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An integer programming problem is said to have the integer round-up property if its optimal 
value is given by the least integer greater than or equal to the optimal value of its linear programming 
relaxation. In this paper we prove that certain classes of cutting stock problems have the integer 
round-up property. The proof of these results relies upon the decomposition properties of certain 
knapsack polyhedra. 
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I. Introduction 

A knapsack problem is an integer programming problem of the form 

max c .  x 

subject to a .  x<~ b, (KP) 

x/> 0, integral, 

where b is a positive integer and a and e are n-vectors consisting of positive integers. 

The knapsack polyhedron (denoted by P in this paper) is the convex hull of  the 

feasible solutions of  (KP);  that is, the convex hull of  the set {x c 71+l ax<~ b}. To 
the maximization problem (KP) corresponds a covering problem defined as follows: 

let M be the matrix whose rows are the maximal elements of  {x ~ Z~_ Iax <~ b}. Then 

the covering problem 

min 1 • y 

s.t. yM >- w, (CS) 

y i> 0, y integral, 

where w ~ Z+, is known as the cutting stock problem. When ai ~< b for i = 1, 2 , . . . ,  n 
the matrix M does not have any zero column, and thus (CS) is feasible for all 

right-hand sides w ~ 7/+. Since (CS) is bounded from below, it follows that (CS) 
has an optimal solution. Henceforth we shall assume that ai <~ b for i = 1, 2 , . . . ,  n. 

This research was partially supported by National Science Foundation grants ECS-8005350 and 
81-13534 to Cornell University. 
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It has been observed that for cutting stock problems which are encountered in 
practice, the difference between the optimal value of (CS) and that of its linear 

programming relaxation is small. In particular, it is the case that for many instances 

of the cutting stock problem, the optimal value of the problem is given by the least 
integer greater than or equal to the optimal value of its linear programming relaxation 
(see Berge and Johnson (1976)). In this paper we shall prove that certain classes 
of cutting stock problems have the 'rounding property'.  More specifically, we say 
that (CS) has the integer round-up (IRU) property if s* (the optimal value of (CS)) 

[rw], where rw is equal to * * is the optimal value of the linear relaxation of (CS) and 

[r*] denotes the least integer greater than or equal to r*. On the other hand, let P 
be any polyhedron contained Within the nonnegative orthant and k be any positive 
integer. Let also kP be defined as {kx lx~  P}. We say that P has the integral 
decomposition property if for any positive integer k and any integral y belonging 

to kP, y can be expressed as the sum of k vectors, each of which is integral and 
belongs to P. 

Let P now denote the knapsack polyhedron. P is clearly a lower comprehensive 
polyhedron, and it follows from Theorem 1 in Baum and Trotter (1981) that problem 
(CS) has the IRU property if and only if P, the corresponding knapsack polyhedron, 
has the integral decomposition property. In the rest of the paper, we shall use this 
theorem to establish that certain classes of cutting stock problems have the integer 
round-up property. In Section 2 we state and prove some lemmas which will be 
useful in the sequel. Each of Sections 3, 4 and 5 is devoted to a class of cutting 
stock problems for which the IRU property holds. 

Because of the close relationship between instances of the knapsack problem and 
instances of the cutting stock problem, we shall denote by (al, a 2 , . . . ,  an : b) the 
cutting stock problem arising from the knapsack relation ax ~ b; in other words, 
problem (al, a 2 , . . . ,  an : b) is problem (CS) where the rows of M are the maximal 
points of {x c ~_~_[ax ~ b}. 

2. Preliminary lemmas 

The following lemmas will be needed in the remainder of this article. Let J be a 
subset of {1, 2 , . . . ,  n}. We let Z J denote the set {xcT/"]x~=O for I~J} ,  and ~J 
denote the set { x ~ E " [ x l = 0  for l~J} .  

Lemma 2.1. Let P be a polyhedron in ~+, and let us assume that P has the decomposition 
property. Then for any subset J of  {1, 2 , . . . ,  n}, the polyhedron P c~ R J has the decom- 
position property. 

Proof. Let w be an element of kP c~ 77 J. Then w ~ kP, and since P has the integral 
decomposition property, there exist x ~ ( i = l , 2 , . . . , k )  such that w=~k=l  x~ 

and x ~ P c ~ 7 / n  for each i. But w~=O for l ~ J  implies that x i=O for l ~ J  and 
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i = 1, 2 , . . . ,  k. Therefore w is the sum of  k vectors, each of  which belongs to P c~ 7H. 

Thus P ~ NJ has the integral decomposi t ion  property.  []  

Lemma 2.2. Let  P'  be a polyhedron in ~+, and let P be the polyhedron 

{ ( X 1 ,  X2, • • • , Xn, X n + I ) I ( x 1 ,  X 2 , . . . ,  Xn 71- X n + l )  • P'}. 

I f  P '  has the decomposition property, then so does P. 

Proof. Let us assume that  P '  has the decompos i t ion  property,  and let w belong to 

k P  ~ ~_~+~ for some k • 7/+. Let z be defined as follows: 

Wi Wn ~t- Wn+l  
z ~ = ~  f o r i = l , 2 , . . . , n - 1 ,  z~ k 

By definition o f  P, z belongs to P ' ,  and thus kz  can be expressed a s  ~ / k = l  X i, where 

x i •  P 'r~ Z n for  each i. I f  we define the collection o f  vectors {yi}~=a as follows: 

yj  = x} for j = l ,  2, . . . , n - 1 ,  

i " i 1 i i i y ~ = m m  x~, w n -  ~ yn , y n ÷ l = x ~ - y ~ ,  
l=1 

it is easy to verify that w=b~k yi. [] i=1 

For any positive integer b, we define the master knapsack po lyhedron  (denoted 
by pb)  to be the convex hull o f  {x •7 ] "  Wb + ~,i=~ ixi <~ b}. The following lemma is a 

s t raightforward consequence  o f  Lemmas 2.1 and 2.2. 

Lemma 2.3. Let  b be any positive integer. I f  the master knapsack polyhedron pb has 

the integral decomposition property, then so does the polyhedron P =  

conv{x • 7/ + [ ax  <~ b }, where a • ~-2-. 

Proof. (a) I f  all the componen ts  of  a are distinct, the result follows from Lemma 2.1. 

(b) I f  two components  o f  a are equal, we may  assume without  loss o f  generality 

that an_ 1 =an. Let P '  be the po lyhedron  {x • Z+I aaXl + a2x2+" • • + an lxn 1 ~< b}. It 

is clear that  P = {(xl ,  x2, . . . ,  x,)l  (Xl, x 2 , . . . ,  x ,  ~ + xn) • P'}. The result then follows 
f rom (a) and Lemma 2.2. I f  a,-= a~ for more  than one pair  { i , j }  of  indices, the result 
follows by applying Lemma 2.2 repeatedly. []  

By the argument  given in the introduction,  Lemma 2.3 is equivalent to the following 

statement: the problem (1, 2 , . . . ,  b : b) has the I R U  proper ty  if and only if for any 
positive integer n and any vector  a • ~ ~_ whose components  satisfy ai ~< b, the problem 
(aa, a2,. • •, a,  : b) has the I R U  property.  

Lemma 2.4. Let  (CSI) be the cutting stock problem (al,  a2 . . . .  , a ,  : b), where al = 1, 
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and (CS2) be the problem ( a 2 , . . . ,  a, : b). Then (CS0 has the rounding property if 
and only if (CS2) has the rounding property. 

Proof. Let p1 and p2 be the knapsack polyhedra corresponding to (CS0 and (CS2) 
respectively. If p1 has the integral decomposition property, then by Lemma 2.1, p2 
also has the property. Conversely let us assume that p2 has the decomposition 
property, and let w' c kP 1 c~ ~_n. Then there exist Ai (for i = 1, 2 , . . . ,  p) and z i (for 

i = 1 , 2 , . . .  ,p )  such that w '-Vp-~i=l h f ,  hi>~O for i =  1,2, . . . ,  p, ~=1 & = k  and 
z ~ p l c ~ Z  ". Let us define the 7]n- l -vectors  w and y~ for l<~i<~p by wj=wj for 

. ,  . .  W P " for j = 2 , 3 ,  . n. Thus =~g=lA~v' and w ~ k P  2.Since j = 2 , 3 , . ,  n a n d y j = z ~  
p 2  has the decomposition property, there exist xJc z"- lc~ p 2  ( f o r  i = 1, 2 , . . . ,  k )  

k X i. such that w = Y~= 1 
We define U~l (for i = 1, 2 , . . . ,  k) recursively as follows: 

u l = m i n { w ~ , b -  ~ ajx]} u~l +~ m i n { w ~ - ~  u { , b -  ~ i+1] , = a jx j  I" j = 2  j = l  j = 2  

! x7, k -  1 i b n It is easy to verify that Wl-L~=l Ul ~< -~ j=2  ajx~, and we conclude that u k= 
k-1 i i ~ for j = 2, 3, . n and i =  1, 2, k. Clearly, W ~ - - ~ i = 1  Ul" We now define u j=  xj .. , . . . ,  

k ~ - ' We have just shown that W~=~,ik=l u~.There- for 2~<j~< n,y~ikl Uj= Y~i= 1Xj = Wj-- Wj. 
fore w' k i = ~ = l U ,  and since u'~P~c~7/" for l<~i<~k, it follows that p1 has the 
decomposition property. This completes the proof  of  the lemma. [] 

3. Cutting stock problems of the form (al, a2" b) 

We claim that a cutting stock problem of the form (al, a2 : b) has the IRU property. 
This fact is a simple consequence of the following theorem. 

Theorem 3.1. Let P be a lower comprehensive polyhedron in ~2 with integral extreme 
points, and let M be the matrix whose rows are the maximal integral points of P. Then 
the covering problem 

min 1 • y 

s.t. yM >i w, 

y >! O, y integral, 

has the IRU property. 

Proof. It suffices to show that P has the integral decomposition property. Let w c kP. 
Then there exist real numbers A1 and A2 (0<~AI, A2<~I) and vectors yl and y2 
belonging to Pc~Z 2 such that )tlq-A2--1 and w/k=A~y~+A2y 2. Therefore w =  

/zlyl-t-/z2y 2, where/.z 1 = k/~l ,  ],~2 = k/~ 2 and thus/Xl +/z2 = k. If/x1 and/z2 are integers, 
w is clearly the sum of k vectors belonging to P ~ Z 2, namely/z  I copies of yl and 
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IZ2 copies o f y  2. If/Xl and/~£2 are not integers, w can be expressed as I/x1] y~ + [/z2J y2 + 
y3, where y3 belongs to P c~ 7/2 and [/x~] denotes the greatest integer smaller than 

or equal to IXi. In that case also w is the sum of k vectors belonging to P n 7/2. We 

have thus shown that P has the integral decomposition property. [] 

The following corollary was first pointed out to us by G. Nemhauser. 

Corollary 3.2. Cutting stock problems of  the form ( a~, a2: b ) have the IRU property. 

4. Cutt ing s t o c k  prob lems  o f  the form (a l ,  a 2 , . - - ,  an "b), where  alla2J • • • Jan 

Cutting stock problems such that allae] • • • [a, (i.e., such that a~ divides ai+l for 
i = 1, 2 , . . . ,  n - 1) are said to have the property of successive divisibility. In this 

section we show that the IRU property holds for cutting stock problems which have 
the property of successive divisibility. We also describe a set of inequalities which 
define the convex hull of the set {x c 7/~Jax <~ b} when aila~÷~ for i=  1, 2 , . . . ,  n -  1. 
By Lemma 2.4, we may take al to be 1; we shall thus assume that a l =  1 in 
what follows, unless otherwise indicated. P denotes the convex hull of the set 

{xcT/~_lax<-b}. 

L e m m a  4.1. Let x ~ rP where r is a positive real number. Then 

where 

xj<~r _ ~ q~x, f o r j = l , 2 , . . . , n ,  (4.2) 
l=j+l 

q~=a;  for l > j 
aj 

(;=j~+l qjxt =0  when j =  n) .  

Proof .  The lemma follows from the definition of  rP and from the fact that P is the 

convex hull of  integral points which satisfy 4.2 with r = 1. [] 

In order to prove that P has the integral decomposition property whenever ai[ ai+l 
for i = 1, 2 , . . . ,  n - 1, we shall use the following 'greedy' procedure: let x be any 

vector belonging to R+. Then x' is defined by 

x" = min{xn, [b J}, 

b-Y~*=i+l a;x} ' - m i n  xj, f o r j = n - 1 ,  n - 2 , . . . ,  1. (4.3) x j -  aj 
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Lemma 4.4 and Theorem 4.5 imply that this simple procedure (also known as the 
First-Fit Decreasing algorithm) will yield an integral decompositon of w, for any 
w c k P  n 7/~, and hence an optimal solution of (CS). 

Lemma 4.4. Le t  x ~ R+ be such that  xj ~ 7 / f o r j  >~ 2, and  suppose that  ax  = rb f o r  some 

real number  r >  1. Fur thermore  let us as sume  that  x satisfies property 4.2 f o r  j = 1, 

2 , . . . ,  n, and  x '  is the vector defined by 4.3. Then the fo l lowing  hold: 

(i) O<~x'<~x a n d x ' ~ 7 / + ;  

(ii) ax'= b; 
(iii) x - x '  satisfies property 4.2 f o r  j = 1, 2 , . . . ,  n, where r - 1 replaces r in each 

inequality. 

Proof. (i) The fact that xj ~< xj for every j follows directly from the definition of x', 
b n and a simple induction argument shows that -~ l=j+l  a/xl is always nonnegative. 

(ii) Let Rj be the remainder of the division of b by aj; namely Rj = b - [b /ajJaj .  

For j~>2, we let a j - l =  (al, a 2 , . . . ,  aj_l) and x j-1 = (xb x2, . . . ,x j_~) .  It is easily 
Checked that 

a J - i x  j-1 >1 rRj for every j ~> 2, (4.5) 

and that 

n l n ,j Z a / x / = b - R j  whenever ' -  b - 2 1 = i + l a / x  ' x) - . (4.6) 
l=j  a j  

Let k be the smallest index such that k > 1 and 

[b- ° ] Xk > ~ t=__kk+_l atx} . 

. a k  

If  k does not exist, xj = xj for j /> 2, and thus 

Xl = min Xl, b - a~x~ = b - a~x/ 
1 = 2  

(since ax  = rb > b) 

= b - ~ alx~ (since xl = xt for 1/> 2). 
l = 2  

Hence a x ' =  b in this case. 
If k does exist, however, 4.5 implies that ak-lxk-l~ rRk and 4.6 implies that 

t ~ atx} = b - Rk. From the definition of k we know that xj - xj fo r j  = 2, 3, k 1 l=k " " . 7  • 

It follows by an easy calculation that x~ = R k  --Y,/k=-~ azxl, and hence that a x ' =  b. 

Thus (ii) holds in this case also. 
(iii) Let w = x - x ' .  We must show that 

. . . .  n 
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We only sketch the p r o o f  since the computa t ions  are tedious. Let us consider  first 

the case where wj = 0. I f  wl = 0 for every index l greater than j, there is nothing to 

prove. I f  wt > 0 for some l greater than j, we let k denote  the smallest index such 

that k > j  and wk>0 .  By definition o f  k, w1=0 f o r j < ~ l < k ;  also, by definition of  

k, Wk > 0, which implies that  x~ < Xk. Thus 

[ j x~, = --El=k+, alxl  

a k  

and finally ~"  a~x}= b - R k  by 4.6. From this we are able to conclude that l=k 
wj = O~ < (r - 1 ) [b / a j ]  --2lnj+l q~w,. 

We now turn to the case where wj > 0. In this case x~ < xj and thus 

,I ] -- El=j_...__+l a l x l  
x j  = L aj " 

which implies that 

a ,x~  = b - R j  = aj  
I=j 

by 4.6• Using 4.2 and the above equality, it is possible to show that  

wJ~<( r -1 )  ~ - ~  l=j+, " 

This completes the p r o o f  o f  (iii) and the p r o o f  o f  the lemma. []  

The previous lemmas imply that po lyhedron  P has the decompos i t ion  proper ty ;  

actually Lemma 4.4 implies the following theorem, which is stronger than the 

statement that  P has the integral decomposi t ion  property.  

Theorem 4.7. L e t  x be a vec tor  sa t i s f y ing  the  h y p o t h e s e s  o f  L e m m a  4 . 4 f o r  s o m e  pos i t i ve  
• i real  n u m b e r  r. L e t  k = [r]. Then  there ex i s t  vec tors  x 1, x 2, . . ,  x k such  t ha t  x = E i k l  x ,  

x i c T / ~  a n d  a x  i =  b f o r  i =  1, 2 , . . . ,  k - 1  a n d  Xk>~O a n d  a x  k = ( r - k + l ) b .  

Proof. The p r o o f  is by  induct ion on k. For  k = 1, there is nothing to prove, since 
we may take x k = x. When k = 2, we have 1 < r <~ 2, and by Lemma 4.4, there exists 

an x'  such that  0 <~ x '  ~< x, x '  ~ 7/~ and ax '  = b. It is clear that  x 1 = x '  and x 2 = x - x '  
1 n verify the conclusion of  the theorem, since x = x 1 + x 2, x c 7/+, a x  ~= b and a x  2= 

a x  - a x  I = rb - b = ( r - k + 1) b. Thus the theorem is true for k = 2. Let us now assume 

that k >  2 and that the theorem is true for all k ' <  k. By Lemma 4.4 again, there 
exists a vector  x ' c  7/+ such that 0<~ x'<~ x,  a x ' =  b and x - x '  satisfies inequalities 

4.2 f o r j  = 1, 2 , . . . ,  n, where r - 1 replaces r in each inequality. But then k' = [r  - 1] = 

k -  1 < k, and we may apply the induct ion hypothesis  to conclude that there exist 
t k i x i  n k - 1  vectors x 2, x 3 , . . . ,  x k such that x - x  =~ i=2  x ,  ~7/+ and a x ' =  b for i = 2 ,  
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3 , . . . , k - 1  and a x k = ( ( r - 1 ) - ( k - 1 ) + l ) b = ( r - k + l ) b .  Let x ~ = x  '. Then x =  
__ ~ k  i X i n " x ' + ( x - x ' ) -  i = l x ,  where c7/+ and a x ' = b  for i = 1 ,  2 , . . . , k - 1  and ax k= 

( r - k +  1)b. This completes the proof  of  the theorem [] 

The fact that P has the integral decomposit ion property is a straightforward 

consequence of Theorem 4.7. 

Corollary 4.8. The polyhedron P has the integral decomposition property and (CS) 
has the IRU property, provided successive divisibility holds. 

Proof. Let x ~ kP c~ Z~_. Then there exist real scalars A~ and n-vectors yi such that 
&~>0fo r i  1,2, P ~ .. k P = . . . , p , Y . i = l A i = l , y  ~ P c ~ Z ~ f o r i = l , 2 ,  . , p a n d x =  ~= l ) t~y .  
Let us define z ~ as follows: 

z j = y j  for j = 2 , 3 , . . . ,  n, z ~ = y ~ + ( b - a y ) .  

Let us also define Y as k Yf Aiz i. By Lemma 4.1, Property 4.2 (with r replaced by i=1 

k) holds for Y; therefore Y satisfies the hypotheses of  Lemma 4.4, and by Theorem 
4.7, there exist vectors yl ,  y 2 , . . . ,  yk such that Y~ c 77~_ for i <~ k - 1, aY ~ = b for every 

k ~i i and x = ~ i = l  x .  
We define x i recursively for i = 1, 2, . . . ,  k as follows: 

{ 11} i -i for j = 2 , 3 , ,  n, ~ = m m  xl, • X j = X j  . , ~  X 1 X 1 - -  ~, X 
1=1 

It is a simple matter to show that x~ is an integer for i =  1, 2, . . . ,  k, and that 

Xl =Y.~=a XZl • We have thus shown that x is the sum of k vectors, each of which 
belongs to P c~ Z ' .  Since this is true for all k i> 1 and all x c kP ~ 77+, we have proved 

that the decomposit ion property holds for P, and hence that the IRU property holds 
for (CS). [] 

Lemmas 4.1 and 4.4 have enabled us to prove that P has the integral decomposit ion 
property;  but they can also be used to describe P by means of linear inequalities. 

Theorem 4.9. 

satisfy 

U Yj<~ ~ q~Yi f o r j = l , . . . , n ,  
/ = j + l  

where q}= affaj for l>j .  

The polyhedron P is precisely the set of  nonnegative vectors y which 

(4.10) 

Proof. Let Q be the set of  nonnegative vectors y for which 4.10 holds. It follows 
from Lemma 4.1, by taking r = 1, that P is a subset of Q. Conversely let y be an 
extreme point of  Q. It is well known (see for instance Gale (1960)) that y is the 
solution of  a subsystem of  4.10 consisting of n linearly independent equalities. Since 
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all the coefficients of  system 4.10 are integers, the components of  y are rationals. 

Let k be the least common multiple of  the denominators of  the components of  y. 

Then ky c ~_~ and satisfies property 4.2 f o r j  = 1, 2 , . . . ,  n, where r has been replaced 

by k. Let us define )7 as follows: 

~ = k y j  f o r j = 2 ,  3 , . . . ,  n, )71=ky l+k(b-ay) .  

It is clear that )7e7/~. Furthermore, since )~ = ky~ for j = 2 ,  3 , . . . ,  n and the 
inequalities for j = 2, 3 , . . . ,  n contain components  of  index j = 2, 3 , . . . ,  n only, )7 

satisfies the inequalities 4.2 for j =2 ,  3 . . . . .  n, where r has been replaced by k. 
Finally, the inequality 4.2 f o r j  = 1 and r = k reduces to Xl <- kb-Y.~ t=2 atxt, which is 
clearly satisfied by )7. We have thus shown that )7 satisfies all the hypotheses of  

Lemr)aa 4.4, and hence all the hypotheses of  Theorem 4.7. We conclude that there 
exist vectors x 1, x2 , . . .  , x  k belonging to Pc~77" such that )7=~k= 1X j. Therefore 

)7 ~ kP and since P is lower comprehensive, y <~ )7/k implies that y e P. We have 
thus shown that every extreme point of  Q belongs to P. Since P is a convex set and 

Q is the convex hull of  its extreme points, it follows that Q is contained within P. 
Thus P = Q, and the theorem is proved. [] 

5. Cutting stock problems of  the form (a~, a 2 , . . .  , ap, ap+l . . . .  , an : b), where all b for 

every i and aila~+l for i ~ p ,  n 

Let P be the convex hull of  {x 6 Z+] ax <~ b}, where a~ divides b for every i and 

ai divides a~+l for i # p ,  n; that is, a,la21""" lap and ap+llap+21""" la.. Theorem 4.7 
implies the following theorem: 

Theorem 5.1. P has the decomposition property. 

Proof. Since ai divides b for every i, the polyhedron P is equal to the polyhedron 
{x c R~_lax <~ b} and its extreme points are 0 and the vectors (b/ai)e ~, where e i is 

the ith unit vector. Let w be a vector belonging to k P n Z g .  Then there exist 
n 

nonnegative scalars A~ (for i = 1, 2 , . . . ,  n) such that ~=1A~ ~< k and 

w = A~ = Ai + A~ 
i = 1  i=1  i = p + l  

f P whose indices are p + 1, p + 2 , . . . ,  n are all equal The components  0 E~=I Ai(b/a~) ei 
to zero, while the components  of  Y~=p+l &(b/a~) e~ whose indices are 1, 2 , . . .  , p  
are equal to 0. Hence if we let w I = (wl, w2 , . . . ,  wp) and w 2 = (wp+~, Wp+2,..., wn) 
we have (for appropriately dimensioned unit vectors): 

wa  i( )ei and w2 
i = 1  i = p + l  
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p p 
[Y.i=l clearly satisfies the hypotheses of Theorem Let rl = Y.i=l Ai and kl = Ai]; w 1 

4.7 with r replaced by rl. Thus there exist vectors x 1, x 2 , . . . ,  x k' such that w I = Y~ ik~=l X i, 
X iEZp+ and aXx ~= b for i =  1, 2 , . . . ,  k1-1  and x k~7]p+ and alx k ' = ( r a - k l + l ) b ,  
where a 1 = (al, a 2 , - . . ,  ap). Similarly, if we let r2 denote 5~7=p+1 A~ and k2 denote 

I1 [Y~i=p+~ Ai], w 2 satisfies the hypotheses of Theorem 4.7 and we may conclude that 
there exist vectors yX, y 2 , . . . ,  yk z such that w 2 =vk2~=X ~" ,1/ y~ ~7/+ -p and a2y ~ = b  for 
i = 1 ,  2 , . . . , k 2 - 1  and ykEEZ+-P and aEyk2=(r2-k2+l)b, where a2=(ap+l, 

a p + 2 ,  • . . , an). 
If k 1 h- k 2 ~< k, we can clearly write w as E ikL1 ( xi, O)+ Y~LI (0, y'), where (x i, 0) (for 

i = 1, 2 , . . . ,  kl) and (0, y~) (for i=  1, 2 , . . . ,  k2) are elements of 7]+. Thus w is the 
sum of at most k vectors, each of which belongs to P c~ Z~. On the other hand, if 
k~+k2>k,  we have k ~ + k 2 = k + l  and ( r a - k ~ + l ) + ( r z - k 2 + l ) < ~ l .  Thus we can 
write w as Y'.kL~l (x ~, 0~+V k : - a ,  ~-"i=1 (O'yi)+(xkl'yk2)" Since a(xk~,y k2) = a l x k l d - a 2 y  k2= 

( r l -  k~ + 1)b + ( r2-k2 + 1)b <~ b, w is the sum of k vectors, each of which belongs 
to P n 7~. This completes the proof  of the theorem. [] 

It follows from Theorem 5.1 that the cutting stock problem 

rain 1 • y 

s.t. y M  >i w, 

y 1> 0, y integral, 

where the rows of  M are the maximal integral points of P, has the IRU property. 

6. Conclusion 

We have shown that the rounding property holds for several classes of cutting 
stock problems. It is also possible to show that the rounding property holds for 
small values of  b (a proof  may be found in Marcotte (1982) for b <~ 8). Finally, it 
can be shown that when the right-hand side of the knapsack inequality is large 
compared to the coefficients of the left-hand side, the optimal value of (CS) is less 
than or equal to [ r* ]+  1, where r* is the optimal value of the linear relaxation of 
(CS) (Marcotte (1982)). The relationship between (CS) and its linear programming 
relaxation thus seems worthy of further investigation. 
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