Theorem 1.1 that  z ( ,~ )=Nr (C(P(xe_ l ,  )~))). [] 

Lemma 4.7. Assume 0 <<, ~ ~ 1 and z(A)tyk ~< z(2)tp for every peP .  Then 

z(;Otx >>- II z(,~) [I 2 + (1 - ,~)z(;Ot(x - x , -1 )  

for every point x e  C(P). 

Proof.  Let  x be an arbi t rary point  of  C(P) and let x(A,)=-(1-)~)xk_~+)cx. Then  
x(;O e C(P(Xk-a ,  ; 0 )  - - -H+(z( ;~) ,  IIz(Z)II 2) f r o m  Lemma  4.6. Hence 

Z(/~)tx = Z(~l,)t {X -- X(/~) -t- X(/~) } = Z(/~)t {X -- X(Z)} -~ Z(Z) tx(• )  

( l  -- ~ ) Z ( ~ ) t ( x  -- Xk-1) "Jr- IIz(Z)II 2. [] 

Theorem 4.8. I l x k -  Nr(C(P))II  2 ~ 2(1 -- )~k)(xt~-lxk -- ak+l). 

Proof.  Since x~=z(~,~), xtkyk<<,xtkp for  every p e P  by the definition of  ,q,k in Step 4 
and the choice ofyk .  Take  N r ( C ( P ) )  as x of  Lemma 4.7 and we see by the definitions 
of  N r ( C ( P ) )  and a~+i that  

]lxk- Nr(C(P))II  2 = [IxklL 2 - 2x~ N r ( C ( P ) )  + IINr(C(P))[[2 

~< Ilxkll 2 -- 2{ IIx~ll 2 + (1 -- )~k)xtk(Nr(C(P)) - x k - , )  } 

+ ][Nr(C(P))II 2 

~<2 IIx~ll 2 - 2{ IlXk[I 2 + (1 -- Zk)x t~(Nr(C(P))  - x k - 1 )  } 

= 2(1 - ;Ck)X~(Xk , -- N r ( C ( P ) ) )  

~ < 2 ( 1 -  z ~ ) ( x ~ x ~ _ l -  a~+, ) .  [ ]  
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5. Algorithm ~ for finding Nr(C(P), C(Q)) 

We consider Problem 2 of finding a pair of Nr(C(P), C(Q)). As pointed out in [1] 
it is equivalent to Problem 1 for P -  Q. Note that 

rain {x'~r ] r e P -  Q} = min {xtp IpeP} -max{xtqlqe Q}, 

and each step below will be seen to be equivalent to each step of the algorithm X~.  

Algorithm JU2(P, Q). 
Step O. Choose a point Xo P from C(P) and a point Xo Q from C(Q). 

Xo:=Xg-Xo o, k:=  1. 
Step 1. a~:=min{xtk_~p[peP} and aOk:=max{xtk_,q[qeQ}. 

If  [qXk-l[12~<ak, then 2P:=x~-l ,  2°:=xk°-i and stop. 
Step 2. Pc := {P [PeP and xtk_,p = a~ } and Q~ := {q[qe Q and xt~_,q = aOk }. 

Call X2(Pk, Q~) and let (y~, y~) be a pair of Nr(C(P~), C(Qk)). 
• P Q 

Yk'=Y~ -- Y~. 
Step 3. fl~:=min{ytkplpeP} and fl~:=max{ytkq[qeQ}. 

If Ilykll2~<flk, then 2e:=y~, 2°:=y~ and stop. 
Step 4. ~2(20 :=max{ {(1 - 2)xk-~ + ) ty~}t(y2-p)]peP} and 

~/~(,~) := min{ {(1 - A)x~_, + Zyk}t(yff- q) lqe Q}. 
~k:= max{£l ~'2(),) ~< )'~(~)}. 
x2: = (1 - £k)x~-~ + '~kY2 and x~:= (1 - ~K)X~-~ + A~y~. 
X~ := X~'-- X~, k := k + 1 and go to Step 1. 

Let r be a point of (P-Q)\(Pk-Qk) .  Then r = p - q  for some peP and qeQ 
such that either pCPk or q¢Q~. Therefore we cannot simplify Step 3 to 
fl~:=min{yt~plpeP\P~} and fl~:=max{ytkqlqeQ\Qk}. The value ~.k determ- 
ined in Step 4 is easily seen to be equal to max{21{(1--2)xk_l+~.yk}tyk~< 
{(1--)Oxk-~ +Zy~}t(p--q) for every p e P  and every qeQ}. 

In exactly the same way as in Section 2 we obtain the following lemmas and finite 
convergence of X2.  We omit the proof. 

Lemma 5.1. 0 < ),k < 1 for k = 1, 2 . . . . .  [] 

Lemma 5.2. (2", 2°)eNr(C(P), C(Q)). [] 

Lemma 5.3. If  IIXk_l]12>a~, then either Pk is a proper subset of P and C(P~) is a 
proper face of C(P) or Qk is a proper subset of Q and C(Qk) is a proper face 
of C(Q). [] 
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Lemma 5.4. There exists a pair of points (fi, (t) such that 
(i) PCPk or qCQ~, 

(ii) PePk+l and q~Qk+l, 
(iii) y~(/5-c?)< [ly~ll 2. [] 

Lemma 5.5. yke C(Pk+1 - Qk+l) f o r  k = 1, 2 . . . . .  [] 

Lemma 5.6. I[yk+~ II < IlYk[I for  k = 1, 2 . . . . .  [ ]  

Lemma 5.7. When either P or Q consists of a single point, Algorithm JV2 reduces to 
Algorithm ~4#1 and hence terminates within a finite number of iterations. [] 

Theorem 5.8. When both P and Q consist of  finitely many points, Algorithm g~2 

provides a pair of points ofNr(C(P) ,  C(Q)). [] 

6. Computational experiments 

To make clear the behavior of X1 and to compare its efficiency with that of Wolfe's 
algorithm we have made programs of two methods in Sun Pascal running on a Sun 
IPX workstation. For the implementation of ~21 we have made devices as follows. 

(1) We did not call Jg'~ recursively to suppress the overhead time of recursive calls 
when Pk has less than three points. In fact when Pk is a singleton, {p}, then p = 
Nr(C(Pk)). For the case where Pk has two points, e.g., pl and p2, let us define 

Z* -- (p l ) t (p l  _ p 2 )  

lip ~ --p2rlz 

Then Nr(C(Pk)) is determined in the following way: 
(la) Nr(C(Pk)) =p2 if ~* >/1, 
(lb) Nr(C(Pk)) =pl if )t* ~<0, and 
(lc) Nr(C(Pk)) = (1 -)~*)pl +£,p2 if 0 < ~ * <  1. 

(2) Let us split P~+I into two parts: Pk+l '~-Pk+l \Pk and /sk+l=P~+~ c~P~. As 
pointed out in the proof of Lemma 2.4 /3k+l is found as the set of points attaining 
).~ in Step 4. To make /sk+~ we have to evaluate xt~p only for points of Pk and to 
collect those points satisfying xkpt = XkYk . t  From the preliminary experiment we 
observed that the set Pg is always fairly small regardless of the size of P and the 
dimension. Therefore this device will reduce the computation. 
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We consider the following two types of problems. Here X =  {x[ e<<,x<<,a} is an n- 
cube defined by e=  ( 1 , . . . ,  1) t and a =  (50 . . . .  ,50) t. 

Type 1 : We consider the 2-dimensional problem. The set P consists of m points 
distributed uniformly over X. We have varied the number of points, m, as 500, 1000, 
2000, 3000, 5000, 10 000, 20 000, 25 000 and 30 000 and have solved 10 
problems for each m. 

Type 2: We consider n = 20. The set P consists of m points distributed uniformly 
over the set of integer points in X. We have varied the number of points, m, as 200, 
400, 600, 800 and 1000 and have solved 10 problems for each m. 

Figure 6.1 is the logarithmic plot of computational time t, exclusive of input and 
output, of the proposed algorithm and Wolfe's algorithm for the problem of Type 
1 as a function of m. The regression line, shown as the dashed line, for the proposed 
algorithm JV~ is log t = - 1.221 + 0.853 log m and that for Wolfe's algorithm is log t = 
-1.441 +0.972 log m. Namely, the computational time t of JV~ is approximately 
0.060m °s53 millisecond, which grows more slowly than that of Wolfe's algorithm and 
even more slowly than the worst case analysis in Theorem 2.9. Figure 6.2 shows the 
plot of log t ve, rsus log m for the problem of Type 2. No firm conclusion should be 
drawn from such limited experiments, however, it is worth mentioning that both the 
algorithms exhibit empirical computational complexity lower than the linear order 
of the number of given points as long as the dimension is fixed. To compare the 
efficiency of the algorithms further experiments should be needed. This task is beyond 
the aim of this paper, so we leave it for future research. 

7. Concluding remarks 

When we are given a polytope X =  {xlAx>>,b, x~>0} instead of the finite set P, we 
could apply A]Lgorithm X~ to find the minimum Euclidean norm point in X. Deter- 
mining ak and fl~ is reduced to a linear program on X. The step size ),k in Step 4 is 
given by 

max {~. I {(1 -)~)Xk-I + 3,yk)tyg ~<min { {(1 --X)xk-~ + )~yk) tx lx~Y}} .  

By the duality theorem of linear program it is equivalent to 

max { X I { (1 - Z)Xk_l + £y~ }tyk ~< max {btz I Atz ~ (1 - -  ~)Xk-- 1 + ~Yk, Z ~ 0 } }, 
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and hence Zk is obtained by solving the linear program 

max ,%, 

s.t. {(l--2)Xk_,+,~yk}tyk<~btz, 

Atz ~ (1 - ~)Xk-- I ~- ~Yk, 

Z>>-O. 

The set Pk in Step 2 must be replaced by the face of optimal solutions of 

min X~_lX, 

s.t. Ax>~b, x>~O. 
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F i g .  6 .2 .  Plo t  o f  l o g  t vs .  l o g  m for  T y p e  2. 

Though the face is identified theoretically by {x  l A x  >1 b, x >~ 0, xt~_lX = a~} ,  we should 
note that it is very vulnerable to the numerical error of  ak and it has one more 
constraint than X has. 

The proposed Algorithm Y l  has something in c o m m o n  with the classical algo- 
rithm by Frank and Wolfe [3]. Given the current iterate z~_l, the latter algorithm, 
when applied to the minimum norm point problem, finds a minimum point of  
ztk_~x over the convex hull o f  P. Let w~ be a minimum point. Then it finds a point 
with the m i n i m u m  norm on the line segment between Zk_ ~ and wk and set the point 
to be the next iterate. The crucial differences between Franke-Wolfe's  algorithm 
and ours are: 

• the way of  choosing w~ when there are multiple minimum points o f  zt~_lX, and 
• the way o f  choosing the new iterate zk. 
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The iterates of Frank-Wolfe's algorithm are shown in Figure 7.1 when applied to 
the same example in Section 3. The broken line connects the origin with the minimum 
norm point Nr(C(P)) which was denoted by y3 in Figure 3.1. One can easily see that 
the iterates are zigzagging alternately on either side of the broken line toward Y3. It 
was shown by Canon and Cullurn [2, Theorem 2] that for every constant a and for 
every c > 0, 

IIzkll 2 -  NNr( f ( e ) ) l l2~a /k  ~÷~ 

holds for infinitely many k. 
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