
Mathematical Programming 19 (1980) 255-278.
North-Holland Publishing Company

C A L C U L A T I N G S U R R O G A T E CONSTRAINTS

M.E. D Y E R

Mathematics Department, Teesside Polytechnic, Middlesbrough, Cleveland, Great Britain

Received 2 June 1978
Revised manuscript received 12 March 1980

Various theoretical properties of the surrogate dual of a mathematical programming
problem are discussed, including some connections with the Lagrangean dual. Two algorithms
for solving the surrogate dual, suggested by analogy with Lagrangean optimisation, are
described and proofs of their convergence given. A simple example is solved using each
method.

Key words: Surrogate Constraints, Subgradient Methods, Generalised Programming, Sur-
rogate Duality.

I. Introduction

Surrogate constraints were introduced into mathematical programming by
Glover [8]. The idea is to replace a mathematical program, by taking a suitable
convex combination of the constraints, with a surrogate problem having only
one constraint. Luenberger [20] has shown that for quasi-convex programs, the
surrogate problem can solve the original program if the multipliers are correctly
chosen. Greenberg and Pierskalla [10] treated the general surrogate problem
theoretically, and established some results useful for the construction of optimal
(i.e. tightest) surrogate constraints. They showed that this involves the maxi-
misation of a quasiconcave, though possibly discontinuous, function. Some
results allied to theirs are given in Section 2 below. Greenberg [13] extended the
theory to a more general case involving nonlinear combinations of constraints,
and Greenberg and Pierskalla [11, 12] developed a theory of quasiconvexity
which they hope.d would prove useful in this context. Glover [9] has given a
theory of surrogate duality in the spirit of Geoffrion's [7] theory of Lagrangean
duality.

Little attention seems to have been directed, however, to schemes for
generating optimal surrogate constraints, although Greenberg [13] refers to a
generalised programming method for this purpose. The aim in this paper is to
investigate possible methods. Two algorithms are proposed, which are natural
extensions of methods for the Lagrangean case, one analogous to generalised
linear programming, the other to subgradient methods. The convergence of each
is established.

In Section 2 some theoretical properties of the surrogate problem are dis-

255

256 M.E. Dyer/Calculating surrogate constraints

cussed and connections with the Lagrangean dual are shown. Section 3, which is
not central to the paper, briefly reviews a method for finding an interior point of
a polytope for application in the algorithm of Section 4. Section 4 presents the
first algorithm, and Section 5 the second. In Section 6 a simple example is solved
using each of the methods.

A word should perhaps be said about the use of optimal surrogates. In the best
cases, where there is no duality gap, the optimal surrogate problem solves the
original mathematical programming problem. In other cases it merely provides a
bound on the optimal objective function value in the original. However, this
bound is at least as good and usually better than that obtained from optimising
the Lagrangean. For integer programming, for example, the bound and the
constraint itself are useful within global enumeration schemes.

The development is principally in terms of mathematical programs defined by
inequalities, since this endows sufficient structure to render an optimisation
scheme feasible. However, it might be noted that the work of Bradley [4] and
others shows that there is always a surrogate problem for equality constrained
integer programs which has no duality gap. Therefore it might be hoped that the
optimum surrogate will closely bound the primal in the inequality case of integer
programming also.

2. The surrogate problem

2.1. Definition and discussion

(P)

Consider the canonical primal mathematical program [9]:

f* = inf{f(x): x C X, g (x) <- O}

where g(x) = (gl(x),g2(x) g, ,(x)) E R m and X C_ R".
It will be assumed here that X is compact, the function f is a lower

semicontinuous (1.s.c.) real-valued function on X, and the gi are continuous on
X. These are the assumptions of [10] and immediately imply that the "inf" in (P)
can be replaced by "min", i.e. jr* is attained.

Now, for any u ~ R m with u _> 0, define [9]:

Then

(Q)

X (u) = {x E X : u tg(x) <- O} and w (u) = min{f(x): x E X(u)}.

w* = sup{w(u): u -> O, u ~ R " }

is the surrogate dual program for (P). It is evident that w(O)-< w (u) for all u # 0
and thus zero may be excluded as a possible value for u. It is also clear that for
any k >0, w (k u) = w(u) . Thus an arbitrary normalisation of the vectors u is
possible and has the advantage that they will then belong to a compact set. Thus

M.E. Dyer/Calculating surrogate constraints 257

if I111 is any norm on R" , (Q) can be rewritten

(Q) w* = sup{w(u) : u 0, Ilul[= 1, u ~ Rm}.

The two norms which will be used here are the L~ and L 2 norms, i.e. either
ui = 1 or ~ u 2 = 1. It will be observed that since the ui are nonnegative, the

former gives a linear equality constraint which will be written etu = 1 where
e ' = (1, 1 1). This L1 normalisation will be used in the remainder of this
section, though the results can be obviously modified to any norm. For this
purpose it is convenient to define the (compact convex) set S = {u _> 0: etu = 1}.

It should be noted that even though f* and w(u) will always be attained under
the assumptions made, w* may not be equal to any w(u). In fact, in the absence
of convexity, it appears that very strong conditions on the problem are needed to
ensure that w* is achieved. The following example shows that it is not sufficient,
for example, that f be smooth, the g~ linear and X strongly connected and
compact.

Example 1.

(P) f* -- min 5 - x ~ - (x2 - l) 2,

subject to xl - x2 -< 0, xl + x 2 - 2 -< 0

and X the L-shaped region of R E shown in Fig. 1.

Letting ul = 1 - u2 = A, it follows that

w(A)= [4 A (2 - A) f o r A < ½ ,

= l - 8 A (2 A - 1) _ 3 for A _> 3. f°r-~<-A-<3'

The function w has a discontinuity at A = ½, and the supremum w* = 3 is not
attained. It is sketched in Fig. 2.

0 i 2 3 ~X,

Fig. I.

258 M.E. Dyer/Calculating surrogate constraints

wO,)

3

2

, /
O!

-2

-3

/
\ 3

Fig. 2.

Simple examples of mixed-integer programs in which w* is not attained can
also be constructed. However, it will be shown that for a class of problems
which includes pure-integer programs, w* will necessarily be achieved.

2.2, Properties

In the following, the results stated without proof are either from, or very
similar to, results of [10]. They are reproduced for completeness. The prefix
"int" denotes interior (usually relative to S) and "co" the convex hull of a set.

Proposition 1. w* < f* (Weak Duality).

Proposition 2. w is a l.s.c, quasiconcave function on S.

Corollary 1. I f (P) is feasible, then for each • >0, the set W (e) = {u E S:
w(u) > w* - ~} is a nonempty, open, convex subset of S.

Proof. w* is clearly finite if (P) is feasible, so W(e) is nonempty. The other
properties are immediate consequences of Proposition 2.

The quantity (f * - w *) is called the duality gap. The best situation is where
there is no gap i.e. f* = w*. Let Y = {x E X: g(x) -<0} be the feasible set of (P).
Clearly Y C_ X (u) for all u. The following simple result then follows directly.

Proposition 3. w* is attained and equal to f* if and only if w(u) = f (x) for some
u E S and x E Y. Then x solves (P) and u solves (Q).

The case where w* = f * but it is not attained may thus be viewed as an

M.E. Dyer/Calculating surrogate constraints 259

"infinitesimal" duality gap, since the dual will not then give a solution to the

primal among the minimisers of w(u) for any u.
As already observed, w* need not be achieved on S, this being true even if

there is no duality gap. Define, however, a discrete programming problem as one
for which the set of real numbers {f(x): x ~ X} has no cluster point. This clearly

includes all pure integer programs. Then

Proposition 4. I f (P) is a feasible discrete programming problem, then w* i~

attained on an open convex subset of S.

Proof. Clearly w* < ~. If it is not attained the there is an increasing sequence
w(ur)~ w* with no w(u,) = w*. But W(Ur)= f(X,) for some x E X, which implies
that w* is a cluster point of {f(xr)} which is impossible. Also since w* is not a
cluster point of {f(x)} there exists an E > 0 such that w* - • < f (x) --- w* implies
f (x) = w* for all x ~ X. Thus if w* - • < w(u) <- w*, then w(u) = w*. The result
now follows f rom Corollary 1.

In what follows it will be convenient to have a concise notation for certain
families of sets. Let F (a) = {x E X : f (x) <- a}, then obviously F (a) n X (u) ~ 0 if
and only if w(u) < - a. Denote by M (u) the set of optimal solutions X (u) n

F(w(u)) t o the surrogate problem for u. Let G (a) = g (F (a)) and Z (u) =
g(M(u)) . Also denote by G*(a) the set {s ~ S: gts >-- 0 for all g E G(t~)}, with a

similar definition for Z*(u). These are sets "polar" to G(a) , Z(u). The following
results then give conditions for optimality in the surrogate dual problem.

Proposition 5. w(u) > a if and only if u E int G*(a).

Proof. u ~ int G*(a) if and only if gtu > 0 for all g E G(a) , which is true if and

only if X (u) n F (a) = fl, which is again true if and only if w(u) > a.

Corollary 2. w* is the minimum number a such that int G*(a) = O.

Proof. If a < w * , then there exists u such that w(u)>o~ and hence
int G*(a) ~ ~. If a -> w*, then u E int G*(a) implies w(u) > a >-- w*, which is
impossible, hence int G*(a) = O.

Proposition 6. int G * (a) = ~) if and only if there exists v E co(G(a)) such that
v<_O.

Proof. int G*(o0 = 0 if and only if there is no u E S such that utg > 0 for all
g E G(ot), which is true if and only if there is no u in S such that utg > 0 for all
g ~ co(G(a)) . Since v <- 0 and u >- O, utv <- 0 and thus the existence of v implies
int G*(o0 = ¢. Conversely if no such v exists, then co(G(a)) is disjoint f rom the
nonposit ive orthant N of R" . Now since f is 1.s.c., F (a) is closed and therefore

260 M.E. Dyer/Calculating surrogate constraints

compact. Thus since g is continuous G (a) = g (F (a)) is compact. Hence
co(G(a)) is compact, and since N is closed, N and co(G(o0) can be strictly
separated by a hyperplane. This implies the existence of a u E S such that
utg > 0 for all g E co(G(a)) and hence int G*(a) # O.

Proposition 6 and Corollary 2 together immediately imply.

Proposition 7. w* is the minimum number a for which there exists a v <-0 in

co(G(~)) .

If w* is attained, then equally obviously.

Corollary 3. u is a maximising point o f w if and only if there is a v <-0 in

co(G(w(u))).

Corollary 3, which gives a necessary and sufficient condition for u to maxi-
mise w can be compared with the gap detection theorem of Greenberg and
Pierskalla [10] which states that

Proposition 8. I f there is a v <- 0 in co(Z(u)), then u is a maximising point o f w.

This can be deduced immediately from Corollary 3 on noting that Z(u)C_

G(w(u)) . Proposition 8 gives, however, only a sufficient condition for maximisa-
tion which need not be satisfied even when w* is attained, as the following
simple example shows.

Example 2.

(P) f* = min 2 - xl - 2x2,

subject to 2xj + 4x2 -< 3, 4xl + 2X2 ~ 3,
X = {(xl, x9: xj ~ {0, 1}}.

If u~=(1 -u2)=A, then for 0-<A-½, w(A)=0 and M(A)={(0, 1)}. For ½<
A - - I , w (A) = I and M(A)={(1,0)}. The maximum is attained on the (open,
convex) interval ½ < A -- 1, but for all A in this interval Z(A) = {(- 1, 1)}. Clearly
co(Z(h)) does not contain a nonpositive vector for any maximising A.

It will be observed that in this example w* is attained on an open set of S. The
following proposition shows that this is in fact the source of the difficulty in
attempting to apply Proposition 8.

Proposition 9. I f w* is attained, but not on any open set o f S, then fo r all u such
that w (u) = w*, there is a v <-0 in co(Z(u)).

M.E. Dyer/Calculating surrogate constraints 261

Proof. Let W = {u E S: w(u) = w*}. Then W is convex and not of full dimen-
sion in S. Thus there is a hyperplane H of R" , other than etu = 1, which contains

W. Le t K = H fq S. Clearly int K = 0 in S and W _C K. Choose any fi E W and
u E S - K . Thus w(u)<w*. Define Ur=(1/r)u+(1-1/r)a for r = l , 2

Clearly Ur E S - K for all r and hence w(ur)< w*. Le t xrEM(ur). Clearly
u~g(x~) <- 0 and since f(Xr) < w*, Xr~ X(a) so atg(Xr) > 0. But this implies that
utg(Xr) <--O. Let ~ be any cluster point of Xr and assume that x,---> ~. Now letting
r ~ , gtg(g)-<0 so g E X (a) and hence f(g)>-w*. But since f is 1.s.c., f(Y)-<
w*. Thus f(g) = w* and hence ~ E M(a). But from the continuity of g, it also
follows that utg(x) ~ 0. Therefore uE int Z*(u). This implies that int Z*(u) = 0 in

S. Then an argument almost identical to the second part of the proof of

Proposit ion 6 establishes the existence of v.
Thus Greenberg and Pierskalla's condition would be sufficient in many cases,

but in view of Proposit ion 4 it appears to be of restricted use for discrete
programming problems. It is also of no assistance if w* is not attained. The
nearest result to this which can be guaranteed in general is a strengthened form
of Proposit ion 7, as follows. For this purpose write M(u, a) = X(u) M F(a) and
Z(u, a) = g(M(u, a)). The preliminary lemma is given first.

Lemma 1. I r A C R m is any set of points such that co(A) contains a point of the
nonpositive orthant, then there is a finite subset B of A such that co(B) contains
a point of the nonpositive orthant but no point of the positive orthant.

Proof. From Caratheodory 's theorem all points of A can be represented as
convex combinations of finite subsets of A. Let B be a minimal finite subset
which contains a nonpositive point in its convex hull. Suppose this is ~Aibi <-O,
with ~Ai = 1. Clearly Ai > 0 for all i. Suppose now ~l-~ibi > 0 with ~]/xi = 1 for
any /x~ >-0. Then, for any /3 >-0 define A'i= (1 +/3)Ai-/3tzi. Clearly ~]A'~ = 1 and
~A'~b~ -< 0. Now choose /3 to satisfy

/3/(1 +/3) = mini{Ai//z~: / z ~ 0} = Ak]/xk say.

Then/3 is positive and well-defined since Ai > 0,/xi > 0 for some i, and Ai </zi for
some i. Note that if Ai >-/zi for all i, then A,-=/zi for all i which is clearly

impossible. Now, with the chosen value of /3, A~-> 0 for all i and A~ = 0. This
contradicts the minimality of B, and the result is established.

Proposition 10. There is u E S such that a v <-0 exists in co(Z(u, w*)). The
number w* is minimal with respect to this property.

Proof. Proposit ion 7 shows there is a v-<0 in co (G(a)) if and only if w*-< a.
Thus from the lemma there is a finite subset of X, C say, such that co{g(x): x E
C} contains a nonpositive point but no positive point. Thus, f rom the separating
hyperplane theorem, there is a u E S such that u'g(x)<-0 for all x E C. Thus

262 M.E. Dyer/Calculating surrogate constraints

C _c X(u), and since clearly C _C F(a), C C_ M(u, ~). The conclusion now fol-
lows.

Greenberg and Pierskalla's sufficient condition is met only if the u of
Proposition 10 satisfies w(u)= w* also. This need not be the case and it is
possible to construct problems in which all points which fulfil the condition of
Proposition 10 are far from optimal.

Proposition 10 is clearly stronger than Proposition 7, but it is not exploited in
the algorithms developed here. The following discussion examines the im-
plications of these two results.

It is useful to write the content of these results in an equivalent, but more
suggestive form as follows.

(Q') w* = min max f(x),
Z(x)>0

such that

A(x)g(x) <_ O,
x~X

A(x) = 1,
x~X

A(x)-> 0 for all x E X, and all but a finite number of A(x)= O.
Now it is clear that (Q') is a form of generalised program. It is in fact a

(generalised) bottleneck linear program. See, for example [6], which gives
algorithms for the bottleneck linear program in the finite case. Note that
Proposition 10 implies the existence of an optimal "dual multiplier" u such that
utg(x)---~ 0 for all x such that A(x)> 0. There is a close analogy with one of the
algorithms of [6].

Suppose now that the assumption of lower semicontinuity on f is strengthened
to continuity. Then it is well-known [21] that the Lagrangean dual problem to (P)

(D) L* = sup{min{f(x) + dtg(x): x E X}: d -> 0, d u R m}

can be written as

(D') L* = min ~] A(x)f(x),
xEX

the A(x) being subject to the constraints of (Q'). The coincidence of the
constraint sets clearly implies the result of [10] that w*_> L* for any (P), since
the objective function of (Q') is at least equal to that of (D') for any feasible
)t(x). It also implies that if)t(x), x E C, are nonzero in any optimal solution to
(D'), then w*-< max{f(x): x E C}. This bound could be useful in estimating the
potential improvement over the Lagrangean maximum that surrogate methods
might produce. In practice, the surrogate dual would probably be used as an
adjunct to Lagrangean methods in an attempt to close the Lagrangean duality

M.E. Dyer/Calculating surrogate constraints 263

gap. It might then seem that the (normalised) optimum Lagrange multiplier
would be a good starting point in a search for the best surrogate multiplier. The
following shows that, in a certain sense, this is true.

Proposition 11. If d is an optimum Lagrange multiplier, and d its Ll-nor-
malisation, then w(d) >- L*. Moreover exactly one of the following holds:

(i) w(d) > L*,
(ii) w(d) = L*, but every neighbourhood of d in S contains a point u such that

w(u) > w(d),
(iii) w(d) = L* = w*.

Proof. For all x ~ X, f(x) + dtg(x) >~ L*. Thus f (x) >- L* for all x E X(d) , so
w(d)>-L *. Suppose (i) does not hold, so w (d) = L * . Then for any x E
M(d) , f (x) = L*. Then, for such an x , f (x)+dtg(x) < - L*, which implies that
f (x) + dtg(x) = L* and hence dtg(x) -- 0. Suppose (iii) does not hold, so there is a
u ~ S such that w (u) > w(d). Le t Ur = (1 - - 1 / r) d + (1 / r) u so u r ~ d . Since w is
quasiconcave, W(Ur)>-w(d) for all r. Now for any x ~ M (d) , u ~ g (x) =
(1/r)utg(x) > 0 since xq~ X(u). Suppose w(ur)= w(d) for any r. Then there is a

y E X(uD with f (y) = w(d). But y ~ X (u) , and this implies y E X(d) . Thus
y E M(d) , which is a contradiction. Thus w(ur) > w(d) for all r, which shows that
(ii) holds.

While this Proposit ion shows that d is a reasonable estimate for an optimal
surrogate multiplier, it should be observed that it is not difficult to construct
examples in which it bears no relation to the set of optimal multipliers. The
following is such an example.

Example 3.

(P)

such that

f* = min - 4xl - 4x2 + x4 + 2x5

2x~ + x2 + x3 - 3x4 - x5 ~ O,

Xl + 2X2 + X3 --}- x 4 - x5 ~--0,

xl + X2 -- 2x3 + x4 --< 0,

and

X ~ {(Xl, x2, x3, x4, x5): x i ~ {0, 1) and xl + x2 + X3 -~- X4 ~t- X5 = 1}.

Here the unique optimal Lagrange multiplier d = (1, l, l) and L* =0 . Then
d 11 = (~,~,~) and w (d) = 0. Every neighbourhood of d contains a point at which
w(.) -- 1, but d is not close to any of the points at which w* = 2 is achieved, i.e.
the set {u E S: ul < ~, u3 <-~}.

264 M.E. Dyer/Calculating surrogate constraints

However , if the aim is to reduce the Lagrange duality gap, then Proposit ion 11
does suggest that d is a good starting point. This clearly justifies the traditional

use of the optimum Simplex multipliers as surrogate multipliers in integer

programming [8].

3. Interior points and linear programming

Nemhauser and Widhelm [23] observed that a central step of the column-
generation method of Dantzig and Wolfe involves determining, by linear pro-

gramming, an interior point of a polyhedron bounded by a certain set of linear
inequalities. From geometric considerations they therefore suggested a nor-
malisation of the linear program which they believed would speed convergence.
O'Neill and Widhelm [24] gave some computational evidence supporting this.
Mattheiss and Widhelm [22] have extended this work.

The convergence of the algorithm of Section 4 depends on finding an interior
point (relative to S) of a polyhedral subset of S, U say. It is also required that
the point should be sufficiently distant from the boundary of U. Such an interior
point could be determined in a variety of ways. The particular form of linear
program suggested here is inspired by the work cited above.

A typical polytope encountered in the algorithm is of the form U =
{u ~ S: utgj >-0 (] E J)}, where for each j there exists a u E S with u~gj <-0.
Assume initially that U is nonempty a n d let u0~ U. Consider the Euclidean
distance of u0 from the hyperplane ~ . = {u: utgj = 0} in the plane of the equality
etu = 1 which contains S. It is not difficult to show that this distance is
dj(uo) = u~gj/7~ where %. = ~/(g~gj- (etgfl2/m). An equivalent form for 7j is, in

fairly obvious notation, ~ / ~ (g i e - gi) 2- Then

Proposition 12. I f 7j = 0, then gj <- 0 and int U = 0.

Proof. yj = 0 implies that gi = ~:e for some scalar ~c. But since there is a u ~ S
with utgj <- O, ~ <- 0 and thus gj _< 0. However , gj -< 0 implies that there is no u E S
with utgi > 0 and hence int U = ft.

Since in the algorithm of Section 4, int U = ~ is the convergence criterion, and
gj -< 0 gives a feasible solution to (P), it will be true that yj > 0 for all j E J if U is
encountered in the algorithm.

The Euclidean distance of u0 to the boundary of U is, in view of the above,
r(uo) = min{dj(u0):] ~ J}. It is obvious that u0 E int U if and only if r(uo) > 0. Let
r* = max{r(u): u E U}. It is now clear that int U ~ I if and only if r * > 0 . The
number r* will be called the radius of U. It is not difficult to see that

r* = max y,

utg~ - 7jy >- 0 (j E J), (I)

etu = 1, u->0.

M.E. Dyer/Calculating surrogate constraints 265

This is a linear program in the variables u, y. If int U ~ 0, it is evident that an

optimal solution u to (I) will be an interior point (relative to S) since ti E S and
/~tg ~> 0 (j E J). This point will be called a centre of U. If U is empty, then the
maximum value of y in (I) still exists, but is negative. In this case r* will be
defined to be the optimum value of y in (I). Therefore , whether U is nonempty
or empty, int U S ~ if and only if r* > 0 . It is evident that r* will be finite
provided J is nonempty. If J is empty, as it is only at the first iteration of
Algorithm I below, then any u C S is a centre of U. A suitable choice for an
interior point in this case might be based on the optimum Lagrange multiplier as
described in Section 2.

In the generalised programming algorithm of Section 4, gi will be g(x) for

some x E X. The following fact, which follows immediately from the continuity
of g, is needed.

Proposition 13. 7(x) is a continuous function of x on X.

When r* > 0, the linear program (I) yields one interior point t~ of U with
r(a) = r*. Now the algorithm of Section 4 successively adds constraints at each
iteration to the set defining U. These are added such that, if u is the interior
point of U chosen at iteration i, then u ~ int U at iteration (i + 1). It might be
considered undesirable to move the point u too drastically from one iteration to
the next, and the point ti might be considered too far. The remainder of this
section shows how, given the point ti and a point u ~ int U, a wider choice of
interior point can be made which still retains the property of being sufficiently
distant from the boundary of U.

It is not difficult to show that r(u) is a concave function of u on any nonempty
U. Suppose now that u' is any boundary point of U, so r(u') = 0. Then, for any
given 0 < 0 -< 1, if 0 ---/3 _< 1, then

and

u =/3a + (1 - / 3) u ' ~ i n t U

r(u) >_/3r(~) + (1 - / 3) r (u ') =/3r* >- Or*.

Now, given a and any u " ~ i n t U, it is easy to find a boundary point u' of U.
Such a point is ca7 + (1 - a)u" where 0 --- c~ < 1 is given by

ct = max{ - u"tgi/(a'g j - u"tgi): u"tgj <-- O, i ~ J}.

Note that the set of constraints considered in the determination of a are those
which separate u" f rom the interior of U. If, in Algorithm I below, u" is taken as
the interior point of U from the previous iteration, the number of these
constraints will generally be few. Thus the determination of ~ will not be
computationally burdensome. Observe also that u = (1 - / x) a +/xu" where /x =
(1- a)(1 - /3) . By an appropriately small choice of the "convergence parameter"

266 M.E. Dyer/Calculating surrogate constraints

0, almost any interior point between u' and a may be chosen without invalidating
the proofs of convergence given in Section 4. It must be emphasised, of course,
that whether or not a device of the above type is used, the linear program (I)
must still be solved at each iteration. The usual linear programming re-optimisa-
tion procedures can, obviously, be used to minimise the computational effort in
doing this as constraints are added from one iteration to the next.

4. A generalised programming algorithm

The algorithm below uses the ideas presented in Sections 2 and 3. First it is
formally stated, then a discussion given followed by proofs of convergence.

Let 0 < 0-< 1 be any scalar and if0 be any number not exceeding w*. If
necessary if0 could be taken as - ~ .

Algorithm I
Step 0: i<--1, UI~--S.
Step 1: If the radius of Ui, r~ -< 0 then stop.

Otherwise choose ui E U~ such that r(ui) >- Or~.
Step 2: If X(ui) M F(~i-1) = O, ff~ ~- w(u~) otherwise ~; ~-- wi-1.

Determine any finite, nonempty Ei C X(Ui) fq F(~i).
Step 3: Ui+I<-----U i N{//~Rm: / / tg(x)~0 for all x E Ei}.

Step 4: i*--i + 1. Go to Step 1.

At each iteration ff~ is a lower bound for w*. It is evident that Ui is of the
form discussed in Section 3, and thus the computations of Step 1 can be effected
by the method proposed there. In Step 2, the surrogate sub-problem
min{f(x): x E X(ui)} is considered. If this problem has feasible solutions with
f (x) < ff~i-J, it may not be necessary to solve it to complete optimality. However,
if all x E X(u i) have f (x) > wi-1, ff~i will be increased to w(ui) and Ei C_ M(ui), In
Step 3 the set of new linear constraints, or cutting planes [5], implied by the
sub-problem solutions E~ are added to Ui and the next iteration is begun. It will
be observed, that for finiteness in practice, the convergence criterion in Step 1,
r* -< 0, would be replaced by r* < 3 for some suitably small constant 3.

The following gives a general convergence result.

Proposition 14. Algorithm I either terminates, at iteration k, with w* = Wk or else
lira wi = w * a s i --> ~.

Proof. Observe that ~i is a nondecreasing sequence bounded above by w* and
thus must either terminate or tend to a limit. The nondecreasing nature of the
sequence also implies that Ej _C F(ffi) for all j -< i, and hence U,- _D G*(~i) for all
i.

M.E. Dyer/Calculating surrogate constraints 267

If r* --- 0 for any k, then int Uk = 0 and so int G*(~'k) : 0. But, from Corollary
2, this implies Wk --> W*. However wk --< w* and therefore Wk = W*.

Suppose now r* > 0 for all i. At iteration i, uj~ int Ui for all j < i. This follows,
from Steps 2 and 3, since for any x C Ej int Ui C_ {u: utg(x)>O} and u~g(x)<-0.
Thus the Euclidean distance between u, and u# Iluj- u~ll >-r(u~) > - Or*. Now as
i--> ~, {u,-} must have a cluster point since it lies in the compact set S. Also r*
must tend to a limit, since it is an obviously nonincreasing sequence of reals

bounded below by zero. But {ui} having a cluster point implies that there must
exist an i and a j < i such that Iluj-u~[[< • for any • > 0 , thus Or* < •. This
clearly implies r* ~ 0 as i ~ . If now lim ffi = w ' < w*, then ~ - < w' for all i and
hence Ug c G*(w') for all i. But Corollary 2 then implies int G*(w') ~ 0 and thus
contains an interior point u' which is at a nonzero distance r', say, from the
boundary of G*(w'). Hence r * - > r' for all i, and thus lim r * - > r ' > 0 . This

contradiction shows that lim ~z = w*.
This result can be improved slightly in some cases. For example

Proposition 15. If w* is attained on any open set of S, then either Algorithm I
terminates or there is a k such that ~ = w* for i >- k.

Proof. Let W = {u: w(u) = w*}, so int W # ~. Now w(u) = w* > wi implies u E
int G*(ff;) by Proposit ion 5. Thus, if the stated result is false, Ui _~ G*(ffi)_~ W
for all i. But then r* ~ 0 implies int W = ~, which is a contradiction.

Corollary 4. I f (P) is a feasible discrete programming problem, then either

Algorithm I terminates or there is a k such that ff~i = w* for all i >- k.

Proof. Follows directly from Proposit ion 4.

If X is finite, a particular case of discrete programming which includes the
(bounded) pure-integer program, an even stronger assertion can be made.

Proposition 16. I f X is finite, Algorithm I terminates.

Proof. Consider any iterations iS j of the algorithm. Suppose i > j, then for all
x ~ Ej, u}g(x) > 0 since ui E int Ui. But since u}g(x) <- 0 for all x ~ Ei, it follows
that El-f3 Ei = 0. However , Ei¢ ~ for each i, and thus the algorithm cannot
continue for more than IXI iterations.

The existence was shown, in Proposit ion 7, of a v-<0 in co(G(w*)). It will
now be shown that

Proposition 17. Algorithm I either produces, or closely approximates, a v E
co(G(w*)) such that v <-O.

2 6 8 M.E. Dyer/Calculat ing surrogate constraints

Proof. Let
subset of co(G(w*)). From the discussion of Section 3,

r i : m a x y,

u'gj-7~y>--O (j~J~),

e t u = l , u>-O.

The linear programming dual of this can be written

ri = rain z,

ZAjgj <- (ZAfYI)z e,

U i = { u E S : u t g j > - O , jEJ,.} and Vi=co{g F j E J i } . Vi is clearly a

~ A j = I , ;~j->O (j c J i)

(I)

(II)

where the A t are simply the usual dual variables of (I), but normalised to sum to
unity. If r* - 0, then (II) clearly implies that there is a v E Vi such that v - 0 as
required. Now if r* > 0 for all i, then

~]Ajy s -< max{y V] ~ J,.} - M for some constant M,

since from Proposition 13 y(x) is continuous on the compact set X. Thus there is
a vi E Vi such that vi <- (Mr*)e. Because vi E co(G(w*)), a compact set, {vi} has a
cluster point. Since r* 4 0 , however, it follows that any cluster point v of {vi}
must satisfy v -< 0 and v E co(G(w*)).

An undesirable feature of algorithms such as that given above is that ap-
parently all the defining constraints of U,. must be retained indefinitely. Eaves
and Zangwill [5] have, among others, given conditions for dropping constraints
in algorithms of this type, but it does not appear that these results extend
immediately to Algorithm I. However, the following proposition, in the spirit of
this work, shows that potentially large numbers of the constraints defining Ui
may be dropped provided the algorithm has made sufficient progress. The
algorithm will still converge in the sense of the above results. To this end let
0 < F < 1 be any scalar.

:g :g
Proposition 18. Let xj E Ej and suppose that, at iteration i, 0 < ri <- tzrj . Then the
constraint utg(xj)>-0 can be dropped f rom those defining Ui, provided this will
not increase r*.

Proof. The only modification needed to the proof of Proposition 14 is to show
that, if r* > 0 for all i, then r* still tends towards zero. Now the conditions of the
proposition will ensure that {r*} is a nonincreasing sequence, and hence it m u s t
have a limit ?, say. Suppose ~ > 0, then since/z < 1 there is a J0 such that r~ < r/F
for all j - J0. But since r*-> ~,/xr* < ri . Thus no constraints will be dropped

M.E. Dyer/Calculating surrogate constraints 269

from Ej for any]-> J0. The argument used in Proposition 14 to show that r* 4 0
can now be applied to the sequence {uj: i-> i0}. This implies that, still, r * ~ O
which contradicts P > O. Thus ? = 0 and the result is established.

The condition that the removal of utg(xj)>--O should not increase r* is
equivalent, of course, to the corresponding slack variable being basic in the
optimal solution to (I). This may be easily checked.

5. A subgradient-type algorithm

Subgradient methods have proved effective in Lagrangean optimisation. For
example Held et al. [14] discuss, and give experience in using, such methods. In
surrogate duality the quasiconcave function w will not, in general, have a
subgradient at all points. There are, however, quantities which correspond to
subgradients, namely the normals to the hyperplanes of support of the level sets.
Greenberg and Pierskalla [12] have christened these quasi-subgradients. Thus
Algorithm II below could be called a quasi-subgradient method. A statement of
this algorithm is followed by a discussion and proofs of convergence. The
convergence is based on the condition of Polyak [25] for subgradient step-size
control.

It is more convenient in this work to normalise the surrogate multipliers with
the Euclidean, rather than the LI, norm. Thus I]xl[, for x C R m, denotes the
Euclidean norm throughout. The distance notation d(x, y) will also be used for
]]x-yll. For any subset C of R m, the distance from x to C is denoted by
d(x, C) = inf{d(x, y): y ~ C}. It is well-known that d(x, C) = 0 if and only if x is
in the closure, cl C, of C. The symbol i for x ~ 0 , is the normed version of

x, x/llxH.
The results of Section 2 must be modified to this normalisation, the change

needed usually being to replace notions of convexity with those of spherical
convexity. The convex set B = {x: [[x]l- 1, x -> 0, x ~ 0} is the portion of the unit
m-disc, minus the origin, which lies in the non-negative orthant. S ' =
{x ~ B:]lx]] = 1} is the intersection of B with the unit m-sphere. S' corresponds,
in the new normalisation, to S in the Ll-norm but is clearly non-convex. The
algorithm generates a sequence of multipliers lying in S'.

Let {ti} be any sequence of non-negative reals such that ti 4 0 and ~7=~ ti = ~,
e.g. ti = 1/i. t~ is the step-size at iteration i. Sequences of step-sizes of this type
were proposed by Polyak [25].

Algorithm II
Step O: Choose any ul E S'. Set i*-- 1, ~ * - - ~.
Step 1: Determine any xi~M(ui). Let gi=g(xi) and f i=f(xi)=w(ui). If

fi > w, w ~--fi. If gi -< O, stop.

270 M.E. Dyer/Calculating surrogate constraints

Step 2: Determine ui+~ as follows:
!

(a) di'---gi - (u~gi)ui and dead's.
r

(b) u i +-- ui + tldi.
(c) u'i'<-- u l + Pi, where

-2(ul)i if (u~)j <0,
(Pi)i = 0 otherwise.

^ t!
(d) U i + l ~ - - - - u i .

Step 3: i+-i + 1. Go to Step 1.
Firstly, it will be observed that the algorithm, as described, will not in general

terminate, since no gi < 0 will be discovered. In practice, some criterion such as
no improvement in ~, the best value of w(ui) obtained, having been made over a
group of k iterations could be used, where k is appropriately chosen. The same
problem occurs in some subgradient methods.

Clarification of the geometrical nature of the multiplier update in Step 2 may
be needed. This ensures that ui+l E S' when u~ ~ S'. Thus, since ul E S', u~ E S'
for all i. The vector g~ is the quasi-subgradient direction. The direction of change
for ui is obtained in Step 2(a) by projecting this direction onto the tangent plane
at u; and normalising. Note that this normalisation is always possible since d l= 0
implies gi <-O. Then ui is modified in Step 2(b) by a step of length ti in this
direction. This ensures that ul is outside the unit sphere, which fact is required
in the convergence proofs. Note that, computationally, ul is simply a linear
combination of u~ and g~. The point ul may, however, also lie outside the
non-negative orthant of R". If so, it is reflected back into this orthant in Step
2(c). Thus u'i' >- O, but u'i' will not lie in S'. Thus in Step 2(d) it is normed to give

: t 2 ~ l / 2 u~+IES'. It will be shown that [[u'[[[(1+ . ; , , so this step can be readily
accomplished.

It will be noted that each one-constraint sub-problem is solved, in Step 1, to
optimality. In practice this is not absolutely essential, and a sub-optimum
solution might sometimes be used as in Algorithm I. The assumption is made
since the result for the convergence of the multiplier sequence, in Proposition
22, depends on it.

The following preliminary results establish properties of the sequence {u~}
which will be needed later.

Proposition 19. [lu'[ll = (1 + t~) t/2-

Proof.

[]u'i'll 2 = [lu;[r + 2p}u; + [Ipi[[z

f[uil[2 ~ s i n c e ' ' = = 2piu~ -[IPi[[z) = [[uiH z + 2t~u~di + tZIId~ll 2

= 1 + t~ (s i n c e [[ui][= IId~[[= 1, u~d~ = 0).

M.E. Dyer/Calculating surrogate constraints 271

Proposition 20. I f u E B , t h e n

Proof.

[[u,+, - nil = ~ Ilu, - nil = - t , (2u}di - t,).

I [u ; - ull z = f l u , - ull 2 - t ~ (2 u I d ~ - t ,) ,

l int - ull 2 : I lu;- ull = - 2p~u ~ Ilu',- u[[~,
llui+, - u[I z = Ilu'i '- ul[2 - A(2 + A) + 2Autu~+1 (where A = I[uTll- 1 >_ o)

_< Ilu'2- u/J2- A(2+ A) + 2A <_l lu ' ; -u l l 2.

Combining these inequalities gives the result.

Corollary 5. [[ui+1 - uill <- t,.

Proof. u~ E B and u~d~ = O.

Corollary 6. If u ~ B and 2utg i >-- ti, then

Ilu,+, - ull z <-Ilu, - nil 2 - t,(2utg~ - t,) <-I[u~ - u[[z.

Proof.

utd} = utgi - (u tu i) ("~g i) ~ utgi >- ½tillg~ll >- o.

A l s o Iid;ll 2 : [Is, r[2 - (u~g,) ~ so lid;t/-< IIg,[[. T h u s

utdi = utd', ~ u'd;lllg, ll >- u'g,lllg, II -- titgi ~ ½ti.

The following lemma is needed for Proposit ion 21.

Lemma 2. I f u E B , t h e n lira inf utgi <- O.

Proof. Note first that the sequence {u 'gi} is bounded, since g is bounded.
Suppose then, to the contrary, that ut~,-> 8 > 0 for all i -> i0. Then since ti ~ 0 , for
all i -> i~, say, ti -< 6. Denoting d(u~, u) by d~, Corollary 6 shows that d ~ - d~+l -> 6t~
for all i -> k = max(i0, i0. Summing such inequalities from k to n,

n

d g - d~ >- 8 ~ , t,.
i=k

Now, letting n ~ , the condition ~t~ = ~ implies that d ~ - d ~ ~ , which is
obviously impossible. This contradiction establishes the result.

Proposition 21. lim sup w (u i) = w* .

Proof. Let u E B be such that w (u) > w * - e where ~ > 0 is arbitrary. Now
suppose that w (u i) <- w * - E for all i -> i0, then u t g (x i) > 0 for all such i. But from
Lemma 2, this implies that lim inf u t g (x i) = 0. Since the xl lie in a compact set, a
subsequence xr can be chosen with X r ~ X * and lim u ' g (X r) = 0 . Then, from

272 M.E. Dyer/Calculating surrogate constraints

cont inui ty of g, utg(x *) = 0 and hence f (x *) > w* - e. But the 1.s.c. of f implies
that

f (x *) <_ lim sup f (xr) = lim sup w(ui) <- w* - e.

This is a cont rad ic t ion so for all i0 there is an i >- io such that w(ui) > w* - e. The

arbi t rary choice of • then gives the conclusion.

Propos i t ion 2! gives a fo rm of c o n v e r g e n c e for the func t ion values. It is

natural then to enquire in what sense, if any, the sequence of multipliers

converges . P ropos i t ion 22 gives such a c o n v e r g e n c e proper ty . A few prel iminary
definitions and lemmas are required.

For any • > 0, let W (e) = {u E B: w(u) > w* - •}. It is clear f rom analogy with

Coro l la ry 1 that W (•) is convex and conta ins an interior point relat ive to R m. Let

W* = ("1 {cl W(•) : • > 0} N S'. W* is n o n e m p t y since the sets W (•) are nested

and each set cl W (•) conta ins points of S' . Obse rve that for any u E W*, every

ne ighbourhood of u contains a point which is • -max imal for w, wha teve r •. It

will be shown in Propos i t ion 22 that all c luster points of {ui} lie in the set W*,

but the fol lowing lemmas are p roved first.

L e m m a 3. I f C C_ R m is a convex set, with c o m p l e m e n t C, and f o r x E R m,
r(x) = d(x, C) , then r is a concave f u n c t i o n on C.

Proof. Le t x,, x2, E C and 0 -< 0 -< l, so x = Ox, Jr- (1 - O)x2 E C. Let r, = r (x0, r2 =

r(x2) and r = 0 r , + (1 - 0) r 2 . Suppose y E R " is such that d (x , y) < r . Then

y , = x, + rl(y - x)]r C C, since d(x~, y,) < r, and similarly Y2 ---- X2 + r 2 (y - - x)/r C C.

Thus y = 0y, + (1 - 0)y2 E C. Thus for all y such that d(x, y) < r, y E C and hence
r(x) >- Or~ + (1 - O)r2 and r is concave .

Lemma 4. L e t C C R m be a bounded convex set with interior and ~ > 0 be any

such that C' = {x E C: r(x) >- ~} is nonempty . Then, i f 6 (~) =

sup{d(x, C'): x @ C}, there is a cons tan t K >- 1 such tha t a <- 3 (a) <- K a .

Proof. For any x in the b o u n d a r y of C it is clear that d(x, y) >- o~ for y E C' . Le t
{x,}_C C be such that x , - - , x , then for all y ~ C '

d(x , , y) _> d(x, y) - d(x , , x) >- a - d(x , , x) ,

and hence d(x , , C') >- a - d(x , , x) . Lett ing n ~ ~ it fo l lows that 6(a) >- ~.

N o w 3(a) < /3 if, fo r each x E C, there is a y E C ' such that d(x, y) </3. Let
z = (1 - O)x + Oy E C for any 0 -< 0 -< 1. Since r is c o n c a v e

r(z) >- (1 - O)r(x) + Or(y) >_ 0r(y) _> Oa.

Also d(x, z) = Od(x, y) < 0/3. Thus 6(Oa) < 0/3 since for all x ~ C there is a z such
that r(z) >- Oa and d(x, z) < 0/3. This implies that 6(Oa) <- 08(a) for any 0 -< 0 -< 1.
Le t a0 > 0 be the s u p r e m u m of a such that C ' is nonempty . It is finite since C is

M.E. Dyer/Calculating surrogate constraints 273

bounded. It will also be attained since r, being concave, is continuous on the

interior of C and r(x) = 0 for x in the boundary of C. Thus for any 0 -< a -< a0,

the above inequality on 6 implies that 8(a)-< aS(ao)/ao. Letting 8(ao)/ao = K,
and noting that ~5(a0) - a0, the l emma is proved.

Proposition 22. Every cluster point of the sequence {u~} produced by Algorithm H
lies in W*.

Proof. For any fixed e > 0, let C = W(e). Let a, C' and 3(a) be as defined in
L e m m a 4.

Since t i~O, for any i>-io say, ti<<_a. Also, f rom Proposi t ion 21 there is a
k -> i0 such that uk E C. Let q be the smallest i > k such that uqff: C, and let s -> q
be such that uiqi C for all q _< i -< s. Now if u E C' is arbitrary, then ut~i ___ a for
all such i. This is because the half-space H = {x E R " : xt~i -< 0} does not meet C

and therefore ut~,i = d(u, H) >- r(u) >_ a. Thus, f rom Corollary 6, d(us, u) <-
d(uq, u). But, since u ~ C and u E C' , there will exist a point x ~ cl C on the line

segment u, us such that d(us, u) = d(us, x) + d(u, x) and d(u, x) = a. Therefore

d(us, x) = d(u~, u) - a ~ d(uq, u) - a.
However ,

d(uq, u) <- d(uq, uq l) + d(uq-1, u) <- tq-1 + d(uq 1, u),

f rom Corollary 5, and hence d(uq, u) <- ~ + d(uq-1, u). Therefore d(u~, x) <-
d(uq_l,u). Note that x depends on u. But u E C' is arbitrary. Now, since

Uq-1 ~ C, for any/3 > 3(a) there is a u E C' such that d(uo_~, u) </3. Thus there is
an x E cl C such that d(u~, x)< /3 . Thus it follows that d(us, C) <- 6(a). Now

using L e m m a 4, it is evident that d(ui, C)<_ Ka for all i_> k, where K is a
posit ive constant. Lett ing ~ approach zero, this shows that d(u*, C) = 0 for any

cluster point u* of {ui}. But since C = W(E), E > 0 is arbitrary and ui E S' for all
i, the proof is complete.

Corollary 7. I f w* is attained and w is continuous at every u such that
w(u) = w*, then every cluster point u* of the sequence {ui} generated by Al-
gorithm H satisfies w(u*) = w*.

Proof. It is clear in this case that W* = {u ~ S': w(u) = w*}.

Corollary 8. If w has a unique maximising point u*, then ul -~ u*.

Proof. In this case W* --{u*}.

Corollaries 7 and 8 give conditions under which the cluster points will
maximise w. However , in general it can only be guaranteed that they are
infinitesimally close to maximal points, if w* is attained, or a lmost maximal
points if it is not attained.

274 M.E. Dyer/Calculating surrogate constraints

It was mentioned, in the discussion following Algorithm II, that in practice
some, perhaps arbitrary, convergence criterion is needed to ensure finiteness.
One possibility was suggested there. It might be asked whether there is any
way, even in principle, of determining how much progress towards convergence
the algorithm has made. In fact there is such a way. Let i0 be arbitrary. Then, at
any iteration i-> i0, a linear program of the form of (I) of Section 4 may be
solved, where J/ is now defined to be the set {i0 i} and 3'j to be I[gjtl. The
numerical smallness of r*, the optimum value of this linear program, can be used
as in Algorithm I to determine the closeness to convergence. The justification for
this procedure is provided by the following proposition.

Proposit ion 23. I f r* is as def ined above , then r* --> 0 as i --> oo.

Proof. Otherwise there exists • > 0 such that r*-> e for all i - i 0 , since ri is
nonincreasing. Thus there exists u; E S such that t- ill igj ~ E for all] E J,-. Let u* be
any cluster point of {u~}, then it follows that u*tp, i >_ e for all j_> i0. For, let
subsequence Ur ~ U*. Then for each] >- i0 and all r _> j,

u * t g j = (t i * - - U r) t g j -}- t ^ Urgj >-- (U* - U r) t g j "~- E..

Letting r ~ establishes the fact. But u * ~ S C_ B and hence, from the proof of
Lemma 2, lira inf u*t~j-< 0, which contradiction proves the proposition.

The linear programming duality argument used in the proof of Proposition 17
may be employed to show further that Algorithm II can be made to produce, or
approximate, a vector v satisfying the optimality condition of Proposition 7.

In practice, of course, it may be doubtful whether the additional labour
involved in solving the linear program would be justified in this algorithm. If
linear programming is to be used, Algorithm I would seem preferable. However,
Proposition 23 does open up the possibility of hybrid versions of Algorithms I
and II.

6. Example

The algorithms of Sections 4 and 5 will be demonstrated on the following
simple integer-programming problem:

(P) f * = m i n 2 0 - 2 x , - l l x z ,
subject to 10x~ + 2x2- 15 _< 0,

xl + 6x2 -9_<0 ,

- xl + x2 _< 0,

x E X = {(xl, x2): 0 _< xj -< 100 and integer (j = 1,2)}.

M.E. Dyer[Calculating surrogate constraints 275

No te that the variable upper bounds are imposed mere ly to ensure that X

satisfies the c o m p a c t n e s s assumpt ion .

Both algori thms will be s tar ted with multipliers obta ined f r o m the maximisa-

t ion of the Lag rangean dual. In this case, of course , this s imply involves solving

the usual l inear -programming re laxat ion of (P). The opt imal Lagrange multiplier

can then be shown to be d = (~, 0, ~) with L* = 3]. The results of calculat ions in

bo th a lgori thms are given to four decimals only, but were originally to greater
accuracy .

6.1. Algorithm I

The algor i thm is s tar ted with u~ = d = (0.1092, 0, 0.8908). The c o n v e r g e n c e

pa ramete r 0 is set to the relat ively small value 0.1, since d should be near a

maximising point of w. In fact a much smaller value still would work bet ter in

this part icular example, but the value 0.1 was chosen for il lustrative purposes .

The quanti t ies o~,/3,/z are as defined in Sect ion 3, where in this example /3 = 0 at

each iteration. Also, since L* <- w*, w0 can be set to L* = 33.

Iteration 1: r* = max y such that tT~ + u2 + t73 = 1 and/~i, a2, t~3 -> 0. Since r* =
2 , arbitrarily choose u~ = (0.1092, 0, 0 .8908)E U~ = S. The surrogate sub-prob lem

is w(u~) = min 2 0 - 2x~ - 1 lx2 subjec t to 0.2017x~ + 1.1092x2- 1.6387 - 0 and x E

X. This has opt imal solut ion x~ = 2, x2 = 1 and w(uO = 5. Thus

• ~ *--5, E~ ={(2, 1)}, g(EO = { (7 , - 1 , - 1) } . Thus U2~--S A { (7 , - 1 , - 1) u >-0}.

Iteration 2: r* = max y such that 7t71 = t~2- t73 - 6.5320y -> 0, tT~ + 122 + t73 =

1, tT~, t72, t73 -> 0. So r~ = 1.0717 when t7 = (1, 0, 0). Then o~ = 0.1260[(7 + 0.1260) =

0.0177. Thus I z = (1 - 0 . 1) (1 - 0 . 0 1 7 7) = 0 . 8 8 4 1 . Thus u 2 = (1 - t z) a + / ~ u ~ =

(0.2125, 0, 0.7875). The surrogate sub-prob lem is w(u2) = min 20 - 2x~ - 1 lx2 such

that 1.3375x~ + 1.2125x2- 3.1875 _< 0. This has solut ion x = (0, 2), and w(u2) --

- 2 . Thus ~2"--5, E2={(0 ,2)} and g (E 2) = { (- l l , 3 , 2) } . H e n c e U3=
u~ n {(- 11, 3, 2), >_0}.

Iteration 3: r* = max y subject to - 11 a~ + 3 a2 + 2/23 - 11.0454y _>

0, 7ai - t72- t i3 - 6.5320y _ 0, al + t~2 + a3 = 1 and ti _> 0. This gives r* = 0.0556

when a = (0.1704, 0.8296, 0). Then a = 0.7625•(0.7625 +0.6143) = 0.5538, so

= (1 - 0.1)(1 - 0.5538) = 0.4016. The re fo re u3 = (1 - / z) a +/xu2 =
(0.1873, 0.4965, 0.3162). The sub-prob lem is w(u3) = min 2 0 - 2 x ~ - 1 lx2 subject to

2.0533xl + 3.6696x2 - 7.2778 -< 0. This has the solut ion x~ = 1, x2 = 1 and w(u3) = 7.

Then ~3~---7, E2 = {(1, 1)} and g(E2)= { (- 3, - 2 , 0)}. Thus there exists a feasible
solut ion to (P) in M(u3), and the a lgor i thm can be s topped here. This problem,
therefore , has no surrogate dual i ty gap and f* --- w* = w(u3) = 7.

*-< 0 could equal ly be used to stop the a lgor i thm Obse rve that the cr i ter ion r4
af ter defining U4 = U3 0 {(- 3, - 2, 0)u -> 0}.

276 M.E. Dyer[Calculating surrogate constraints

6.2. Algorithm II

The algorithm is started with u~ = d = (0.1217, 0, 0.9926). The sequence {tl} is
taken as {0.1/i}. As with 0 in Section 6.1, however, a sequence of rather smaller
step-sizes would actually work better in this example.

Iteration 1: u~ = (0.1217,0,0.9926). The surrogate problem is then W(Ul)=
rain 2 0 - 2 x l - l lx2 subject to 0.2247x~ + 1.2360x2-1.8259---0. This has optimal
solution x = (2 , 1) and w(u l)=5 , as in Section 6.1. Then g ~ = g (2 , 1) =

(7, - 1, - 1) and u]gl = -0.1405. Thus d l = (7, - 1, - 1) + 0.1405(0.1217, 0, 0.9926)
and d l = d'~ = (0.9828, -0 .1401, -0.1205). Now u'~ = uj + (1/10)d~ =
(0.2200,-0.0140,0.9805) and u] '= (0.2200,0.0140,0.9805). Hence uz = ~'(=
(0.2189, 0.0139, 0.9756).

Iteration 2: u 2 = (0.2189,0.0139,0.9756). The surrogate sub-problem is
w(u2) = min 20 - 2x1 - 1 lxz such that 1.2274x~ + 1.4971x2- 3.4092 -< 0. The opti-
mal solution to this is x = (0, 2) and w(u2) = - 2. Thus gz = g(0, 2) = (- 11, 3, 2)
and u ~ g 2 = -0.4150. Then d~ = (- 11, 3, 2) + 0.4150(0.2189, 0,0139, 0.9756) =

(- 10.9092, 3.0058, 2.4049). Therefore d 2 = d'2 = (- 0.9430, 0.2598, 0.2079) and
t t ! ^ t !

u2 = u2 = uz+ (1/20)d2 = (0.1718, 0.0269, 0.9860). Now u3 = uz = (0.1716, 0.0269,

0.9848).

Iteration 3: u3=(0.1716,0.0269,0.9848). The surrogate problem is w(u3) =
min 2 0 - 2 x ~ - l l x 2 subject to 0.7853xl + 1.4893x2-2.8153---0. This has optimal
solution x = (1, 1) and w(u3) = 7. Therefore g 3 = g(1, I) = (- 3, - 2, 0).Since g3 ~
0, stop.

This gives the same value, 7, for w* and the same optimal feasible solution,
(1, 1), for (P) as found in Section 6.1. However , the optimal surrogate multiplier
(0.1716, 0.0269,0.9848) is rather different from that obtained using Algorithm I,
i.e. (0.1873, 0.4965, 0.3162). It could, of course, have been stated a priori that the
optimal multiplier would not be unique, since (P) is a discrete programming
problem, even after normalisation.

7. Discussion and conclusions

In this paper some properties of the surrogate dual of a mathematical
programming problem have been examined. Two algorithms for calculating
strongest surrogate constraints which exploit these properties have been des-
cribed, and these illustrated on a small example. No computing experience with
either of the methods has yet been obtained, but it is hoped they may provide a
useful adjunct to Lagrangean methods in mathematical programming. Further
work, both theoretical and empirical, needs to be done to assess and compare
these two methods. In particular the issue of rate of convergence needs

M.E. Dyer/Calculating surrogate constraints 277

examining for both algorithms, and the problem of step-size selection for
Algorithm II requires investigation.

One obvious area of applicability is integer-programming, where surrogate
constraints are already successfully established [8]. There is one small problem
in this particular application which might be mentioned here, that of rounding
error. In surrogate duality real-valued multipliers are used to combine the
constraints, and in the presence of round-off there might be difficulty in deciding
whether a particular integer solution is feasible in the surrogate constraint. Ways
can be devised to minimise this difficulty, but it will be no more serious than in
many other integer-programming methods, for example some cutting-plane al-
gorithms and certain branch-and-bound approaches.

Finally it may be noted that the work of Luenberger [20] shows that the
algorithms also provide one approach to general quasi-convex programming. The
relationship of Algorithm I to quasi-convex programming exactly parallels the
use of generalised programming for convex programs, see for example [21].

8. Note

Other recent research relevant to the content of this paper is given in
references [1] to [3] and [15] to [19]. In particular, [17] gives some empirical
evidence on the ability of surrogates to close the Lagrange duality gap in
integer-programming. I am grateful to the editors and referees for drawing my
attention to this work.

References

[1] K. Banerjee, "Generalized Lagrange multipliers in dynamic programming", Research report
ORC 71-12, Operations Research Center, University of California, Berkeley, CA (1971).

[2] S. Bolwell and M.H. Karwan, "Etficient use of surrogate duality in 0-1 integer programming",
Industrial Engineering report, State University of New York at Buffalo, NY (1979).

[3] S. Bolwell and M.H. Karwan, "A hybrid surrogate dual-cutting plane approach to integer
programming", Industrial Engineering report, State University of New York at Buffalo, NY
(1979).

[4] G.H. Bradley, "Transformation of integer programs to knapsack problems", Discrete Mathe-
matics 1 (1971) 29-45.

[5] B.C. Eaves and W.I. Zangwill, "Generalised cutting plane methods", SlAM Journal of Control
9 (1971) 52%542.

16] A.M. Frieze, "Bottleneck linear programming", Operational Research Quarterly 26 (1975) 871-
874.

[71 A.M. Geoffrion, "Duality in nonlinear programming", $IAMReview 13 (1971) 1-37.
[8] F. Glover, "Surrogate constraints", Operations Research 16 (1968) 741-749.
[9] F. Glover, "Surrogate constraint duality in mathematical programming", Operations Research

23 (1975) 434-451.
[10] H.J. Greenberg and W.P. Pierskalla, "Surrogate mathematical programs", Operations Research

18 (1970) 924-939.

278 M.E. Dyer/Calculating surrogate constraints

[11] H.J. Greenberg and W. P. Pierskalla, "A review of quasi-convex functions", Operations Research
19 (1971) 1553-1570.

[12] H.J. Greenberg and W.P. Pierskalla, "Quasi-conjugate functions and surrogate duality", Cahiers
du Center d'Etudes de Recherche Operationelle 15 (1973) 437--448.

[13] H.J. Greenberg, "The generalised penalty function surrogate model", Operations Research 21
(1973) 162-178.

[14] M. Held, P. Wolfe and H.P. Crowder, "A validation of subgradient optimisation", Mathematical
Programming 6 (1974) 62-88.

[15] M.H. Karwan, "Surrogate constraint duality and extensions in integer programming", Ph.D.
dissertation, Georgia Institute of Technology (1976).

[16] M.H. Karwan and R.L. Rardin, "Surrogate dual multiplier search procedures", Industrial and
Systems Engineering Report Series No. J-76-29, Georgia Institute of Technology, GA (1976).

[17] M.H. Karwan and R.L. Rardin, "Some relationships between Lagrangian and surrogate duality in
integer linear programming", Mathematical Programming 17 (1979) 320-334.

[18] M.H. Karwan and R.L. Rardin, "Surrogate duality in a branch-and-bound procedure", Naval
Research Logistics Quarterly (to appear).

[19] M.H. Karwan and R.L. Rardin, "Searchability of the composite and multiple surrogate dual
functions", Operations Research (to appear).

[20] D.G. Luenberger, "Quasi-convex programming", SIAM Journal of Applied Mathematics 16 (1968)
1090-1095.

[21] T.L. Magnanti, J.F. Shapiro and M.H. Wagner, "Generalised programming solves the dual",
Management Science 22 (1976) 1195-1203.

[22] T.H. Mattheiss and W.B. Widhelm, "The generalized slack variable linear program", Management
Science 23 (1977) 859--871.

[23] G.L. Nemhauser and W.B. Widhelm, "A modified linear program for columnar methods in
mathematical programming", Operations Research 19 (1971) 1051-1060.

[24] R.P. O'Neill and W.B. Widbelm, "Computational experience with normed and non-normed column
generation procedures in nonlinear programming", Operations Research 23 (1975) 372-382.

[25] B.T. Polyak, "A general method of solving extremal problems", Doklady Akademii Nauk SSSR
174 (1967) 33-36.

