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The linear complementarity problem is to find nonnegative vectors which are affinely related and complementary. 
In this paper we propose a new complementary pivoting algorithm for solving the linear complementarity problem 
as a more efficient alternative to the algorithms proposed by Lemke and by Talman and Van der Heyden. The 
aIgorithm can start at an arbitrary nonnegative vector and converges under the same conditions as Lemke's 
algorithm. 
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1. Introduction 

The linear complementarity problem (LCP(q,  M))  is to find vectors wG [R" and z ~  [R" 

satisfying 

w = M z + q ,  wTz=0,  W>~0, Z>~0, (1.1) 

where M is a given n * n-matrix and q a given n-vector. The linear complementarity problem 

is quite common in mathematical programming because the problem is frequently met in 

different areas of scientific research where optimization plays an important role, Offen these 

optimization problems lead to Karush-Kuhn-Tucker  conditions which take the form of a 

linear complementarity problem. 

The popularity of the linear complementarity problem in mathematical programming has 

led to a variety of algorithms attempting to solve the problem. Among this variety of 

algorithms the Lemke complementary pivoting algorithm [ 5 ] is undoubtedly one of the 

most renowned algorithms. The Lemke algorithm is a path-following algorithm starting in 

z = 0 and generates a piecewise linear path either towards a solution to the linear comple- 
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mentarity problem or towards infinity. In Eaves [ 2] and Eaves [ 3 ] Lemke 's  algorithm has 
been generalized to computing stationary points on a polyhedron. 

The major drawback of the Lemke complementary pivoting algorithm is that one is stuck 
to the fixed starting point z = 0. This feature may cause inefficiencies when one has some 
idea concerning the possible location of  a solution to the linear complementarity problem. 
Such information might for example be available when one tries to solve a nonlinear 
complementarity problem by a sequence of linear complementarity problems (see Mathie- 
sen [6] ). This inefficiency in processing the information makes it worthwhile to adapt 
Lemke 's  algorithm for an arbitrarily chosen starting point. Tahnan and Van der Heyden 
[8] present a whole class of algorithms generalizing the Lemke complementary pivoting 
algorithm to an arbitrarily chosen starting point. All the algorithms in tbis class however 
use a pivot system of at least n + 1 equations in order to guarantee possible convergence of 
the algorithm. Moreover none of these algorithms seem to be very natural in solving the 
linear complementarity problem. To get rid of these inefficiencies we propose a new pivoting 
algorithm to solve the linear complementarity problem allowing for an arbitrarily chosen 
starting point. This algorithm has a natural interpretation as a path-following algorithm and 
it does not need more than n equations in the pivot system. 

The algorithm leaves the starting point in one out of n + 1 possible directions. There are 
n rays that connect the starting point with each of the n axes of N'~_ and one ray that connects 
the starting point with the origin, This allows the algorithm to leave the starting point z ° in 
such a way that, with w ° = Mz ° + q, it will raise zi t¥om z~/when w~ ~ is negative and smaller 
than all other components of w (~, while the algorithm will lower each z¢ from z~i ~ proportion- 
ally towards zero wben wl ) is positive or not smaller than all other components of w °. In 
particular this latter feature endows the algorithm with a very natural interpretation. For 
example, the algorithm will stop with a solution to the linear complementarity problem if 
it reaches the origin. This is contrary to the algorithm in the Talman and Van der Heyden 
class of  algorithms having also n + 1 rays to leave the starting point. In that algorithm there 
are n rays that leave the starting point parallel to each of the axes and there is one ray 
connecting the starting point with the origin. 

In our algorithm the intersection of the rays with each of the axes can arbitrarily be 
chosen. In Section 4 of this paper we suggest a particular choice of these intersections such 
that it might be possible to see in advance whether the algorithm might not solve the problem. 

An important feature of the algorithm is that it performs in the same way as the Lemke 

complementary pivoting algorithm when generating points sufficiently rar away from the 
origin. In particular, the algorithm coincides with Lemke 's  algorithm when the origin is the 
starting point. Hence, the algorithm converges under the same conditions as the Lemke 
complementary pivoting algorithm. Any convergence theorem for the Lemke complemen- 
tary pivoting algorithm can therefore be applied for the algorithm. 

The paper is divided as follows. First we describe the algorithm. The algorithm follows 
a path of points in II~'2. Each point on this path can be interpreted as a so-called stationary 

point of  an affine function on a parametrized set. This interpretation is elaborated in Section 
2. The steps of the algorithm are enumerated in Section 3 while Section 4 is dedicated to 

convergency issues. Section 5 describes some examples to clarify the algoritbm. 
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2. The algorithrn 
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The algorithm follows a piecewise linear path of points in N'+ starting in some arbitrarily 

chosen point z° ~ N,+. We allow z o to lie on the boundary of  N'+. In case z o = 0 the algorithm 

coincides with the Lemke complementary pivoting algorithrn. 

To rnotivate the algorithrn, let (w*, z*)  be a solution to LCP(q,  M) defined in (1.1). 

The conditions defining a solution (w*, z*)  to LCP(q,  M) can be interpreted as 

if z * = 0  then min w* >~0, 
h 

if z*  4~ 0 then min w* = 0, 
h 

and for a l l j ~  { 1 . . . . .  n}, 

if z* > 0 then w*  = min w*,  
h 

if z~* = 0  then w* >~min * W h " 
h 

Let w o = Mz ° + q. Then this interpretation of  the conditions to hold at a solution (w*, z *) 

of LCP(q,  M) makes it very natural to leave the starting point z ° in the following way. If 

rninh w~ ~, >~ 0, then the älgorithrn decreases z proportionally from z °. Otherwise, the algorithrn 

decreases ZJ frorn z~ ~ for all j ~ { 1, ..., n} such that w.j9 > min» w ~ and increases zj frorn z~ ~ 
ù, o < 0. More precisely, when min~ w~ », >~ 0 then it for all j ~ { 1, . n } such that w~ ~ = rnint, w h 

is most natural to leave z ° towards the origin and when w~ ~ = rnin~ w~ ), < 0 for sorne j 
o { 1 . . . . .  n} then it is most natural to leave z ° towards a point ae(j) for sorne a>zj  on the 

jth axis, e(j) denoting thejth unit vector in ~". This interpretation gives n + 1 rays to leave 
the starting point, namely r (j) = ae (j) - z ° for j ~ { 1 . . . . .  n } and r ( n + 1 ) = - z o. 

Let S be a set in ~" and ler f :  S ~ ~"  be a function. A point x* in S is called a stationary 
point o f f o n  S if x*Tf(x *) >~ xWf(x *) for all x in S. The stationary point problem (SPP) 

on S with respect t o f i s  to find a stationary point of f on S. Notice that the point x* being a 

stationary point o f f  on S is equivalent to x* solving the optirnization problem given by 

max{xVf(x*) [x ~ S}. Furthermore, in case S is a polyhedron this optirnization problem 

reduces to a linear prograrnrning problem as it maxirnizes the linear function xTf(x * ) subject 

to the linear constraints defining the polyhedron S. 

LCP(q,  M) is equivalent to the SPP on ~"~ with respect to the affine function g defined 

by g(z) = - M z - q  on ~'~,  as can easily be shown. Combining this interpretation of  an 

LCP with the idea above yielding the n + 1 rays to leave the starting point z °, we propose a 

path following algorithm which is such that each point z on the path is a stationary point of 

the function g on the set X ( t )  N ~'~ for sorne t>~ 0, where 

( n+l "~J n+l } 
Z ( t ) =  z ° + ~  Ajr(j) > ~ O f o r j ~ { l  . . . . .  n + l } , a n d  ~ Aj<~t . 

.i= ] j = l  
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The number a should be such that a>eTz °, assuring that z°~~U(t)  for any t>O. j The 

vector e denotes the n-vector with all components equal to one. 

The number t can be considered as a homotopy parameter running from zero to infinity. 

For t =  0 the set 7 ( 0 )  C? N'~ only consists of the starting point z °. Hence z ° is a stationary 
point of  g on ~ ( 0 )  (3 N'+. For t =  l the set 22:( 1 ) (3 N~ is the convex hull of  the origin 

and the points ae ( j ) , j  ~ { 1 . . . . .  n }, on the axes of N"+. If the algorithm generates a stationary 

point z of  g on X~( 1 ) (q bd ~'+ such that eTz < a then z is also a stationary point of g on 
~'+ and consequently a solution to the linear complementarity problem. For t>~ 1 the set 

B:(t)  (3 ~"+ is equal to the convex hull of  the origin and the points [ ( 1 - t ) eTz°+ta]e ( j ) ,  
j E  { 1 . . . . .  n}, on the axes of  N~ .2 Clearly, for t~> O, the set ~:(t)  is equal to 

:U( t) = {z~ N"lz >~ ( l - t ) z  °, eVz <~ (l  - t ) eTz°  + ta} 

and hence, «,~~ (t) Cq N'+ is equal to the set 

{z~N"lz>~max{1- t ,  O}z °, eVz<~ (1 - t )eVz°+ta} .  

For an illustration of the set ~ '  (t) (3 I/~'+ for different values of t we refer to Figure 1. Now 

the algorithm follows a path of stationary points o fg  on ~J( t )  (3 N'+ for varying parameter 

t>~ 0 starting for t =  0 in the arbitrarily chosen point z ° ~  N'+. Barring degeneracy, this path 

terminates either in a ray or at a solution. 

If  : in N~_ is a stationary point of  g on ,~:'(t) C~ ~"+ for some [~>0 then Z maximizes 
zTg (~) over :u~(O A ~'~.  By definition of  ~~(t) this implies that ~. solves the maximization 

problem, denoted as the primal, given by 

max zVg(5) 

s.t. z>~max{ 1 - i ,  O}z °, 

eTz <~ ( l - i)eTz° + ül. 

This maximization problem is a linear programming problem. According to the Duality 

Theorem of Linear Programming this maximization problem is equivalent to the minimi- 

zation problem, denoted as the dual, given by 

min 0((1 - - t ) e T z ° q - t a )  - m a x { 1  - ~  0}/zTz ° 

s.t. g ( £ ) ~  - tx+Oe,  

0>~0, /x ~> 0, 

qn Section 4 of this paper we will make use of this freedom by letting the choice ofa depend on the data of the 
matrix M and the vector q. 

~Notice that a point on the kth axis of lt~"~ is given by ye(k) tor some y~> 0. Hence the point of bd ~7:(t), t ~> 1, 
on the kth axis of N'; tbllows from finding the values of y, A~ ..... A,, such that ~~'=~ Aj=t and 
ye(k)  = z ° + ~},+t A:Ü)" Adding up the latter equation over all components gives y =  ( 1 - t)eTz ° + ta. 
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Z 2 Z 2 

ae(2) ae(2) 

k 
F ~ ~ z~ ~ z~ 

ae(1) 0 a¢(1) 

2 3 9  

Z2 

2 +ta]e(2) 

ae(2) 

] ~ ~ ~ / / [ ( 1 -  I)2+ta]e(1) 

Fig .  1. T h e  subse t  7# ( t )  ~ ~ +  for  t = ½, 1, resp .  ~, g i v e n  z ° =  ( 1, 1 )T a n d  a = 3. 

where 0 is the dual variable to the constraint eTz ~< ( 1 --/-) eTz ° + {a and/x the n-vector with 

Bj the dual variable to the constraint z.j >t max { 1 - t, 0 } z~? for j e { 1 . . . . .  n }. 
Given g(~) the dual has a unique solution Õ=max{0,  maxh gh(z) }, /2j = Ö-g~(g) for 

j ¢ { 1 . . . . .  n }, Let fr- be a subset of { 1 . . . . .  n + 1 } such that/2j = 0 for all j ~ ~ \  { n + 1 }, 

/29 > 0  for all j  ~,~- O {n+  1}, Ö=0  i f n +  I ¢ , S ,  and Õ>0  i f n +  1 ~~Ü. Then gj(Z) = Öfor 
all j~sÜ\{n+ 1}, gi(Z) <Ö for all j ¢ , S - O  {n+ 1}, maxh gh(z) = 0  if n +  I ~ 3 ,  and 

maxh gh(z) > 0  i f n +  1 ¢ f f - .  

Definition 2.1. For a subset ,7- of {1 . . . . .  n + 1} a point z ~  R'+ is 3 - c o m p l e t e  i f j ~ J  
implies gj(z) = 0 and n + I ~ Le- implies 0 =  0, where 0 =  max{maxh gh(Z), 0}. 

Furthermore, the solution (/2, Õ) to the dual is complementary to the constraints in the 
primal in L Hence, if j ~ ß \ { n + l }  then /2j=0,  implying z-/>~max{1-i ,  0}z °. If  
j ~ f f - O  {n+ l} then /2j>0,  implying g#=max{1- t - ,0}z}  ). If  n + l E f f -  then Ö=0,  
implying e vg ~< ( 1 - {) e Vz o + {a. If n + 1 ~ fr- then Õ > 0, i mplying e xg = ( 1 - Õ e TZ o + ia. 

Therefore, the subset ,Ü of { 1 . . . . .  n + 1 } defines a subset of N'+. For any subset 3 -  of { 1, 
n + 1 } we can define subsets A ( 3 )  and A ° ( 3  -) of R'2 as follows. 
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Definit ion 2.2. For 3 -  c { 1 . . . . .  n + 1 }, 

A ( g - ) = ~  i f n + l ~ 3 -  and z ° = 0  f o r a l l h ¢ ~ J -  

and otherwise 

A ( 3 - )  = ( {z °} + cone ({ r ( j )  I j ~ 3 - } ) )  N ~ '+ .  

H. Kremers, D. Talman / A pivoting algorithm B r  the linear complementaritv problem 

Definit ion 2.3. For 3 -  c { l . . . . .  n + 1 }, 

A ° ( ~  ) = ~  i f n + l ~ 3 -  or z ° = 0  for a l l h ¢ ~ 3 -  

and otherwise 

Figure 2 gives a subdivision of  ~ '+ into subsets A ( • )  and A ° ( Y  for subsets ~ of 

{ 1 . . . . .  n + 1 } when n = 2. Theorem 2.1 pröves that z being a stationary point of  g on 

S ( t )  (~ R'+ for some t >  0 is equivalent to z being a J - c o m p l e t e  point in A ( 3 - )  o r A ° ( J )  

for some subset ~ of  { 1 . . . . .  n + 1 }. 

E ~,7 Theo rem 2.1. The point  z + is a 3 - -comple te  poin t  in A(aU)  or  A ° ( J )  f o r  some 

, Y  c { 1 . . . . .  n + 1 } i f  and only i f  z is a s t a t i o n a ~  poin t  o f  g on ~"  ( t ) (3 ~'+ f o r  some t > O. 

Proof .  L e t ~  be a 3- -complete  point in A ( Y )  for some 3 -  c { 1 . . . . .  n + 1 }. Let i =  eTC. 

Then Z solves the primal for t = t. Hence for all z ~ Æ ' ( t )  it holds that zTg(g)  <~ ~Vg(g). A 

similar reasoning holds for f E A ° ( 3 - ) .  The converse follows from the discussion 

above. []  

To generate stationary points of g on ZU(t) • N';  for varying t > 0 the algorithm should 

therefore generate a set of  3- -complete  points in A ( J - )  or a set of 3- -complete  points in 

A°({2}) 

A({ 1,2}) 

2}) 

1}) 

A°({1}) 

Fig. 2. Subdivision of ~+ into subsets A (,Y) and A o(,7) for J- c { 1, 2, 3 }. 
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A ° ( 3  -) for subsets 3-  of {1 . . . . .  n + 1 }. Among these sets of  3--complete  points there 
exists a collection of adjacent sets of J - c o m p l e t e  points in A ( J )  or A ° ( 3  -) for varying 
subsets 3 -  of { 1 . . . . .  n + 1 }. This collection of adjacent sets is a path of 3--complete  points 
in A ( 3 - )  or A o (3--) for varying subsets 3 -  of { 1 . . . . .  n + 1 } starting in z o and either ending 
up with a solution to LCP(q,  M) or ending up in a ray towards infinity. The next section 

describes how to generate this path through subsequent subsets A(~Y-) and A ° ( J )  for 
varying subsets 3 -  of  { 1 . . . . .  n + 1 } by complementary pivoting. 

3. The steps of the algorithm 

Theorem 2.1 implies that the algorithm generates a path o f ,~ -comple te  points in A ( ,U) or 
A ° ( J )  for varying subsets 3 -  of {1 . . . . .  n +  l }. This property leads to a pivot system in 
the following way. The 3--completeness condition at a point z is equivalent to the existence 
of/~j>/O ( j~3-  U {n+ 1}), 0 > 0  i f n +  1 ~,S-, 0 = 0  i f n +  1 ~ 3 -  such that 

- M z - q =  Oe-  ~ /z«e(j). 
j~: 7 U { n + l }  

Combined with z ~ A ( J )  or z ~ A ° ( J )  the appropriate pivot system for 3--completeness  
at a point z in A ( 3 - )  or A ° ( J )  is given in one of the next two lemmas where, for j =  
1 . . . . .  n, M.; denotes thejth column of the matrix M. 

Lemma 3.1. A point z ~ A (3 - )  is J - comple t e  for  some feasible . 7  c { I . . . . .  n + I } i f  and 

only if the system of  equations 

AjMr(j)  - ~ I~ie(j) + Oe= - q -  Mz ° (3.1) 
j ~ . 7  .1~ 7 L; I n +  I } 

has a solution A j>~O ( j E  J - ) ,  p,;>O ( j ~ L U U { n + I } ) ,  0 > 0  /f n + l ~ 3 - ,  0 = 0  tf 
n+ 1 ~ 3-,  such that z = z° + ~i~ z Ajr(j). [] 

L e m m a  3.2. A point z ~ A ( 3 ) for  some .Y  C_ {1 . . . . .  n} with z ~i) = O for  all i ¢i g -  or a point 

z ~ A ° ( 3  -) for  some 3-  c_ { 1 . . . . .  n} is 3 -comple t e  i fand only i f the system ofequations 

~,, A iaM. j - ~_~ t x i e ( j ) + O e = - q  (3.2) 
, 1 ~ . 7  , j ~  7 U {17+ I } 

has a solution A i>~O ( j ~ ß ) ,  ~ i>O ( j ~ J - U { n + l } ) ,  0>~0, such that z = 

~je,7 Ajae(j),  [] 

Notice that the pivot systems in ( 3.1 ) and (3.2) both contain n equations in n + 1 variables 
leaving us with orte degree of freedom. If nonempty, the solution set of each system forms 
a line segment, assuming nondegeneracy. This line segment corresponds to a linear piece 

of  3 - c o m p l e t e  points in A ( .Y) or in A o(.3- ) with either one or two end points. As we will 
show below each end point of a line segment of solutions to a system of equations for some 
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3 -  c { 1 . . . . .  n + 1 } either corresponds to the starting point z ° or to a solution to the linear 
complementarity problem or is an end point of  a line segment of solutions to exactly one 

other system of equations possibly for a different set Y .  The point z ° will correspond to an 
end point of  only one line segment of  solutions. These properties make the path of  points 
generated by the algorithm from z ° to be a piecewise linear path through subsequent subsets 
A ( J )  and A ° ( J )  for varying subsets 3 -  of { 1 . . . . .  n +  1 }. Each linear piece can be 
followed by making a linear programming pivot step in the appropriate pivot system with 
the variable being zero (or making a binding constraint) at an end point. 

A linear piece of  J - -comple te  points in A ( J - )  for some subset 3 -  __G { 1 . . . . .  n } for which 
z(~~ = 0 for all i ~ 3 -  can be generated by making a pivot step in system (3.1) or in system 
(3.2). Which one of these systems will be appropriate depends on the system in which the 
previous pivot step was made. This feature causes the algorithm to generate the path through 
different subsets of  Nj_ in a more efficient way. Changing from one pivot system to the 
other one at an end point of  a line segment requires a redefinition of the variables A»j ~ 3- .  
The setup in Lemma 3.1 and Lemma 3.2 allows us to make as few of these changes of  
variables as possible. 

Suppose the algorithm is following a linear piece of  3--complete  points in A ( ~ )  or in 
A o(3-)  for some ,~ -c  {1 . . . . .  n +1} ,  i.e., a pivot step is made in one of the systems of 

equations (3.1) or (3.2) with the variable being zero at an end point of  the line segment of 
solutions. When the linear piece has another end point, say g, then, assuming nondegeneracy, 
exactly one of the following cases will occur for the solution (Ä,/X,, Ö) at this end point: 

Case 1. A~, is equal to zero for some p ~ :U, while 3 - \  {p} 4= 0. Then Z is an end point 
lying in A ( ~ \ { p } )  or in A°( ,~ - \{p})  depending on whether Z ~ A ( «  ~ )  or ~ ~ A ° ( 3  -) 
respectively. The algorithm proceeds in A (,Y-\ {p } ) or A o(,~- \ {p } ) by pivoting the column 
-e(p) into the appropriate system of equations thereby raising/xp from zero if p ~ n + 1, 
and pivoting the column e into the appropriate system of equations thereby raising 0 from 
zero i fp  = n + l, in order to maintain ,~ - \  {p }-completeness, 

o > 0 and ,~p is equal to Case 2. In system (3.1) zp 

ù .~ 

for some p E ~ .  Then g lies in the boundary ofA (3"-). More precisely, g lies in A o ( 3 - \  {p } ). 
Let 

f o r j E 3 - \ { p } .  Then 3~i >~0 ( j ~ , ~ - \ { p } ) , / / h  >~0 (h ff,~- U {n+ 1 }),/X t, =0 ,  and 0~>0 is 
a solution to system (3.2) and g is an end point of  a linear piece of  3 - \  {p }-complete points 

in A ° ( 3 - \ { p } ) .  The algorithm proceeds in A ° ( , U \ { p } )  by changing system (3.1) into 
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system (3.2) and pivoting the column - e ( p )  into the new system (3.2) thereby raising 

Bp from zero in order to maintain , ~ \  {p}-completeness. 
Case 3. ~ i~7  Äj is equal to 1 either in system (3.1) while n + 1 ~ J or z~l > 0 for some 

h OB3-, or in system (3.2) while z~ ~, > 0  for some h OB3-. Suppose n +  1 ~ J - ,  then vpj=0 

a n d ~ = A s a > ~ O f o r j ~ g  wh i l e f f e j=~ i>Oand~ i=(  I -  ~i~ 7 - o • . A i) z; = 0 forj  OB ,5 7, leaving 
us with a solution to the linear complementarity problem in Z. Suppose n + 1 OB 3-, then it 
holds tbat z ° > 0 for some h OB S-. Hence, ~ is an end point of a linear piece of 3--complete 
points in A ( J )  as weil as in A°(3-) .  So, if ~ were the end point of a linear piece of J -  
complete points in A (.Y), then the algorithm proceeds by generating a linear piece of 3__ 
complete points in A o (3- ) .  This linear piece of g -comple te  points in A o( j -  ) is generated 

by changing system (3.1) into system (3.2) and pivoting the column aM.k or --e (k) into 
the new system (3.2), depending on whether Mr(k )  or - e ( k )  was the last pivot column 
in (3.1). Notice that ~s~« Aj is then raised from 1. Conversely, if Z were the end point of 
a linear piece of J - comple t e  points in A°(,57), then the algorithm proceeds by generating 
a linear piece of 3--complete points in A (,~-). This linear piece of 3--complete points in 
A(«~-) is generated by changing system (3.2) into system (3.1) and pivoting the column 

Mr(k )  or - e ( k )  into the new system (3.1), depending on whether aM k or - e ( k )  was 
the last pivot column in the system (3.2). Hence ~ j ~ 7  A~ is lowered from l. 

Case 4. In system (3.2) it holds that zll > 0 and As, is equal to 

o (1--  ~iE.7\(s, l Ai~ 

for some p ~ ,57. Then ~ lies in the boundary of A ( J ) .  More precisely, « lies in A (,5~-\ {p } ). 

Let 

X,, = ä,, - 41( 1 = ~ '~"  w,_, ä , ]  a - r . , ~  7 4' I 

for h ~ J \ { p } .  Then Äh >~0 ( h ~ 3 - \ { p } ) , / 2 ~  >~0 (hoBBU {n+ 1}), ~s, =0 ,  and ö>~0 
is a solution to (3.1), and ~ is an end point of a linear piece of 3 - \  {p }-complete points in 
A ( 3 - \  {p } ), The algorithm proceeds by changing system (3.2) into system (3.1) and 
pivoting the column - e ( p )  into system (3.1) thereby raising &, from zero in order to 
maintain 3 - \  {p }-completeness, 

Case 5. tz k is zero for some k o B J U { n +  1}. Suppose g ~ A ( J ) .  If z ° = 0  for all 
h OB 3-  U { k} while n + 1 ~ J ,  or if J U { k } = { 1 . . . . .  n + 1 }, then ~ is a solution to the linear 
complementarity problem. Otherwise, g is an end point of a linear piece of 3-  U { k }-complete 
points in A ( 3 - U  {k}). The algorithm proceeds by pivoting the column Mr(k )  into the 
system ( 3.1 ) or a M  ~ into the system (3.2) thereby raising A k from zero in order to maintain 
B U {k}-completeness. 

Suppose ~ ~ A ° ( J ) .  If z ° = 0 for all h OB J U {k}, then ~ is an end point of a linear piece 
of 3 -  U {k}-complete points in A ( J  U {k} ). Otherwise, ~ is an end point of a linear piece 
of J U  {k}-complete points in A ° ( J U  {k}). The algoritbm proceeds in both cases by 
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pivoting the column aM.k into the system (3.2) thereby raising Ak from zero in order to 

maintain 3 -  U {k}-completeness. 

Case 6. Ö is zero. Then ~ is a solution to the linear complementarity problem if Z ~ A o ( j - )  

or if g e A ( 3 - )  and z~ ~, = 0 for all h ~ J .  Otherwise, Z is an end point of  a linear piece of  

3 -  U {n + 1 }-complete points in A ( J  tA {n + 1 } ). The algorithm proceeds by pivotirlg the 

column - Mz ° into ( 3.1 ) thereby raising A,, + l from zero in order to maintain J U { n + 1 }- 

completeness. 

The cases 1 to 6 describe the performance of the algorithm at the end points of all possible 

line segments generated by the algorithm except at z ° where the algorithm is initiated. To 

show that z ° is an end point of a (unique) linear piece of J - c o m p l e t e  points in A ( J )  for 

some subset 3 -  of  { 1 . . . . .  n + 1 } let us denote Mz ° + q by w °. If minh w o < 0, let k be such 

o = minh w~l. Then the starting point z° is 3 °-complete with • o = { k} and the system that w k 
of  equations 

- ~ tx~e(j) + Oe= - q - M z  ° (3.3) 
jg=k, n+ I 

_ o ° > 0  (j:~k, n +  1) and 0 ° =  - w ~  ~. >0 .  So, assuming has a unique solution /x} ) - w j - wk 

nondegeneracy, z ° is an end point of a linear piece of {k}-complete points in A ({k}). In 

order to follow this linear piece the algorithm starts by pivoting the column M r ( k )  into 

(3.3) thereby raising Ak from zero. 

If min» w~l >~ 0, then the starting point z ° solves the linear complementarity problem if 
z o=  0. Otherwise z ° is 3-°-complete  with ~ o=  {n + 1 } and the system of equations 

tl 

- y" ~ j e ( j )  = - q - M z  ° (3.4) 
j =  1 

has a unique solution/z9 ~ = w} ~ > 0 ( j ~  { 1 . . . . .  n} ). Assuming nondegeneracy, z ° is the end 
point of a linear piece of { n + 1 }-complete points in A ( { n + 1 } ). In order to follow this 

linear piece the algorithm starts by pivoting the column - M z  ° into (3.4) thereby raising 

A,, + ~ from zero. 

4. C o n v e r g e n c e  i s s u e s  

The cases described in the previous section show that each end point of  a line segment of  

solutions to (3.1) or (3.2) either corresponds to the starting point a ° or to a solution of 

LCP(q, M) or is an end point of  a line segment of solutions to exactly one other system of 

equations. The point z o corresponds to an end point of  exactly one line segment of  solutions 

to (3.1). To find a solution to problem (1.1), the algorithm starts in z ° and generates a 

sequence of adjacent line segments of  solutions to (3.1) or (3.2) for varying subsets 3 -  of 

{ 1, ..., n + 1 }. Each line segment of  solutions is generated by making a pivot step in either 

(3.1) or (3.2) with one of  the variables being zero at an end point until one of  the cases 
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described in the previous section occurs. Such a line segment of solutions to (3.1) or (3.2) 

corresponds to a linear piece of J - c o m p l e t e  points in either A ( J )  or A o ( j ) .  

These properties make the path of points generated by the algorithm a piecewise linear 

path through subsequent subsets A ( J )  and A°( ,U)  of N'!_ for varying subsets 3 -  of 

{ 1 . . . . .  n + 1 }. This path either ends in a solution to the linear complementarity problem or 

in a ray of solutions to (3.2) since it cannot cycle as can be shown by arguments similar to 

Lemke [ 5 ]. The end points giving rise to a solution to the linear complementarity problem 

have already been described during the enumeration of  the cases in Section 3. Lemma 4.1 

summarizes all the cases in which the algorithm ends up in a solution. 

L e m m a  4.1. Let z be an end point of  a linear piece o f  J - comp le t e  points on the path 

generated by the algorithm in A ( Y )  or in A ° C U )  .for some subset 3 -  of  { 1 . . . . .  n + 1 }. 

Then z is a solution to the linear complementarity problem if one o f  the following cases 

holds: 

(i) z ~ A ( ~ ) ,  n + 1 ~ J ,  /xk= 0Jbr  some k q ~ ß ,  and z~l =O for  all hq~3-U {k} or 

B U { k } = { 1  . . . . .  n + l ) ;  

(ii) z ~ A ° ( Y )  and 0 = 0 ;  

(iii) z ~ A (  Y ) ,  z ° =O for  all h q~ST, and 0 = 0 ;  

(iv) z G A ( N ) ,  n +  1 ~ J ,  a n d ~ j ~ 7  A j =  1, 

where the variables A i >~ 0 (j ~ J ) ,  I~i >~ 0 (j  ~ J -  U { n + 1 } ), 0 >~ 0 are the solution to the 

appropriatepivotsystem (3.1) or (3.2) atz.  [] 

The possibility of  divergence urges us to impose a convergence condition on the problem. 

Notice that divergence can only occur when the algorithm is generating a path of  points in 

A ° ( Y )  or in A ( ~ )  with J such that z(i ~ = 0  for all i f f J  and n +  1 ~ J ,  i.e., when the 

system of equations in Lemma 3.2 is appropriate. Therefore we can restrict our attention to 

the possible occurrence of a ray of solutions to system (3.2) for some y c _ {  1 . . . . .  n}. 

System (3.2) however is equivalent to the pivot system used in Lemke [5] to solve the 

linear complementarity problem. So, any convergence theorem on Lemke's  algorithm can 

be used for our algorithm. 
In Gowda and Pang [4] an existence theorem is given based on the Basic Theorem of 

Complementarity as stated in Eaves [1].  They relate their result on the existence of  a 

solution to the stationary point problem on a polytope which takes our homotopy set S ( t ) ,  

t > 0, as a special case. Therefore the algorithm converges under the same condition. 
What remains is to choose a value of the number a. In case z ° = 0, the algorithm coincides 

with Lemke's  algorithm. In this case pivot steps need only to be made in system (3.2) and 

the number a can be set equal to one. Suppose now that z°v s 0. In that case we already put 

one limitation on a, a > eŒz °, being independent of  the data of  the problem as defined in 

( 1.1 ) but guaranteeing that each A ( Y ) ,  J c { 1 . . . . .  n + 1 }, is convex. To make the choice 

of a dependent on the data of the problem, i.e., on M and q, we suggest to choose a such 

that for al l j  ~ { 1 . . . . .  n} no {j}-complete points in A o({j}) can be found. 

Ler a be such that f o r j ~  {1 . . . . .  n} no j-complete points in A°( {j} ) exist. This implies 

that for every j  the system (3.2) for ,Y- equal to {j}, 
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A ; a M . ; -  ~ tzhe(h) + Oe= --q, (4.1) 
h4-j, n+ 1 

may not have a solution Aj>~ 1, /Xh>0 (h~j, n+ 1), 0 > 0 .  The following condition on a 

assures that for any j at a solution to (4.1) for Aj > 1 it holds that 0 < 0 or /z  h < 0 for some 

h :~j, n + 1. Take a > max { eTz °, a ~ . . . . .  a,, } where a/, J = 1 . . . . .  n, are chosen such that 

{ -q; ,  ~ qh-qj "~~ 
if M:: > O, then a; > min ~ .  h:MtTimin<M,: v~--Mhh/.,a' 

if 114.,./=0, then aj >h:M,,/<o { - ~ h :  } m i n  q/--qh , (4.2) 

if M; ;<0 ,  then a / >  min qh--q/  "~ 
• h:M/o>Mi j {~h/--Mo)' 

for every j ~ { 1 . . . . .  n }. If these conditions do not hold it is possible that for some j 

{ 1 . . . . .  n} the number ag. can not be calculated according to (4.2). In that case by choosing 
a arbitrarily larger than eTz °one knows in advance that the algorithm could diverge and 

that the linear complementarity problem might not even have a solution. 

We remark that instead of a uniform number a for all j we could also choose different 
numbers a/for everyj  and take P(j') = a;e(j) - z °, e.g. by choosing a; as calculated in (4.2). 

In that case the algorithm follows a path of stationary points of g on ~ ( t )  A ~'+ for a 
varying parameter t >~ 0 starting for t = O, where 

( ,+ l  ù+1 "l 
B ( t ) = ~ Z ° +  ~ A;Y(j) A/ > 0  f o r j ~  {1 . . . . .  n + l } , a n d  y" A ; ~ t ) .  

j =  I . ]= 1 

5. Some examples 

In this section the algorithm is illustrated by three examples. In each of  these examples a 

possible path to be followed by the algorithm is given and the relation between the points 
on this path and the parametrized set is described. 

In Section 2 we explained that every point on the path followed by the algorithm is a 
stationary point of the affine function g on the parametrized set Æ ( t )  6~ ~'+ for some value 

of  the parameter t > 0. In Figure 3 we have drawn the parametrized set Y ( t )  (~ ~'+ for some 

value of the parameter t > 0 in the two-dimensional case. If a point ~ is a stationary point of 
the affine function g on Z (t) A ~2+, then ~ maximizes z Tg (~) over ~ ( t - )  A ~ 2  where i is 

such that Z~ b d ( ~ ( i )  A ~ 2  ). Figure 3 shows the relation between g(g) and such a sta- 
tionary point ~ in bd ( Æ  (t-) (3 ~ 2  ) for [ >  0. Notice that ~ ~ [ c, d] when t > 1. 

I fZ=  b for some 1 > i >  0, then g(~) has to lie in the cone spanned by the vectors - e( 1 ) 

and - e ( 2 ) ,  i.e. there exists a/z~ > 0 and/z  2 > 0 such that g ( g ) =  - / z l e ( 1 )  - / z 2 e ( 2 ) .  If 
: =  c for some i >  0, then g(g) has to lie in the cone spanned by the vectors - e(1) and e, 
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g(~) 
e 

-e(1) 

-e(1) ( e 

g(~) 

g(z) -e(2) -e(2) 

Fig. 3. Stationary points o l g  on X({ )  A ~~.  

i.e. there exists  a htj >~0 and 0>~0 such that g (~)  = - / + t l e ( 1 )  + 0e. I f  ~ ~  (b,  c) for some 

1 >~ {>  0, then g(Z)  has to lie in the cone spanned by  the vector  - e(  1 ), i.e. there exists  a 

p~~ >~0 such that g(Z)  = - / z r e ( 1 ) .  If  Z = d  for  some t ->0,  then g(~)  has to l ie in the cone 

spanned by  the vectors - e ( 2 )  and e, i.e. there exists  a /,t2>~0 and 0>~0 such that  

g (Z) = - / - t 2e  ( 2 )  + 0e. If  ~ ~ ( c, d)  for  s o m e / - >  0, then g (~) has to lie in the cone spanned 

by  the vector  e, i.e. there exists  a 0>/0 such that g (~)  = 0e. Final ly ,  i f Z ~  (b,  d)  for  some 

1 >~ t-> 0, then g(~)  has to lie in the cone spanned by the vector  - e ( 2 ) ,  i.e. there exists  a 

]-~2 ~ 0 such that g(Z) = - / - t 2 e ( 2 ) .  

Example 5.1. Let  L C P ( q ,  M)  be given by the fo l lowing  data. 

(+l=(l 9)(~1+~,4~ 
w~ 1 1 ~,z~/ ~ - 1 1  

w T z = 0 ,  (5 .1)  

W>~0, Z>~0. 

TO solve L C P ( )  in (5 .1 ) ,  the algorithm starts in z ° =  (3, 2) v. Choose  a = 7 .  Then  the 

a lgor i thm fol lows the path given by the bo ld - faced  line in F igure  4. 

In z ° it holds  that gj (z °) = 7 > 0 and g 2 ( z  °)  = --  4 < 0. Wi th  w ° = Mz ° + q this impl ies  

that w~~ = - 7 = minh w° < 0 and w o = 4 > minh w o causing the a lgor i thm to leave the start ing 

point  z ° by increasing Zl f rom zC] and lower ing z 2 f rom Z 0 a long the di rect ion 

r( 1 ) = ae( 1 ) - z ° =  (4, - 2) I". Leav ing  z ° a long r(  1 ) impl ies  that the a lgor i thm generates  

points  z in A( { 1 } ). Such points  z are points  on bd(~Yf(t) A ~ 2  ) for some 1 >~ t >  0 com-  

parable  to the point  d in F igure  3. Hence,  according  to the s ta t ionary point  condi t ion,  the 

a lgor i thm starts to generate  the points  z in A(  { 1 } ) for which g ( z )  = Oe - / . t 2 e ( 2 )  for  some 

0 >~ 0 and/-t2 >~ 0. In Figure  4 these are all the points  be tween z o and z ~ = (5, 1 ) V. 

In Z ~ it holds  that g ( z ~ ) = ( 0, - 5 ) v. Hence,  0 = 0 and g ( z J ) = - ~2e (2 )  for some  ].L 2 > 0, 

namely/- t2  = - 5 .  Moving  further in A ({ 1} ) would  imply  0 < 0 thereby vio la t ing  the sta- 

t ionary point  condit ion.  Since g ( z  ~ ) = - / _ t2e (2 )  for some/-t2 > 0, z L can be compared  to 
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7 

6 

5 

4 

3 

Z 0 

Z 2 
Z* Z I 

" 3 > g l ( z ) = O  

ù ; k N N 2 ; ; ;  6 7 ; :zl  
>',< 

g2(z) = 0 

Fig. 4. The path followed by the algorithm to solve LCP(q, M) in (5.1) with a=7. It starts in z °= (3, 2) "r. The 
path is given by the bold-faced line. 

the end point d of  [d, b] in Figure 3. The algorithm therefore proceeds by generating points 

z represented by the points [ d, bi of bd(«U(t)  A E2+ ) for 1 >~ t > 0 in Figure 3, i.e. points z 
in A( { 1, 3 } ) such that gl (z) = 0 and g2(z) < 0. In Figure 4 these are all the points between 
z '  a n d z 2 = ( 2 ,  4 ) T w h e r e g ( z 2 ) = (  0, --5)7 T. 

If the algorithm would generate points z beyond z 2 satisfying gj (z) = 0 and zj < z 2, then 

it generates points on bd(~,~(t) A ~ 2  ) for t >  0 comparable to points on [b, c] in Figure 3 

thereby violating the stationary point condition. Since z 2 can be compared to the point b in 

Figure 3, it holds that z 2 lies in A ( { 3 } ). In order to maintain the condition that each point 

z on the path generated by the algorithm is a stationary point of  g on ~ ( t )  A E2  for some 

t > 0, the algorithm hext generates points in A ( { 3 } ) such that g (z) = - / x  le ( 1 ) - / z2e  (2) 
for/*1 > 0  and /z2>0 ,  by raising/*~ from zero. This implies that g l ( z )  is decreased from 

zero. Hence, the algorithm proceeds by generating the points between Z 2 and z 3= (3,5 52 )T 

in Figure 4. 
In z 3 it holds that g(z  3) = ( - 9 4, 0) T, so the point z 3 can be compared to the point b on 

b d ( • ( t )  f') ~ 2  ) for some 1 >~ t > 0 in Figure 3. Since in z 3 it holds that g2(z 3) = 0 it follows 

that g(z  3) = - / * l e (  1 ) for some/ '1  > 0, namely/*1 = 945. The algorithm proceeds by gen- 

erating points z GA( {2, 3 } ) such that g ( z )  = - / z  je( 1 ) for/,~ > 0. These are all the points 

between z 3 and z* = (0, 1 )T and they correspond to points between b and c in Figure 3. 

The point z* is a point on b d ( ~ (  1 ) (3 E2+ ) comparable to a point between b and c in 

Figure 3. In z * it holds that g ( z * ) = ( - 5, 0) T. Hence, the algorithm stops with the solution, 

w* = (5, 0) T and z* = (0, 1) T to LCP(q,  M) in (5.1). 

Example 5.2. Let LCP(q, M) be given by the following data. 
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( )(  )()(_6) Wl = 3 - 3  Z'l + - 12 ' 
w2 5 - 2 z2 

wVz=0,  (5.2) 

w>~0, z>~0. 

To solve LCP( )  in (5.2) ,  the algorithm starts in z ° =  (1, 2) T. Choose a = 5 .  Then the 

algorithm follows the path given by the bold-faced line in Figure 5. 

In z ° it holds that g(z  °) = (9, 11) v. Hence, g l ( z ° ) > 0  and g2(z °) > g l ( z ° ) .  With  

w o = Mz ° + q this implies that w o = - 9 > - 11 = minh w o and w o = - 11 = min h w o < 0. 

Hence, the algorithm leaves the starting point z ° by lowering zj from z ° and raising z2 from 

z° along the direction r (2 )  = ae (2)  - z o = ( _ 1, 3) T. It thereby generates points in A ( { 2 } ). 

Each of these points is comparable to the po in t c  on b d ( ~ ( t )  A [R 2 ) for some 1 >~ t > 0 in 

Figure 3. The points z in A( { 2 } ) are followed by the algorithm as long as z is a stationary 

point of g on Æ ( t )  (3 N2 for some t >  0, i.e. as long as there exists a 0>~ 0 and/xl  >/0 such 

that g(z)  = Oe - / x l e (  1 ). This is the case for all z between z ° and z I = (0, 5) v. 

In z I = a e ( 2 )  the boundary of A({2})  has been reached since Zll = 0 .  Moving on in the 

direction r (2 )  would generate infeasible points. Therefore the algorithm proceeds along the 

boundary of N2+ by generating points in A°( {2} ). Each of these points is comparable to 

the point c o f Æ ( t )  Cq N2+ for some t>~ 1 in Figure 3. From the stationary point condition it 

follows that for all points z ~ A o({2}) generated by the algorithm there exists a 0 >/0 and 

B l ~ 0 such that g (z )  = 0e - /Z lé '  ( 1 ). This is the case for all z ~ A o( {2 }) between z ~ and 
z2= (0, 6) T . 

In z 2 it holds that g(z  2) = (24, 24) T. Hence, g~(z 2) =g2(z2) ,  implying that /Xl has 

become zero in z 2. Moving beyond z 2 in A°({2})  would cause/ .q  to become negative. 

Z2 

~6z~ 
Jù 

z~ 4 

3 

2 

1 

t ~  > ~ gl(z)=O z~ 
/ Z3 24 

Z* 
I i f ) Z I 

0 6 7 

< \ >  

gj (z) = g2(z) 

Fig. 5. The path followed by the algorithm to solve LCP(q, M) in (5.2) with a - 5 .  It starts in z ° =  ( 1, 2) v. The 
path is given by the bold-faced line. 
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Since/Zl becoming zero implies that g(z 2) = Oe for some 0>  0, the point z 2 is comparable 

to the end point in c in Ic, d] on bd (~ f ( t )  (~ E2+ ) for some t >  0 in Figure 3. The stationary 

points o f g  comparable to a point in [c, d] on b d ( Æ ( t )  A E2  ) for some t > 0  in Figure 3 

are all the points z ~ A ( { 1, 2 } ) such that g (z) = 0e for 0 >~ 0. These are the points between 
Z2 andz3= (7 4)T 5, ~ in Figure 5, where g(z 3) = (3, 3) T. 

Moving at z 3 further along the line of points z on which g~(z) =g2(z) by generating 

points between z 3 and z* = ( ~, ~- ) T would imply that the algorithm generates points z which 

can be compared to points in [d, b] on bd(~~U(t) C3 N2 ) for t >  0 in Figure 3 satisfying 

g(z)=Oe for some ô~>0, violating the stationary point condition. However, since 
z 3 GA( { 1 }), z 3 is a point which can be compared to the point d on bd(£S(t)  C3 R 2 ) for 

some t > 0 in Figure 3. The algorithm therefore proceeds by generating points z ~ A ( { 1 } ) 

such that g(z) = Oe-/x2e(2) for 0>~0 and/z2>~0 by raising/z 2 from zero. These are the 
points between z 3 and z 4 = (3, 1 )T where g(z  4) = (0, - 1 )T. 

In Z 4 we obtain a similar situation as in z ~ in Example 5.1 since g~ (z 4) = 0. As in Example 

5.1 the algorithm proceeds in A ( { 1, 3 } ) by generating the points from z4 to z* = ( _~, ~ ) T. 

In Z* it holds that g i ( z * ) = g 2 ( z * ) = 0  implying the algorithm to stop in z* with the 
solution w * = (0, 0) T and z * = ( ~, 3 2 ) T to the linear complementarity problem. 

Notice that the transition at z t from A ( { 2 } ) to A o( { 2 } ) causes a change of pivot systems 

as described in Case 3 of  Section 3. At the point z 2 the algorithm starts to follow the line 

segment of points z in A ( { 1, 2 } ) such that g j (z) = g2 (z) >~ 0. In our example the algorithm 
generates these points in A ( { 1,2 } ) as linearly independent combinations of e ( 1 ) and e (2). 

The transition from A ( { 1, 2 } ) to A ( { 1 } ) causes a change of variables as presented in Case 

4 of  Section 3. 

In case z2 would be lying in A({2}) no change of  variables at z ~ or z 3 is needed. If, 

however, in this case z 3 would lie in A°( { 1 } ), then the points generated by the algorithm 

from z 3 or in A°( { 1 } ) require a change of variables at z 3 as presented in Case 2 of  Section 

3 since the points in A o( { 1 } ) should be generated as multiples of e( 1 ). Notice further that 

if we apply (4.2) the number a would have been chosen at least equal to 6, which would 

avoid making a pivoting step in A o( {2} ). 

To illustrate the algorithm introduced in the previous sections we constructed Example 

5.1 and Example 5.2 in such a way that the algorithm has to perform as many iterations as 

possible. Consequently, Example 5.1 and Example 5.2 do not give much credit to the speed 

with which the algorithm finds a solution to a linear complementarity problem. In fact, both 

examples are solved faster by the Lemke complementary pivoting algorithm. Example 5.1 

is solved by the Lemke complementary pivoting algorithm in one iteration while Example 

5.2 is solved by the Lemke complementary pivoting algorithm in two iterations. 

On the other hand situations where the Lemke complementary pivoting algorithm is much 

slower than our algorithm can be constructed very easily. In Murty [7] an example is given 

for which the Lemke complementary pivoting algorithm needs the maximum number of 

2 ~ -  1 steps to find the solution, n being the dimension of  the linear complementarity 

problem. In Example 5.3 we give the two-dimensional version of  Murty's example. 
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Example  5.3. In Murty [ 7 ] the linear complementarity problem to be solved in the two- 

dimensional case is given by 

w ~0)(~)+( 41 
wTz=O, (5.3) 

W>~0, Z>~0. 

The linear complementarity problem in ( 5.3 ) has a solution w * = ( 0, 2) T and z * = (4, 0) T. 

The Lemke complementary pivoting algorithm needs three steps to solve this two- 
dimensional linear complementarity problem. In Figure 6 we have drawn the path followed 
by the Lemke complementary pivoting algorithm. If  we apply the algorithm introduced in 
this paper to solve the linear complementarity problem in (5.3) then we are able to use an 
arbitrarily chosen starting point. Suppose we take z ° =  (3, 1)T as the starting point of  our 
algorithm. To choose the intersection of the rays r ( l )  and r (2)  with the axes of N2+ we 

Z 2 

5 

4 

3 

2 1 \  
0 1 2 

z *  
I I ) Z 1 

3 4 5 6 

Fig. 6. The path followed by the Lemke complementary pivoting algorithm to solve the linear complementarity 
problem in (5.3). 
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3 
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9; 1 2 3 

I I • Z 1 

6 7 

Fig. 7. The path followed by the new algorithm to solve the linear complementarity problem in (5.3). 
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have to make a suitable choice for a according to (4.2). This means we have to choose a 

such that a > max{4, 4, 2 } = 4. Hence, we may choose a = 5. Figure 7 gives the path followed 

by our algorithm to solve the linear complementarity problem in (5.3). In this case the 
algorithm only needs two steps to solve the linear complementarity problem in ( 5.3 ). Notice 

also that if we start the new algorithm in, for example, (3, 0) T then it finds the solution in 

only orte step. The latter result holds in fact for any dimension of the problem. 

This example gives the opposite results to the first two examples when comparing our 

algorithm to the Lemke complementary pivoting algorithm. It is this kind of linear comple- 

mentarity problem which might orten be met when solving a nonlinear problem by a 

sequence of linear complementarity problems. In case of convergence of  this sequence, the 

approximation of the solution to the nonlinear problem obtained from a linear complemen- 

tarity problem in the sequence will in due time be near to the solution itself. If orte is able 

to start the algorithm for solving the hext linear complementarity problem in the sequence 

in this approximating solution then the new approximation is typically found within a few 

iterations, probably contrary to when using the Lemke complementary pivoting algorithm. 

That method is forced to restart in the origin all over again. It is this kind of problem we 

had in mind when introducing the new algorithm. 
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