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Let D, be the complete digraph on n nodes, and let P[o denote the convex hull of all incidence 
vectors of arc sets of linear orderings of the nodes of D~ (i.e. these are exactly the acyclic 
tournaments of Dn). We show that various classes of inequalities define facets of P[o, e.g. the 
3-dicycle inequalities, the simple k-fence inequalities and various Mgbius ladder inequalities, and 
we discuss the use of these inequalities in cutting plane approaches to the triangulation problem 
of input-output matrices, i.e. the solution of permutation resp. linear ordering problems. 

Key words: Facets of Polyhedra, Linear Ordering Problem, Triangulation Problem, Permutation 
Problem. 

1. Introduction and notation 

This p a p e r  is a con t inua t ion  o f  our  p a p e r  Gr6tsche l ,  J i inger  and  Reinel t  (1985) 

on  the acycl ic  subg raph  po ly tope .  The p o l y t o p e  assoc ia ted  with l inear  order ings  is 

a face o f  the  acycl ic  s u b g r a p h  po ly tope .  Our  ma in  objec t ive  is to invest igate  which  

o f  the  inequal i t ies  shown to define facets o f  the acycl ic  subg raph  p o l y t o p e  in our  

fo rmer  p a p e r  also def ine facets o f  the l inear  o rder ing  po ly tope .  We a d o p t  the 

no ta t ions  in g raph  theory  and  p o l y h e d r a l  t heo ry  o f  that  paper .  

A linear ordering (or  permutation) of  a finite set V with [V] = n is a bi ject ive 

m a p p i n g  or: {1, 2 , . . . ,  n} ~ V. F o r  u, v c V we say tha t  u is ' be t t e r  than '  or  ' be fo re '  

v i f  o- l ( u ) <  o-- l (v) .  A m o n g  all  poss ib le  l inear  order ings  o f  V we want  to find a 

l inear  o rde r ing  which  is the  best  accord ing  to some cr i ter ion.  In  many  app l i ca t ions  

a ' va lue '  or  a ' cos t '  can be a s soc ia t ed  with a l inear  o rde r ing  in the fo l lowing way. 

Fo r  every two e lements  u, v c V a va lue  eu~ and  a value  e~ are given which  can be 

in te rp re ted  as the  profi t  we ob ta in  f rom having u ' be fo re '  v resp. v ' be fo re '  u in a 

l inear  order ing .  Then the to ta l  va lue  o f  a l inear  o rde r ing  c lear ly  is given by 

Cuv • 
O---I(•)<O---I(v ) 

Given  a l inear  o rde r ing  o f  the nodes  V o f  a d ig raph  then  the arc  set 

{(u, v)lcr  l ( u ) <  o-- l (v)}  forms an acycl ic  t o u r n a m e n t  on V, and  s imi lar ly ,  if  (V, T) 

is an acycl ic  t o u r n a m e n t  then  this induces  a l inear  o rde r ing  o f  V. Using  this g raph  

theore t ica l  i n t e rp re t a t ion  we can state the  linear ordering problem as fol lows.  
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Given a complete digraph D,  = ( V, A,)  with arc weights c 0 for all (i , j)  c A,, find 
a spanning acyclic tournament ( V, T) in D,  such that 

c(T):= ~ c o 
(i,j)eT 

is as large as possible. This problem is NP-complete, cf. Garey and Johnson [1979]. 
For ease of  notation, whenever we shall use the word tournament in the sequel 

we shall mean the arc set of a spanning tournament. 

The linear ordering problem is sometimes also called the permutation problem 
(Young (1979)) or the triangulation problem (Korte and Oberhofer (1968), (1969)) 
and is closely related to the feedback arc set problem and the acyclic subgraph problem, 
see Gr6tschel, Jfinger and Reinelt (1985) for a discussion of these relations, and 
see Lenstra (1973), Marcotorchino and Michaud (1979) and Wessels (1981) for real 

world applications of the linear ordering problem in triangulation of input-output 
matrices, scheduling (minimizing average weighted completion time), sports, 
archeology, social sciences, and psychology. 

In subsequent constructions we will frequently have to manipulate acyclic tourna- 
ments. The following notation will be convenient: (il ,  i2 , . . . ,  i,) denotes the arc set 
of the acyclic tournament {(ij, ik)[j < k}, i.e. (i~, i2, . . . ,  i,) is the acyclic tournament 
induced by the linear ordering defined by the mapping or(j) = ij for j = 1 , . . . ,  n. 

2. Dimension, valid inequalities 

Let D, = (V, An) be the complete digraph of order n, and set 

sg, := {A_  A, IA is acyclic}, (2.1) 

3-, := { T _c AN I T is an acyclic tournament}. (2.2) 

Clearly, 3-, c_ ~n and for every A c s~, there exists a T ~ 3-n with A _c T. Given weights 
c 0 for every arc ( i , j ) c  An, then the acyclic subgraph problem (for Dn) is to solve 
max{c(A) I A ~ sen} while the linear ordering problem can be stated as max{c(T) I r 
3-,}. In the following way polytopes can be associated with the acyclic subgraph 
problem and the linear ordering problem. 

Let E", m := IAnl = n(n - 1), denote the real vector space where every component 
of a vector x e R "  is indexed by an arc ( i , j ) c A , .  For convenience we write x 0 
instead of xq,j). For every arc set A_c An the incidence vector x A c R m of A is defined 

A as follows: x 0 = 1, i f ( i , j ) c A ,  and X~j--A--o, i f ( i , j ) ~ A .  The acyclicsubgraphpolytope 
P~c on Dn is the convex hull of the incidence vectors of all acyclic arc set in D,, i.e. 

PRc=  conv{ xa  c ~ I A  c d ,} .  (2.3) 

(This polytope is denoted PAc(D,) in Gr6tschel, Jiinger and Reinelt (1985). We 
use here the shorter notation (2.3).) Similarly, the linear ordering polytope P~o on 



M. Gr6tschel, M. Jiinger, (3. Reinelt / Facets of the linear ordering polytope 45 

D,  is the convex hull of  the incidence vectors of all acyclic tournaments in D,, i.e. 

P [ o  =conv{ XT E ~m[ T~ ft,}. (2.4) 

Thus, every vertex of P~c resp. P [o  corresponds to an acyclic arc set resp. acyclic 
tournament i n D ,  and vice versa. 

In order to be able to apply linear programming techniques to solve the linear 
ordering problem, we try to find a nonredundant  system of equations and inequalities 
which is as large as possible and satisfies P[o  c {x ~ a~" l Ax <~ b, Dx  = d }. 

First we want to determine the dimension of P [o  and to find a minimal equation 

system for P[o.  

(2.5) Theorem. Let n >12, then the system 

x ~ + x ~ = l  fora l l i ,  j c  V, i # j ,  

is a minimal equation system for P~o. 

(2.6) 

Proof. We have to prove (a) that every incidence vector of  an acyclic tournament 
satisfies the equation system (2.6), (b) that the matrix defined by (2.6) has full rank, 
and (c) that every other equation d TX = do with P[o  c_ {x I d rx = do} can be written 
as a linear combination of  the equations (2.6). 

By definition, if i ,j  are two different nodes of  a tournament T, then T contains 
arc ( i , j )  or arc (j, i) but not both, thus every incidence vector of a (acyclic) 

tournament satisfies the equations (2.6). This proves (a). The proof  of  (b) is even 
more obvious. 

To prove (c) we assume that P~o c {x [ d Tx = do} where d is a nonzero vector in 
W". We first show that d satisfies dij = dj~ for all i # j .  Let i # j  be any two nodes in 
V, then the incidence vectors of the acyclic tournaments T~ := (i, j, a)  and Tj := (j, i, a), 
where a is a linear ordering of  V\{ i , j } ,  satisfy d r x T ~ = d T x S = d o .  Hence 0 =  
d rx r, _ d rx rj = do _ ~ which implies 

d~j = dj, for all i # j .  

Let aTx  = 1 denote the equation x~j + xji = 1 for i <j ,  then we obtain from the relation 

above that d =Y~<j d~a o (implying do=}~<j d~j) holds, and we are done. [] 

(2.7) Corollary. For n >12, 

[]  

The proof  of Theorem (2.5) shows in addition that the equation system (2.6) is 

also a minimal equation system for the tournament polytope, i.e. the convex hull of 
the incidence vectors of  the tournaments contained in D,. (The tournament polytope 
is obviously the polytope associated with the bases of a partition matroid on An, 
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and a complete and nonredundant  linear description of this polytope is given by 
the equation system (2.6) and the nonnegativity constraints.) 

Acyclic tournaments are by definition exactly the acyclic arc sets in A, which for 
every two nodes i # j  contain one of the arcs (i,j) or (j, i) but not both. Thus, the 
incidence vectors of acyclic tournaments are exactly those vertices of P~c satisfying 
the equations (2.6). Since the inequalities x 0 + xj~ <~ 1 for all i ¢ j  are valid inequalities 
for P~,c we can conclude 

(2.8) Remark. For n/> 2, the linear ordering polytope P [o  is a (~)-dimensional face 
of the acyclic subgraph polytope P~c. [] 

Remark (2.8) has an important consequence. Namely, every inequality valid with 
respect to P~c is also valid with respect to P[o ,  and moreover, every complete 
system for P~c induces a complete system for P~o. It is, however, not t rue--as  we 
shall see-- that  every inequality defining a facet of P~c also defines a facet of P[o.  

We now describe the classes of inequalities valid for P~c which were introduced 

in GrStschel, Jfinger and Reinelt (1985). All these inequalities define facets of P~,c. 
In the next section we shall investigate which of these inequalities define facets of 

P[o,  
By definition, an acyclic arc set contains no dicycle. This implies that the intersec- 

tion of the arc set of every dicycle C with every acyclic arc set contains at most 

I C I - 1  arcs. This immediately implies that the inequalities 

x ( C ) :  7 ~ x~j<~lCl-1, C a dicycle in A n  (2.9) 
(ij)~c 

are valid with respect to P~c and P~.o. If C is a k-dicycle we call x(C)<~ k - 1  a 
k-dicycle inequality. 

For every integer k/> 3 a digraph D = ( V, A) of order 2k is called a simple k-fence 
if V consists of  two disjoint node sets U = {ul, u 2 , . . . ,  u~} and W = {Wl, w2 . . . .  , Wk} 
such that 

k 

A =  [._J ({(ui, wi)}u{(wi, v)[v~ U\{ui}}). 
i=1 

The nodes in U are called the upper nodes, those in W the lower nodes. The arcs 
(u~, w~) going 'down' are called pales, the arcs (w~, uj), i ~ L  going 'up'  are called 
pickets, see Fig. 2.1 for simple 3-fence. 

Fig. 2.1. 
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A simple k-fence is a particular orientation of the complete bipartite graph Kk, k. 
IF A__ An is the arc set of  a simple k-fence, then 

x(A) <~ k 2 -  k + 1 = IAI - k + 1 (2.10) 

is called a simple k-fence inequality. All simple k-fence inequalities are valid with 

respect to P~c and thus with respect to P~o- 
Let C], C2, . . . ,  Ck be a sequence of different dicycles in the complete digraph 

Dn such that the following holds: 
(2.11) k~>3 and k i s o d d .  
(2.12) Ci and Ci+l (i = 1 , . . . ,  k -  1) have a directed path P~ in common, C1 and 

Ck have a dipath Pk in common. 
(2.13) Given any dicycle Cj, j c { 1 , . . . ,  k} set 

J = { 1 , . . . ,  k}c~ ( { j - 2 , j - 4 , j - 6 , . . .  } u { j + l , j + 3 , j + 5 , . . .  }). 

Then every set ( U ~ l  C~)\{e~ l i c J} contains exactly one dicycle (namely 
Cj), where e~, i c J, is any arc contained n the dipath P~. 

(2.14) 'The cardinality of every smallest feedback arc set in u~kl  Ck is ( k +  1)/2 
(or equivalently the largest acyclic arc set has cardinality IU~ k ,  C , [ -  

( k +  1)/2.) 
Then we call the arc set M = U k i=~ c~ a M6bius ladder. For convenience we say 

that the dicycles C~, C~+1, i = 1 , . . . ,  k -  1 and C1, Ck are adjacent (with respect to M.) 
Assumption (2.14) implies immediately that for any M6bius ladder M contained 

in Dn the equality 

k + l  
x(M) <~ I M I - - -  (2.15) 

2 

is valid with respect to P~c and thus also with respect to P[o.  
The inequalities (2.10) can be generalized as follows. If D = (V, A) is a digraph, 

(i, k) an arc of  D and j a node not in D, then the digraph D ' =  (V', A') with 
V':= Vu{ j } ,  A':=(A\{(i, k)})w{(i, j) ,(j ,  k)} is called the digraph obtained by 
subdividing arc (i, k). 

A digraph D = ( V, A) is called k-fence if it can be obtained from a simple k-fence 
by repeated subdivision of arcs. 

For an arc set A in D n = ( V , A )  let V(A) c_V denote the set of nodes in Dn 
occuring as endnodes of  arcs in A. Then the following inequalities are valid with 

n PLO. respect to PAC and n • 

x ( A ) ~ l A I - k + l  for all k-fences (V(A) ,A) .  (2.16) 

Clearly, the inequalities (2.10) are special cases of  (2.16). A main result of Gr/~tschel, 
Jfinger and Reinelt (1985) is that all inequalities (2.9), (2.15), (2.16) define facets 
of P~.c- 

Let G,  = [ V, E]  denote the skeleton of  P[o ,  i.e. Gn is a graph whose nodes are 
the vertices of  P[o ,  and two nodes are adjacent in G, if and only if they are adjacent 
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(as vertices) on P[o- It is well-known in algebra that all n! permutations can be 

obtained by starting with any permutation, applying a transposition and continuing 

this procedure further ( n ! - 2 )  times. One can easily show that the incidence vectors 

of  two permutations (linear orderings) obtained by a transposition from each other 

are adjacent on P[o ,  cf. Young (1978). Thus we can conclude that G, is hamiltonian. 
Moreover, Young (1978) showed the deeper result that G,  has diameter two, thus 

in principle, it is possible to reach any vertex of PLO from any other vertex in at 
most two steps walking along edges of P[o.  

3. Facets of P[o  

We shall now determine which of the inequalities (2.9), (2.15), (2.16) define facets 

of  the linear ordering polytope. We start by proving a useful lemma. 

(3.1) Trivial-Lifting Lemma. Suppose aTx <~ ao defines a facet  o f  P~o, n >- 2. Setting 

d O := aofor  all ( i , j )  ~ A ,  and di,,+x := d~+l.i := 0 for  i = 1 , . . . ,  n then dTx <<- ao defines 
a facet  ~ ~n+l 0.7/"LO • 

Proof. First note that a set of  vectors in P~o is affinely independent if and only if 
it is linearly independent since the affine hull of  P~o does not contain the zero 

on+l and is not vector. Moreover,  it is obvious that drx  <~ a0 is valid with respect to --LO 
r,n+ ~ contains pn+l with equality. It remains to prove that ~LO satisfied by all vectors x ~ ~LO 

d l =  dim ~LOO"+I = ("31) linearly independent vectors satisfying d rx ~ a0 with equality. 

Since a Tx <~ a0 defines a facet of  P~o there are d := dim P~o = (~) linearly indepen- 

dent incidence vectors of  acyclic tournaments T1, T2 , . . . ,  Td in Dn satisfying this 
inequality with equality. Considering the incidence vector x r~, i = 1 , . . . ,  d as the 
i-th row of a (d, n(n - 1))-matrix M '  then the linear independence of the vectors 

implies the existence of a nonsingular (d, d)-submatr ix  M of M'.  Let B c A, denote 
the set of  d arcs of Dn corresponding to the columns of M. 

We construct dl = d + n acyclic tournaments Tj, j = 1 , . . . ,  d, and Si, i = 1 , . . . ,  n 
of D~+I as follows. I f  Tj, j E { 1 , . . . ,  d} is given by the linear ordering (i~, i 2 , . . . ,  in) 
then set Tj := (n + 1, il, • • . ,  in). Moreover, choose any acyclic tournament,  say S, in 

D,  whose incidence vector satisfies a ~'x <~ ao with equality. Assume S = (Jl, J2,-- -, j , )  

then set Si : =  ( j l , J 2 ,  • . .  ,ji, n + 1,ji+l, • • • ,jn), i = 1 , . . . ,  n. The incidence vectors of 
the acyclic tournaments Tj, S~ in D,+I satisfy d rx  _< ao with equality by construction. 

Now consider the following (dl, dl)-matrix N. The first d rows of N are formed 
t by the incidence vectors of the tournaments T~, T 2 , . . . ,  T~, and the last n rows 

d + l , d + 2 , . . . ,  d~ are formed by the incidence vectors of  the tournaments 

S~, $2 . . . .  , S,. the first d columns of N correspond to the arc set B ~_ An defined 
above, and the last n columns to the arcs (i, n + l ) ,  i =  1 , . . . ,  n. 

Clearly, the principal (d, d)-submatr ix  of  N is the nonsingular matrix M. The 
(d, n)-submatr ix N~ consisting of the first d rows and the last n columns of N is 
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a zero matrix by construction. The (n, n)-submatrix N2 consisting of the last n rows 

and last n columns of N has the following form (10 
N2 = 

. . , 

and thus is nonsingular. M and N2 nonsingular and N1 a zero matrix implies that 
N is nonsingular. 

Hence, we have shown that the incidence vectors of the dl acyclic tournaments 

T~, & are linearly independent which implies that ~rx<~ao defines a facet of 
pn+l 

L O  • [ ]  

Lemma (3.1) implies the interesting fact that whenever we know that an inequality 
Y~ aux~ j <~ ao defines a facet of P~o then the same inequality also defines a facet far 
all linear ordering polytopes P[o,  k ~> n, in other words, a linear ordering polytope 
'inherits' all facets of linear ordering polytopes of lower dimension. 

The trivial inequalities, i.e. the hypercube constraints 0 ~< x~ <~ 1, define facets of 
P[o.  However, the classes of facets given by the upper resp. lower bounds are 
identical. 

(3.2) Proposition. Let n >12, then the following holds. 

(a) For all (i , j)  c An, xij >~ 0 defines a facet of PLO. NO two of  these facets are 
equivalent with respect to P[o. 

(b) For all ( i , j ) 6An ,  x~<~l defines a facet of  P[o. No two of  these facets are 
equivalent with respect to P[o. 

(c) Two inequalities xo >i 0 and Xpq ~ 1 are equivalent with respect to P~o if  and 

only if  p =j, q = i. 

Proof. It is trivial to see that xij >10 defines a facet of 2 PLO. Thus lemma (3.1) implies 
that the nonnegativity constraints give facets of P~o for all n 1> 2. The nonequivalence 
of two different nonnegativity constraints is obvious. This proves (a). 

Since P~o is contained in the affine space defined by the equation system (2.6), 
we get that x~ = 0 holds if and only if xji = 1 holds. From this and (a), (c) and (b) 
follow immediately. [] 

(3.3) Theorem. Let n >13, then for every 3-dicycle {(i,j), (j, k), (k, i)} contained in 
D,  the 3-dicycle inequality 

X~ + Xjk + Xki <~ 2 

defines a facet of  P[o. 

Proof. This is trivial to show for p3o and follows for P[o, n >~ 3, by Lemma ( 3.1). [~ 
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It was shown in Gr6tschel ,  J/inger and Reinelt  (1985) that  all k-dicycle in- 

equalities,  2 <~ k ~< n, define facets of  the acyclic subgraph  po ly tope  P~c.  We shall 

see now that  the 3-dicycle inequalit ies are the only ones of  this class that  also define 
facets of  P[o-  We first p rove  a lemma.  

(3.4) Lemma.  Suppose a TX <~ ao, a >~ O, defines a face t  o f  P~o, n/> 3, and let ( V, A)  

be the subgraph o f  D~ = ( V, A~) induced by a, i.e. A =  {( i , j )  c A~ l a~ # O }. Suppose 

( V, A )  contains a node j which is contained in exactly two arcs ( i, j ) ,  (j, k ) c  A with 

i ¢ k. Then every vector x e P[o  satisfying a rx <~ ao with equality also satisfies the 

3-dicycle inequal i ty  xv + Xjk + Xki <~ 2 with equality. 

Proof.  Let T ( a )  denote  the set of  acyclic t ou rnamen t s  whose incidence vectors 

satisfy a Zx <~ ao with equality.  We first p rove  that  a o = ajk. 

Suppose  a 0 < ajk. First observe that  each t ou rnamen t  T ~  T ( a )  contains  at least 
one of  the arcs ( i , j )  and (j, k),  for otherwise the t ou rnamen t  T '  result ing f rom T 
by moving  j to the last posi t ion yields a r x r ' >  ao. 

Since arx<~ao defines a facet there exists T = ( v l , . . . ,  vn)c T ( a )  with ( i , j ) ~  T 
but  (L k ) ~  T. And since the outdegree  o f j  is one we may  even assume that  v, = j .  

Setting S = (v,,  vl, . . . ,  v,_l) we obtain a r x  s -  a r x  r = ajk - aij > 0; but  this contra-  

dicts the a s sumpt ion  that  a Tx <~ ao is valid. Similarly, we can prove  that  a~ is not  

larger than  ajk, and hence aij = ajk, say a := a o. = ajk > O. 
Let bTx = a denote  the equat ion a(X~k+Xk~) = a which is satisfied by  all x c  P [o .  

Then  the inequal i ty  a TX + b TX <~ a0 + a is equivalent  to a rx <~ ao with respect  to P [o .  

N o w  denote  the 3-dicycle inequali ty C~(X~j+X~k+Xki)<~2a by crx<~2a,  then we 

obtain  that  a rx <~ ao is equivalent  to the inequal i ty  cTx + d Tx <~ 2a + a o -  a, where 
d is a vector  arising f rom a by setting 

dpq :-- apq for  all (p, q) ~ a , \ { ( i , j ) ,  (j, k) ,  (i, k)} 
3.5) 

d~ := djk := 0, dik := aik + a. 

It is easy to deduce  f rom the validity of  a rx <~ ao that  d rx <~ ao - a is valid for P~o. 

Hence  we obtain  that  a r x  <~ ao is equivalent  to an inequal i ty  which is the sum of  

two valid inequalit ies one of  which is the 3-dicycle inequal i ty  crx<~2o~ and the 
other  d rx <~ a o -  a. This implies that  for  every vector  x ~ P~_o, a rx <~ ao is satisfied 
with equal i ty if  and only if bo th  cTx <~ 2a and d rx ~< ao - c~ are satisfied with equality.  

this proves  the lemma.  [] 

L e m m a  (3.4) together  with theorem (3.3) implies the following: 

(3.6) Corollary.  I f  a rx <~ a0, a/> O, is a valid inequality with respect to P~_o, n >~ 3, 
such that the subdigraph (V, A )  o f  Dn induced by a contains a node j contained in 

exactly two arcs ( i, j ) ,  (j, k)  ~ A,  i ~ k, then a rx <~ ao is either equivalent to the 3 -dicycle 

inequality xij + Xjk + X~i <~ 2 or does not define a face t  o f  P~o. [] 
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(3.7) Corollary. No k-dicycle inequality (2.9), k i> 4, defines a facet of  P~o. 

51 

Proof. Observe that the subdigraph induced by a k-dicycle inequality, k/> 4, contains 
nodes j as required in (3.6) and that no k-dicycle inequality is equivalent to a 
3-dicycle inequality. [] 

Moreover, lemma (3.4) shows that facet lifting by subdivision of arcs does not 
work with respect to P~'o, namely: 

(3.8) Corollary. Suppose arx<-ao, a~O,  defines a facet of  P~o, n ~  3, and let ( i , j )  
be an arc of  An with a~ > O. Set ~pq := apq for all (p, q) ~ An\{( i,j)}, gtij := 0, tii,~+l := 
tin+ld: = de, and ~p.n+~:= ti~+~,p:= 0 for all p C  i, j, n + l ,  then gt rx <~ ao + ae is valid 
for n + l  PLO but does not define a facet ~ + 1  OJ I"LO . [] 

The procedure with which drx<<-do+ a U is obtained from a r ~  < ao is called sub- 

division of an arc. As shown in Gr6tschel, Jfinger and Reinelt (1985), for the acyclic 

subgraph polytope P~,c this subdivision method always produces facet defining 
inequalities from (nontrivial) facet defining ones. By Corollary (3.8) this is not true 

for the linear ordering polytope P[o.  

(3.9) Theorem. Let n >i 6 and let A ~_ An be the arc set of a simple k-fence, k >13. Then 
the simple k-fence inequality 

x ( A ) < ~ k 2 - k + l  

defines a facet of  P[o. 

Proof. Suppose (V, A) is the given simple k-fence in Dn. If we can show that 
x ( A ) < ~ k 2 - k + l  defines a facet of 2k PLO, i.e. of  the linear ordering polytope on the 
complete graph with node set V, then the trivial-lifting lemma (3.1) implies that the 
simple k-fence inequality also defines a facet of P~o- 

Thus we may assume that n = 2k, and for notational convenience we assume that 
V = { 1 , 2 , . . ,  n}, U={1  . . . .  , k}, W = { k + l , . . ,  n} where U resp. W are the set of 
upper resp. lower nodes of the simple k-fence (V, A). Moreover, we denote the 
minimal equation system (2.6) for P~.o by Hx = 1 where H is a ((~), 2(~))-matrix 
of full rank. 

Let F be the face of  P~o defined by the k-fence inequality, i.e. F - -  
{ x ~ P ~ o l x ( A ) = k 2 - k + l } .  To prove the theorem, we assume that there is an 
inequality b TX <~ bo valid with respect to P [o  such that F ___ G := {x c P[o I b rx = bo}. 
If  we can show that there are a number /zi>0 and a vector Z cR  (~ such that 
b T = tza T + A TH, where a rx := x(A) ,  then we are done. 

By adding to b an appropriate multiple of  the row of H corresponding to x o + xji = 1 
we can make sure that either b o = ao or bji = aji for all ( i , j )~  A,. Thus, since (V, A) 
is an orientation of the complete bipartite graph Kk.k and therefore contains no 
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antiparallel arcs and since U and W are stable node sets, we may assume that our 
initial vector b satisfies 

bi~ = a 0 for all (i , j)  ~ A, (1) 

bij=aij=O for all arcs ( i , j ) c  An 

with l <~i<j<~k or k+ l<~i<j<~n. (2) 

It is known, cf. GrStschel, Jiinger and Reinelt (1985, Prop. (2.11)), that an acyclic 
arc set B _c A satisfies arx B = k 2 -  k +  1 if it either contains one pale and all pickets, 

or two pales, say (i, k +  i) and (j, k + j )  and all pickets except for one of the two 
pickets ( k +  i,j), (k+j ,  i). 

An acyclic tournament containing the pale (k, 2k) and all pickets is T =  
(Tr, k, 2k, or) where ~- is any linear ordering of k +  1 , . . ,  2k - 1 and or is any ordering 
of 1 , . . . ,  k - 1 .  Hence aTx r =  k a - k + l  and therefore, by our assumption Fc_ G, 
brxr=bo .  Now suppose Tl=(~r, k, 2k, 1 , . . . ,  k - 2 ,  k - l )  and T2=(~ -, k, 2k, 1 , . . . ,  
k - l ,  k - 2 )  then o=bTxr'--bTxr2=bk_2,k_l--bk_~,k_2. By (2) we have bk_2,k_~ =0  

and hence bk-a,k-2 = 0. With the same argument we obtain 

b j i = a j i = O  foral l  l<~i<j<~k. (3) 

Similarly we can consider the acyclic tournaments 

T 3 = ( k + l ,  k + 2 , . . . , 2 k - 1 ,  k, 2k, cr), 

T 4 = ( k + 2 ,  k + l ,  k + 3 , . . , 2 k - 1 ,  k, 2k, o-) 

whose incidence vectors x T3 and x T4 are in F and therefore also in G. Again we get 

0 = bTx T3- bTx T4= bk+l.k+2-- bk+2.k-1 which, since bk+l.k+2= 0 by (2), implies 

bk+2,k+l = 0. Repeating this argument yields 

b j i = a j i = O  f o r a l l k + l < ~ i < j < ~ 2 k .  (4) 

Now consider the following three acyclic tournaments: 

S l = ( k + l ,  k + 2 , . . . , 2 k - 2 ,  k - l , 2 k - 1 ,  k, 2k, 1 , 2 , . . . ,  k - 2 ) ,  

S 2 = ( k + l ,  k + 2 , . . . , 2 k - 2 , 2 k - 1 ,  k, 2k, k - l ,  1 , 2 , . . . ,  k - 2 ) ,  

S 3 = ( k + l ,  k + 2 , . . . , 2 k - 2 , 2 k ,  k - l , 2 k - 1 ,  k, 1 , 2 , . . . ,  k - 2 ) .  

By construction $1 contains two pales and all but one picket, $2 and $3 contain one 
pale and all pickets. Thus the incidence vectors of Sa, $2 and $3 are in F and 
therefore in G. By taking differences we get 

0 = brx s2- b r X  s3 = b2k_ l ,2k+b2k_ l , k_ l  + bk.2k + bk.k-~ 

-- b2k,2k--1 -- bk-l,2k--1 -- b2k, k -- bk - l , k .  

Six of the eight values bo are known from (1 ) , . . . , (4 ) ,  and hence we obtain 
b2k -Lk  1 = b2k, k" Let us set a : =  b2k, k. Repeating this argument we obtain that each 
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arc in A, antiparallel to a pale has b-value a, i.e. 

bk+i,i---- a, i = 1 , . . . ,  k. (5) 

We now show that each arc in An antiparallel to a picket has b-value a. Namely, 
observing ( 1 ) , . . . ,  (5), consider 

0 = bTx sl -- bTx s2 = b k _ l , 2 k _  1 q- b k _ l , k  q- b k _ l , 2 k -  b 2 k _ l , k _  1 -- bk ,  k_  1 -- b2,k, k 1 

= l +O+ bk_l.2k--C~--O--1, 

then we have bk_ l , 2k  "= Ol ; which by analogous arguments implies 

b o = a  forl~<i~<k, k + l < ~ j ~ n ,  j # k + i .  (6) 

Let A ~ ~ )  be the vector defined by A U = 0 if 1 <~ i < j  ~< k or k + 1 ~< i < j  ~< n, A~ = 
else, then ( 1 ) , . . . ,  (6) imply 

b T = ( 1 - - a ) a T  + A TH. (7) 

NOW consider the acyclic tournament $2 (which has one pale) and the reverse 
- n tournament $2. Since x s~ ~ PLO we get 

bTx s: = bo = k ( k -  1) + 1 + ( k -  1)a 1> bTx ~ = ( k ( k -  1) + 1)a + k -  1. 

This implies a <~ 1, and therefore, (7) is the desired representation of b. This 
completes the proof. [] 

The following observations that follow from Corollary (3.6) are immediate. 

(3.10) Remark. (a) The simple k-fence inequalities are the only ones in the class 
of k-fence inequalities (2.16) that define facets of P~o. (b) No two different simple 
k-fence inequalities are equivalent with respect to P~'o. 

Corollary (3.6) also implies that a M6bius ladder having a node of indegree and 
outdegree equal to one cannot induce a facet of P[o.  Let us therefore call a M6bius 
ladder, cf. (2.11), . . ,  (2.15), simple if the digraph ( V ( M ) ,  M )  does not contain a 
node with indegree and outdegree equal to one. We now show 

(3.11) Theorem. Let M be the arc set o f  a simple M6bius ladder in Dn consisting o f  

k >~ 3 dicycles C1, C 2 , . . . ,  Ck o f  length four  such that each pair o f  adjacent dicycles 

Ci, C~+1, i = 1, . . . ,  k -  1, C1, Ck intersects in exactly one arc, say (a~, hi), i = 1 . . . .  , k, 

and such that the arcs ( a,, hi), i= 1 , . . . ,  k form a matching in Dn, c f  Fig. 3.1. Then 
the simple MiSbius Ladder  inequality 

k + l  k + l  
x ( M )  <~ I M [ - - -  = 3k - - -  

2 2 

defines a facet  o f  P~-o. 
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a l ,~..J 

Fig. 3.1. 

2 

bk-1 

Proof. We shall proceed in a similar way as in the proof  of  theorem (3.9). In view 
of the trivial lifting lemma (3.1) it is sufficient to show that x ( M ) < - ] M ] -  (k+ 1)/2 
defines a facet of  2k PLO- So we assume n = 2k. 

As before we denote the minimal equation system (2.6) for P [ o  by H x  = 1. 

Denoting c r x = x ( M ) ,  C o = 3 k - ( k + l ) / 2  and assuming that there is a valid 

inequality d r x < ~ d o  for P [ o  with { x ~ P ~ o I c T x = c o } C _ { x ~ P ~ o [ d T X = d o }  it is 

sufficient for the proof  of  the theorem to show that there are a number /x  >/0 and 
a vector h ~ N(~? such that d T - ~ .  ]£cT + l~ TH. 

For notational convenience, we set {1, 3, 5 , . . . ,  2 k - 1 } = { a l ,  a 2 , . . . ,  ak}, and 

{2, 4, 6 , . . . ,  2k} = {bl, b 2 , . . . ,  bk}, i.e. the node set of  D~ is V--- {1, 2 , . . . ,  2k}. This 
implies that the intersection of the dicycles Ci, C H ,  i = 1 , . . . ,  k -  1, resp. C1, Ck is 
the arc ( 2 i - 1 , 2 i ) ,  i =  1 , . . . ,  k. 

It is clear that if for any pair of different nodes i, j c  V we can present a partial 
ordering T on V whose incidence vector x T satisfies cTx r = CO and which does not 

imply i < j  or j < i, we have shown the existence of two linear orderings on V in 

one of which i is directly before j and in the other j directly before i. More precisely, 

there are linear orderings 

7"1 = (a,  i , j , /3) ,  T2 = (a , j ,  i,/3), 

where a u/3  consists of  all nodes in V \ { i , j } ,  satisfying e r x  r~ = Co and therefore 
d r x  r' = do, k = 1, 2. In such a case we have 

o = d o -  do = d~x  T , -  dTx ~2 = d ~ -  d~, 

and therefore d~ = dj~. 
With the same argument as in the proof  of  (3.9) we can assume that 

dg = cij for all ( i , j )  c M,  

d o = c~ = 0 
(3.12) 

for all ( i , j)  c A,\{(r ,  s) [ (r, s) ~ M or (s, r) c M} with i <j .  
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First we show that d~ = 0 for all ( i , j ) c  A\{(r,  s)l (r, s)~ m or (s, r)~ M} (i.e. the 

arcs which are neither in M nor antiparallel to any arc in M). Clearly, by symmetry 
it is sufficient to do this for the arcs (i, 1), i c I = {3, 5, 6, 7 , . . . ,  2 k -  3, 2k - 2, 2 k -  1} 
and for (.L 2), j 6 J = {4, 5, 6, 7 , . . . ,  2 k - 3 ,  2 k - 2 ,  2k}. By the discussion above we 
only have to show for every pair {1, i} resp. {2,j} the existence of partial orderings 
on V which neither imply i < 1 nor 1 < i resp. neither j < 2 nor 2 < j  and whose 
incidence vectors satisfy cTx = Co (and therefore d rx  = do). 

The partial ordering defined by the M6bius ladder M minus the arcs (1, 2), (3, 4), 
( 7 , 8 ) , . . . , ( 2 k - 7 , 2 k - 6 ) ,  ( 2 k - 3 , 2 k - 2 )  does this for all pairs {1, i}, i6 
I \ { 2 k - 2 , 2 k - 1 } ,  and for all {2,j}, j c J \ { 2 k - 3 , 2 k } .  For i ~ { 2 k - 2 , 2 k - 1 }  and 
j c {2k - 3, 2k} we can take the partial ordering defined by M minus the arcs (1, 2), 

(5, 6), (9, 1 0 ) , . . . ,  (2k - 9, 2k - 8), (2k - 5, 2k - 4), (2k - 1, 2k). This proves the first 
claim. 

Now let 

=(6,  10, 1 4 , . . . , 2 k - 8 , 2 k - 4 , 2 k ) ,  

/3--(7, 11, 1 5 , . . . , 2 k - l l , 2 k - 7 , 2 k - 3 ) ,  

7-- (8 ,  12, 1 6 , . . . , 2 k - 1 0 , 2 k - 6 , 2 k - 2 ) ,  

=(5 ,9 ,  1 3 , . . . , 2 k - 9 , 2 k - 5 , 2 k - 1 )  

Assume d2~ = ~ and consider the following linear orderings on V: 

T3 = {a,/3, 1 ,2 ,3 ,4 ,  y, 6), 

Ts=(a,/3, 3, 4, 1,2, 3/, 6), 

Ta=(a,/3,2,3,  4,1, % ~), 

T6 = (o~,/3, 4, 1, 2, 3, y, 6). 

In view of  axiom (2.13) it is easy to verify that crx r~ = Co and therefore drx r, = do 
for i c {3, 4, 5, 6}. Now we have 

O=do-do=d~xT3-d~xT4 

= d12 + d13 -I- d14 - d21 - d31 - d41 

= l + 0 + d 1 4 - d 2 1 - 0 -  1 

and therefore d14 = d21 = st- By taking the other appropriate differences we get 

d21 = d14 = d43 = d32 = st 

and in the obvious way d 0 = s t for all arcs (i , j)  such that (L 'i) c M 

Defining A ~ ~(~) by Ao = st if (i , j)  ~ M or (j, i) ~ M and Aij = 0 otherwise, we obtain 

d T = ( 1 - s t ) c r  + A rH. 

Now consider the acyclic tournament T3 and the reverse tournament T3. By construc- 
tion we have dTx r3 = do. Using the results about d derived above we get dTx T3 = 
3 k -  ( k +  1 ) /2+  st(k+ 1)/2 and dTx ~3 = ~ ( 3 k -  ( k +  1)/2) + (k +  1)/2. Since x ~3 ~ P~_o 
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we have by assumption drxr3<~ do. This implies ~<~ 1, and thus for jx = 1 - s  ~ 

d T =  p, cT + A TH 

is the desired representation. [] 

Using the same method of proof  as above we can show the following more general 
result. 

(3.13) Theorem. Let M be the arc set of a simple MSbius Ladder in D, consisting of 
k >i 3 dicycles C 1 , . . . ,  Ck having the following (additional) properties: 

(3.13.1) The length of Ci is three or four, i = 1 , . . . ,  k. 
(3.13.2) Two adjacent dicycles have exactly one arc in common. 
(3.13.3) I f  two nonadjacent dicycles Ci and Cj, i <j, have a common node, say v, 

then v either belongs to all dicycles C~, C i + i , . . . ,  Cj or to all dicycles Cj, 
c j + , , . . . ,  ck, c , ,  c2 . . . .  , c,. 

Then the MSbius Ladder inequality 

k + l  
x ( M ) < ~ I M I - - -  

2 

defines a facet of P[o. 

The proof  of  Theorem (3.13) is not more complicated than that of  Theorem (3.11). 
However, quite a number  of  notational inconveniences arise which make it technical 

ugly. We therefore give a sketch of the proof  only. 

Sketch of the proof. We start as in the proof  of  (3.13)assuming the existence of a 

valid inequality d rx <~ do defining a face of  P~o which contains the face defined by 

the Mgbius ladder inequality. We can make assumption (3.12) about the coefficients 

of  d. 
First we show that for any two nodes p, q which are on a 4-dicycle Ci of  M and 

are not adjacent on Ci, dpq = dqp = 0 holds. This is done by exhibiting a partial 

ordering where neither p before q nor q before p and extending these partial 
orderings to linear orderings appropriately. 

Then we show that for any two nodes p, q such that (p ,q )  is an arc of  M, i.e. 
dpq = 1, we have dqp = ~. Here we use the same technique as in the proof  of  (3.11) 

to show that the arcs antiparallel to arcs of  the M6bius ladder have d-value ~:. 

Finally we show that, for any two nodes p, q of  M which are not on a common 
cycle of M, dpq = dqp = 0 holds. For this we construct a partial ordering in which 

neither p before q nor q before p holds and extend this partial ordering appropriately 
to linear orderings. This is the most complicated construction since a number  of  
cases depending on the 'relative location' of  p and q in M have to be considered 
to show that such a partial ordering indeed exists. Of  course all linear orderings 
constructed above must have the property that their incidence vectors satisfy the 
MSbius ladder inequality with equality. [] 
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It is clear that all MSbius ladders satisfying the assumptions of Theorem (3.11) 

also satisfy the assumptions of Theorem (3.13), thus the latter theorem is more 

general. Figures 3.2 and 3.3 show two simple MSbius ladders which satisfy 
(3 .13.1) , . . . ,  (3.13.3). The inequalities induced by the MSbius ladders shown in Figs 

3.2 and 3.3 define facets of P~_o, n large enough. 

6'3 

Fig. 3.2. 

Fig. 3.3. 

In Fig. 3.3 we have labeled two nodes v and w. If we identify these two nodes 
then the resulting graphs is still a MSbius ladder satisfying (3.13.1), (3.13.2), but 
not (3.13.3). We believe that our assumption (3.13.3) is not a necessary one for the 
result of (3.13), it only makes the technical details of the proof  much easier. We in 
fact conjecture more generally that all simple M6bius ladders induce facets of P[o- 
However, since we do not have a 'nice' constructive characterization of M6bius 
ladders we do not see how one can prove this. 

It is easy to see that within each of the classes of facet defining inequalities of 
P~o described in (3.2)(a), (3.3), (3.9), and (3.13) no two different inequalities are 
equivalent; moreover, no two inequalities from different classes are equivalent with 
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one exception, namely, every simple 3-fence is a simple M6bius ladder described 
in (3.10) consisting of three 4-dicycles. Thus we can conclude: 

(3.14) Theorem. Let n >12, and let Dn = ( V, An) be the complete digraph on n nodes. 
Then the following system of equations 

x~+xj~=l ,  i, j c V ,  i # £  (3.15) 

is a minimal equation system for the linear ordering polytope P[o. The following four 
classes of inequalities define facets of P[o 

xij >t0 

x~ + xjk + Xki <~ 2, 

x(A)<~k 2 - k + l  

k + l  
x(M)<~3k - 

2 

l<~i,j<~n, 

l<~i<j<k<~n,  

for all simple k-fences A c_ A,, k >t 4, 

for all simple M6bius ladders M ~ An 
as defined in (3.13), k/> 3. 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

The system of equations and inequalities (3 .15) , . . . ,  (3.19) is a partial nonredundant 
linear characterization of P~o. [] 

4. Final remarks 

The partial description of P[o given in (3.14) can be used in a linear programming- 
cutting plane procedure to solve linear ordering problems. We have implemented 
such a method and combined it with branch-and-bound-techniques. This code seems 
to be quite successful. We were for instance able to triangulate all input-output 
tables available to us. The largest dimension of such a table was n = 60 (see Gr6tschel, 
Jiinger and Reinelt (1984b) for an economic analysis of these results). We do  not 
know of any other code that can handle such sizes. 

The description of P[o given in (3.14) is not complete. We know some further 
facet defining inequalities different from those in (3.14). Nevertheless, even the 
partial description given by the equations (3.15), the nonnegativity constraints (3.16) 
and the 3-dicycle inequalities (3.17) often suffices to prove optimality in an LP-cutting 
plane approach. In most of our triangulation problems the optimum solution to the 
LP given by the constraints (3 .15) , . . . ,  (3.17) was integral. Since the integral points 
contained in the polyhedron defined by (3.15), . . . ,  (3.17) are exactly the incidence 
vectors of acyclic tournaments, an optimum linear ordering was found. A description 
of our code and the computational experience with it can be found in Gr6tschel, 
Jiinger and Reinelt (1984a). 

We can show that the linear ordering polytope is completely described by the 
system (3 .15) , . . . ,  (3.17) for n =2, 3,4, 5. For n =6  the simple M/Sbius ladders on 
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6 nodes (these are the ones shown in Fig. 4.1) have to be added, but we do not 
know whether these are all facets of p6o. Actually, Bowman (1972) 'proved' that 
a complete description of P[o is given by the system (3.15), (3.16) and (3.17). Of 
course, each of the inequalities (3.18) or (3.19) provides a counterexample to this, 
for n/> 6, see also Young (1978). 

Because of the simple structure of the equation system (3.15) it is quite easy to 
eliminate one half of the variables (without losing too much insight into the structure 
of the inequalities etc.) simply by replacing each variable xij, i > j ,  by 1-x~i. This 
way we obtain a projection -n PLO of PLOn contained in the space R (~. PLO-n is a 
full-dimensional polytope, and each of its vertices corresponds to an acyclic tourna- 
men t  in Dn and vice versa. Our cutting plane procedure for the linear ordering 

- n  n problem, of course, uses this projection and optimizes over PLO instead of PLO, 
since this is more space economical. 

To give an example of such a projected polytope we have made a drawing of the 
polytope /530 c R 3, Fig. 4.2, This polytope has 6 vertices and 8 facets. Two facets 
are given by the 3-dicycle inequalities, all other facets are trivial. 
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