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Abstract 

A matchable set ofa graph is a set of verticesjoined in pairs by disjoint edges. Balas and Pulleyblank 
gave a linear-inequality description of the convex hull of matchable sets. We give a polynomial-üme 
combinatorial algorithm for the separation problem for this polytope, and a min-max theorem char- 
acterizing the maximum violation by a given point of an inequality of the system. 
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I. Introduction 

A matchable set of  a graph G = (V, E) is a set of  verticesjoined in pairs by disjoint edges. 

Balas and Pulleyblank gave a characterization by linear inequalities of  the convex hull Q 

of  incidence vectors of  matchable sets of  G. The main result of  this paper is an efficient 

algorithm that, given x ~ ~v, either determines that x ~ Q or finds a linear inequality satisfied 

by every point o f  Q and violated by x. 
Our algorithm actually finds, in the second case, an inequality in the Balas-Pulleyblank 

system that is most-violated by x. The algorithm proves a min-max theorem characterizing 

the amount of  this violation. It states that the maximum violation is the minimum "defi- 
ciency" of  points y ~ Q such that y ~< x. Such a minimizing y can be required to satisfy 

additional discreteness conditions. The min-max theorem generalizes the Balas-Pulley- 

blank result as well as the Tutte-Berge matching formula. 
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In this paper we use standard graph terminology. For x ~  R s and TCS, x(T) denotes 

Ei~~xj. Where G =  (V, E) is a graph and A, B are subsets of V, we use lA, B] to denote 
{e ~ E: e joins an element of A to an element of B}. In particular, 8(A) denotes lA, V'kA] 
and y(A) denotes [A, A]. We often omit brackets; for example, for v ~ V, we may write 
6 (v) instead of 6 ( { v } ) and for A, B _c V, x (A, B) in stead of x ( [A, B ] ). Where graphs other 

than G a r e  in use, it may be necessary to subscript graph notation, for example, gG(A). 
Where a ground set S is understood (usually V or E), the incidence vector of a subset T of 
S is denoted X r. 

A matching in G = (V, E) is a set of edges of G, no two having a common end. Edmonds 
(1965) gave a characterization of P = P (G) = conv ( { XR: R a matching of G} ) _ R e by 

linear inequalities. We call P the matching polytope of G. He also gave a polynomial-time 
algorithm to find an optimal weight matching, or equivalently, to optimize any linear 

function over P. 

Theorem 1.1 (Edmonds). The matching polytope of a graph G= (V, E) is the set of aU 
z ~ ~ E satisfying 

Z( 6(v) ) <~ 1,for eaeh v~  V; 
z( 3'( S) ) <~ 1 ( I S I - 1) for each S ~ V such that [ S I is odd and at least 3. 

A matchable set in G is a set of vertices constituting the ends of the edges of some 
matching. (Hence, in particular, every matchable set has even cardinality.) Balas and 

Pulleyblank (1989) gave a characterization of Q = Q(G) =conv{xr:  T a matchable 
set} c Nv by linear inequalities. We call Q the matchable setpolytope of G. 

Theorem 1.2 (Balas-Pulleyblank). The matchable set polytope of a graph G-- (  V, E) is 
the set of all x ~ ~ v satisfying 

xù <~ 1,for each v ~ V; 

x( U ~ A;) - x( B ) <~ Ek=~ ( lA; I - 1) , for  all subsets B, A 1 . . . . .  A k of V, 
such that each A; is the vertex-set of  an odd component of G - B .  

Notice that T is a matchable set if and only if x T = M x  R for some matching R, where 
MG R vxE is the incidence matrix of G. This relationship carries over to convex combina- 

tions, so Q =  {Mz: z ~ P } ,  that is, Q is a linear transformation of P. We call the vector Mz, 
for z ~ R e, the degree sequence of z. (The terminology is suggested by the special case in 
which z is the incidence vector of the edge-set of a subgraph of G, in particular, where G is 

a complete graph.) 
We remark that Theorem 1.1 has been generalized to characterize the convex hull of 

"capacitated b-matchings" by Edmonds and Johnson (1970), and Theorem 1.2 has been 
similarly generalized to the convex hull of their degree sequences; see Cunningham and 

Green-Krótki (1991). 
Notice that the above linear relationship between P and Q implies that there is an easy 

way to optimize any linear function over Q. Namely, max (cx: x ~ Q) = max ((cM) z: z ~ P),  
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so optimization over Q reduces to a weighted matching problem. In addition to this optim- 

ization problem, a second fundamental problem for the polyhedron Q is the separation 

problem: Given x ~ ~, find, if one exists, a linear inequality satisfied by every point in Q 
but violated by x. Due to a certain equivalence between the two problems, the separation 
problem for Q is solvable via the ellipsoid method; see Grötschel et al. (1981). However, 
a more direct combinatorial method is desirable. The separation algorithm in this paper is 
combinatorial, runs in polynomial time, and gives an independent proof of Theorem 1.2. 
(For P, such a separation algorithm has been found by Padberg and Rao (1982), but their 
algorithm does not provide a proof of Theorem 1.1.) 

We shall solve the separation problem for Q in the following form. Given x ~  ~ v ,  
0 -«x<  1, find, if there is one, a constraint Theorem 1.2(b) that is most-violated by x. In 
fact, there is a min-max theorem characterizing this maximum violation. (Notice that 
min (~] ~ ( I Ai ] - 1 ) - ( x 13 ~ Ai) - x ( B )  ) ) differs from the minimum in Theorem 1.3 below 
by the constant x(V) .) 

Theorem 1.3. L e t x ~  •v, O < x <  1. Then 

~~ ~ ) m a x ( y ( V ) : y < ~ x , y ~ Q ) = m i n  ( [ A i l - 1 ) + x ( B ) + x ( V ~  A~) , 
1 

where the minimum is taken over all subsets B o f  V and vertex-sets A1 . . . . .  A k o f  odd 

components o f  G -  B. 

If we call x(V) - y ( V )  the deficiency ofy  (with respect to x), then Theorem 1.3 asserts 
"max violation = min deficiency". Actually, this result also extends the Balas-Pulleyblank 
Theorem 1.2. Namely, x ~ Q if and only if the maximum is x(V), which is true by Theorem 
1.3 if and only if 

x(V)<~ ( I A i l - 1 ) + x ( B ) + x  V ~ ? A ,  
1 

for all choices of B, A1 . . . . .  A» thus proving Theorem 1.2. A further strengthening of 
Theorem 1.3, on the discreteness of the maximizing y, is useful in establishing the efficiency 
of our algorithm. 

Theorem 1.4. There is a maximizing y in Theorem 1.3 such that each Yv is an integral 

combination o f  elements o f  { xv: v ~ V} tO { 1 }. 

Applying Theorem 1.4 to the case in which each xv is an integer multiple of some number 
a, we conclude that there is also a maximizing y having this property. In particular, if each 
xv is 0 or 1, then there is a { 0, 1 }-valued maximizing y. So the left-hand side of the equation 
in Theorem 1.3 is the maximum size of a matchable set, and the right-hand side is 
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min( [V[ - k ) ;  that is, the Tutte-Berge matching formula is a consequence of Theorems 
1.3 and 1.4. 

We can also say something about the existence of a discrete z ~ P such that a given y ~ Q 
is its degree sequence. 

Theorem 1.5, If  y ~ Q, then there exists z ~ P such that y is the degree sequence of z and 

for each e ~ E, 2z« is an integer combination of  {Yv: v ~ V} U { 1 }. 

To see that the factor of 2 in Theorem 1.5 is needed, consider the case in which G is a 
triangle and each Yv is 1. However, for G bipartite the factor of 2 is not needed, and in fact 
this version of Theorem 1.5 follows easily from well-known results. In the bipartite case, 
y ~ Q if and only if 0 <~y <~ 1 and there exists z ~ Re+ such that Mz =y, where M is the 
incidence matrix of G. Since in this case M is totally unimodular, z can be chosen so that 
each ze is an integral combination of {yv: v ~ V} U { 1 }. From similar considerations we can 
also easily obtain Theorem 1.4 for bipartite G. (Notice that both the characterization of 
membership in Q and the total unimodularity of M fail for G non-bipartite.) 

The general approach of the separation algorithm is as follows. We keep z ~ P and 
y = Mz ~ Q with y ~< x, and try to increase y(V) = 2z(E) by augmenting-path techniques. 
The techniques used are mostly familiar ones from matching theory. However, whereas in 
usual matching algorithms an augmentation obviously maintains feasibility, here we must 
explicitly watch for violations of Z ( T ( S ) ) < ½ ( I S I - 1 ) .  Similarly, whereas in usual 
unweighted matching algorithms the objective function increases by an integer with each 
augmentation, here the increase can be small. We shall handle the first difficulty by requiring 
z to have properties that strongly limit the search for violated inequalities. For the second 
difficulty, discreteness properties like Theorems 1.4 and 1.5 will be useful. 

2. Sufficient conditions for membership in P 

Our algorithm maintains z ~ P, but it is by no means trivial to recognize membership in 
the matching polytope. However, we are able to certify membership in P for vectors z that 
satisfy certain additional conditions, which can be required in the separation algorithrn. In 
this section we establish these sufficient conditions for membership in P. 

We introduce here further terminology. Much of it was first presented in Pulleyblank 
(1973). A family of 9 of subsets of V is nested if there do not exist 9 1 ,  9 2  ~ 9 with 
9 1 \ 9 2 ,  9 2 \ 9 1 ,  $1 ¢q $2 all non-empty. Given a nested family 9 ,  the graph G X 9 is 
obtained by shrinking each maximal member S of S a to a single vertex, which we call S, 
and deleting all edges in T(S). Since the maximal sets are disjoint, this graph is weil defined. 
Notice that every vertex of G X 9 is an element or a subset of V, and that every element of 
V is either a vertex of G X S p or an element of a (unique) vertex of G × 9 .  The first kind 
of vertex is called real, the second pseudo. For a nested family 9 and S ~ 9 ,  we denote 
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by ~ [ S ]  the family {S': S»S '  ~ ~ } .  We use G[S] to denote the subgraph of  G induced 

by S. A shrinking family of G is a nested family ~ such that: 
For all S ~ ~ ,  G[S] × S a [ S ]  is spanned by an odd cycle C(S).  

It follows that if ~ '  is a shrinking family, then every pseudo vertex of  G X ~ has odd 

cardinality. 

The next two results give ways to ensure that a given (fractional) z is in P. For z ~ Re+, 

we use G+ = G+ (z) to denote the spanning subgraph of  G whose edge-set is {j ~ E: zj- > 0}. 

We say that a graph is independent if it has no even cycle and each component contains at 

most one odd cycle. (The term arises from considering linear independence of  column 

submatrices of  the incidence matrix of  G.) 

L e m m a  2.1. I f  z~Re+,  z (6 (v ) )<~ l  for  all v ~ V ,  G+ is independent, and 
z ( y (S )  ) ~ ½ ( [ S [ - 1 ) whenever S is the vertex-set o f  an odd cycle, then z ~ P (G).  

Proof.  If  not, let S be a minimal set violating z(T(S)  ) ~< ½ ( I S I - 1). It it easy to see that 

G+ IS] is connected. If  there exists v ~ S such that v is adjacent in G+ [S] to a degree-one 

vertex w, then 

z ( y ( S \ { v ,  w}))  >~z(y(S))  - z ( 6 ( v ) )  ~>z(y(S))  - 1 > ½( [S\{v ,  w}[ - 1) 

a contradiction. Therefore, since G+ [S] is independent, it must consist of  an odd cycle, 

also a contradiction. []  

L e m m a  2.2. Suppose that S c V  is spanned by an odd cycle C(S) in G and z' ~ P ( G ' )  
where G' = G × {S} = ( V', E' ) . Then z' can be extended to z ~ R e such that z ~ P ( G ) and 

z( y( S) ) = ½( IS[ - 1). Moreover, if  x ~ R v and x, z' satisfy O <~ x <~ 1, z' ( 6~, ( v ) ) <~ xv, 
v ~ V ' \  { S }, and z' (3 (S)  ) <~ x(S)  - ( ] S I - 1 ), then z can be chosen also to satisfy 
z( ~(v) ) «.xv, v ~  V. 

Proof.  We prove the second statement only, since the first is equivalent to the second when 

each xv =1 .  Pick a vertex w ~ S ,  define bw to be X w - Z ' ( 8 ( w )  A E ' )  

+z ' (~(s) )  + ISI - 1 - x ( S ) ,  and define bo, for v ~ S \ { w } ,  to be x ~ - z ' ( 6 ( v )  A E ' ) .  The 
system z ( 8~ts] (v) ) = b~ for each v ~ S, and zj = 0 for eachj  ~ 7(S) \ E (  C(S) ), has a unique 
solution for zj, j ~  7(S).  The resulting z ~ ~  e certainly satisfies z(~(v))~<xv for v ~ w .  

Moreover, 

xw - z (  8(w) ) =xw - z '  ( 8(w) OE ' )  - b w  = x ( S )  - z '  ( 8( S) ) - ( ISI  - 1) t>0. 

To show that z is also non-negative, we use the following forrnula for zj, j ~  E ( C ( S ) ) .  
Suppose that the vertex-sequence of  C(S) is Vo, vl . . . . .  v r sf - » Vo, and let j  be the edge from 

voto Vls ~ _l. Thenzj = l (E(b~,:  i even) - E(bo,:  i odd)) .  Therefore, since b(S) = ISI - 1, 

2zj= ISI- 1 - 2 E ( b v i :  i odd). Now if w has an even subscript, then 

2zj t> I S [ - 1 - 2E  (xv/: i odd). If  w has an odd subscript, then 
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2z~ = IS[ - 1 - 2 Z ( x ù i :  i odd) + 2 E ( z ' ( ~ ( v i )  N E ' ) :  i odd) 

+ 2z ' (~ (s ) )  - 2 (  ISI - 1) + 2x(S) 

>t ISI - 1 - 2E(x~,: i odd).  

In both cases, since there are 5 ( I S I - 1) odd subscripts and each xù ~< 1, we have zj >~ 0. 

Finally, we need to show that z ( 3 " ( S ' ) ) <  5 ( I S ' I - 1 )  for all odd subsets S' of  V. If  

S' ___ S, this is true by Lemma 2.1, since z (?'(S) ) = 5 ( I S I - 1 ) and if S' D S it follows from 

z(3"(s') ) = z ' ( 3 ' ~ , ( ( s ' \ s )  tO {s}) ) +z(3"(s)) 
.«-: IS ' \SI  + l ( I S l - 1 )  = 5 ( 1 3 ' 1 - 1 ) .  

So suppose that S ' \ S ,  S \ S ' ,  S¢qS' are all non-empty. If  I S f ) S  ' ] is odd, then 

z( 3"(s') ) +z( 3"(s) ) « z (  3"(sus')  ) +z( 3"(sNs') ) 
~< 5( I s u s '  I - l )  + 5(  I s N s ' I  - : )  
= 5 (  I S ' l  - 1 )  + 5( I s I  - 1 )  

= 5 ( IS '1  - 1) + z ( 3 ' ( s ) ) ,  

so z(3"(s')) < 5( IS'l - 1. If  I sNs ' I  is even, then 

z( 3"( s ' )  ) + 5( ISI - 1) = z( 3"( s ' )  ) -I-z( 3"( s) ) 
«z (  3"(s\s') ) +z( 3"(s'\s) ) + E(z (8 (v ) ) :  v e s N s ' )  
«. ~( IS\S'  l - 1) + 5( IS'\SI - 1) + I sNs ' )  
- ½ ( I S I  - 1 )  + ½( I S ' l  - 1 )  

so z( 3"(S') ) < ½( IS' l - 1 ) ,  as required. [] 

For a shrinking family S :  of G, a vector x ~  R v induces a vector x ' E  R v', where 

G X 5 :  = G'  = (V', E ' ) .  Namely, x ó = xù for v a real vertex of  G' and x t  = x(S) - ( I SI - 
1) for S a pseudo vertex of  G'.  By a slight abuse of notation, we also use x to denote this 

x'.  We call z ~ P ( G )  feasible if z ( 3(v) ) <~ xo for each v ~ V. The deficiency of v ~ V (with 
respect to a feasible z), is % - z ( 6 ( v ) ) ;  v is deficient if it has positive deficiency. The 

deficiency of z is ~(xù - z (6(v)  ): v ~ V) ; that is, it is the deficiency of the degree sequence 

y of  z, as defined earlier. Now Lemma 2.2 implies that, if z ~ P (G × J~)  is feasible, then it 

can be extended to a feasible z ~ P ( G )  having the same deficiency. 

One more remark will be useful later. Although the process of  extending z requires some 

work, extending its degree sequence y is easy. Namely, for each pseudo vertex S of G' we 

choose some w ~ S  and define Yw to be x w + y s - x ( S )  + [SI - 1, and yù to be xù for each 
v ~ S \ { w } .  

3. Augmenting paths 

In this section we introdu¢e the basic methods for finding an improvement in the current 

y. In fact, we work mainly with z in the matching polytope. 
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In a path Vo, el, v» e2 . . . . .  e» vk a vertex or edge is eren or odd according to the parity of  
its subscript in its first occurrence as a vertex or edge term in the sequence. In a tree T with 
distinguished root vertex r, a vertex (or  edge) is eren or odd according to its parity in a 
simple path in T beginning at r. Similarly, we define eren and odd for vertices of  a forest 

of  rooted trees. Given z ~ P ( G ' ) ,  a path in G'  is z-alternating if z i > 0 for every even edge 
of the path. I f  z is also feasible with respect to x ~ Rv+, a path is z-augmenting if it is z- 
alternating and its end-vertices are deficient. We deal with three types of  augmenting path. 
A type 1 augmenting path is one that is simple. (This is the only type of  augmenting path 

that arises in the special case of  maximum cardinality matching.) One of  type 2 is of  the 

form Vo, el, v~ . . . . .  e4k+2t+ 1 for some k~>0, l~> 1 where Vo . . . .  , v2k+2t are distinct vertices, 

U4k+21+l_i=Ui for O<~i<~2k, and e4k+2l+2_i=ei for 1 <~i<~2k; that is, it consists of  an 
even-length path, traversed once in each direction, together with an odd-length cycle. An 

augmenting path of  type 3 is of  the form Vo, el . . . . .  e4~ + 21-1, v4k + 2«- 1 for some k/> 1, l >~ 1, 

where Vo . . . . .  v2k+2t-1 are distinct vertices, U4k+21_l_i=Ui for 0~<i~<2k-1 ,  and 
e4k+ 2t-i = ei for 1 ~< i ~< 2 k -  1; that is, it consists of  an odd-length path, traversed once in 
each direction, together with an odd-length cycle. Augmenting z by amount «>~ 0 on a z- 
augmenting path P, means increasing z i by ~ for each odd edge occurring once in P and by 
2« for each odd edge occurring twice, and similarly lowering zj for even edges. It is easy to 

see that an augmentation changes y only at the ends of  the augmenting path, and that z ( E ' )  

increases by e. 

The amount « is calculated as follows. For a type 1 path, « ~  zj for each e ren  edgej ,  and 
« is at most the deficiency of the end vertices. For a type 2 path, 2«<~ze2i for 1 <~i<~k, 

g ~  Ze2i for k +  1 ~< i ~< k +  l, 2e  is at most the deficiency of  Vo, and 
« ~ ½ ( I V(C)  [ - 1) - z ( E ( C )  ), where C is the odd cycle contained in P. For a type 3 path, 
2g<~Ze2i for 1 <~i<~k- 1, «<~Ze2, for k<~i<~k+l, and 2« is at most the deficiency of Vo. In 
all cases « is the largest number satisfying the upper bounds. By using the augmentations 

only in situations in which Lemma 2.1 can be applied, we can be sure that they maintain 

z ~ P ( G ' ) .  

The algorithm requires the following properties of  G'+ = G'+ (z): 

(3 . la )  G'+ is independent; 
(3.1b) each component  of  G'+ has at most one deficient vertex; 

(3. Ic) if a component  of  Gq_ has a deficient vertex, then it has no cycle. 

It searches for augmentations by growing in G '  a forest F satisfying (3.2) below. A 
rooted tree T is z-alternating if every simple path in T beginning at its root is z-alternating. 

(3.2a) No edge of G'+ has exactly one end in F; 
(3.2b) the roots of  trees in F are precisely the deficient vertices of  G' ;  
(3.2c) each tree in F is z-alternating. 
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In order to motivate the steps of the separation algorithm, let us first describe its termi- 
nating conditions. Suppose that 

(3.3a) No odd vertex of F is pseudo; 

(3.3b) every edge incident in G' with an even vertex of F is incident also with an odd 
vertex of F. 

We let B be the set of odd vertices of F and let each even pseudo vertex be an Aj and each 
real even vertex be a singleton Ai. Then the Ai are vertex-sets of odd components of G -  B. 
Extend the current z to R e and let y be its degree sequence. Then z(y(Ai) ) = 1 ( I Ail - 1) 

for all i. Moreover, v ~ A » j  incident to v in G, and zj > 0 imply thatj  ~ y(Ai) or j  ~ [Ai, BI. 
Similarly,j incident to v ~ B and z: > 0 imply thatj ~ [ U i Ai, B ]. Hence y(B) = z(B, IJ ~i) ,  
and y(A~) = IA~I - 1 +z(A» B). Since all deficient vertices are in some A» the deficiency 

ofy isx(U-~i)  - y (  U ./il) = x (  U -/ki) - x ( B )  -F, i (  IAil - 1),whichis the amount by which 
x violates the corresponding inequality in Theorem 1.2. (Notice that the above argument 
also handles the special case in which x = y; then B, as weil as each A» is empty.) So (3.3) 
is a valid termination condition. 

We now describe an algorithm that, given S:,  G' = G × S:, and feasible z ~ P (G') with 
at least one deficient vertex, finds either an augmentation of positive amount or encounters 
the terrnination conditions (3.3). The algorithm requires of 9 ,  z the conditions (3.1) 
throughout. In addition it requires initially the condition: 

(3.4) For each non-deficient pseudo vertex S of G',  the extension of z obtained when S 
is expanded satisfies zj > 0 for eachj  ~ E(C(S)  ). 

Given S:,  z satisfying (3.1) but violating (3.4), one expands the offending S, and clearly 
this does not introduce violations of (3.1). Hence this additional requirement can be met. 

We say that an odd cycle C is tight (with respect to z) if z (E(C) ) = 1 ( [ V(C) I - 1). 

Algorithm Augment.  Successively expand pseudo vertices S violating (3.4) until (3.4) is 
satisfied. Let F be the forest consisting of the components of G'+ containing the deficient 
vertices. Now if the termination conditions (3.3) are not met, we have the following cases. 

(3.5) (Type 1 augmentation.) There is an edge e joining in G' even vertices u, v of 

different trees 7"1, Tz of F. Let tl, r2 be the roots of 7"1, T2. Then the path in Tl from r~ to u, 
together with e, together with the path in T from v to rz, forms an augmenting path of type 
1. Perform the augmentation and terminate. 

(3.6) (Type 2 or 3 augmentation and shrinking.) There is an edge e j oining in G' even 
vertices u, v of the sarne tree T of F. Let r be the root of T. Then the path in T from r to u, 
together with e, together with the path in T from v to r, forms an augmenting path of type 
2 or 3. Perform the augmentation. If  the corresponding odd cycle C is now tight, shrink C 
into a new pseudo vertex S. If  the augmentation was of non-zero amount, terminate. If not, 
update F by deleting from Tthe edges no longer in G'. 
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(3.7) (Simpleforest extension.) There is an edge e joining in G'  an even vertex of  a tree 

T of F to a vertex v, such that the component of  G'+ containing v is a tree T~ not in F. Add 

e and T1 to T. 
(3.8) (Non-simpleforestextension, augmentation, shrinking.) There is an edge ejoining 

in G' an even vertex u of  a tree Tto a vertex v, such that the component H of  G '  + containing 

v is not a tree. Add e and H to T and delete from T an edge j  of  the cycle C in H, so that in 

the new T, j jo ins  two even vertices. Now apply (3.6) wi th j  replacing e. 

(3.9) (Expanding an odd vertex, augmentation.) There is an odd vertex S o f a  tree T o f  

F that is a pseudo vertex. Let r be the root of  T. Expand S. Then the path in T from r to S, 

together with C(S), together with the path in T from S to r, forms an augmenting path of  
type 3. Perform the augmentation and terminate. 

Theorem 3.10. Algorithm Augment terminates in time O( I VI 2), either with B, A1 . . . . .  Ak 

satisfying the equality in Theorem 1.3 with the degree sequence y of z, or with a new 
z ~ P(G) having larger component-sum and satisfying (3.1). 

Proof. First, we check that, in the steps that do not lead to termination, the properties (3.2) 

required of  F are maintained. This is easy to see for a simple forest extension step. Now 

consider a non-simple forest extension step (3.8). This leads to an augmentation of  amount 

zero only if the augmentation is of  type 2, and the cycle C is tight, and hence is shrunk. 

Then since all edges added to T except e have Ze > 0 and e is odd in the new tree, the tree 

remains z-alternating. Finally, consider the case of  step (3.6). Again if the augmentation is 

of  amount 0, then it is of  type 2 and the cycle C is tight and hence is shrunk. However, in 

this case we have the additional complication that odd vertices v of  Thave been shrunk into 
a new even vertex S. Then any vertex w of  T whose path to r used an edge j incident to v 

but not in E(C) ,  would change its parity in T after the shrinking. However, we show that 

no such edge j  exists. Since the augmentation has zero amount, Ze remains zero and so we 

have ½( ] V(C) [ - 1) =z(E(C)  ) <~ E(xv: v ~ V(C), v odd in T) < ½(JV(C) [ - 1). It fol- 

lows that each such v has xv = 1 and has degree 2 in T, as required. 

We now know that the algorithm keeps F satisfying (3.2) and that even vertices remain 
even, or are shrunk inside larger even vertices. The latter fact implies that any odd pseudo 

vertex of  F must have been a pseudo vertex when G ~_ satisfied (3.4), although even pseudo 

vertices can violate this condition. Therefore, it is true that the expansion step (3.9) does 

lead to an augmentation of  non-zero amount. To show that the algorithm terminates in 

polynomial time, consider the number p(F)  = I{v: v is a real even vertex of  F, or is an 

element of  an even pseudo vertex of  F, or is an odd vertex of  F with xv = 0} I. It is easy to 

check that each of  the three types of  steps that do not lead to termination increases p (F)  by 

at least 1. Hence there can be at most [ V[ such steps before termination occurs. The claimed 

running time is now straightforward to verify, using familiar ideas from matching algo- 

rithms. 

Finally, we need to check that the properties (3.1) required of  G'+ are maintained. This 
is easy to see, since the definition of  the amount of  an augmentation ensures that some zj 
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becomes 0 or some vertex becomes non-deficient or some odd cycle is shrunk, correcting 
any temporary violation of (3.1). [] 

4. The separation algorithm 

We describe two separation algorithms for Q. The first is not efficient, but it is simple, 
and it can be used to prove the theorems stated in Section 1. The second is not so simple 
because it uses scaling, but it runs in polynomial time. Of course, both algorithms depend 
on Augment. 

The primitive separation algorithm is just this: Begin with S p = th, z = 0 and successively 
apply Augment, terminating the main algorithm only if Augment terminates with conditions 
(3.3) satisfied. (Then we can extend y, and z if desired, from G' to all of G.) We claim that 

only a finite number of vectors z can occur during the algorithm. The reason is that z is 
uniquely determined from knowledge of S, G'+ and the deficient vertices of G'.  (This fact 
is well-known, but also easy to verify.) Since the deficiency of z is decreased by each 
augmentation of non-zero amount, it follows that Augment is used only a finite number of 
times, and so the separation algorithm is finitely terminating. 

The max violation-min deficiency Theorem 1.3 is an immediate consequence of the 
finiteness of the algorithm. The discreteness Theorems 1.4 and 1.5 are proved by observing 
that the algorithm maintains y and z with the required properties. That augmentations 
preserve these properties is easy to check. That expansion does also is obvious in the case 

of y, and for z is a consequence of the formula for extending z in the proof of Lemma 2.2. 
As usual, the scaling algorithm will work by solving separation problems for a sequence 

of values of x, at each step using the answer to the last problem to begin the solution of the 
next. The way in which successive problems change is simple; it will be enough for us to 

suppose that x'  has been obtained from x by increasing one xv by a number o~. Suppose that 

we have solved the problem for G and x, and have S a, z, y, B, A1 . . . . .  A» If v ~ U A  i then 
the deficiency o fy  with respect to x' is exactly the violation of a constraint in Theorem 1.2 
by x' ,  and so 9 ,  z, y, B, A 1 . . . . .  Ak solve the new problem as weil. Otherwise, we want to 
apply the separation algorithm to solve the new problem beginning with S °, z. However, v 

or the pseudo vertex containing v has become deficient, so the properties (3.1) required of 
G'+ may be violated. There are two possibilities for such a violation: 

(4.1) There are now two deficient vertices in the same (tree) component T of G'+. 

(4.2) There is now a deficient vertex in a non-tree component H of G'+. 

It is easy to restore (3.1) in these cases. In case (4.1) holds, we alternately raise and 
lower z~ by e on the edges of the path in Tjoining the deficient vertices, where « is as large 
as possible. This either puts the two deficient vertices into different components of G'+ or 
makes one of them non-deficient. In case (4.2) holds, the path in H from the deficient vertex 
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to the odd cycle C contained in H gives an augmenting path of  type 2 or 3. We perform the 

augmentation and shrink C if it becomes tight. This destroys the cycle, or puts the cycle 
and the deficient vertex in different components of  G'+,  or makes the deficient vertex non- 

deficient. We remark that there is no guarantee that either of  these operations will decrease 

the deficiency of  z. The point is that they allow us to use Augment. 

Now let us further suppose (as will be the case in the scaling algorithm) that each Yv and 

each 2zj is an integral multiple of  a. Then each augmentation found in re-optimizing will 

be of  amount an integral multiple of  a. But the deficiency (with respect to x ' )  of z is at 

most 2a. Hence we can re-optimize by finding at most two augmentations of  non-zero 

amount. So we can solve the problem for G and x' ,  beginning with the solution for G and 
x, in time O( I VI 2). 

Now we can outline the scaling procedure. It applies to rational inputs, so let xo =Pv/qv,  

where for each v, qo is a positive integer, pv is a non-negative integer, and Po ~< qo. Let D 
denote the product (or the least common multiple) of  the qv, and let ro = Dxv for x ~ V. Let 

L denote I l o g ( D +  1) l; all logarithms are in base 2. For i = 0 ,  1 . . . . .  L, let x i= (x~: v 
V) be defined by x / = r i / D ,  where r / = 2 i1  ru/2 i] ; that is, r / is ro with the i lowest order 

digits (base 2) replaced by zeros. Problem i is the separation problem for G and x i. Hence 

Problem L is trivial, since x L = 0, and Problem 0 is the problem we really want to solve, 

since x ° =x.  We solve problems L, L -  1 . . . . .  2, 1, 0, in that order• Having solved problem 

i + 1 for some i, L > i i> 0, we solve problem i as follows. Let V=  { v 1, v2 . . . . .  v~ }. For j = 1, 
2, n replace x i+1 by x i and apply the re-optimizing procedure. Notice that, if xioj :g 

• • ~ v i v j  

x i+ 1 then they differ by exactly 2i/D.  But since all problems solved so rar have each xio an v j  

integral muläple of  2J/D, the re-optimizing procedurc takes time O ( ] V[ 2) for eachj. Hence 

Problem i is solved in time O( [VI 3) and the original problem in time O( ]VI 3L), which is 

polynomial in the input size. 

Of course, it would be preferable to have an efficient algorithm whose running time does 

not depend so heavily on the length and form of  the x~. It seems likely one could obtain a 

strongly polynomial algorithm from the present one, using the approximation tcchnique of  

Frank and Tardos (1987). However, a more natural strongly polynomial algorithm is 

desirable. For the case in which G is bipartite, such an algorithm is available, since the 

separation problem can be reduced to a minimum cut problem; see Ning (1987). 
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