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Various theoretical properties of the surrogate dual of a mathematical programming 
problem are discussed, including some connections with the Lagrangean dual. Two algorithms 
for solving the surrogate dual, suggested by analogy with Lagrangean optimisation, are 
described and proofs of their convergence given. A simple example is solved using each 
method. 
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I. Introduction 

Surrogate constraints were introduced into mathematical programming by 
Glover [8]. The idea is to replace a mathematical program, by taking a suitable 
convex combination of the constraints, with a surrogate problem having only 
one constraint. Luenberger [20] has shown that for quasi-convex programs, the 
surrogate problem can solve the original program if the multipliers are correctly 
chosen. Greenberg and Pierskalla [10] treated the general surrogate problem 
theoretically, and established some results useful for the construction of optimal 
(i.e. tightest) surrogate constraints. They showed that this involves the maxi- 
misation of a quasiconcave, though possibly discontinuous, function. Some 
results allied to theirs are given in Section 2 below. Greenberg [13] extended the 
theory to a more general case involving nonlinear combinations of constraints, 
and Greenberg and Pierskalla [11, 12] developed a theory of quasiconvexity 
which they hope.d would prove useful in this context. Glover [9] has given a 
theory of surrogate duality in the spirit of Geoffrion's [7] theory of Lagrangean 
duality. 

Little attention seems to have been directed, however, to schemes for 
generating optimal surrogate constraints, although Greenberg [13] refers to a 
generalised programming method for this purpose. The aim in this paper is to 
investigate possible methods. Two algorithms are proposed, which are natural 
extensions of methods for the Lagrangean case, one analogous to generalised 
linear programming, the other to subgradient methods. The convergence of each 
is established. 

In Section 2 some theoretical properties of the surrogate problem are dis- 
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cussed and connections with the Lagrangean dual are shown. Section 3, which is 
not central to the paper, briefly reviews a method for finding an interior point of 
a polytope for application in the algorithm of Section 4. Section 4 presents the 
first algorithm, and Section 5 the second. In Section 6 a simple example is solved 
using each of the methods. 

A word should perhaps be said about the use of optimal surrogates. In the best 
cases, where there is no duality gap, the optimal surrogate problem solves the 
original mathematical programming problem. In other cases it merely provides a 
bound on the optimal objective function value in the original. However, this 
bound is at least as good and usually better than that obtained from optimising 
the Lagrangean. For integer programming, for example, the bound and the 
constraint itself are useful within global enumeration schemes. 

The development is principally in terms of mathematical programs defined by 
inequalities, since this endows sufficient structure to render an optimisation 
scheme feasible. However, it might be noted that the work of Bradley [4] and 
others shows that there is always a surrogate problem for equality constrained 
integer programs which has no duality gap. Therefore it might be hoped that the 
optimum surrogate will closely bound the primal in the inequality case of integer 
programming also. 

2. The surrogate problem 

2.1. Definition and discussion 

(P) 

Consider the canonical primal mathematical program [9]: 

f* = inf{f(x): x C X,  g (x )  <- O} 

where g(x )  = (gl(x),g2(x) . . . . .  g, ,(x))  E R m and X C_ R". 
It will be assumed here that X is compact, the function f is a lower 

semicontinuous (1.s.c.) real-valued function on X, and the gi are continuous on 
X. These are the assumptions of [10] and immediately imply that the "inf" in (P) 
can be replaced by "min", i.e. jr* is attained. 

Now, for any u ~ R m with u _> 0, define [9]: 

Then 

(Q) 

X ( u )  = {x E X :  u tg(x)  <- O} and w ( u )  = min{f(x): x E X(u)}. 

w* = sup{w(u):  u -> O, u ~ R " }  

is the surrogate dual program for (P). It is evident that w(O)-< w ( u )  for all u # 0 
and thus zero may be excluded as a possible value for u. It is also clear that for 
any k >0,  w ( k u ) =  w(u) .  Thus an arbitrary normalisation of the vectors u is 
possible and has the advantage that they will then belong to a compact set. Thus 
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if I111 is any norm on R" ,  (Q) can be rewritten 

(Q) w* = sup{w(u) :  u 0, Ilul[ = 1, u ~ Rm}. 

The two norms which will be used here are the L~ and L 2 norms, i.e. either 
ui = 1 or ~ u 2 = 1. It will be observed that since the ui are nonnegative, the 

former  gives a linear equality constraint which will be written etu = 1 where 
e ' =  (1, 1 . . . . .  1). This L1 normalisation will be used in the remainder of this 
section, though the results can be obviously modified to any norm. For  this 
purpose it is convenient  to define the (compact  convex)  set S = {u _> 0: etu = 1}. 

It should be noted that even though f* and w(u) will always be attained under 
the assumptions made, w* may not be equal to any w(u). In fact,  in the absence 
of convexity,  it appears that very strong conditions on the problem are needed to 
ensure that w* is achieved. The following example shows that it is not sufficient, 
for  example,  that f be smooth, the g~ linear and X strongly connected and 
compact.  

Example 1. 

(P) f*  -- min 5 - x ~ -  (x2 -  l) 2, 

subject  to xl - x2 -< 0, xl + x 2 -  2 -< 0 

and X the L-shaped region of R E shown in Fig. 1. 

Letting ul = 1 - u2 = A, it follows that 

w(A)= [ 4 A ( 2 - A )  f o r A < ½ ,  

= l - 8 A ( 2 A -  1 ) _  3 for A _> 3. f°r-~<-A-<3' 

The function w has a discontinuity at A = ½, and the supremum w* = 3 is not 
attained. It is sketched in Fig. 2. 

0 i 2 3 ~X, 

Fig. I. 
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Simple examples of mixed-integer programs in which w* is not attained can 
also be constructed. However, it will be shown that for a class of problems 
which includes pure-integer programs, w* will necessarily be achieved. 

2.2, Properties 

In the following, the results stated without proof are either from, or very 
similar to, results of [10]. They are reproduced for completeness. The prefix 
"int" denotes interior (usually relative to S) and "co" the convex hull of a set. 

Proposition 1. w* < f* (Weak Duality). 

Proposition 2. w is a l.s.c, quasiconcave function on S. 

Corollary 1. I f  (P)  is feasible, then for  each • >0,  the set W ( e ) =  {u E S: 
w(u)  > w* - ~} is a nonempty, open, convex subset of  S. 

Proof. w* is clearly finite if (P) is feasible, so W(e) is nonempty. The other 
properties are immediate consequences of Proposition 2. 

The quantity ( f * - w * )  is called the duality gap. The best situation is where 
there is no gap i.e. f* = w*. Let Y = {x E X: g(x)  -<0} be the feasible set of (P). 
Clearly Y C_ X ( u )  for all u. The following simple result then follows directly. 

Proposition 3. w* is attained and equal to f* if and only if w(u) = f ( x )  for  some 
u E S and x E Y. Then x solves (P)  and u solves (Q). 

The case where w* = f *  but it is not attained may thus be viewed as an 
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"infinitesimal" duality gap, since the dual will not then give a solution to the 

primal among the minimisers of w(u)  for  any u. 
As already observed,  w* need not be achieved on S, this being true even if 

there is no duality gap. Define, however,  a discrete programming problem as one 
for which the set of real numbers {f(x): x ~ X} has no cluster point. This clearly 

includes all pure integer programs. Then 

Proposition 4. I f  (P)  is a feasible discrete programming problem, then w* i~ 

attained on an open convex subset of  S. 

Proof. Clearly w* < ~. If  it is not attained the there is an increasing sequence 
w(ur )~  w* with no w(u,) = w*. But W(Ur)= f(X,) for  some x E X, which implies 
that w* is a cluster point of {f(xr)} which is impossible. Also since w* is not a 
cluster point of {f(x)} there exists an E > 0 such that w* - • < f (x )  --- w* implies 
f ( x )  = w* for  all x ~ X. Thus if w* - • < w(u)  <- w*, then w(u)  = w*. The result 
now follows f rom Corollary 1. 

In what follows it will be convenient  to have a concise notation for certain 
families of sets. Let  F ( a )  = {x E X :  f ( x )  <- a}, then obviously F ( a )  n X ( u )  ~ 0 if 
and only if w(u)  < - a. Denote by M ( u )  the set of optimal solutions X ( u ) n  

F(w(u ) )  t o  the surrogate problem for u. Let  G ( a ) = g ( F ( a ) )  and Z ( u ) =  
g(M(u)) .  Also denote  by G*(a )  the set {s ~ S: gts >-- 0 for  all g E G(t~)}, with a 

similar definition for  Z*(u).  These are sets "polar"  to G(a) ,  Z(u).  The following 
results then give conditions for  optimality in the surrogate dual problem. 

Proposition 5. w(u)  > a if and only if u E int G*(a).  

Proof. u ~ int G*(a )  if and only if gtu > 0 for all g E G(a) ,  which is true if and 

only if X ( u )  n F ( a )  = fl, which is again true if and only if w(u)  > a. 

Corollary 2. w* is the minimum number a such that int G*(a)  = O. 

Proof. If a < w * ,  then there exists u such that w(u)>o~ and hence 
int G*(a )  ~ ~. If a -> w*, then u E int G*(a )  implies w(u)  > a >-- w*, which is 
impossible, hence int G*(a)  = O. 

Proposition 6. int G * ( a ) =  ~) if and only if there exists v E co(G(a) )  such that 
v<_O. 

Proof. int G*(o0 = 0 if and only if there is no u E S such that utg > 0 for all 
g E G(ot), which is true if and only if there is no u in S such that utg > 0 for all 
g ~ co(G(a)) .  Since v <- 0 and u >- O, utv <- 0 and thus the existence of v implies 
int G*(o0 = ¢. Conversely  if no such v exists, then co(G(a ) )  is disjoint f rom the 
nonposit ive orthant N of R" .  Now since f is 1.s.c., F ( a )  is closed and therefore 
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compact. Thus since g is continuous G ( a ) = g ( F ( a ) )  is compact. Hence 
co(G(a)) is compact, and since N is closed, N and co(G(o0) can be strictly 
separated by a hyperplane. This implies the existence of a u E S such that 
utg > 0 for all g E co(G(a)) and hence int G*(a)  # O. 

Proposition 6 and Corollary 2 together immediately imply. 

Proposition 7. w* is the minimum number a for  which there exists a v <-0 in 

co(G(~)) .  

If w* is attained, then equally obviously. 

Corollary 3. u is a maximising point o f  w if and only if  there is a v <-0 in 

co(G(w(u))). 

Corollary 3, which gives a necessary and sufficient condition for u to maxi- 
mise w can be compared with the gap detection theorem of Greenberg and 
Pierskalla [10] which states that 

Proposition 8. I f  there is a v <- 0 in co(Z(u)), then u is a maximising point o f  w. 

This can be deduced immediately from Corollary 3 on noting that Z(u)C_ 

G(w(u)) .  Proposition 8 gives, however, only a sufficient condition for maximisa- 
tion which need not be satisfied even when w* is attained, as the following 
simple example shows. 

Example 2. 

(P) f* = min 2 - xl - 2x2, 

subject to 2xj + 4x2 -< 3, 4xl + 2X2 ~ 3, 
X = {(xl, x9: xj ~ {0, 1}}. 

If u~=(1 -u2)=A,  then for 0-<A-½, w(A)=0 and M(A)={(0, 1)}. For ½< 
A - - I , w ( A ) = I  and M(A)={(1,0)}. The maximum is attained on the (open, 
convex) interval ½ < A -- 1, but for all A in this interval Z(A) = {(- 1, 1)}. Clearly 
co(Z(h)) does not contain a nonpositive vector for any maximising A. 

It will be observed that in this example w* is attained on an open set of S. The 
following proposition shows that this is in fact the source of the difficulty in 
attempting to apply Proposition 8. 

Proposition 9. I f  w* is attained, but not on any open set o f  S, then fo r  all u such 
that w ( u ) =  w*, there is a v <-0 in co(Z(u)). 
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Proof. Let  W = {u E S: w(u) = w*}. Then W is convex and not of full dimen- 
sion in S. Thus there is a hyperplane H of R" ,  other than etu = 1, which contains 

W. Le t  K = H fq S. Clearly int K = 0 in S and W _C K. Choose any fi E W and 
u E S - K .  Thus w(u)<w*.  Define Ur=(1/r)u+(1-1/r )a  for  r = l , 2  . . . . .  

Clearly Ur E S - K  for  all r and hence w(ur )<  w*. Le t  xrEM(ur).  Clearly 
u~g(x~) <- 0 and since f(Xr) < w*, Xr~ X(a)  so atg(Xr) > 0. But this implies that 
utg(Xr) <--O. Let  ~ be any cluster point of Xr and assume that x,---> ~. Now letting 
r ~ ,  gtg(g)-<0 so g E X ( a )  and hence f(g)>-w*. But since f is 1.s.c., f(Y)-< 
w*. Thus f(g) = w* and hence ~ E M(a). But from the continuity of g, it also 
follows that utg(x) ~ 0. Therefore  uE  int Z*(u). This implies that int Z*(u) = 0 in 

S. Then an argument almost identical to the second part of the proof  of 

Proposit ion 6 establishes the existence of v. 
Thus Greenberg and Pierskalla's condition would be sufficient in many cases, 

but in view of Proposit ion 4 it appears to be of restricted use for discrete 
programming problems. It is also of no assistance if w* is not attained. The 
nearest  result to this which can be guaranteed in general is a strengthened form 
of Proposit ion 7, as follows. For  this purpose write M(u, a) = X(u)  M F(a)  and 
Z(u, a) = g(M(u, a)). The preliminary lemma is given first. 

Lemma 1. I r A  C R m is any set of points such that co(A) contains a point of the 
nonpositive orthant, then there is a finite subset B of A such that co(B) contains 
a point of the nonpositive orthant but no point of the positive orthant. 

Proof. From Caratheodory 's  theorem all points of A can be represented as 
convex combinations of finite subsets of A. Let  B be a minimal finite subset 
which contains a nonpositive point in its convex hull. Suppose this is ~Aibi <-O, 
with ~Ai = 1. Clearly Ai > 0  for all i. Suppose now ~l-~ibi > 0  with ~]/xi = 1 for 
any /x~ >-0. Then, for  any /3 >-0 define A'i= (1 +/3)Ai-/3tzi. Clearly ~]A'~ = 1 and 
~A'~b~ -< 0. Now choose /3  to satisfy 

/3/(1 +/3) = mini{Ai//z~: / z ~  0} = Ak]/xk say. 

Then/3  is positive and well-defined since Ai > 0,/xi > 0 for some i, and Ai </zi for 
some i. Note  that if Ai >-/zi for  all i, then A,-=/zi for  all i which is clearly 

impossible. Now, with the chosen value of /3, A~-> 0 for all i and A~ = 0. This 
contradicts the minimality of B, and the result is established. 

Proposition 10. There is u E S such that a v <-0 exists in co(Z(u, w*)). The 
number w* is minimal with respect to this property. 

Proof. Proposit ion 7 shows there is a v-<0 in co (G(a ) )  if and only if w*-< a. 
Thus from the lemma there is a finite subset of X, C say, such that co{g(x): x E 
C} contains a nonpositive point but no positive point. Thus, f rom the separating 
hyperplane theorem, there is a u E S such that u'g(x)<-0 for  all x E C. Thus 
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C _c X(u), and since clearly C _C F(a),  C C_ M(u, ~). The conclusion now fol- 
lows. 

Greenberg and Pierskalla's sufficient condition is met only if the u of 
Proposition 10 satisfies w(u)= w* also. This need not be the case and it is 
possible to construct problems in which all points which fulfil the condition of 
Proposition 10 are far from optimal. 

Proposition 10 is clearly stronger than Proposition 7, but it is not exploited in 
the algorithms developed here. The following discussion examines the im- 
plications of these two results. 

It is useful to write the content of these results in an equivalent, but more 
suggestive form as follows. 

(Q') w* = min max f(x), 
Z(x)>0 

such that 

A(x)g(x) <_ O, 
x~X 

A(x) = 1, 
x~X 

A(x)-> 0 for all x E X, and all but a finite number of A(x)= O. 
Now it is clear that (Q') is a form of generalised program. It is in fact a 

(generalised) bottleneck linear program. See, for example [6], which gives 
algorithms for the bottleneck linear program in the finite case. Note that 
Proposition 10 implies the existence of an optimal "dual multiplier" u such that 
utg(x)---~ 0 for all x such that A(x)> 0. There is a close analogy with one of the 
algorithms of [6]. 

Suppose now that the assumption of lower semicontinuity on f is strengthened 
to continuity. Then it is well-known [21] that the Lagrangean dual problem to (P) 

(D) L* = sup{min{f(x) + dtg(x): x E X}: d -> 0, d u R m} 

can be written as 

(D') L* = min ~] A(x)f(x), 
xEX 

the A(x) being subject to the constraints of (Q'). The coincidence of the 
constraint sets clearly implies the result of [10] that w*_> L* for any (P), since 
the objective function of (Q') is at least equal to that of (D') for any feasible 
)t(x). It also implies that if )t(x), x E C, are nonzero in any optimal solution to 
(D'), then w*-< max{f(x): x E C}. This bound could be useful in estimating the 
potential improvement over the Lagrangean maximum that surrogate methods 
might produce. In practice, the surrogate dual would probably be used as an 
adjunct to Lagrangean methods in an attempt to close the Lagrangean duality 
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gap. It might then seem that the (normalised) optimum Lagrange multiplier 
would be a good starting point in a search for the best surrogate multiplier. The 
following shows that, in a certain sense, this is true. 

Proposition 11. If d is an optimum Lagrange multiplier, and d its Ll-nor- 
malisation, then w(d) >- L*. Moreover exactly one of the following holds: 

(i) w(d) > L*, 
(ii) w(d) = L*, but every neighbourhood of d in S contains a point u such that 

w(u) > w(d), 
(iii) w(d) = L* = w*. 

Proof. For  all x ~ X, f(x)  + dtg(x) >~ L*. Thus f (x)  >- L* for all x E X(d) ,  so 
w(d)>-L *. Suppose (i) does not hold, so w ( d ) = L * .  Then for any x E  
M(d) , f ( x )  = L*. Then,  for such an x , f (x )+dtg(x )  < - L*, which implies that 
f (x)  + dtg(x) = L* and hence dtg(x) -- 0. Suppose (iii) does not hold, so there is a 
u ~ S  such that w ( u ) >  w(d). Le t  Ur = ( 1 - - 1 / r ) d + ( 1 / r ) u  so u r ~ d .  Since w is 
quasiconcave,  W(Ur)>-w(d) for  all r. Now for any x ~ M ( d ) , u ~ g ( x ) =  
(1/r)utg(x) > 0 since xq~ X(u).  Suppose w(ur)= w(d) for any r. Then there is a 

y E X(uD with f ( y ) =  w(d). But y ~ X ( u ) ,  and this implies y E X(d) .  Thus 
y E M(d) ,  which is a contradiction. Thus w(ur) > w(d) for  all r, which shows that 
(ii) holds. 

While this Proposit ion shows that d is a reasonable estimate for  an optimal 
surrogate multiplier, it should be observed that it is not difficult to construct  
examples in which it bears no relation to the set of optimal multipliers. The 
following is such an example. 

Example 3. 

(P) 

such that 

f*  = min - 4xl - 4x2 + x4 + 2x5 

2x~ + x2 + x3 - 3x4 - x5 ~ O, 

Xl + 2X2 + X3 --}- x 4 -  x5 ~--0, 

xl + X2 -- 2x3 + x4 --< 0, 

and 

X ~ {(Xl, x2, x3, x4, x5): x i ~ {0, 1) and xl + x2 + X3 -~- X4 ~t- X5 = 1}. 

Here  the unique optimal Lagrange multiplier d = (1, l, l) and L* =0 .  Then 
d 11 = (~,~,~) and w ( d ) =  0. Every  neighbourhood of d contains a point at which 
w(.) -- 1, but d is not close to any of the points at which w* = 2 is achieved, i.e. 
the set {u E S: ul < ~, u3 <-~}. 
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However ,  if the aim is to reduce the Lagrange duality gap, then Proposit ion 11 
does suggest that d is a good starting point. This clearly justifies the traditional 

use of the optimum Simplex multipliers as surrogate multipliers in integer 

programming [8]. 

3. Interior points and linear programming 

Nemhauser  and Widhelm [23] observed that a central step of the column- 
generation method of Dantzig and Wolfe involves determining, by linear pro- 

gramming, an interior point of a polyhedron bounded by a certain set of linear 
inequalities. From geometric considerations they therefore suggested a nor- 
malisation of the linear program which they believed would speed convergence.  
O'Neill and Widhelm [24] gave some computational evidence supporting this. 
Mattheiss and Widhelm [22] have extended this work. 

The convergence of the algorithm of Section 4 depends on finding an interior 
point (relative to S) of a polyhedral subset of S, U say. It is also required that 
the point should be sufficiently distant from the boundary of U. Such an interior 
point could be determined in a variety of ways. The particular form of linear 
program suggested here is inspired by the work cited above. 

A typical polytope encountered in the algorithm is of the form U =  
{u ~ S: utgj >-0 (] E J)}, where for each j there exists a u E S with u~gj <-0. 
Assume initially that U is nonempty a n d  let u0~ U. Consider the Euclidean 
distance of u0 from the hyperplane ~ .  = {u: utgj = 0} in the plane of the equality 
etu = 1 which contains S. It is not difficult to show that this distance is 
dj(uo) = u~gj/7~ where %. = ~/(g~gj-  (etgfl2/m). An equivalent form for 7j is, in 

fairly obvious notation, ~ / ~ ( g i e -  gi) 2- Then 

Proposition 12. I f  7j = 0, then gj <- 0 and int U = 0. 

Proof. yj = 0 implies that gi = ~:e for some scalar ~c. But since there is a u ~ S 
with utgj <- O, ~ <- 0 and thus gj _< 0. However ,  gj -< 0 implies that there is no u E S 
with utgi > 0 and hence int U = ft. 

Since in the algorithm of Section 4, int U = ~ is the convergence criterion, and 
gj -< 0 gives a feasible solution to (P), it will be true that yj > 0 for all j E J if U is 
encountered in the algorithm. 

The Euclidean distance of u0 to the boundary of U is, in view of the above, 
r(uo) = min{dj(u0): ] ~ J}. It is obvious that u0 E int U if and only if r(uo) > 0. Let  
r* = max{r(u): u E U}. It is now clear that int U ~ I  if and only if r * > 0 .  The 
number r* will be called the radius of U. It is not difficult to see that 

r* = max y, 

utg~ - 7jy >- 0 (j E J),  (I) 

etu = 1, u->0.  
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This is a linear program in the variables u, y. If int U ~ 0, it is evident that an 

optimal solution u to (I) will be an interior point (relative to S) since ti E S and 
/~tg ~> 0 (j E J).  This point will be called a centre of U. If U is empty,  then the 
maximum value of y in (I) still exists, but is negative. In this case r* will be 
defined to be the optimum value of y in (I). Therefore ,  whether U is nonempty 
or empty,  int U S  ~ if and only if r* > 0 .  It is evident that r* will be finite 
provided J is nonempty.  If J is empty,  as it is only at the first iteration of 
Algorithm I below, then any u C S is a centre of U. A suitable choice for an 
interior point in this case might be based on the optimum Lagrange multiplier as 
described in Section 2. 

In the generalised programming algorithm of Section 4, gi will be g(x) for 

some x E X. The following fact,  which follows immediately from the continuity 
of g, is needed. 

Proposition 13. 7(x) is a continuous function of  x on X. 

When r* > 0, the linear program (I) yields one interior point t~ of U with 
r(a)  = r*. Now the algorithm of Section 4 successively adds constraints at each 
iteration to the set defining U. These are added such that, if u is the interior 
point of U chosen at iteration i, then u ~  int U at iteration (i + 1). It might be 
considered undesirable to move the point u too drastically from one iteration to 
the next, and the point ti might be considered too far. The remainder of this 
section shows how, given the point ti and a point u ~  int U, a wider choice of 
interior point can be made which still retains the property of being sufficiently 
distant from the boundary  of U. 

It is not difficult to show that r(u) is a concave function of u on any nonempty 
U. Suppose now that u' is any boundary point of U, so r(u') = 0. Then, for any 
given 0 < 0 -< 1, if 0 ---/3 _< 1, then 

and 

u =/3a  + ( 1 - / 3 ) u ' ~ i n t  U 

r(u) >_/3r(~) + (1 - / 3 ) r (u ' )  =/3r* >- Or*. 

Now, given a and any u " ~ i n t  U, it is easy to find a boundary point u' of U. 
Such a point is ca7 + (1 - a )u"  where 0 --- c~ < 1 is given by 

ct = max{ - u"tgi/(a'g j - u"tgi): u"tgj <-- O, i ~ J}. 

Note  that the set of constraints considered in the determination of a are those 
which separate u" f rom the interior of U. If, in Algorithm I below, u" is taken as 
the interior point of U from the previous iteration, the number of these 
constraints will generally be few. Thus the determination of ~ will not be 
computationally burdensome. Observe also that u = (1 - / x ) a  +/xu" where /x = 
(1-  a)(1 - /3 ) .  By an appropriately small choice of the "convergence  parameter"  
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0, almost any interior point between u' and a may be chosen without invalidating 
the proofs of convergence given in Section 4. It must be emphasised, of course, 
that whether or not a device of the above type is used, the linear program (I) 
must still be solved at each iteration. The usual linear programming re-optimisa- 
tion procedures can, obviously, be used to minimise the computational effort in 
doing this as constraints are added from one iteration to the next. 

4. A generalised programming algorithm 

The algorithm below uses the ideas presented in Sections 2 and 3. First it is 
formally stated, then a discussion given followed by proofs of convergence. 

Let  0 <  0-< 1 be any scalar and if0 be any number not exceeding w*. If 
necessary if0 could be taken as - ~ .  

Algorithm I 
Step 0: i<--1, UI~--S. 
Step 1: If the radius of Ui, r~ -< 0 then stop. 

Otherwise choose ui E U~ such that r(ui) >- Or~. 
Step 2: If X(ui)  M F(~i-1) = O, ff~ ~- w(u~) otherwise ~; ~-- wi-1. 

Determine any finite, nonempty Ei C X(Ui ) fq F(  ~i). 
Step 3: Ui+I<-----U i N{//~Rm: / / tg(x)~0 for all x E Ei}. 

Step 4: i*--i + 1. Go to Step 1. 

At each iteration ff~ is a lower bound for w*. It is evident that Ui is of the 
form discussed in Section 3, and thus the computations of Step 1 can be effected 
by the method proposed there. In Step 2, the surrogate sub-problem 
min{f(x): x E X(ui)} is considered. If this problem has feasible solutions with 
f ( x )  < ff~i-J, it may not be necessary to solve it to complete optimality. However, 
if all x E X(u i )  have f ( x )  > wi-1, ff~i will be increased to w(ui) and Ei C_ M(ui),  In 
Step 3 the set of new linear constraints, or cutting planes [5], implied by the 
sub-problem solutions E~ are added to Ui and the next iteration is begun. It will 
be observed, that for finiteness in practice, the convergence criterion in Step 1, 
r* -< 0, would be replaced by r* < 3 for some suitably small constant 3. 

The following gives a general convergence result. 

Proposition 14. Algorithm I either terminates, at iteration k, with w* = Wk or else 
lira wi = w *  a s  i --> ~. 

Proof. Observe that ~i is a nondecreasing sequence bounded above by w* and 
thus must either terminate or tend to a limit. The nondecreasing nature of the 
sequence also implies that Ej _C F(ffi) for all j -< i, and hence U,- _D G*(~i)  for all 
i. 
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If r* --- 0 for any k, then int Uk = 0 and so int G*(~'k) : 0. But, from Corollary 
2, this implies Wk --> W*. However  wk --< w* and therefore  Wk = W*. 

Suppose now r* > 0 for all i. At iteration i, uj~ int Ui for all j < i. This follows, 
from Steps 2 and 3, since for any x C Ej int Ui C_ {u: utg(x)>O} and u~g(x)<-0. 
Thus the Euclidean distance between u, and u# Iluj- u~ll >-r(u~) > - Or*. Now as 
i--> ~, {u,-} must have a cluster point since it lies in the compact  set S. Also r* 
must tend to a limit, since it is an obviously nonincreasing sequence of reals 

bounded below by zero. But {ui} having a cluster point implies that there must 
exist an i and a j < i  such that Iluj-u~[[< • for any • > 0 ,  thus Or* < •. This 
clearly implies r* ~ 0  as i ~ .  If now lim ffi = w ' <  w*, then ~ - <  w' for all i and 
hence Ug c G*(w') for  all i. But Corollary 2 then implies int G*(w') ~ 0 and thus 
contains an interior point u' which is at a nonzero distance r', say, from the 
boundary of G*(w'). Hence r * -  > r' for all i, and thus lim r * -  > r ' > 0 .  This 

contradiction shows that lim ~z = w*. 
This result can be improved slightly in some cases. For  example 

Proposition 15. If w* is attained on any open set of  S, then either Algorithm I 
terminates or there is a k such that ~ = w* for  i >- k. 

Proof. Let  W = {u: w(u) = w*}, so int W #  ~. Now w(u) = w* > wi implies u E 
int G*(ff;) by Proposit ion 5. Thus, if the stated result is false, Ui _~ G*(ffi)_~ W 
for all i. But then r* ~ 0 implies int W = ~, which is a contradiction. 

Corollary 4. I f  (P)  is a feasible discrete programming problem, then either 

Algorithm I terminates or there is a k such that ff~i = w* for  all i >- k. 

Proof. Follows directly from Proposit ion 4. 

If X is finite, a particular case of discrete programming which includes the 
(bounded) pure-integer program, an even stronger assertion can be made. 

Proposition 16. I f  X is finite, Algorithm I terminates. 

Proof. Consider any iterations iS  j of the algorithm. Suppose i > j, then for all 
x ~ Ej, u}g(x) > 0 since ui E int Ui. But since u}g(x) <- 0 for all x ~ Ei, it follows 
that El-f3 Ei = 0. However ,  Ei¢  ~ for  each i, and thus the algorithm cannot 
continue for more than IXI iterations. 

The existence was shown, in Proposit ion 7, of a v-<0 in co(G(w*)).  It will 
now be shown that 

Proposition 17. Algorithm I either produces, or closely approximates, a v E 
co(G(w*)) such that v <-O. 
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Proof. Let 
subset of co(G(w*)). From the discussion of Section 3, 

r i : m a x  y, 

u'gj-7~y>--O (j~J~),  

e t u = l ,  u>-O. 

The linear programming dual of this can be written 

ri = rain z, 

ZAjgj <- (ZAfYI)z  e, 

U i = { u E S : u t g j > - O ,  jEJ,.} and Vi=co{g  F j E J i } .  Vi is clearly a 

~ A j = I ,  ;~j->O ( j c J i )  

(I) 

(II) 

where the A t are simply the usual dual variables of (I), but normalised to sum to 
unity. If r* - 0, then (II) clearly implies that there is a v E Vi such that v - 0 as 
required. Now if r* > 0 for all i, then 

~]Ajy s -< max{y V ] ~ J,.} - M for some constant M, 

since from Proposition 13 y(x)  is continuous on the compact set X. Thus there is 
a vi E Vi such that vi <- (Mr*)e. Because vi E co(G(w*)), a compact set, {vi} has a 
cluster point. Since r* 4 0 ,  however, it follows that any cluster point v of {vi} 
must satisfy v -< 0 and v E co(G(w*)). 

An undesirable feature of algorithms such as that given above is that ap- 
parently all the defining constraints of U,. must be retained indefinitely. Eaves 
and Zangwill [5] have, among others, given conditions for dropping constraints 
in algorithms of this type, but it does not appear that these results extend 
immediately to Algorithm I. However, the following proposition, in the spirit of 
this work, shows that potentially large numbers of the constraints defining Ui 
may be dropped provided the algorithm has made sufficient progress. The 
algorithm will still converge in the sense of the above results. To this end let 
0 < F < 1 be any scalar. 

:g :g 
Proposition 18. Let xj E Ej and suppose that, at iteration i, 0 < ri <- tzrj . Then the 
constraint utg(xj)>-0 can be dropped f rom those defining Ui, provided this will 
not increase r*. 

Proof. The only modification needed to the proof of Proposition 14 is to show 
that, if r* > 0 for all i, then r* still tends towards zero. Now the conditions of the 
proposition will ensure that {r*} is a nonincreasing sequence, and hence it m u s t  
have a limit ?, say. Suppose ~ > 0, then since/z < 1 there is a J0 such that r~ < r/F 
for all j -  J0. But since r*-> ~,/xr* < ri .  Thus no constraints will be dropped 
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from Ej for any ]-> J0. The argument used in Proposition 14 to show that r* 4 0  
can now be applied to the sequence {uj: i-> i0}. This implies that, still, r * ~ O  
which contradicts P > O. Thus ? = 0 and the result is established. 

The condition that the removal of utg(xj)>--O should not increase r* is 
equivalent, of course, to the corresponding slack variable being basic in the 
optimal solution to (I). This may be easily checked. 

5. A subgradient-type algorithm 

Subgradient methods have proved effective in Lagrangean optimisation. For 
example Held et al. [14] discuss, and give experience in using, such methods. In 
surrogate duality the quasiconcave function w will not, in general, have a 
subgradient at all points. There are, however, quantities which correspond to 
subgradients, namely the normals to the hyperplanes of support of the level sets. 
Greenberg and Pierskalla [12] have christened these quasi-subgradients. Thus 
Algorithm II below could be called a quasi-subgradient method. A statement of 
this algorithm is followed by a discussion and proofs of convergence. The 
convergence is based on the condition of Polyak [25] for subgradient step-size 
control. 

It is more convenient in this work to normalise the surrogate multipliers with 
the Euclidean, rather than the LI, norm. Thus I]xl[, for x C R m, denotes the 
Euclidean norm throughout. The distance notation d(x, y) will also be used for 
]]x-yll. For any subset C of R m, the distance from x to C is denoted by 
d(x, C) = inf{d(x, y): y ~ C}. It is well-known that d(x, C) = 0 if and only if x is 
in the closure, cl C, of C. The symbol i for x ~ 0 ,  is the normed version of 

x, x/llxH. 
The results of Section 2 must be modified to this normalisation, the change 

needed usually being to replace notions of convexity with those of spherical 
convexity. The convex set B = {x: [[x]l- 1, x -> 0, x ~  0} is the portion of the unit 
m-disc, minus the origin, which lies in the non-negative orthant. S ' =  
{x ~ B: ]lx]] = 1} is the intersection of B with the unit m-sphere. S' corresponds, 
in the new normalisation, to S in the Ll-norm but is clearly non-convex. The 
algorithm generates a sequence of multipliers lying in S'. 

Let  {ti} be any sequence of non-negative reals such that ti 4 0  and ~7=~ ti = ~, 
e.g. ti = 1/i. t~ is the step-size at iteration i. Sequences of step-sizes of this type 
were proposed by Polyak [25]. 

Algorithm II 
Step O: Choose any ul E S'. Set i*-- 1, ~ * -  - ~. 
Step 1: Determine any xi~M(ui). Let gi=g(xi) and f i=f(xi)=w(ui).  If 

fi > w, w ~--fi. If gi -< O, stop. 
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Step 2: Determine ui+~ as follows: 
! 

(a) di'---gi - (u~gi)ui and dead's. 
r 

(b) u i +-- ui + tldi. 
(c) u'i'<-- u l + Pi, where 

-2(ul)i if (u~)j <0,  
(Pi)i = 0 otherwise. 

^ t! 
( d )  U i + l ~ - - - - u i  . 

Step 3: i+-i + 1. Go to Step 1. 
Firstly, it will be observed that the algorithm, as described, will not in general 

terminate, since no gi < 0 will be discovered. In practice, some criterion such as 
no improvement in ~, the best value of w(ui) obtained, having been made over a 
group of k iterations could be used, where k is appropriately chosen. The same 
problem occurs in some subgradient methods. 

Clarification of the geometrical nature of the multiplier update in Step 2 may 
be needed. This ensures that ui+l E S' when u~ ~ S'. Thus, since ul E S', u~ E S' 
for all i. The vector g~ is the quasi-subgradient direction. The direction of change 
for ui is obtained in Step 2(a) by projecting this direction onto the tangent plane 
at u; and normalising. Note that this normalisation is always possible since d l=  0 
implies gi <-O. Then ui is modified in Step 2(b) by a step of length ti in this 
direction. This ensures that ul is outside the unit sphere, which fact is required 
in the convergence proofs. Note that, computationally, ul is simply a linear 
combination of u~ and g~. The point ul may, however, also lie outside the 
non-negative orthant of R". If so, it is reflected back into this orthant in Step 
2(c). Thus u'i' >- O, but u'i' will not lie in S'. Thus in Step 2(d) it is normed to give 

: t 2 ~ l / 2  u~+IES'. It will be shown that [[u'[[[ (1+ . ; ,  , so this step can be readily 
accomplished. 

It will be noted that each one-constraint sub-problem is solved, in Step 1, to 
optimality. In practice this is not absolutely essential, and a sub-optimum 
solution might sometimes be used as in Algorithm I. The assumption is made 
since the result for the convergence of the multiplier sequence, in Proposition 
22, depends on it. 

The following preliminary results establish properties of the sequence {u~} 
which will be needed later. 

Proposition 19. [lu'[ll = (1 + t~) t/2- 

Proof. 

[]u'i'll 2 = [lu;[r + 2p}u; + [Ipi[[ z 

f[uil[ 2 ~ s i n c e  ' ' =  = 2piu~ -[IPi[[ z) = [[uiH z + 2t~u~di + tZIId~ll 2 

= 1 + t~ ( s i n c e  [[ui][ = IId~[[ = 1, u~d~ = 0). 
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Proposition 20. I f  u E B ,  t h e n  

Proof. 

[[u,+, - nil = ~ Ilu, - nil = -  t , (2u}di  - t,). 

I [ u ; -  ull z = f l u , -  ull 2 -  t ~ ( 2 u I d ~  - t , ) ,  

l int  - ull 2 :  I lu;-  ull = -  2p~u ~ Ilu',-  u[[ ~, 
llui+, - u[I z = Ilu'i '-  ul[ 2 -  A(2 + A) + 2Autu~+1 (where A = I[uTll- 1 >_ o) 

_< Ilu'2- u/J2- A(2+ A) + 2A <_l lu ' ; -u l l  2. 

Combining these inequalities gives the result. 

Corollary 5. [[ui+1 - uill <- t,. 

Proof. u~ E B and u~d~ = O. 

Corollary 6. If u ~ B and 2utg i  >-- ti, then 

Ilu,+, - ull z <-Ilu, - nil 2 - t,(2utg~ - t,) <-I[u~ - u[[ z. 

Proof. 

utd}  = utgi  - ( u tu i ) ( "~g i )  ~ utgi  >- ½tillg~ll >- o. 

A l s o  Iid;ll 2 :  [Is, r[ 2 - (u~g,) ~ so  lid;t/-< IIg,[[. T h u s  

utdi  = utd',  ~ u'd;lllg, ll >- u'g,lllg, II -- titgi ~ ½ti. 

The following lemma is needed for Proposit ion 21. 

Lemma 2. I f  u E B ,  t h e n  lira inf utgi <- O. 

Proof. Note  first that the sequence {u 'gi}  is bounded, since g is bounded. 
Suppose then, to the contrary,  that ut~,-> 8 > 0 for all i -> i0. Then since ti ~ 0 ,  for 
all i -> i~, say, ti -< 6. Denoting d(u~, u )  by d~, Corollary 6 shows that d ~ -  d~+l -> 6t~ 
for all i -> k = max(i0, i0. Summing such inequalities from k to n, 

n 

d g -  d~ >- 8 ~ ,  t,. 
i=k 

Now, letting n ~ ,  the condition ~t~ = ~ implies that d ~ - d ~  ~ ,  which is 
obviously impossible. This contradiction establishes the result. 

Proposition 21. lim sup w ( u i )  = w* .  

Proof. Let  u E B  be such that w ( u ) >  w * - e  where ~ > 0  is arbitrary. Now 
suppose that w ( u i )  <- w *  - E for  all i -> i0, then u t g ( x i )  > 0 for all such i. But from 
Lemma 2, this implies that lim inf u t g ( x i )  = 0. Since the xl lie in a compact  set, a 
subsequence xr can be chosen with X r ~ X *  and lim u ' g ( X r ) = 0 .  Then, from 
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cont inui ty  of  g, utg(x  *) = 0 and hence  f ( x * )  > w* - e. But the 1.s.c. of  f implies 
that  

f ( x * )  <_ lim sup f ( xr )  = lim sup w(ui)  <- w* - e. 

This is a cont rad ic t ion  so for  all i0 there is an i >- io such that  w(ui)  > w* - e. The 

arbi t rary  choice  of  • then gives the conclusion.  

Propos i t ion  2! gives a fo rm of  c o n v e r g e n c e  for  the func t ion  values. It is 

natural  then to enquire  in what  sense,  if any,  the sequence  of  multipliers 

converges .  P ropos i t ion  22 gives such a c o n v e r g e n c e  proper ty .  A few prel iminary 
definitions and lemmas are required.  

For  any • > 0, let W ( e )  = {u E B:  w(u )  > w* - •}. It is clear f rom analogy with 

Coro l la ry  1 that  W ( • )  is convex  and conta ins  an interior point  relat ive to R m. Let  

W* = ("1 {cl W(• ) :  • > 0} N S'.  W* is n o n e m p t y  since the sets W ( • )  are nested 

and each set cl W ( • )  conta ins  points  of  S' .  Obse rve  that  for  any u E W*, every  

ne ighbourhood  of  u contains  a point  which is • -max imal  for  w, wha teve r  •. It 

will be shown in Propos i t ion  22 that  all c luster  points  of  {ui} lie in the set W*,  

but  the fol lowing lemmas are p roved  first. 

L e m m a  3. I f  C C_ R m is a convex  set, with c o m p l e m e n t  C, and f o r  x E R m, 
r(x)  = d(x,  C) ,  then r is a concave  f u n c t i o n  on C. 

Proof.  Le t  x,, x2, E C and 0 -< 0 -< l, so x = Ox, Jr- (1 - O)x2 E C. Let  r, = r (x0,  r2 = 

r(x2) and r = 0 r , + ( 1 - 0 ) r 2 .  Suppose  y E R "  is such that  d ( x , y ) < r .  Then  

y ,  = x, + rl(y - x)]r  C C, since d(x~, y,) < r, and similarly Y2 ---- X2 + r 2 ( y  - -  x)/r  C C. 

Thus  y = 0y, + (1 - 0)y2 E C. Thus  for  all y such that  d(x,  y) < r, y E C and hence  
r(x)  >- Or~ + (1 - O)r2 and r is concave .  

Lemma 4. L e t  C C R m be a bounded  convex  set with interior and ~ > 0 be any  

such  that  C' = {x E C: r(x)  >- ~} is nonempty .  Then, i f  6 (~)  = 

sup{d(x, C'):  x @ C}, there is a cons tan t  K >- 1 such  tha t  a <- 3 (a )  <- K a .  

Proof.  For  any x in the b o u n d a r y  of  C it is clear that  d(x,  y)  >- o~ for  y E C' .  Le t  
{x,}_C C be such that  x , - - , x ,  then for  all y ~ C '  

d(x , ,  y) _> d(x,  y) - d(x , ,  x )  >- a - d(x , ,  x ) ,  

and hence  d(x , ,  C') >- a - d(x , ,  x) .  Lett ing n ~ ~ it fo l lows that  6(a )  >- ~. 

N o w  3(a )  < /3  if, fo r  each  x E C, there is a y E C '  such that  d(x,  y) </3.  Let  
z = (1 - O)x + Oy E C for  any 0 -< 0 -< 1. Since r is c o n c a v e  

r(z )  >- (1 - O)r(x) + Or(y) >_ 0r(y) _> Oa. 

Also d(x,  z)  = Od(x, y) < 0/3. Thus  6(Oa) < 0/3 since for  all x ~ C there  is a z such 
that  r(z )  >- Oa and d(x,  z) < 0/3. This implies that  6(Oa) <- 08(a)  for  any  0 -< 0 -< 1. 
Le t  a0 > 0 be the s u p r e m u m  of  a such that  C '  is nonempty .  It is finite since C is 
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bounded.  It  will also be attained since r, being concave,  is continuous on the 

interior of C and r(x) = 0 for x in the boundary  of C. Thus for any 0 -< a -< a0, 

the above  inequality on 6 implies that 8(a)-< aS(ao)/ao. Letting 8(ao)/ao = K, 
and noting that ~5(a0) - a0, the l emma is proved.  

Proposition 22. Every cluster point of  the sequence {u~} produced by Algorithm H 
lies in W*. 

Proof. For  any fixed e > 0, let C = W(e). Let  a, C'  and 3(a)  be as defined in 
L e m m a  4. 

Since t i~O,  for any i>-io say, ti<<_a. Also, f rom Proposi t ion 21 there is a 
k -> i0 such that uk E C. Let  q be the smallest  i > k such that uqff: C, and let s -> q 
be such that uiqi C for  all q _< i -< s. Now if u E C'  is arbitrary,  then ut~i ___ a for  
all such i. This is because  the half-space H = {x E R "  : xt~i -< 0} does not meet  C 

and therefore  ut~,i = d(u, H)  >- r(u) >_ a. Thus,  f rom Corollary 6, d(us, u) <- 
d(uq, u). But, since u ~  C and u E C' ,  there will exist a point x ~ cl C on the line 

segment  u, us such that d(us, u) = d(us, x) + d(u, x) and d(u, x) = a. Therefore  

d(us, x) = d(u~, u) - a ~ d(uq, u) - a. 
However ,  

d(uq, u) <- d(uq, uq l) + d(uq-1, u) <- tq-1 + d(uq 1, u), 

f rom Corollary 5, and hence d(uq, u) <- ~ + d(uq-1, u). Therefore  d(u~, x) <- 
d(uq_l,u). Note  that x depends on u. But u E C'  is arbitrary. Now,  since 

Uq-1 ~ C, for any/3  > 3(a)  there is a u E C'  such that d(uo_~, u) </3. Thus there is 
an x E cl C such that d(u~, x)< /3 .  Thus it follows that d(us, C) <- 6(a). Now 

using L e m m a  4, it is evident that d(ui, C)<_ Ka  for all i_> k, where K is a 
posit ive constant.  Lett ing ~ approach zero, this shows that d(u*, C) = 0 for  any 

cluster point u* of {ui}. But since C = W(E), E > 0  is arbitrary and ui E S'  for  all 
i, the proof  is complete.  

Corollary 7. I f  w* is attained and w is continuous at every u such that 
w(u) = w*, then every cluster point u* of the sequence {ui} generated by Al- 
gorithm H satisfies w(u*) = w*. 

Proof. It  is clear in this case that W* = {u ~ S':  w(u) = w*}. 

Corollary 8. If  w has a unique maximising point u*, then ul -~ u*. 

Proof. In this case W* --{u*}. 

Corollaries 7 and 8 give conditions under which the cluster points will 
maximise w. However ,  in general it can only be guaranteed that they are 
infinitesimally close to maximal points, if w* is attained, or a lmost  maximal 
points if it is not attained. 



274 M.E. Dyer/Calculating surrogate constraints 

It was mentioned, in the discussion following Algorithm II, that in practice 
some, perhaps arbitrary, convergence criterion is needed to ensure finiteness. 
One possibility was suggested there. It might be asked whether there is any 
way, even in principle, of determining how much progress towards convergence 
the algorithm has made. In fact there is such a way. Let i0 be arbitrary. Then, at 
any iteration i-> i0, a linear program of the form of (I) of Section 4 may be 
solved, where J/ is now defined to be the set {i0 . . . . .  i} and 3'j to be I[gjtl. The 
numerical smallness of r*, the optimum value of this linear program, can be used 
as in Algorithm I to determine the closeness to convergence. The justification for 
this procedure is provided by the following proposition. 

Proposit ion 23. I f  r* is as  def ined above ,  then r* --> 0 as i --> oo. 

Proof. Otherwise there exists • > 0 such that r*-> e for all i - i 0 ,  since ri is 
nonincreasing. Thus there exists u; E S such that t- ill igj ~ E for all ] E J,-. Let  u* be 
any cluster point of {u~}, then it follows that u*tp, i >_ e for all j_> i0. For, let 
subsequence Ur ~ U*. Then for each ] >- i0 and all r _> j, 

u * t g j  = ( t i *  - -  U r ) t g j  -}- t ^  Urgj >-- (U* - U r ) t g j  "~- E.. 

Letting r ~  establishes the fact. But u * ~  S C_ B and hence, from the proof of 
Lemma 2, lira inf u*t~j-< 0, which contradiction proves the proposition. 

The linear programming duality argument used in the proof of Proposition 17 
may be employed to show further that Algorithm II can be made to produce, or 
approximate, a vector v satisfying the optimality condition of Proposition 7. 

In practice, of course, it may be doubtful whether the additional labour 
involved in solving the linear program would be justified in this algorithm. If 
linear programming is to be used, Algorithm I would seem preferable. However,  
Proposition 23 does open up the possibility of hybrid versions of Algorithms I 
and II. 

6. Example  

The algorithms of Sections 4 and 5 will be demonstrated on the following 
simple integer-programming problem: 

(P) f * = m i n  2 0 - 2 x , - l l x z ,  
subject to 10x~ + 2x2- 15 _< 0, 

xl + 6x2 -9_<0 ,  

- xl + x2 _< 0, 

x E X = {(xl, x2): 0 _< xj -< 100 and integer (j = 1,2)}. 
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No te  that  the variable upper  bounds  are imposed  mere ly  to ensure  that  X 

satisfies the c o m p a c t n e s s  assumpt ion .  

Both  algori thms will be s tar ted with multipliers obta ined  f r o m  the maximisa-  

t ion of  the Lag rangean  dual. In this case,  of  course ,  this s imply involves  solving 

the usual l inear -programming re laxat ion of  (P). The  opt imal  Lagrange  multiplier 

can then be shown  to be d = (~, 0, ~ )  with L* = 3]. The  results  of  calculat ions in 

bo th  a lgori thms are given to four  decimals  only,  but  were  originally to greater  
accuracy .  

6.1. Algorithm I 

The algor i thm is s tar ted with u~ = d = (0.1092, 0, 0.8908). The  c o n v e r g e n c e  

pa ramete r  0 is set to the relat ively small value 0.1, since d should be near a 

maximising point  of  w. In fact  a much  smaller value still would  work  bet ter  in 

this part icular  example,  but  the value 0.1 was  chosen  for  il lustrative purposes .  

The  quanti t ies o~,/3,/z are as defined in Sect ion 3, where  in this example /3  = 0 at 

each iteration. Also,  since L* <- w*, w0 can be set to L* = 33. 

Iteration 1: r* = max y such that  tT~ + u2 + t73 = 1 and/~i, a2, t~3 -> 0. Since r* = 
2 ,  arbitrarily choose  u~ = (0.1092, 0, 0 .8908)E U~ = S. The  surrogate  sub-prob lem 

is w(u~) = min 2 0 -  2x~ - 1 lx2 subjec t  to 0.2017x~ + 1.1092x2- 1.6387 - 0 and x E 

X. This has opt imal  solut ion x~ = 2, x2 = 1 and w(uO = 5. Thus  

• ~ *--5, E~ ={(2,  1)}, g(EO = { ( 7 , - 1 , - 1 ) } .  Thus  U2~--S A { ( 7 , - 1 , - 1 ) u  >-0}. 

Iteration 2: r* = max y such that  7t71 = t~2- t73 - 6.5320y -> 0, tT~ + 122 + t73 = 

1, tT~, t72, t73 -> 0. So r~ = 1.0717 when  t7 = (1, 0, 0). Then  o~ = 0.1260[(7 + 0.1260) = 

0.0177. Thus  I z = ( 1 - 0 . 1 ) ( 1 - 0 . 0 1 7 7 ) = 0 . 8 8 4 1 .  Thus  u 2 = ( 1 - t z ) a + / ~ u ~ =  

(0.2125, 0, 0.7875). The  surrogate  sub-prob lem is w(u2) = min 20 - 2x~ - 1 lx2 such 

that  1.3375x~ + 1.2125x2- 3.1875 _< 0. This has solut ion x = (0, 2), and w(u2) -- 

- 2 .  Thus  ~2"--5,  E2={(0 ,2 )}  and g ( E 2 ) = { ( - l l , 3 , 2 ) } .  H e n c e  U3= 
u~ n {(- 11, 3, 2), >_0}. 

Iteration 3: r* = max y subject  to - 11 a~ + 3 a2 + 2/23 - 11.0454y _> 

0, 7ai - t72- t i3 -  6.5320y _ 0, al + t~2 + a3 = 1 and ti _> 0. This gives r* = 0.0556 

when  a = (0.1704, 0.8296, 0). Then  a = 0.7625•(0.7625 +0.6143)  = 0.5538, so 

= (1 - 0.1)(1 - 0.5538) = 0.4016. The re fo re  u3 = (1 - / z ) a  +/xu2 = 
(0.1873, 0.4965, 0.3162). The  sub-prob lem is w(u3) = min 2 0 -  2 x ~ -  1 lx2 subject  to 

2.0533xl + 3.6696x2 - 7.2778 -< 0. This has the solut ion x~ = 1, x2 = 1 and w(u3) = 7. 

Then  ~3~---7, E2 = {(1, 1)} and g(E2)= { ( -  3, - 2 ,  0)}. Thus  there exists a feasible 
solut ion to (P) in M(u3), and the a lgor i thm can be s topped  here. This problem,  
therefore ,  has  no surrogate  dual i ty  gap and f*  --- w* = w(u3) = 7. 

*-< 0 could equal ly be used to stop the a lgor i thm Obse rve  that  the cr i ter ion r4 
af ter  defining U4 = U3 0 {( - 3, - 2, 0)u -> 0}. 
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6.2. Algorithm II 

The algorithm is started with u~ = d = (0.1217, 0, 0.9926). The sequence {tl} is 
taken as {0.1/i}. As with 0 in Section 6.1, however,  a sequence of rather smaller 
step-sizes would actually work better in this example. 

Iteration 1: u~ = (0.1217,0,0.9926). The surrogate problem is then W(Ul)= 
rain 2 0 - 2 x l -  l lx2 subject to 0.2247x~ + 1.2360x2-1.8259---0. This has optimal 
solution x = ( 2 , 1 )  and w(u l )=5 ,  as in Section 6.1. Then g ~ = g ( 2 , 1 ) =  

(7, - 1, - 1) and u]gl = -0.1405. Thus d l = (7, - 1, - 1) + 0.1405(0.1217, 0, 0.9926) 
and d l =  d'~ = (0.9828, -0 .1401,  -0.1205).  Now u'~ = uj + (1/10)d~ = 
(0.2200,-0.0140,0.9805) and u] '= (0.2200,0.0140,0.9805). Hence  uz = ~'(= 
(0.2189, 0.0139, 0.9756). 

Iteration 2: u 2 = (0.2189,0.0139,0.9756). The surrogate sub-problem is 
w(u2) = min 20 - 2x1 - 1 lxz such that 1.2274x~ + 1.4971x2- 3.4092 -< 0. The opti- 
mal solution to this is x = (0, 2) and w(u2) = - 2. Thus gz = g(0, 2) = ( -  11, 3, 2) 
and u ~ g 2  = -0.4150. Then d~ = ( -  11, 3, 2) + 0.4150(0.2189, 0,0139, 0.9756) = 

( -  10.9092, 3.0058, 2.4049). Therefore  d 2  = d'2 = ( -  0.9430, 0.2598, 0.2079) and 
t t  ! ^ t !  

u2 = u2 = uz+ (1/20)d2 = (0.1718, 0.0269, 0.9860). Now u3 = uz = (0.1716, 0.0269, 

0.9848). 

Iteration 3: u3=(0.1716,0.0269,0.9848). The surrogate problem is w(u3) = 
min 2 0 - 2 x ~ - l l x 2  subject to 0.7853xl + 1.4893x2-2.8153---0. This has optimal 
solution x = (1, 1) and w(u3) = 7. Therefore  g 3  = g(1, I) = ( -  3, - 2, 0).Since g3 ~ 
0, stop. 

This gives the same value, 7, for  w* and the same optimal feasible solution, 
(1, 1), for  (P) as found in Section 6.1. However ,  the optimal surrogate multiplier 
(0.1716, 0.0269,0.9848) is rather different from that obtained using Algorithm I, 
i.e. (0.1873, 0.4965, 0.3162). It could, of course, have been stated a priori that the 
optimal multiplier would not be unique, since (P) is a discrete programming 
problem, even after normalisation. 

7. Discussion and conclusions 

In this paper some properties of the surrogate dual of a mathematical 
programming problem have been examined. Two algorithms for calculating 
strongest surrogate constraints which exploit these properties have been des- 
cribed, and these illustrated on a small example. No computing experience with 
either of the methods has yet been obtained, but it is hoped they may provide a 
useful adjunct to Lagrangean methods in mathematical programming. Further  
work, both theoretical and empirical, needs to be done to assess and compare 
these two methods. In particular the issue of rate of convergence needs 
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examining for both algorithms, and the problem of step-size selection for 
Algorithm II requires investigation. 

One obvious area of applicability is integer-programming, where surrogate 
constraints are already successfully established [8]. There is one small problem 
in this particular application which might be mentioned here, that of rounding 
error. In surrogate duality real-valued multipliers are used to combine the 
constraints, and in the presence of round-off there might be difficulty in deciding 
whether a particular integer solution is feasible in the surrogate constraint. Ways 
can be devised to minimise this difficulty, but it will be no more serious than in 
many other integer-programming methods, for example some cutting-plane al- 
gorithms and certain branch-and-bound approaches. 

Finally it may be noted that the work of Luenberger [20] shows that the 
algorithms also provide one approach to general quasi-convex programming. The 
relationship of Algorithm I to quasi-convex programming exactly parallels the 
use of generalised programming for convex programs, see for example [21]. 

8. Note 

Other recent research relevant to the content of this paper is given in 
references [1] to [3] and [15] to [19]. In particular, [17] gives some empirical 
evidence on the ability of surrogates to close the Lagrange duality gap in 
integer-programming. I am grateful to the editors and referees for drawing my 
attention to this work. 
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