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Abstract. This paper tries to provide with a unified framework for understanding 
how drivers act in response to exogenously provided route guidance information; 
and how they form subjective expectations on traffic conditions from repeated 
learning. The learning problems are placed in the context of  iterative adjustment 
processes which achieve equilibrium if drivers have rational expectations. Route 
choice models with rational expectations find a new justification since the models 
appear as the limits of  drivers' learning procedures. This paper  is also devoted to 
the question of  whether route guidance information can convey substantial infor- 
mation to drivers even if drivers behave with rational expectations of  their envi- 
ronment. The author also tries to propose a framework for designing the optimal 
route guidance systems. 

I. Introduction 

Most models currently used to represent route choices were developed in the con- 
text of  assignment modeling where the main concern is with predicting realistic 
flows on links rather than choices. An important  feature of  such models is the 
representation of  the interactions between link travel cost and link traffic volume. 
Most of  these models have been concerned with predicting average conditions 
over a period of  time rather than actual conditions on a particular day (Bonsall 
1991). Many of  them have sought to generate equilibrium flow patterns which 
might be expected to come about after a period of  time. Achievement of  a War- 
drop equilibrium solution, wherein no driver can unilaterally reduce his travel 
time by modifying his current routing pattern is a widely used test of  the success 
of  such models. 

Most route choice models have assumed that drivers are seeking to minimize 
their travel cost or some weighted combination of  time and distance. Recent 
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developments in assignment modeling have been more concerned with the incor- 
poration of network dynamics and stochastic choices - which recognizes dif- 
ferences in the perception, or levels of knowledge, of Iink cost by selecting values 
for different groups from a certain distribution - ;  the latter idea is first put for- 
ward by Burrell (1968) and subsequently developed in the stochastic user 
equilibrium (SUE) models. The SUE approach firstly formulated by Daganzo 
and Sheffi (1977) has been extended to cope with dynamic network modeling by 
incorporating driver behavior models and network performance models. This 
framework explicitly treats the distribution of traffic by time-of-day and the 
drivers' pretrip and en-route adjustment process (e.g., Fisk 1980; Sheffi 1985; 
Ben-Akiva et at. 1991). 

Given what has been learned from the models and empirical works, it is now 
the time to develop a more comprehensive framework for understanding drivers' 
route choice behavior with and without route guidance information. The basic 
form of the model is determined by the need to be able to represent the perfor- 
mance of route guidance information systems in the context of sporadic and dy- 
namically evolving congestion. It follows that the models must represent drivers' 
perceptions and expectations as they might evolve on a particular day rather than 
being concerned with average or equilibrium conditions. If the average perfor- 
mance of the system over a period of time is required it will be necessary to con- 
sider a number of days and then derive an average performance rather than take 
an average day. There has been no obvious analytical solution to this and a dy- 
namic simulation of drivers' learning and fluctuations in their route choices over 
periods therefore seems necessary. 

The basic rationale behind this belief is that many drivers possess little or no 
reliable information concerning travel routes and alternative travel decisions. As 
drivers' decisions are affected by expected network conditions, the most useful 
type of information to a driver faced with travel choices would be reliable predic- 
tive information. Predictive information must be based on projected traffic con- 
ditions which are dependent on the ways in which drivers will respond to the in- 
formation. The validity of predicted information depends on their consistency 
with current and future drivers' choices which depend on their use of such infor- 
mation (Arnott et al. 1991). Thus, the relationships among drivers' expectations, 
information reliability and drivers' behavior need to be modeled in a way which 
explicitly describes drivers' evolving perceptions and learning mechanisms. 

If the driver preference can be scaled in term of utility and subjective probabil- 
ity and conform to the expected utility hypothesis, then relevant probabilities are 
the conditional ones given the available information. These conditional probabili- 
ties express the drivers' expectations regarding travel cost/time. His expected utili- 
ty conditioned on both his private information and on the information provided 
by public agent. A concept of equilibrium emerges if we investigate the possibility 
of consistency among expectations of various drivers. If drivers are using 
equilibrium expectations to make inferences about the environment, then this 
equilibrium takes the special form of a rational expectations equilibrium. This 
paper tries to provide with a unified framework for understanding how drivers act 
in response to exogenously provided route guidance information; and how they 
form subjective expectations on traffic conditions from repeated learning. The 
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learning problems are placed in the context of  iterative adjustment processes 
which achieve equilibria if drivers have rational expectations. Route choice 
models with rational expectations find a new justification since the models appear 
as the limits of  drivers' learning procedures. This paper is also devoted to the 
question of whether route guidance information can convey substantial informa- 
tion to drivers even if drivers behave with rational expectations of  their environ- 
ment. The author also tries to propose a framework for designing the optimal 
route guidance systems. 

2. Scope of study 

2.L Problem setting 

Route guidance information systems have the potential of reducing or eliminating 
poor route choices and consequently excess travel distance and cost incurred by 
unaware or uninformed drivers. However, it is very likely to happen the concentra- 
tion of  traffic on the recommended routes and the overreaction of  drivers in their 
response to guidance information. It is also expected that the reliability of  the 
guidance system will be faded away as the fraction of informed drivers increases. 
Hence, the impacts of  the guidance information itself on drivers' perceptions and 
expectations need to be explicitly taken into consideration if one tries to design 
navigation systems providing drivers with route guidance information. 

Consider a situation in which a small number of drivers start to receive route 
guidance information. Assume that the information provided is unbiased. The in- 
formation corresponds to various signals which reduce or eliminate uncertainty. 
When a driver is able to efficiently use this information he or she is better off. 
However a driver may be unable to process this information to select the optimal 
route if he or she may be distracted by the large amount of  available information. 
Thus, information need to be provided drivers with in an understandable (stylized) 
wab: Consider a more complicated situation in which the majority of  drivers receive 
public information on traffic conditions. In this case, it is very likely to happen that 
drivers overcorrect their beliefs and drivers' overreaction to public information may" 
cause congestion to transfer from one road to another. Overreaction happens if too 
many drivers respond to public information on current traffic conditions. It may 
also generate oscillations in road usage (Boyce t988). 

The above descriptions outline a number of  important questions which must 
be addressed in relation to future developments of  electronic route guidance 
systems. Is it possible to provide drivers with reliable predictive information? Do 
we have the tools to provide predictive information which is consistent with rea- 
lized traffic conditions? If  the above two questions are answered affirmatively, 
then when, how frequently, and to whom should such information be provided? 
The fraction of  drivers which should be informed is an important policy variable. 

More predictive information is most costly, but may decrease the possibility 
of  an overreaction. When drivers with communication devices receive public in- 
formation and alter their behavior, they affect driving conditions for others, both 
those with devices and those without. Moreover, if uninformed drivers know that 
informed drivers are out there they may adjust their behavior too, albeit on a 
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routine rather than daily basis because they lack day-specific information (Arnott 
et al. 1991). This may cause informed drivers to make further adjustments, and 
so on. Thus, the reliability of the route guidance information systems are en- 
dogenously determined by the whole drivers' behavior within urban networks. 

A driver's behavior changes over time, often from day-to-day, due to learning, 
expectations formation, variable perception of the reliability of the information 
received, etc. Thus, in broad terms, any framework aimed at analyzing the poten- 
tial impacts of route guidance information systems should incorporate dynamic 
models of drivers' behavior and expectations formation. 

2.2. Type of information 

When making route choices, drivers constantly combine sources of information 
to form perceptions and expectations of traffic conditions. Conventional sources 
of information available to drivers include personal experience, word of mouth, 
and media messages. Drivers who rely solely on such information are likely to 
have incomplete information about traffic conditions on the network. Informa- 
tion available to drivers may conceptually fall into three categories: (1) historical 
information - information describing the state of the transportation system dur- 
ing previous time periods; (2) current information - the most up-to-date infor- 
mation about current traffic conditions; (3) predictive information - informa- 
tion concerning during subsequent time periods when travel can occur. Another 
classification is also useful for our current purpose: a dichotomy of information 
into that category of common (public) information and private information. 
Public information, like knowledge about networks, is, in principle, available to 
the public, and forms a part of the common knowledge for all drivers in 
Aumann's sense (Aumann t976). That category of private information may in- 
clude a broad spectrum of a driver's information totally hidden to others. A 
driver's preference, characteristic, historical information and prediction may be 
classified into this category. 

If a state of nature is known and the driver's choices of routes are known to 
all, each driver will know travel time of the available routes and his corresponding 
utility. In contrast to the single driver decision problem, we consider multi drivers. 
Thus, a complete description of a state of nature must contain information not 
only for resolving uncertainties, but also for determining the extent to which each 
driver knows states of nature. There must be some states of nature that are 
distinguishable from others if there is incomplete information. The degree to 
which natural states are indistinguishable will affect drivers' behavior and must 
be part of the description of a natural state. Recognizing the possible ability of 
drivers to differentiate among states allows us to analyze asymmetric information 
beyond that treated by standard decision theories. A complete description of a 
network should resolve these uncertainties. 

In a world not subject to incomplete information, drivers need look no further 
than their own preferences to be able to make a decision. They need give no 
thought to the actions of other drivers. However, in a world subject to incomplete 
information and random fluctuations, this is no longer the case. Drivers are faced 
with the problem of forecasting travel conditions which are dependent on the ac- 
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tions of  other drivers. Rational expectations theories provide for a model of  how 
drivers make these forecasts. Furthermore, in a world of incomplete information, 
drivers possibly try to acquire information about the future realization of travel 
conditions. It will, in general, be the case that different drivers have access to dif- 
ferent information. The fact that information is dispersed throughout drivers has 
the potential to cause a misallocation of  route choices relative to what would be 
the case if all drivers know everything. An efficient allocation of  route choices 
will in general require the transfer of  information from public agents who have 
some information about fluctuations of  traffic conditions to individual drivers 
who can take current actions to mitigate avoidable congestions. 

2.3. The rational expectations hypothesis 

The past decades have witnessed important developments in the study of  the ex- 
pectations formation processes and the problem of  decision-making under uncer- 
tainty. Of the theories of  expectations formation so far advanced, the rational ex- 
pectations hypothesis has attracted by far the greatest attention. The rational ex- 
pectations hypothesis (REH) due to Muth (1961) states that subjective expecta- 
tions held by economic agents will be the same as conditional mathematical ex- 
pectations based on the true probability model of  the economy; or more generally 
- that the agents' subjective probability distribution coincides with the objective 
probability distribution of  events. Although the REH was advanced by Muth it 
was work of  Lucas (1978), Sargent (1973), Barro (1976) and others that brought 
it into prominence. This paper makes no attempts to survey the literature on ra- 
tional expectations. The reader is referred to Shiller (1978), Sargent (1979) for a 
macroeconomics and Sheffrin (1983), Radner (1980) for a survey of the 
microeconomics. 

In the given context of  drivers' route choice behavior, REH assumes that a 
driver who has a good understanding of  a network can efficiently utilize his daily 
experience to make inferences about the consequence of the route choices taken 
by other drivers. These inferences are derived, explicitly or implicitly, from an in- 
dividual's model of the relationship between the information received by himself 
and the traffic conditions realized in the network. On the other hand, the true 
relationship is determined by individual drivers' behavior, and hence by their ex- 
pectations. The drivers have the opportunities to revise their expectations in the 
light of observations. Hence, there are feedback routes from the true relationship 
to the individual expectations. An equilibrium of  this system, in which the in- 
dividual expectations are identical to the true distributions, is called a rational ex- 
pectations equilibrium (REE). In what follows, we characterize a network equilib- 
rium with incomplete information where the respective drivers may form the ra- 
tional expectations about traffic conditions. 

3. Rational expectations equilibria 

3.1. Information structure 

In this section, a new analytical framework for network equilibria with rational 
expectations is presented. The basic element of  our network equilibrium concept 
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is differential information; different users have different information about the 
route traffic conditions; they choose their route on the basis of  their private (dif- 
ferentiated) information. The purpose of  this section is to develop a general 
equilibrium concept that makes explicit the information or knowledge that a user 
has as part of  his primitive characteristics. The model we describe in this section 
is a reinterpretation of  Harsanyi's model of incomplete information game (Har- 
sanyi 1967-1968). The difference from Harsany's approach is the explicit con- 
sideration of  the rational expectations formation by drivers (Kobayashi 1990). 

Consider N drivers and a set of  drivers S. Let us explain how one can formally 
describe a driver's information about other drivers' characteristics, preferences 
and route choices. Driver s e S  has his/her own private information, OOsef25, 
which is not observable by others including public agents. Let g2 be the set of  all 
possible e~ = UsCOs. For driver s, let ~s(~o): o~--'o)s be an onto mapping defined 
on f2. Let co s be the signal observed by driver s if co occurs. Driver s can distin- 
guish between co' and co" if ~5(c9')g: ~s(O)"). If  q~s(O)):~ o.~, the private informa- 
tion space of  driver s is called incomplete. Let us define the whole space of  private 
information O which is defined by a product of  drivers' private information 
spaces: 

N 

o = II ~ , . ( n ) .  (1) 
5=1 

Let us define information structure p e O which is an explicit representation of the 
incompleteness of all drivers' private information spaces. The realization of  
driver s's private information and information structure is represented by 

N 

035 ( = q~s (o3)) and ~ = 1-I q55 (o3) s O, respectively. Further, we assume that there 
5=1 

are some common measures concerning the distribution of  private information. 

3.2. Route choice behavior 

Travel time of  each route varies from time-to-time depending upon fluctuations 
of  local traffic volume and of  individual choices. Denote a set of  drivers by 
S = {1 . . . . .  N} and a set of  the admissible routes for driver s e S  by ds. Travel time 
of route a, ra(aSfis), is a random variable, and each driver is assumed to forecast 
the probabilistic distribution of r a. Driver s's subjective expectations on z a can 
be formalized by a probability density function nas(T~;0). The symbol q~ 
designates the basic case where no route guidance information is provided. Given 
n~s(ra; q~), the expected utility of  driver s for route a is defined by 

v ( o ~ ;  e )  = S u(T~, ~o0~) rc~ (to; e )  d r . ,  (2) 

where .O)as is driver s's private information about route a and U is a Neumann- 
Morgenstern type of  utility function. Assume that 0 U/Or a <-0 and 02 U/O r za >-O. 
In this formulation, expectations are assumed to be independent from private in- 
formation. This assumption implies that private information conveys no informa- 
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tion about the realization of traffic conditions. Rather, private information repre- 
sents local, accidental and non-memorable factors affecting current drivers' route 
choices. It varies from day-to-day and causes fluctuations of  drivers' route 
choices. 

Let us next investigate drivers' behavior when route guidance information is 
provided to the public. Let e e t / b e  a message announced to all drivers and t /be  
a set of messages. If  messages, for example, 'Choose route 1 (e = 1)' and 'Choose 
route 2 (e = 2)' are concerned, then the set of messages is denoted by r /=  (i, 2). 
Let us describe driver s's subjective expectations conditioned on message e by a 
tuple of mutually independent probability density functions, ns(e) = {n,~s(ra;e), 
aeOs}, and designate the whole spectrum of subjective expectations conditional 
on message set t/ by Hs(r/)=[r~s(e);eerl }. Each density function specifies a 
driver's subjective belief regarding a conditional distribution of travel time given 
a message. 

Rigorously speaking, the whole structure of  subjective expectations should be 
described by a multi-variate joint probabilistic density function whose marginal 
density functions represent the respective subjective expectations for each message 
in I/. However, the estimation scheme constructed in this paper only estimates the 
'conditional marginal distributions', without regarding to the joint distribution 
from which they might be derived. That is, we describe the subjective expectations 
by a tuple of  one-dimensional density functions. The further sophistication in de- 
scribing the whole structure of subjective expectations is reserved for future 
research. 

Consider a situation where a public agent announce drivers message Oct/. 
Then, given subjective expectations zr~(0) in Hs(t/) and private information e3~s, 
the expected utility of  driver s for route a, V(~as; rCas(~)), can be represented by 

v(c~as; ~ s  (0)) = S u(r~,  c~as) ~.s (T.; 0) d r ~ .  (3) 

When this driver chooses the route which maximizes his/her expected utility (3), 
the chosen route is characterized by 

^ o Yas (cos, zrs (0)) = arg max { V(o3~s; z~, (~))} , 
( /  

(4) 

where the symbol arg designates the route which maximizes the R.H.S. of (4). Ex- 
tend the above discussions for a single driver to all drivers on the network. A Nash 
equilibrium induced by a situation where all noncooperative drivers compete with 
each other with incomplete information on a network environment fully charac- 
terizes our equilibrium concept with incomplete information. Given the informa- 
tion structure fi and the message ~, the set of the routes chosen by all drivers - 
a network equilibrium with incomplete information - can be described by 
y* (a; ~ (0)) * ^ • = {y~ (Ogs, ns(~))}se s. Since, as have repeatedly explained, the infor- 
mation structure fi includes the individual drivers' private information a3s, no 
one can have access ex ante to the whole results of route choices in each period. 
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3.3. Network equilibria with rational expectations 

After each choice is made, each driver is able to record not only his private infor- 
mation and public information, but also the realization of travel time of each run. 
After m route choices of route a, the s-th driver obtains an m-size empirical sam- 
ple from the objective distribution of travel time of this route. Based on the em- 
pirical samples, driver s forms his/her subjective expectations on travel time con- 
ditional on public information. A rational driver, sooner or later, will be motivat- 
ed to revise his/her expectations, if he/she learns the differences between expecta- 
tions and experiences. If both all rational drivers' conditional expectations 
n,s(r,;e) and conditional objective distributions v,(%;e) simultaneously con- 
verge upon the rational expectations n*(ra;e), let us call that the system reaches 
a rational expectations equilibrium conditioned on public information. 

A formal characterization of network equilibria with rational expectations ap- 
pears in Kobayashi (1990, 1993). The existence of rational expectations equilibria 
is guaranteed under fairly weak network conditions (Mertens et al. 1985; Kobayashi 
1993). Rational expectations are the conditions of network equilibria rather than 
being only the condition of individual rationality. In rational equilibria, the infor- 
mation requirements are no g:eater; drivers need only know the stochastic processes 
generating travel time. Though the theory of rational expectations equilibria tells 
public agents about the underlying structural factors that determine the distribu- 
tion of travel time, in equilibria drivers need not know anything about the struc- 
tural form of the systems. They need only know the relationships between public 
information and stochastic factors that may determine network performances. 

It must be noted here that the time interval between periods is short relative 
to the speed of adjustment of expectations. Before expectations can adjust to a 
temporary network flow the system will already be at the next period, and the en- 
vironment will have changed. One will then observe a process of repeated in- 
complete adjustment, together with stochastic changes in the environment, and 
the system will always be in disequilibrium in the sense that networks will never 
equilibrate. Nevertheless, even in this case of repeated disequilibrium one would 
want to distinguish situations in which travel time and drivers' route choices fluc- 
tuated in some 'steady' manner around long-run averages, from situations in 
which travel costs or route choices, or both, fluctuated with greater and greater 
variance, or increased without bound. To describe the situation it is natural to use 
the concept of a stationary stochastic process, which is the generalization to the 
case of uncertainty of the concept of a deterministic equilibrium. However, it is 
important to emphasize that the stationarity of a stochastic process does not rule 
out fluctuations of varying period and amplitude. The drivers can learn what is 
happening around him/her and to form the rational expectations, since their deci- 
sion environment is subject to a stationary stochastic process. 

4. Rational expectations formation 

4.1. Expectations formation by learning 
In econometric modeling, rational expectations grew out of dissatisfaction with 
ad hoc models of expectations formation. Nerlove (1958) used an adaptive expec- 
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rations model. Since econometric studies rarely had enough data to estimate ar- 
bitrary distributed lags with any confidence, it became essential to put some a 
priori restrictions on the form of the lag structure. One restriction, suggested by 
Muth (1960), was that the distributed lags should be 'rational'. By this he meant 
that if the sequence of experience is a particular stochastic process, then the an- 
ticipated period price should be given by the conditional expectations given all 
past realization of the stochastic processes. 

Adaptive expectations models have also appeared in route choices literature 
(e.g., Mahmassani 1990; Iida et al. 1992). These studies presume, implicitly or ex- 
plicitly, that drivers would have to know more than past experience or they would 
have to have forgotten them. The problem with ad hoc assumptions underlying 
adaptive expectations models is that it assumes that drivers have too little uncer- 
tainty about the structure. Drivers act as if they are certain that the stochastic pro- 
cess generating travel time has some ad hoc form. The rational expectations hy- 
pothesis requires drivers to anticipate the current conditions of the routes accord- 
ing to the objective probability distributions of travel time conditioned on all of 
their current information. From this, it may seem as if rational expectations 
assume that drivers know a lot more about the process generating travel time than 
does the adaptive expectations model. This is true but misleading. Driver know 
something. Whatever it is that they are uncertain about can be modeled from a 
Bayesian point of view using the rational expectations approach. 

Forming the correct conditional distributions of travel time requires some 
knowledge of the relation between public information and travel time, which in 
turn depends on all drivers' subjective expectations. Such knowledge is not likely 
to be directly available to each driver, so it must be gained by experience. Hence 
the plausibility of the rational expectations hypothesis hinges on the ability of 
drivers to learn the correct conditional distributions from repeated observations 
of network data. The problem of learning rational expectations is greatly com- 
plicated by the well-known dependence of the 'correct' conditional distributions 
on the drivers' beliefs. As precisely described in Kobayashi (1993), a rational ex- 
pectation equilibrium is essentially a fixed point in a space of conditional distri- 
butions. Thus the problem of learning rational expectations is partly a problem 
of consistent estimation and partly a problem of the stability of equilibria (Jor- 
dan 1985). 

In this paper, we place the learning problem in the context of the dynamic ad- 
justment process constructed in Bayesian estimation procedures to implement ra- 
tional expectations equilibria. As the environment is repeated over time, each 
driver revises his/her estimates of the correct probability distributions condi- 
tioned on public information. In what follows, let us give the formal definitions 
of the adjustment process and the learning problems. 

4.2. Learning behavior and rational expectations 

A useful way to model a driver's learning process is to imagine that at the beginn- 
ing of period t, driver s has his/her own subjective expectations on travel time of 
each route and receives message e from a public agent. Suppose, at the period, 
the driver makes his/her choice ys t based on his/her subjective expectations con- 
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ditioned on message e. At the end of  this period, he/she eventually observes travel 
time z-t.. "c t, is commonly observed by all drivers having chosen it, but not by 

Ys Y~ 
other drivers. The drivers may update their subjective expectations, as far as they 
are motivated to revise it. But, the learning problem is a little bit complicated by 
the presence of  unobserved routes. 

We assume that the learning actions described in the above are repeated over 
periods, and in each sample period t ( t  = 0, 1, 2 , . . . )  the adjustment process takes 
place, given all drivers' route choices. For adjustment stage t, driver s must use 
the data r ~  to form, in sample period t+  1, new estimates of  the conditional 
distributions of travel time on public message e. A rule for estimating the condi- 
tional distribution is called an estimation procedure, and the entire array of  
estimation procedures for all drivers and all adjustment stages is an estimation 
scheme. 

Let us show that in a given stationary environment, each driver's subjective 
expectations converge upon rational expectations through learning processes. 
Define here a set of  historical information. Historical information designates the 
one which a driver has obtained through past experiences. It comprises four types 

t of  information: (1) private information co s, (2) a route choice in period t, ys t, (3) 
t and (4) the message provided by the public travel time of  the chosen route vy s, 

agent in period t, e t. Designate the set of historical data which driver s obtains 
t t t t t in period t through his/her choice by a tuple of  as = (ys, ~ys, cos, e ). Let 

t - 1  

~,t H {~} be the whole spectrum of  historical information which driver s have 
z = l  

compiled up to period t. 
At each stage of  the learning processes, the drivers' expectations to message 

e are determined by their estimation procedures and their historical information 
accumulated through previous sampling periods. Let n ° ( e ) =  {n°s(ra;e)Ja~4 be 
driver s's initial beliefs for message e. For each t >  0 the drivers' subjective expec- 
tations for message e are fully regulated by their past experiences -s=t and initial 
beliefs n°(e): 

7r~('c;e) t .~ t  n0(e)) , = Os(r ,e ,~s ,  (5) 

where 0~ represents a 'expectations formation mechanism', which explains how 
driver s forms his/her subjective expectations from his/her past experiences and 
initial expectations. The recursive nature of  the learning process is critical to the 
expectations formation scheme. At each stage, learning affects the subjective 
beliefs being learned at the next stage, but there is no feedback from later to ear- 
lier stages. With a certain learning rule Y, the expectations formation mechanism 

t . ~ t  0 Cs(T,e,~s,  ns(e) )  can be expanded in a recursive form: 

t . ,.~t 0 t - 1  t - 2  1 0 
Os(r, e, as ,  7g,) = y{a  s , y {a  s . . . . .  {~/{O's, n s (e)}}...}} . (6) 

An estimation scheme is successful (a. s.) if, for almost every infinite sample, the 
estimates converge upon the conditional distributions mentioned in our initial 
description of  the adjustment process given above. 
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The problem of learning rational expectations is greatly complicated by the 
dependence of the correct conditional distributions on drivers' beliefs. Indeed, if 
drivers modify their subjective expectations through learning procedures, their 
route choice behavior will change. Eventually, the objective distribution of travel 
time will change time after time. Thus, the bilateral relationships exist between 
the conditional subjective expectations and the conditional objective distribution 
of travel time. 

In order to remark this fact, let us denote the objective distributions of travel 
time which are realized under subjective expectations n t(r; e) = {nt(r; e)}~s by a 
probability density function va(ra; e, n t). In a rational expectations equilibrium, 
both the driver s's conditional subjective beliefs on message ntas(~a;e)= 

t . ~ t  0 q~a~ (za, e , - s ,  Z~s (e)) and the objective distributions of travel time conditioned on 
message va(ra;e,~ t) simultaneously converge upon the rational expectations 
zc~(ra; e). Apply a learning rule y recursively. Given a stochastic environment &9, 
y is said to be successful almost surely (a. s.), if for each s, route a~fi~ and 

message e~r/, and for almost every infinite sample Z~ ~) = f i  [asz}, 
z = i  

l i m [ [  t . - t  o 0 ~ ( r ~ , e , ~ , ~ . ) -  zr*(r.;e)II = o , 
t--* co 

(7) 

where 'almost every' refers to the distribution q~, and [[ q~tas(~; e ) -  n*(ra;e) ]] = 
sup,{I 0 tas (ra; e ) -  n*(ra; e) I}- Recall that n*(za; e) denotes the rational expecta- 
tions for route a. 

In order to guarantee the convergence of learning procedures, probabilistic 
density functions of travel time Va(ra; e, g t) should satisfy a certain regular con- 
dition. Kobayashi and Fujitaka (1993) show that if va(~a;e, 7~ t) is Lipschitzian 
continuous, then there exists, at least, an almost surely successful learning pro- 
cedure. A probability density function va(ra; e, gt) is said to be Lipschitzian con- 
tinuous if for each n t(r; e) there is a neighborhood fl [x t(e)] and a constant e > 0 
with 

II va(ra; e, x t ) -  v,~(ra; e, 7r't) 11 -<~: II nt (r; e ) -  n't (*; e) 11 (8) 

for arbitrary n ,t (r; e) eft  [n t (e)] and all a cA,  e e 0, a~ e ~2 and t_> 0. The Lipschit- 
zian condition (8) implies the continuous differentiability of a probabilistic densi- 
ty function v with respect to nt(e). It is a rather weak condition, and, in a 
regular environment, the distributions induced by a broad class of performance 
functions appeared in the previous literature may satisfy this condition. As far as 
a stationary environment is concerned, there exist learning procedures by which 
arbitrary expectations converge upon the rational equilibria. In other words, as 
far as the individual rationality is working, arbitrary subjective beliefs will con- 
verge upon the rational expectations in the long run. 

There may be a criticism that the theory of rational expectations equilibria 
that postulates drivers' route choice behavior makes heavy demands on the in- 
dividual rationality, insofar as it requires drivers not only to make the usual ex- 
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pected utility calculations in the standard model with uncertainty, but also to have 
a correct model of  the joint distribution of  travel time, their own initial informa- 
tion, and the eventual observations of  travel time. In a theory of  adjustment 
towards a rational expectations equilibrium, what are the appropriate assump- 
tions about drivers' rationality during learning processes? As drivers revise their 
models, the true model changes in a way that, in principle, depends on the revision 
rules of  all drivers. In our modeling, drivers' rationality is bounded in the sense 
that the revision rules only require local and personal information. No feedback 
mechanisms are assumed in the leaning process. To this point, a theory of  
through-going rationality, more rational than Bayesian learning, would seem to 
point to a treatment of  the learning and adjustment process as a sequential game 
with incomplete and imperfect information. This treatment is theoretically possi- 
ble, but it seems to impose too heavy rationality on drivers. A more realistic alter- 
native would envisage some form of  bounded rationality during adjustment pro- 
cess, which, if stable, would converge upon a fully rational equilibrium. 

4.3. The non-neutrality hypothes& 

The rational expectations model is capable of  capturing the idea that public infor- 
mation (route guidance information) conveys individual drivers the actions of  
other drivers. The ability of  public information to aggregate private information 
perfectly is limited by the extent to which individuals must be able to choose the 
best route as a return for costs they expend on information acquisition. If public 
information cannot aggregate private information at all, why would any individu- 
al expend money on information acquisition? Here may arises the critical ques- 
tion: given public information, drivers repeat route choices and revise their expec- 
tations through learning process; then, can public information convey substantial 
information to drivers even if they behave with rational expectations? 

In order to critically formulate the point, let us imagine the most extreme case 
where public information cannot convey any more additional information than 
each driver has. If it is the case, public information will lost its reliability at all. 
Public information is called 'neutral', if  for arbitrary e, e'erl(eg=e') and suffi- 
ciently small e, there hold 

II 7r*(%;e)-7r*(z'.;q~)[I < e  

II 7r*(r~;e)-rr*(%;e')II < ~  • 
(9) 

Public information cannot be neutral in order that public information conveys 
substantially additional information to drivers, i.e., drivers' conditional rational 
expectations are differentiated by public messages. Conditions (9) postulate rather 
extreme cases. However, if it is approximately held, the reliability of public infor- 
mation will be faded away in due course. Thus, our main interest can be crystal- 
lized into the question of  whether public messages have informational powers in 
differentiating rational expectations. 

The debates on the information neutrality hypothesis are never new. In the 
fields of economics, there has been the accumulation of  literature. Especially, 
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Grossman has investigated in his seminal book (1989) how market prices can ag- 
gregate the dispersed private information among traders. Grossman pointed out 
that whenever traders have heterogeneous beliefs there are incentives to open 
speculative markets, which tends to homogenize their beliefs. The notion that cur- 
rent prices can convey current information is quite complex. This notion was first 
introduced by Lucas (1972). Green (1977) used the same equilibrium concept but 
in the context of  traders with heterogeneous information. In Green's model there 
is a class of  traders who have some information about the future value of  the com- 
modity. Clearly, in a world subject to uncertainty and asymmetric information, 
agents will attempt to use their information in a speculative market to earn profit. 
In doing so, information can get transmitted across agents. Though no one knows 
everything about the economy, each individual's little piece of information gets 
aggregated and transmitted to others via trading. 

If  drivers have the information like market prices into which private informa- 
tion could possibly be aggregated, they had no motive for using public informa- 
tion as 'information', so public information do not affect their beliefs in rational 
expectations equilibria. However, differed from markets, no information which 
can aggregate the dispersed private information over drivers are available in net- 
works. There are no ways by which private information can be pooled and made 
available to all drivers. Public information is provided to drivers unilaterally and 
communications among drivers are forbidden. When information is privately 
costly then rational expectations cannot be fully revealing. The games where route 
choices are made close until there are few enough communications by which unin- 
formed drivers cannot completely free-ride on the informed driver's information. 
If  a driver who bears no costs can learn all the information that other drivers ac- 
quire, then this will destroy the incentives for the acquisition of  public informa- 
tion. But, it is not the case in networks. Thus it is incorrect to expect rational ex- 
pectations to be fully revealing of  information that would be costly for individuals 
to acquire. However, there is information that would be costly for an arbitrary in- 
dividual to acquire, but that was costless to the public agent as shown later. In 
Sect. 6, we will show by simulation experiments how rational expectations are dif- 
ferentiated by public information. Of course, we need more rigorous investigation 
about this hypothesis, which are reserved for future research. 

5. A Bayesian learning model 

5.L Specification o f  information structure 

Consider a discrete network with a finite number of nodes and links. Suppose 
that driver s chooses route a~6s with his/her subjective expectations no~(~a;e) 
given private information OJas and public message e. Let use specify the expected 
utility function of  this driver in the addifively separable form with respect to 
private information: 

V(COas; has (e)) = ~ U(r a) has ('ca; e) dr a + O~as , (lo) 

where ¢Oas is a random variable representing private information about route a. 
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If  route choice probabilities are mutually independent, the distribution of link 
traffic volume can be approximated by a multi-variate normal distribution func- 
tion (Sheffi 1985). I f  a linear link-performance function is applied, travel time is 
also subject to a normal distribution function. For a class of non-linear link-per- 
formance functions, travel time is generally subject to certain skewed distribu- 
tions. Normal distributions can be regarded as the second-order approximation 
of arbitrary probabilistic distributions. Assume the independency among private 
information, i.e., E[coascOa,s,]=O(aefis, a'~6s,). This property implies that 
private information conveys no information about others' behavior. Private infor- 
mation varies from day-to-day and its variation bears fluctuations of  drivers' 
route choices. Let us specify the representative driver's deterministic utility func- 
tion by 

U(ra) = 1 - exp I( (r a -E~ [ral)}-E s [ra] , (11) 

where Es[Ta] is the expected value of r ,  with respect to his subjective expecta- 
tions nas(ra;e) and ~ is a measure of absolute risk aversion. Equation (11) is the 
first-order approximation of the utility function at Es[ra]. Let us take the Taylor 
expansion of the expected utility function conditional on message e (see (10)) 
around Es[ra]. Then, (10) is approximated by the additive sum of  means 
nlas(e)( = Es[za]), variances 7~2as(e ) and private information ¢oas: 

V(°oas; 7~as(e)) = - g l as (e )  - -  } (27r2as(e) + ~as , (12) 

where nlas(e) and n2as(e) characterize driver s's subjective expectations condi- 
tional on message e. The route chosen by driver s given ~ and d~as with subjective 
expectations (n~ ~ (~), n2as (~)) is described by 

y* (e3~; Us (~)) = arg max [ V(o3.~: has (0))1 
a 

= arg max [ -  nlas(O)-~ ~27~2as(0)+ ( 7 ) a s t  . 
a 

(13) 

5.2. Bayesian learning rules 

Describe expectations formation mechanisms by a Bayesian estimation method. 
In a Bayesian framework the probability is defined in terms of  a degree of  belief. 
The probability of an event is given by an individual's belief in how likely or 
unlikely the event is to occur. This belief may depend on quantitative and/or 
qualitative information, but it does not necessarily depend on the relative fre- 
quency of the event in a large number of future experience. Because this definition 
of  the probability is subjective, different individuals may assign different proba- 
bilities to the same events. 

Assume that both subjective expectations and objective distributions of travel 
time are simultaneously subject to one-dimensional normal distributions. Let us 
characterize subjective expectations of driver s on travel time of route a in period 
t by two parameters (mean nlas(e) and variance n2as(e)/2) 



Information, rational expectations and network equilibria 383 

re,as(e) t ~ t  0 = ~ las(e)(=s, has(e)) 
re'as(e) t - t  0 

= ¢2as(e)(=s,n,,s(e)) , (14) 

where ~,,s(e),fbt2~s(e) are the estimation models of the means and variance of 
driver s's conditional subjective expectations on e for route a in period t, respec- 
tivel3: The mechanisms of expectations formation are, thus, described by a set of 
functions of a set of historical information _,=t and initial expectations re°as(e). 

For any driver, the true parameters of the objective distributions of travel time 
are unknown. Assume that driver s obtains rta(e ) observations of  travel time of 
route a under message e up to period t. The driver forms his/her subjective expec- 
tations rest(e)= (n{as(e),nt2as(e)) based on observations f t (e)={f~a,  f2a . . . . .  
fn{e)}" Assume that the driver chooses route a with reference to his/her current 
nts(e). After the route choice is made, a new observation f~+,~ is compiled in 

_~t+l ~ta(e). This driver updates reta(e ) based on za (e) in order to form reta+l(e ). 
Hereafter, omit subscripts s, a and symbols t, e for the simplicity of expression. 

Let us assume that the objective distribution of travel time which is realized 
under a set of subjective expectations re t is subject to a normal distribution 
N(Ot, 02/2). Define a vector of unknown parameters by (0 = (01, 02)~O ), where 
0 =1(0i,02) 101>0,02>01. Observations of travel time are supposed to be 
samples from a normal distribution N(01, 02/2). Then, a joint density function 
/ ( r [  0) of  f is given by 

f ( r  1 O) = (2 n) -(n/2)  02(n/2) exp [-- 021 (n (01 -- f)Z _1_$2)] , (15) 

where f = l /n.  z i and S 2 =  ~ (Ti--f) 2. View f (z [O)  as a function of  O. 
i=1 i = i  

Assume the true parameter 02 is known; then, the conjugate prior distribution of 
01 in (15) is given by N~,O2/2v). By integrating f ( r  I 0) on R with respect to 01, 
the conjugate prior distribution of  02 is given by an inverted chi-square density 
function 27 -2 (2 a,fl) (DeGroot 1970). Thus, the marginal conjugate prior density 
functions become: 

~1(01 [ 02 = O2)-N(g, Oz/2V) 

~2(02) ~27 -2(2a,f l)  , (16) 

where - denotes 'proportional to'. Then, the joint conjugate prior density func- 
tion for parameters (01, 02), i.e., ~ (0)=  ~i (0~ l 02)'~z(02), is subject to a normal- 
inverted chi-square density function N -  Z -2 (go, v0, a0,rio) (go > 0, v 0 > 0, ao > 0, 
flo > 0) (DeGroot t970). 

The posterior density function for 0 given a set of experience information 

f =  (fl . . . . .  fn) is given by a function of ? =  f = ri and g2 = S 2 = 
i=1 / i=1 

• (? i -  r) 2 such that: 
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¢(0[ ~) ~ ¢(0)f (T I 0) 

cc0~-0/2)exp [ vo(Oi-kto)2+n(O, - f ) 2 1 0 2  

[ • 02 [1+%+(n/2)1 exp fl°+s2 
Oz 

Considering vo(01 -Po)e +n(0t - f)2 = (vo+n) (0t 
(17) can be rewritten to \ 

(17) 

Voflo +n/~ 2 Yon 

) + vo+. 

¢(01 ~) = ~(ol f,s 2) 

cx O~ -1/2 exp [ 
/ o2 J 

(18) 

Thus, the posterior distribution of 0 is also subject to a normal inverted chi- 
square density function. These posterior density functions represent drivers' cur- 
rent state of knowledge (prior and sample) about parameters. Between the natural 
conjugate prior density function and its corresponding posterior function, there 
holds 

~(01 (f) = r ) - 0 [  ('/= f,g z = s Z ) - N - z  -2(Igl,vl,al,]31) • (19) 

Thus, we have the relationship between the parameters of the natural conjugate 
prior and its corresponding posterior: 

VoPo + n f 
kll - -  _ _  , V l  = vo+n 

vo+n 

n al=O~O+~ , #1=1~0+$2+ v°n (f--lgO) 2 
V o +n  

(20) 

From (18), we can easily calculate 

E[O1 I ~'l = Pl  

El02[ r] =B~ . 
a l  

(21) 

5.3. Bayesian recursive formulae 
Drivers can enrich their historical information through their daily route choices. 
They are motivated to update their subjective expectations, as far as they recog- 
nize the differences between their beliefs and experiences. A Bayesian learning 
procedure is described by a set of updating formulae of (zr~as(e), zttZas(e)). This 
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can be achieved in a recursive fashion. Assume that (n~as(e ) ,  nt2~s(e)) are the 
posterior parameters estimated based on observations up to period t. In period 
t, driver s receives message e and chooses route a. Let us again omit subscripts 
a , s , e  at the moment.  Then, given the additional observations (a, ra), applying 
(20) and (21), the posterior expectations can be given by 

g~+l  _ Y o t J o + n t f t  
(22) 

yO + Ftt ' 

Ifl . V or/t . -  -2 ) -  
(23) 

n t n t  

where at  = a o + n t / 2 , ~ t  = 1 / n .  ~ Tj, g~ = ~ (~j-- ft) z and n t is the number of 
j = l  j = 1  

observations on route a up to t-th period. Once these quantities are obtained it 
is straightforward to derive the updating formulae. By expanding (22), the learn- 
ing rule y of  mean re{ is described by the following recursive formula: 

<+1= <) 
v o + n  t 

(24) 

Thus, forecasting errors (r t -  ~z~) are utilized to yield new expectations n~ +1 
Note that l / ( v o + n  t)  is no more constant. If  n t becomes large, this weight ap- 
proaches to zero. In the long-run, forecasting errors play no decisive role in expec- 
tations formation. Expectations converge upon the stational one. 

Analogous results can be derived for n~. From (23), we have: 

(25) 

where a t -= a 0 + n t / 2 ,  v t = v 0 + n t. The posterior variance n I + t is also revised 
based on forecasting errors v t _ l ( n ~ - r t ) Z / v t - n ~ / 2 .  As n t becomes large, 1~at  

approaches to 0. The recursive formulae (24) and (25) embody the assumption 
that drivers cannot observe travel time of  any routes other than the chosen one. 
Hence, subjective expectations for route j(eO~) ¢ a are not updated until route j 
will be chosen. That  is, for j ( e d s )  -% a we assume that 

•t+l ~t+l 
1is = n ~js , '~ 2js = n t2j s . (26) 

t t If  t becomes sufficiently large, from (22) and (23), we know that 7r l, n 2 can be 
approximated by 

-2 
, 7g t S t  n ~ = ~  2=~-7 , (27) 
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where rt and (;2t/n t) a r e  the sample mean and variance, respectively. As drivers 
obtain more observations, their subjective expectations asymptotically converge 
upon the objective one. Thus, given a set of arbitrary initial subjective expecta- 
tions, the rational expectations appear as the limits of drivers' learning pro- 
cedures. 

6. Route navigation effects of information 

6.L Information systems f o r  route navigation 

In order to investigate the impacts of public information on individual drivers' 
decisions and on expectations formation, simulation experiments are carried out. 
Given a description of the route choice context, of which are specified in such a 
way as to bear simultaneously to actual conditions, drivers independently supply 
decisions of route to destination. These decisions form the time-varying input 
function to a traffic simulator that yields the corresponding travel time. Informa- 
tion on these consequences is subsequently provided to each driver. By controlling 
the type and amount of information supplied to drivers, we can study the impacts 
of alternative information strategies on drivers' behavior as well as their expecta- 
tions. 

This section is devoted to the question of whether route guidance information 
can convey substantially additional information to drivers even if drivers behave 
with rational expectations of their environment. At the beginning of period t, a 
public agent is supposed to observe traffic volumes at monitoring points on a net- 
work, and to forecast travel time of each route to be realized in period t. Denote 
the set of historical data observed at monitoring points up to this period by 
z t = ~ c k i ( i = l  . . . . .  n ; k = t , t - 1  . . . .  )}. Given message e~/ ,  the public agent 
forecasts the conditional objective distributions of travel time ~(Z t; e) = {~a(ra; 
Z t, e):ae~s)} based on Z t. The forecasting mechanism is generally described by 
~F(Z t, e) = F(z t ;A  (e), ~/), where A (e) represents a forecasting model describing 
how drivers act in response to message e. Thus, the public agent forecasts the con- 
ditional objective distributions for each message by use of monitoring informa- 
tion Z t and a forecasting model A (e). ~(Z t, e) need not coincide with drivers' 
subjective or rational expectations, or both. The public agent can have richer in- 
formation than the drivers, since the drivers have generally no access to monitor- 
ing information. There exists information asymmetricity between the public agent 
and the drivers. This informational advantage put the public agent the way of 
manipulating, in some ways or another, the drivers' route choices. 

Three alternative forecasting mechanisms are applied to simulation experi- 
ments: (1) F**: the ideal forecasting mechanism, that can describe the full spec- 
trum of drivers' behavior with complete and perfect information; (2) F*: the in- 
complete forecasting mechanism, which incorporates a route choice model with 
rational expectations (Kobayashi 1993); (3) F°: the naive forecasting mechanism, 
which adopts a standard deterministic model of traffic assignment. The ideal 
forecasting mechanism F** is a fully hypothetical one in the sense that the public 
agent is assumed to have the full knowledge about drivers' private information. 
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Though F** cannot be constructed in the real world, we can hypothetically con- 
stitute it in the experiments. The experiments by F** can envisage the ideal situa- 
tions with which we can compare the informational efficiency of  alternative 
forecasting mechanisms. For F*, the public agent is only requested to observe the 
rational expectations that all drivers share. For F*, the public agent need not 
forecast precisely travel time to be realized in each period, but rather is requested 
to forecast the conditional objective distributions of  travel time for each message. 
F ° is the simplest one, and does not incorporate any forecasting models of  
drivers' behavior into it. 

The selection rule A designates a mechanism that selects the best message 
to be announced to all drivers from the set of  all messages. A is generally de- 
scribed by a system O=A(~(z t ,  e);e~rl), where t/ is a set of  messages and 
gJ(xt, e) is the outputs of  F. Let us design three alternative rules: (1) Aa: to an- 
nounce the forecasted travel time of  all routes, (2) Ab: to recommend the route 
to be chosen, (3) Ac: to announce whether congestion is expected or not in each 
route. 

6.2. Evaluation of  information systems 

Concerning a situation involving a single environment with no uncertainty, the 
evaluation of  the informational efficiency of  route guidance information systems 
0 = (F,A) is rather straightforward. When we add uncertainty, the simplest case 
is one in which the uncertainty is identical across agents and in which there are 
no contingent situations. In this case, it has been customary to distinguish be- 
tween ex ante and ex post efficiency (HOlmstrom and Myerson 1983; Postlewaite 
et al. 1987). In the case of  incomplete information, the situation is much more 
complex. There may be uncertainty as to a driver's ranking of  alternative routes. 
The question arises whether a comparison of alternatives should be pointwise 
across his possible private information or in expectation across his information. 
This latter point can be clarified in terms of the timing of  the welfare evaluation 
with respect to the possible stages of information. 

Assume that at the beginning of  each period, driver s has observed his/her 
private information o3s, and it is not changed throughout the period. Assume 
that the driver has already formed rational expectations and chooses route & 
Then, the ex ante expected utility V(a3~s;n~(e)) conditional on message ~ of 
route 0 is given by 

v ( ~ s ;  ~c 3(o)) = - ~ b , (o ) -  ~ ( zrc ~ (O) + ~,~ . (28) 

On the other hand, from (11), the ex post utility function is: 

U(r  a, a3os) = 1 - e x p  ( ( ( r  a - E *  [rod ) - E *  [to] + a3os . (29) 

In general, a driver's ex ante expected utility does not coincide with his ex post 
utility after his choice is made. 
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If  all drivers behave with rational expectations, their ex ante expected utility 
coincides with the long-run average of  the ex post utility. If  this is the case, the 
public agent can know both the drivers' ex ante expected utility and the long-run 
average of  the ex post utility by observing the conditional objective distributions 
of  travel time. The long-run average of  the ex post utility E Vs(e; O) conditioned 
on message e~0, if the environment is stationary, can be defined by 

E Vs(e, O) = E~o, [max,~ {V(coas; n* (e))}; O] 
O,,s(e) 

= 2 ~ V(coas;n*(e))~(coas)dcoas II f q/(coa,s)dcoa,s , (30) 

where 0 , , s (e)=  Oa(e)-da,(e)+coas, E~o s means the expectation with respect to 
private information co s, and Ca (e) = - n  Ta (e ) -1 /2 .  ~2 n~(e)  is the deterministic 
part of  the ex ante expected utility function. Let fls(e, O) denote the relative fre- 
quencies that drivers receive message e from information system 0. Then, the 
social welfare function S W(O) is given by 

SW(O) = ~ ~ &(e,O)EVs(e,O) . (3t) 
s e 

The route guidance information systems, 0 = [/~, A }, should be designed in order 
to increase the social welfare function (31) as much as possible. 

6.3. Simulation experiments 

a) Description of the simulation. To simplify the experiments, we consider only 
one O-D pair connected by two routes with different characteristics as shown in 
Fig. 1. Drivers are informed public messages at bifurcation point A. The link per- 
formance functions are given in the forms of linear functions, whose parameters 
are also shown in Fig. 1. The drivers' initial expectations for travel time of  routes 
I and 2 are assumed to be homogeneous. They are described by normal distribu- 

ra = 40.0 + 0 .2XI 

Q a-- 
censor ~ 

r~ = 45.0 + 0.1X2 
Fig. I.  A hypothetical net- 
work for numerical  examples 
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tions N(50, 0). The private information o)~s is subject to a Weibull distribution 
W(O, 10). The overall turbulence of travel time by local traffic is given by a nor- 
mal distribution N(25, i0). It is assumed that 100 risk-neutral drivers (~i = 0) are 
motivated to make simultaneous decisions in each iteration. The travel time of 
both routes is varying over periods due to the fluctuation of  local traffic and of 
all drivers' route choices. At the beginning of each period, the public agent can 
observe the local traffic volume of the period, but drivers cannot know it. 

b) The impacts o f  the rules for  providing information. In order to compare the 
efficiency of alternative rules for providing public information in the ideal situa- 
tion, let us first apply F** to forecast travel time. In F**, the public agent is 
assumed to know exactly rcs(e) and o)as. F** enables the public agent to 
calculate both the ex ante conditional expected utility on e (see (28)) and the ex 
post conditional utility on e (see (29)). Let us prepare three alternative cases: (1) 
to apply A a (Case t); (2) to apply A b (Case 2); (3) to apply A c (Case 3). 

Simulation is operated according to the following steps: a) to assume each 
driver's initial subjective expectations ZC°s(e); b) to generate normal random 
numbers representing local traffic volume and Weibull random numbers associat- 
ed with private information; c) to calculate each driver's conditional expected 
utility for every message e~r /by  (12); d) to forecast the individual route choices 
for each case where the respective message is announced; e) to forecast travel time 
by aggregating the individual route choices for the respective cases; f) to calculate 
the conditional ex post utility (29); g) to aggregate the conditional ex post utility 
over all drivers for the respective cases; h) to select the message which maximizes 
the aggregated ex post utility; i) to determine the individual drivers' choices in the 
current iteration; j) to update each driver's subjective expectations by (24). 

Simulation continued over 400 periods. The drivers' subjective beliefs on 
travel time converge upon the rational expectations by around 200-th periods. 
Figure 2 illustrates the impacts of alternative rules on the objective distributions 
of travel time. Let us focus on the sample periods when A a selects message 
e = (the travel time o f  route I is 60 min, the travel time o f  route 2 is 55 min). For 
each sample period, we calculate the respective average of travel time which has 
been observed up to the concerned period. Figure 2 shows the changing patterns 
of thus calculated means of travel time. In this figure, (a) stands for route I and 
(b) does for route 2. For all cases, the differences in travel time of both routes de- 
crease from the case when no public information is provided. Thus, as far as our 
simulation is concerned, public information is not neutral and conveys substan- 
tially additional information to drivers. A~ can bear the most informative mes- 
sages, and A c does the poorest ones. From Fig. 2, we know that A a can provide 
with the smallest differences between the travel time o f  both routes. Figure 3 ex- 
plains the relationship between the information rules and the social welfare in- 
dices S W(O). It clearly shows that as messages become more informative, S W(O) 
becomes larger. 

c) The comparison o f  forecasting mechanisms. Let us compare the efficiency of 
alternative forecasting mechanisms: F**, F*, and F °. Simulation experiments by 
F* presume that the public agent cannot observe the drivers' private information. 
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The simulation procedures for F* can be made by slightly modifying steps d) and 
f) of  F**. If  we assume that O)as is distributed according to I.I.D. Weibult 
distributions with zero mean and variance 2: i.e., f (o)~,)= ,~ exp (- ire%,)exp 
( - exp  (-2roas)), the conditional choice probability pa(e) can be given by the 
following multinominal logit model: 

p~(e) = 
exp {2 [ -  n~.(e)-  1/2"~2n~,(e)]} 

exp {,~ [ -  ~ ~b(e)- 1/2. ~'2 ~ ~b (e)]} 
beg 

(32) 
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The public agent forecasts the conditional mean of travel time fa(e) by the logit 
model, fa(e) is available only to the public agent. On the other hand, the drivers' 
private information is totally hidden to the public agent, and the public agent can- 
not calculate the drivers' conditional ex post utility (29). Instead, it can calculate 
the ex ante average of  the ex post utility EUs(e ) by 

0•'s EUs(e;O)= ~ ~ U(fa;°as)~(°a~)dc°as r l  ~(cOa's)dcoa's, (33) 
a -oo a'~a -co 

where U(fa; coas) is the ex post utility when f12 is given. As mentioned earlier, the 
ex ante conditional expected utility need not coincide with the ex post conditional 
utility. The public agent chooses the message which maximizes the aggregated 
sum of (33) over all drivers. If  coas is subject to a Weibull distribution, by inte- 
grating (33), we get 

EUs(e)  = 2 -1 log ~ exp (2d~(e))+ ~ (da(e)-aa(e))Pa(e)  , 
17 a 

(34) 

where (a(e) is the deterministic part of  the ex ante expected utility (28), 
~a(e) = 1-exp ((( 'ea-E* [Ta]))-E* [r12] is the deterministic part of the ex post 
utility (29) (Kobayashi and Ikawa 1993). The first term of (34) is the log-sum utili- 
ty and the second term explains the expected deference between the ex ante ex- 
pected utility and the ex post utility. Though the public agent can calculate 
EUs(e),  the drivers cannot get it since there is no way for them to know fa(e). 
On the other hand, (31) has ideal properties for welfare measurement, since it can 
be estimated only by the data available to the drivers. 

Figure 3 explains the relationship between the forecasting mechanisms and the 
social welfare measures S W(O). As the forecasting mechanism becomes more 
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noisy, S W(O) tends to decrease. It is notable, however, that even noisy forecasting 
mechanism like F ° is also able to increase S W(O) from the case without public 
information, though its marginal contribution is not so large. If public informa- 
tion becomes more informative, precise (less noisy) forecasting mechanisms 
become more powerful in enhancing the social welfare S W(O). Thus, we see that 
the sophistication of forecasting mechanisms is required in order to develop more 
informative route guidance information systems. 

7. Conclusion 

This paper has tried to provide with a unified framework for understanding how 
drivers act in response to exogenously provided route guidance information; and 
how they form subjective expectations on traffic conditions from repeated learn- 
ing. Our main result strengthens the intuitive plausibility of expectations 
equilibrium theory. It asserts that drivers who begin with no knowledge of the 
probability distributions governing the uncertainty they face, can learn to form 
correct expectations from repeated observations of travel time. Even though the 
drivers use public information to form their rational expectations, the drivers' 
learning procedures do not require any data involving other drivers' private infor- 
mation. Such a result appears to be possible only in recursive adjustment models 
of expectations formation. We have also attempted qualitative comparisons of 
alternative route guidance information systems. Our numerical illustration has 
provided pedagogical insights into the possibility to navigate the drivers' route 
choices by providing public information. 

More work is needed to enlarge the scope of the study and to explore more 
deeply the drivers' behavior with rational expectations under incomplete and 
decentralized information. One of the most interesting question is whether 
government intervention can always guarantee the Pareto improvements of net- 
work flows. The author illustrates elsewhere some cases where route guidance in- 
formation can degrade network performance. Besides this issue, the further items 
of interests which have not yet been considered include: 

• an investigation of the possibility of multi-equilibrium states; 
• a rigorous analysis of the global and local stability of the rational expectations 

equilibrium; 
• an empirical investigation of the drivers' process of rational expectations for- 

mation; 
• an analytical investigation of the pricing of route guidance information; 
• an empirical application to social experiments in the real world. 
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