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Computational aspects in use of entropy theory in 
predicting water quality levels at discontinued stations 

A. Kusmulyono and I. Goulter 
University of Central Queensland, Rockhampton, Queensland 4702, Australia 

Abstract: The computational aspects of using a new, entropy-based, theory to predict water qual- 
ity values at discontinued water quality monitoring stations are discussed. The main computational 
issues addressed are the level of discretization used in converting the continuous probability distri- 
bution of water quality values to the discrete levels required for the entropy function, and the choice 
of the interval of time for which to assign the value of the water quality (period of time averaging) 
through the entropy function. Unlike most cases of entropy applications involving diseretization of 
continuous functions the results of using entropy theory to predict water quality values at discon- 
tinued monitoring stations in this application appear to be insensitive to the choice of the level of 
discretization even down to the very coarse level discretization associated with only eight intervals. 
However, depending on the length of record available the choice of the time interval for which the 
water quality values are assigned (period for time averaging) appear to have a significant impact on 
the accuracy of the results. 
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1 I n t r o d u c t i o n  

The entropy concept as a measure of information or a measure of uncertainty was 
first introduced by Shannon (1948). Shannon's concept of a measure of uncertainty 
is based on the principle that  the greater the uncertainty about the outcomes, the 
more uniform should be the probabilities assigned to the outcomes. Expressed in 
entropy specific terms, the greater the uncertainty about the outcome of a process, 
the greater the value of the entropy of that process. In a later study by Javnes (1957), 
the concept of entropy was applied, through the maximization of the entropy value, 
to the assignment of probabilities to events. 

Knowledge about the distribution of values to which the probabilities were to be 
assigned was introduced by the incorporation of constraints into the entropy maxi- 
mization formulation. This concept is known as the Principle of Maximum Entropy 
(POME) and is based on the theory that the probability distribution with the great- 
est entropy value is the probability distribution that can be realized in the greatest 
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number of ways. In other words, it is the most likely probability distribution. 
It has been shown by Singh et al. (1986) that the POME can be used to develop a 

range of types of probability distribution by specifying different constraints specific to 
the probability distribution. The probability distributions so developed using the en- 
tropy method are always ensured of having the most unbiased probability distribution 
consistent with the information specified within the constraints. 

The advantages of using the principle to develop the probability distribution is that, 
if there is any additional information about the events, that information can always 
be introduced in the formulation through additional constraints. Redundancy of the 
constraints is also not an issue, since the technique will eliminate the redundant in- 
formation expressed in the constraints through its algorithmic processes. The only 
problem that can arise occurs in the case of conflicting information, wherein the tech- 
nique cannot solve the algorithm and therefore, would not give any results (Jaynes, 
1968) 

The POME has also been applied in many different disciplines of research. Ex- 
amples of the use of the POME in different fields of study have been identified by 
Kapur (1983) as statistical inferences, non-linear spectral analysis, transportation 
models, population density models, brand switching in marketing, finance insurance 
and marketing, image reconstruction, pattern recognition, operations research and 
engineering, some biological medical and technological problems, and non-parametric 
density estimation. 

The use of the entropy principle in water resources engineering has developed rela- 
tively recently. An early application of the entropy principle in hydrologic frequency 
analysis was reported by Sonuga (1972). In that study the entropy principle was used 
to develop a minimally biased probability distribution appropriate for hydrologic fre- 
quency analysis where only small amounts of data are available. In subsequent study, 
Sonuga (1976) applied the entropy principle to the rainfall-runoff process. 

The entropy concept was also used by Harmancloglu (1984) to determine the opti- 
mal sampling intervals in water quality monitoring networks. Another application of 
the entropy principle was in modelling the velocity distribution in open channel flows 
(Chiu, 1987, 1988, 1989, I991; Chiu and Chiou, 1986). 

Other uses of the entropy principle in water resources have been reported; evaluation 
of information transfer between hydrologic processes (ttarmancioglu and Yevjevich, 
1987), assessment of the recharge system for a river basin (Harmancioglu and Baran, 
1989), redundancy measures in water distribution network design (Awumah et al., 
1990,1991; Awumah and Goulter, 1992), and water quality monitoring network design 
(Harmancioglu and Alpaslan, 1992). 

One of the major practical difficulties encountered in the application of entropy 
theory is the need to approximate the continuous probability distribution function 
by a discrete function so it can be analyzed by the basic entropy tSnction of E Xi 
in Xi. This discretization was shown by Harmancioglu et al. (198.5) to be critical 
to the value of the entropy provided by the analysis and also have the potential to 
change the decision arising fi'om the entropy based analysis. In this study the impact 
of the level of discretization of the continuous function on the result obtained from 
use of the discrete entropy function, in the form of MDI, as employed by Kusmulyono 
and Goulter (1994) to predict water quality values at discontinued water quality 
monitoring stations is examined. The changes in the MDI predicted values of water 
quality at upstream locations arising from variation in the length of time used to 
identify changes in water at a downstream locations was also examined. 
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The data used to examine the effects of each of these two computational aspects 
of the use of the entropy theory to predict water quality values were taken from the 
Fitzroy River basin in Central Queensland as shown in Figure 1. The data used in 
the study are summarized in Table 1. 

2 Def in i t ion  of p r o b l e m s  in the  use of  the  e n t r o p y  pr inc ip le  to p red ic t  wa- 
t e r  qua l i ty  values  a t  d i scont inued  mon i to r ing  s t a t ions  

One of the aspects in the use of entropy to predict water quality values at unmonitored 
locations (in this case discontinued stations) noted earlier is the need to approximate 
the ' t rue '  continuous probability distribution functions by a discrete approximate 
function. In the study of Kusmulyono and Goulter (1994), the more general form 
of the POME, which is known as Kullback-Leibter's principle of minimum discrim- 
ination information (the MDI principle), was applied to develop the most unbiased 
probability distribution of water quality values at discontinued sampling stations on 
the tributaries and main channel upstream of an existing continuing water quality 
monitoring station. The prediction itself was undertaken knowing the historical prob- 
ability distribution at each discontinued station, observed water quality values at the 
downstream continuing sampling station, and an expression conveying information re- 
lated to the historical relationship between the water quality value at the downstream 
station and the water quality values at the upstream tributary and main channel sta- 
tions. The new unbiased probability distributions derived from this approach for each 
upstream discontinued locations were then used to estimate the mean water quality 
at those same upstream locations. 

The mathematical formulation employed to predict the water quality vMues at these 
upstream stations is: 

M a x  H 

Subject to: 

Pij = 
i=1 

- ~ ~ ,  Pli In [pij/(qii/m)] (1) 
j= l  i=1 

l / In (j = 1, 2, ...., m) (2) 

pijxij/ Pij = #i (j = 1, 2, ...., m) (3) 
i=l  i=l  

Pii ij/ Pij = #2 + cr~ (j = 1, 2, . .... m) (4) 
i=1 i=l  

# = f(#1, /z2, ..., #m) (5) 

0 _< Pij _< 1 for alli ,  j (6) 

0 < qij -< 1 for alli ,  j (7) 
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Table 1. Water quality data at MacKenzie River and Isaac River sub-basin. 

a. STATION 130401 (at Isaac River) 

CALIBRATION 

Year Conductivity Dissolved Dissolved Hardness 
@ 25 C Ions Solids 
(mS/m) (rag/l) (mg/I) (rag/l) 

71 270.0 196.1 78.0 
72 351.3 265.9 102.8 
73 237.8 173.8 140.8 73,5 
74 471.0 301.0 249.5 136.5 
75 350.0 211.4 176.0 89.0 
76 550.0 359.4 303,0 157.7 
77 311.0 204.3 174.2 86.4 
78 457.5 304.9 263.0 129.0 
79 660.0 411.0 343.0 181.0 
80 429.0 269.6 231~8 113.0 

Mean 408.8 269.7 235.2 114.7 

Standard 131.0 76.4 68.1 35.9 
Deviation 

VERIFICATION 

Year Conductivity Dissolved Dissolved Hardness 
@ 25 C Ions Solids 
(mS/m) (rag/l) (rag/l) (rag/l) 

81 425.0 200.8 218.5 106.5 
82 316.7 200.7 173.3 83.3 
83 
84 332.5 219.3 185.0 83.5 
85 283.3 176.7 156.7 72.0 
86 276.7 182.6 150.0 75.7 

Mean 
(81-85) 339A 199.4 183.4 
(82-86) 302.3 194.8 166.3 

86.3 
78.6 

(81,82) 370.8 200.7 195.9 94.9 
(82,84) 324.6 210.0 179.2 83.4 
(84,85) 307.9 198.0 170.8 77.8 
(85,86) 280.0 179.7 153.3 73.8 

(81,82,84) 358.1 206.9 192.3 91.1 
(82,84,85) 310.8 198.9 17t.7 79.6 
(84,85,86) 297,5 192.9 163.9 77.1 



Table 1 (continued) 

b. STATION 130106 (at Mackenzie River) 

CALIBRATION 

Year Conductivity Dissolved 
@ 25 C Ions 
(mS/m) (mg/1) 

Dissolved 
Solids 
(rag/t) 

Hardness 

(rag/l) 

219 

71 230.0 199.3 91.0 
72 204.8 167.1 78.6 
73 146.7 135.8 100.3 61.7 
74 168.6 136.1 104.2 61.7 
75 192.2 151.0 117.3 65.7 
76 410.0 347.2 257.0 162.0 
77 240.6 198.6 151.4 85.2 
78 160.0 127.5 100.5 55.2 
79 340.0 257.6 199.0 101.0 
80 230.3 165.9 135.0 69.3 

Mean 232.3 188.6 145.6 83.t 

Standard 83.2 68.2 
Deviation 

56.1 31.3 

VERIFICATION 

Year 

81 
82 
83 
84 
85 
86 

Mean 
(81-85) 
(82-86) 

(81,82,84) 
(82,84,85) 
(84,85,86) 

(81,82) 
(82,84) 
(84,85) 
(85,86) 

Conductivity 
@25C 
(mS/rn) 
199.3 
211.3 

206.7 
242.5 
185.0 

214.9 
211.4 

205.8 
220.1 
211.4 

205.3 
209.0 
224.6 
213.8 

Dissolved 
Ions 
(mg/1) 
151.0 
163.3 

161.3 
166.2 
150.2 

160.4 
160.3 

158.5 
163.6 
159.2 

157.2 
162.3 
163.7 
158.2 

Dissolved 
Solids 
(mg/1) 
114.8 
122.5 

123.3 
140.0 
110.0 

125.2 
124.0 

120.2 
128.6 
124A 

118.7 
122.9 
131.7 
125.0 

Hardness 

(rag/l) 
58.8 
72.5 

62.0 
65.5 
61.0 

64.7 
65.3 

64.4 
66.7 
62.8 

65.7 
67.3 
63.8 
63.3 
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Table 1 (continued) 

c. STATION 130105 (at Mackenzie River) 

CALIBRATION 

Year Conductivity Dissolved Dissolved Hardness 
@ 25 C Ions Solids 
(mS/m) (rag/l) (mgll) (mgtl) 

71 
72 290.0 199.7 148.5 80.5 
73 215.0 159.6 135.8 61.8 
74 350.0 233.5 194.0 97.0 
75 235.0 158.4 133.7 63.7 
76 516.7 336.2 274.0 150.3 
77 350.0 248.6 204.0 102.3 
78 367.5 258.2 207.5 110.5 
79 
80 411.7 220.0 220.0 107.7 

Mean 343.2 231.2 189.7 96.7 

Standard 97.6 58.7 48.3 28.8 
Deviation 

VERIFICATION 

Year 

81 
82 
83 
84 
85 
86 

Mean 
(81-85) 
(82-86) 

Conductivity Dissolved Dissolved Hardness 
@ 25 C Ions Solids 
(mS/m) (mg/1) (mg/1) (rag/l) 
248.0 176.7 139.0 71,0 
260.0 167.0 150.0 63.0 

226,3 161.0 130.0 64.0 
235.0 161.0 140.0 61.5 
255.0 187~9 146.7 80.7 

242.3 166.4 139.8 64.9 
244.1 169.2 141.7 67.3 

(81,82) 254.0 171.9 144.5 67.0 
(82,84) 243.1 164.0 140.0 63.5 
(84,85) 230.6 161.0 135.0 62.8 
(85,86) 245.0 174.4 143.3 71.1 

(81,82,84) 244.8 168.2 139.7 66.0 
(82,84,85) 240.4 t63.0 140.0 62.8 
(84,85,86) 238.8 170.0 138.9 68.7 
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Figure 1. Location of the water quality monitoring stations, 

#j _> 0 for aUj (S) 

o 3 ~ 0 for a,llj (9) 

where: 

xij = possible water  qual i ty  level i at s ta t ion j 
qij = prior probabi l i ty  of event xij 
Flj = m e a n  of the  water  qual i ty  tevel at s tat ion j 
aj = s tandard  devia t ion of water qual i ty level a.t s ta t ion j based on the prior distri- 

bu t ion  
# = observed (changed) mean of the water qual i ty  level a,t the downs t ream locat ion 
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pij = probability of event xij to be assigned knowing the mean of water quality level 
downstream # 

m = number of upstream stations 
n = number of intervals (discrete water quality values) at each station. 

On the basis of a study using one set of data both to define the original (prior) 
distributions and relationship between upstream and downstream water quality val- 
ues, i.e., to calibrate the model, and a different set of data h'om the same stations 
to validate the model, Kusmulyono and Goulter (1994) report that  this formulation 
gives very good predictions of the water quality at unmonitored sites. 

One of the most common problems that may arise in the discrete approximation of 
a continuous function such as that employed for Plj in the above formulation is the 
size of the discretization interval. Different levels of discretization may give different 
results for the same problem. I-Iarmancioglu et al. (1985), have shown this problem 
to be a significant issue when using entropy principles to calculate the transfer of 
information between variables. 

As well as the concern that the different degrees of discretization may give different 
results, and therefore give rise to erroneous decisions, computational requirements 
related to the level of discretization must also be addressed. It is generally true that 
the greater the number of intervals, i.e., the finer the discretization, the more precise 
the result. However, finer discretization also requires longer computation time which 
is not an insignificant issue in the non-linear formulation represented by Equations 
(1)-(9). Therefore, the choice of discretization has to be based on a trade-off between 
accuracy and computational effort. 

In this model, the relationship between the data at the downstream and at the 
upstream station(s) is expressed in Equation (5). To develop this function, the val- 
ues from each of the stations involved are required. The particular issue in this 
case is, what values should be used in the development of this function and in the 
corresponding entropy formulation. 

More specifically, should either instantaneous values or values averaged over some 
period or interval of time be used? It is not generally possible to use instantaneous 
values because either 1) the values at the different stations may not be measured at 
the same time or 2) if the values are measured at the same time, the values may not be 
properly related because of the lag time (travel time of pollutants etc.) between the 
two locations if one monitoring station is located downstream of the other. If values 
averaged over a given time period are to be used, the question is one of what time 
interval to use. The particular model proposed by Kusmulyono and Goulter (1994) 
upon which the analysis described in this paper is based was used to predict changes 
in the value of water quality in the long term, i.e., on a time span of years. In doing 
so the model uses mean values of the water quality parameters over a specified period 
of years, i.e., an annual 'time-averaging' approach. The question therefore becomes 
one of which time averaging period, i.e., number of years over which the water quality 
values are to be averaged, to use. It should be noted that the length of data record 
available controls to some extent the range of time averaging periods which can be 
contemplated. 
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3 I m p l i c a t i o n s  of the  choice of  level of  disc re t i za t ion  

In order to clarify the effects of the choice of the number of intervals (level of dis- 
cretization) on the prediction of the long term mean of water quality values at discon- 
tinued sampling stations, the MDI formulation of Equations (1)- (9) was solved for a 
six different levels of discretization, namely 8, 16, 24, 32, 40 and 48 intervals spread 
over four standard deviations either side of the mean. The results derived from the 
MDI formulation for this range of values are summarized in Table 2 and Figure 2. 
(The duration of the interval over which the water quality values were averaged was 
4 years for this case. The discussion on the implications of varying the duration of 
time averaging is given in the following section). 

It is clear from the results shown in Table 2, that variation in the level of discretiza- 
tion has very little effect on the value of the entropy H; doubling of the number of 
intervals from 24 to 48 results in a maximum change of less than 1% in the value of 
H. Similarly, the variation in the mean values of the water quality values assigned by 
the entropy function with the different levels of discretization is extremely small with 
the only changes occurring in the second decimal place. These observations indicate, 
that unlike the applications of the entropy function reported by Harmancioglu et al. 
(1985; 1992), the model of Kusmulyono and Goulter is quite insensitive to the level 
of discretization and therefore very robust in its assignment of water quality values. 
Hence the level of discretization does not appear to be a significant problem. 

There is, however, a great difference in the processing time for different levels of 
discretization. The model was run using an IBM-PC Compatible with Intel 80486 
processor, 33 MHz, using the non-linear package program GRG2 (Lasdon and Warren, 
1986) to solve the model. The processing time required for the various levels of 
discretization are also shown in Table 2. This processing time increases rapidly as 
the discretization interval becomes smaller. Since the difference in results for the 
different levels of discretization is very small, the appropriate level of discretization 
can be quite coarse. In this case the level of discretization associated with having 
only eight intervals would appear to be quite satisfactory. 

4 I m p l i c a t i o n  of  the choice of t he  length  of t i m e  averag ing  

The method proposed by Kusmulyono and Goulter (1993) is intended primarily to 
predict the mean value of water quality over a selected period of time. The data 
used to examine the impact of varying the time period on the predictions provided 
by the model are shown in Table 1. The data from 1971 up to 1980 were used for 
the calibration step and the data from 1981 on were used in the validation step. 
In order to observe the effect of the selection of the period of time over which the 
functions expressed in Equation (5) are developed, the entropy formulation was solved 
for a range of different time intervals in the development of that function. Due to 
the limited data (only eight years of data are available for all stations, except for 
Dissolved Solids which has only seven years of data in the same year available for the 
calibration step, and only 5 years of data for all stations in the same year available for 
the validation step) only a limited number of variations in the averaging time period 
were able to be analyzed. In this study, 5, 4, 3 and 2 years duration averaging periods 
were selected to develop Equation (5). From 8 data points available for calibration, 
only 4 data points can be used to calculate the regression coefficients for the 5 year 
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moving average; 5 data points for the 4 year moving average; 6 data points for the 3 
year moving average and 7 data points for the 2 year moving average. 

Development of Equation (5) from the formulation was conducted by regression 
analysis, with an assumption that the water quality values at the downstream location 
are a mixed value of the two upstream water quality values. This value can be 
calculated as the summation of the value of water quality from each upstream location, 
weighted by the discharge of each tributary in order to recognize the proportional 
contribution of each tributary to the water quality at the downstream station. 

The regression coefficients for each time averaging period are shown in Table 3. The 
graphical presentation of the variation of this regression line can be seen in Figure 
3a for Conductivity, Figure 3b for Dissolved Ions, Figure 3c for Dissolved Solids and 
Figure 3d for Hardness. It can be seen in Table 3, that in most cases, the 4 year 
moving average gives the highest coefficient of correlation between the water quality 
value at the downstream station and the summation of the water quality values, 
weighted by their average flows, from the two upstream stations. 

It was initially expected that the best entropy prediction would occur for those time 
intervals with the highest correlation coefficients, in this case, the 4 year interval. The 
results of the prediction step, as shown in ']:able 4, show that it is not always true. 
For example, for a four year averaging interval the correlation coefficient (see Table 
3) is significantly larger than those for the other three time intervals considered for 
all water quality parameters. However, it can be seen that the predictions using the 
four year time interval are no better and in some cases worse than using the other 
time periods. This situation arises to a large extent from the variation in the number 
of points used to develop the regression equation, [Equation (5) in the formulation] 
caused by change in the duration of the interval used to average the water quality 
values for a fixed length of record; longer averaging periods result in fewer points for 
the expression. For example, in the case of a 5 year moving average only 4 data points 
are available. The smaller numbers of data points may give good correlations but, in 
fact, the resulting expression may not be an appropriate representation of reality. In 
the case of smaller intervals over which to average the values, the number of points 
to calculate the regression coefficients will increase, the resulting expression is likely 
to be a better reflection of reality, but the short term variation of the data may be 
more dominant with a correspondingly smaller correlation coef~cient. 

The duration of the averaging interval may therefore be decided on the basis of the 
time span upon which it is desired to calculate average water quality values rather 
than on a formal statistical evaluation of what time interval is optimal in terms of 
accuracy of prediction. The same %ime-averaging' period must of course be used 
in the calibration and prediction steps. It should also be recognized that use of 
time averaged values for water quality damps out the effects of short term transient 
fluctuation in water quality, which although important at their time of occurrence, do 
not relate directly to the background water quality conditions and to the long term 
and possibly permanent variation in those background conditions. 

5 S u m m a r y  and  conclusion 

Two computational aspects, namely, level of discretization, and duration of the period 
of time over which to average the water quality values to be predicted, involved in 
using entropy theory to predict the value of water quality at discontinued monitoring 
stations were examined. 
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Table 3. Regression coefficients for various periods of time 

Summation of Weighted Upstream Values = B0 4- BI. (Downstream Value) 

Conductivity 
2 year moving 3 year moving 4 year moving 5 year moving 
average average average average 

B0 95.96 112.82 137.72 147.89 
B1 0.6990 0.6580 0.5980 0.5689 
correlation 
coefficient 0.8767 0.8828 0.9688 0.9322 

Dissolved Ions 
2 year moving 3 year moving 4 year moving 5 year moving 
average average average average 

B0 77.875 81.546 100.58 147.23 
B1 0.6693 0.6602 0.5914 0.3936 
correlation 
coefficient 0.8526 0.8619 0.9730 0.8175 

Dissolved Solids 
2 year moving 3 year moving 4 year moving 5 year moving 
average average average average 

B0 50.586 46.682 50.978 i05.98 
Bt 0.7355 0.7577 0.7423 0.4668 
correlation 
coefficient 0.8607 0.8818 0.9832 0.8112 

ttardness 
2 year moving 3 year moving 4 year moving 5 year moving 
average average average average 

B0 40.273 44.021 5 t .357 74.369 
B1 0.6247 0.5966 0.5351 0.3034 
correlation 
coefficient 0.8347 0.8238 0.9390 0.7853 

Table 4. Results of assignment of mean water quality values for various time intervals 

STATION 130401 

Water QuaLity 2 Yearly 3 Yearly 

Parameter Data Assigned % Error Average Data Assigned % Error Average 

Conductivity 370.8 306.1 -17.46 358.1 306.7 -14.34 
324.6 295.7 -8.90 1 0 . 1 2 %  310.8 302.7 -2.62 6,07% 
307.9 283.7 -7.86 297,5 301.2 1.24 
280.0 297.5 6.25 

Dissolved Ions 200.7 208.4 3.82 206.9 208.0 0.52 
210.0 201.8 -3.90 6.39% 198.9 203.7 2.42 3.85% 
198,0 199.3 0.67 192.9 209.5 8.62 
179.7 210.5 I7.t7 

Dissolved Solids 195.9 173.7 -11.34 192.3 168.1 -12.57 
179.2 169.4 -5.45 8.23% 17t.7 I68.4 -1.90 5.54% 
170.8 164.7 -3.59 163.9 167.4 2.14 
153.3 172.6 12.57 
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Water Quality 2 Yearly 3 Yearly 

Parameter Data Assigned % Error Average Data Assigned % Error Average 

Hardness 94.9 87.3 -8.02 91.1 88.9 -2.43 
83.4 84.5 1.30 9.98% 79.6 86.5 8.65 
77.8 84.0 8.04 77.1 90.9 17.97 
73.8 90.5 22.57 

9.68% 

STATION 130106 
Water Quality 2 Yearly 3 Yearly 

Parameter Data Assigned % Error Average Data Assigned % Error Average 
Conductivity 205.3 210.8 2.68 205.8 210.9 2.50 

209.0 208.6 -0.17 3.34% 220 .1  210.1 -4,56 2,60% 
224.6 206.1 -8.23 211A 209.8 -0.75 
213.8 208.9 -2,27 

Dissolved Ions 157,2 163,2 3.85 158.5 163.0 2.81 
162.3 160.4 -1.19 2.85% 163 .6  161.2 -1.47 2.34% 
163.7 159.4 -2.65 159.2 163.6 2.75 
158.2 164.1 3.75 

Dissolved Solids 118.7 124.5 4.92 120.2 122.5 1.89 
122.9 123.0 0.07 3.39% 128.6 122.6 -4,67 2.76% 
131.7 121.3 -7.87 124.4 122.3 -1.72 
125.0 124.1 -0.72 

Hardness 65.7 72.2 9,95 64.4 72,9 13.12 
67.3 71.1 5.72 1 0 . 7 7 %  66,7 71.9 7.85 12.75% 
63.8 70.9 11.22 62.8 73.7 17.29 
63.3 73.5 16.21 

STATION 130401 
Water Quality 4 Yearly 5 Yearly 

Parameter 
Conductivity 339.4 318.6 

302.3 320.1 
Dissolved Ions 199.4 215.9 

194.8 218,0 
Dissolved Solids 183.4 171.0 

166.3 172.8 
Hardness 86.3 92.3 

78.6 93.9 

Data Assigned % Error Average Data Assigned % Error Average 
-6.12 6.00% 326.8 324.9 -0.58 0. 58% 
5.89 
8.30 20,00 20.00% 
11.90 
-6.75 9.22 9.22% 
3.94 
6.91 22.92 22.92% 
19.93 

10.10% 196.0 235.2 

5.34% 176 .7  193.0 

13.17% 84.2 103.5 

STATION 130106 
Water Quality 4 Yearly 5 Yearly 

Parameter 
Conductivity 214.9 213.4 

211.4 213,7 
Dissolved Ions 160.4 166.4 

160.3 167.2 
Dissolved Solids 125.2 123.5 

124.0 124.2 
Hardness 64.7 74.2 

65.3 74.9 

Data Assigned % Error Average Data Assigned % Error Average 
-0.72 0.91% 209 .0  214.7 2.73 2.7 3% 
1.11 
3.71 10.10 10.10% 
4.34 
-1.33 7.37 7.37% 
0.19 
14.67 22.97 22.97% 
14.79 

4.02% 158 .4  174.4 

0.76% 122 .1  131.1 

I4.37% 64.0 78.7 
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Unlike other applications of entropy theory, the level of discretization does not 
appear to effect the results significantly. The choice of the discretization or number 
of intervals can therefore be determined in part by computation time, which increases 
rapidly with increasing number of intervals. 

The period of t ime for which the water quality values are assigned by the model 
appears to have a significant impact on the accuracy of the prediction. This time 
interval is used both in the prediction and calibration steps of the model and must 
be the same for both steps for a given application of the model. The time interval 
associated with the highest correlation coelficient in the regression used for calibration 
does not necessarily correspond to the time interval associated with the most accurate 
prediction in the entropy formulation derived solution. This difference is believed to 
be due in part to the amount of data that is available in the calibration phase for a 
fixed period of record; the longer the intervals over which the water quality values 
are averaged for a given period of record the smaller the number of data points upon 
which to base the model. Care must therefore be taken in specifying the t ime intervals 
over which water quality values will be averaged in the model. 
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