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Abstract: This paper presents an approach to perform statistical frequency analysis of water deficit 
duration and severity using respectively the geometric and exponential distributions. Monthly mean 
water discharges are compared to a given threshold and classified in two mutually exclusive ways. 
This leads to a two state random variable such that: a success represents the absence of a water deficit 
event (mean monthly discharge exceeds threshold), and a failure, a water deficit event (mean monthly 
discharge is below threshold). If we suppose that this random variable gives rise to a Markov process 
of order l, then the duration of a water deficit event X (consecutive months in deficit) will have a 
geometric distribution. In turn, the summation of discharges in deficit will give the severity of a water 
deficit event which can be represented by a one-parameter exponential distribution. The threshold 
or base level is taken as a percentile of the observed mean discharges of a given month. This base 
level, which varies from month to month, can be viewed as the limit of an acceptable deficit (or 
energetic failure) associated to a given empirical probability of being in deficit. The second step of 
the approach is to estimate the value of the parameter for each distribution using the maximum 
likelihood method. Expressions for the estimator of a given percentile, ~q, as well as its variance are 
deduced. Finally, the presented models are applied to observed data. 

Key words: Water deficit, Geometric distribution, Exponential distribution, Deficit duration, Deficit 
severity 

1 Introductkm 

Management of  water resources is generally bascd on the analysis of  extreme phenomena like 
floods and droughts. Due to a recent decrease in water availability, some hydroelectric power 
companies have expressed the need of a better knowledge of water deficits to prevent 
production drops and energetic failures. They are particularly interested in the statistical 
modelling of some hydrological characteristics of low flow events like duration and severity 
(cumulative volume in deficit), which will be defined more precisely later. 

In the traditional approach of  drought hazard assessment, low flows are defined as the 
smallest annual values of  the mean daily discharges of a river (Gumbel 1963), or as the 
minimum average discharge for a given period (Matalas 1963), generally taken to be 1 day 
or 7 days. The lowest average flow for 7 consecutive days is the most widely used definition 
in the United States (TCLFE 1980). However, for the study of water deficit, this traditional 
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approach is not useful because it does not consider the drought duration (Sen 1980). If one 
is interested in drought in terms of magnitude and duration simultaneously, the use of a 
threshold discharge as defined by Yevjevich (1%7) is more suitable (Sen 1980,1982). In this 
approach a drought is defined as a period where discharges are less than a certain threshold 
discharge (Yevjevich 1967) usually taken as a constant base level. Table 1 displays some 
works related to the previously mentioned drought definitions, which are frequently used in 
the literature. 

Because threshold discharges are purely conventional notions and there is no universal 
definition of them, the base level should be evaluated using hydrological justification or 
economic requirements (TCLFE 1980, Ozga-Zielinska 1989). A new definition of water 
deficit for the management of a power plant based on economic requirements has been 
presented by Mathier et al. (1990, 1991) according to the specific needs of Alcan company 
in Saguenay-Lac-Saint-Jean, Qufibec, Canada, for the management and planning of their 
hydroelectric system. Instead of defining droughts in a strict sense using the minimum 
discharge for n consecutive days (Gumbel 1963, Matalas 1963) or a constant threshold level 
over the whole period of observation (Yevjevich 1967), water deficit events were defined 
according to a threshold which varied from month to month using a fixed criterion 
representing the limit of an acceptable deficit (Mathier et al. 1990, 1991). An extension of 
this methodology using a more general definition of the base level is presented in this paper. 

Several fitting techniques and parameter estimation methods have been used in the 
literature to analyze low flows. It will be beyond the scope of this paper to review all the 
available techniques. In the case of drought studies, it is recommended that the theoretical 
probability distributions have lower limits equal to or greater than zero and no more than 
three parameters (Matalas 1963). Good results of fi'equency analysis of drought magnitude 
variables (discharge, volume, severity, ...) have been obtained using the Gumbel (Gumbel 
1%3, Matalas 1963, Condie & Nix 1975, Condie & Cheng 1983), Gamma (Joseph 1970), 
Weibull (Joseph I971, Loganathan et al. 1985; Pilon 1990), Pearson type 3 (Matatas 1%3) 
and log Pearson type 3 (Hoang 1978, Loganathan et al. 1985, Tasker 1987, Vogel & Kroll 
1989) distributions. For drought duration and severity defined by a constant base level on 
the streamflow hydrograph of instantaneous discharges (continuous scale), the exponential 
distribution gave good results (Zelenhasic & Satvai 1987). 

As mentioned by Acreman (1990), a discrete distribution is required for the modelling of 
event duration, because this variable can only take positive integer values. It will be shown 
theoretically and verified empirically in this paper that water deficit duration has a geometric 
distribution. On the other hand, the one-parameter exponential distribution should be 

examined to describe water deficit severity as it is equivalent to the geometric distribution in 
the continuous domain (Johnson & Kotz 1969, Feller t957) (both distributions have in 
common a constant hazard function). These two distributions with parameters estimated by 
the method of maximum likelihood have the advantage of fulfilling all previously quoted 
requirements in the frequency analysis of low flows (Matalas 1963). In the case of water 
deficit severity all the above mentioned distributions can be used at the expense of more 
parameters to be estimated. In a recent study Mathier et al. (1990) compared the Gamma, 
the generalized Gamma and the Peason type 3 distributions using the method of moments 
and maximum likelihood, and concluded that best results on severity, using these 
multi-parameter distributions, are obtained with the Gamma distribution with parameters 
estimated by the method of maximum likelihood. 

The objective of this study is to estimate events x_ of a given duration or a given severity 
corresponding to a probability of exceedance q and to construct asymptotic confidence 
intervals for these events using respectively the geometric and exponential distributions. 

For the purpose of  frequency analysis of water deficit duration and severity, the maximum 
likelihood estimato r Xq of the true but unknown value Xq and its variance will be given for 
each distribution. Finally, in a case study, distributions are fitted to observed data in order 



Table 1. Drought definitions frequently used in the literature 

241 

Drought definition References 

Smallest annual values of 
the mean dally discharges. 

Smallest mean discharge 
for 7 consecutive days. 

Smallest mean discharge 
for 14 consecutive days. 

Smallest mean discharge 
for n consecutive days. 

Constant base level. 

(Gumbel 1963, Matalas, 1963, 
Condie & Nix 1975, Hoang 1978) 

(Matalas 1963, Yonts 1971, 
Condie & Cheng 1983, Loganathan 
et al. 1985, Tasker 1987, Vogel 
& Kroll 1989, Pilon 1990) 

(Joseph 1970, Joseph 1971) 

(Lara 1970, Riggs 1972, CTGREF 
1978, Prakash 198t) 

(Yevjevich 1967, Miquel & Phien 
Bou Pha 1978, Sen 1980, Sen 1982, 
G0ven 1983, Paulson et al. 1985, 
Sadeghipour & Dracup 1985, Zelenhasic 
& Salvai 1987, Ozga-Zielinska 1989) 

to estimate events corresponding to a given probability of exceedance q along with related 
asymptotic confidence intervals. The results of chi-square goodness-of-fit test for the 
geometric distribution and Kolmogorov-Smirnov test for the exponential are also presented. 

2 Data base, definition of the base level and water deficit variables 

The data base is composed of daily discharges from 1943 to 1989 for a representative 
drainage basin of the Alcan company hydroelectric system in Saguenay-Lac-Saint-Jean, 
Qufibec, Canada. 

Given the daily discharges qijk (i = day, j = month and k = year) and the mean discharge 
Qj for each month j over the whole period, water deficit events on a monthly base have been 
defined by Mathier et al. (1990, 1991) according to a given base level Q0j such that: 

Q0j = c (~j j = 1 ..... 12 (1) 

i.e. a fixed proportion c of the overall monthly mean discharge U~j, computed from historical 
data. This base level can be viewed as the limit of an acceptable deficit or energetic failure 
in comparison with the expected mean discharge (c = 1) or a given proportion of this mean 
discharge (0 < c < 1). This definition is useful to determine water deficit duration and 
severity when specific inlbrmation on the evaluation of threshold discharges is available. 
Examples of the use of equation (1) are presented in Mathier et al. (1990, 1991) using a base 
level, Q0i taken as 85% of the monthly mean discharges, Qj, corresponding to c = 0,85 in 
equation (1). This base level represents a 15% risk of energetic failure (Ta Trung 1989), 
which was given as an a priori acceptable risk of deficit for Alcan company according to the 
experience of their hydrologists. 
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For  a more general use, this definition of the base level has two disadvantages. Firstly, 
it is not interpretable a priori in terms of exceedance probability, so the choice of the 
proportion c is difficult when only little past experience is available. Secondly, this definition 
depends on the mean which is known to be affected by outliers. This estimator of central 
tendency is efficient only when the sample observations are drawn from a normal population. 

We present here a new definition of the base level, Q~j. We firstly notice that the base 
level Q.0j as defined in equation (1) is in fact a percentile of unknown order p (p = 
probabihty of non-exceedance) of the distribution of the monthly mean discharge. The only 
case where we can associate an a priori probability of exceedance to the base level Q0j is 
when c = 1 and the distribution of the monthly mean discharges is symmetrical (coefficient 
of skewness, Cs = 0). The base level is then equal to the median (probability of 
non-exceedance = 0.5). Since we have no information on the shape of the distribution and 
we want to attach an a priori probability of non-exceedance to the base level, it is natural to 
define it as a given percentile of order p of the observed distribution of mean water 
discharges U~jk for each month j over the N years of historical data, 

Qoj = (Qjk)p (2) 

where (0jk)p is defined as: 

P((~.ik < (Qjk)p) = P (3) 

In practice, for a given month j we associate to each of the N monthly mean discharges, 
arranged in increasing order, an empirical probability of non-exceedance Pjk (Weibull plotting 
position formula), 

k (4) 
P J k = N + I  

k being the rank. Any other plotting positions formula could also be used (Cunnane 1978). 
Hence, O_~j corresponds to the observation Qik having a plotting position or an empirical 
probability Pik equal to the fixed value of p, or one that is obtained by linear interpolation 
between two successive observations with probability of non-exceedance Pjk and Pj(k+l)- 

For symmetrical distributions of observed Qjk values (Cs = 0), the use of equation (1) with 
c = 1 or the use of equation (2) with p = 0.5 will give the same base level since the mean 
and median will be equal. In order to determine water deficit events, every monthly mean 
water discharge Qik of a given year k, is compared to its respective base level Q~j. The 
outcome of this comparison can be classified in two mutually exclusive ways such that: a 
success represents the absence of water deficit event (mean monthly discharge exceeds 
threshold), and a failure represents a water deficit event (mean monthly discharge is below 
threshold). As a deficit is detected every time Q;k < Q~j, the base level provides a 
probabilistic interpretation of the occurrences of deficits in month j (equation 3). The total 
number of consecutive failures before a success, represents the duration of a water deficit 
event. In turn, the summation of discharges in deficit over the duration of a water deficit 
event yields the cumulative water discharge in deficit or "severity" of this event. Thus, if the 
median is used as a criterion to define the monthly base levels in equation (2) (p = 0.5), the 
distribution of water deficit duration will correspond to a 50% probability of being in deficit 
for each month. 

Figure I illustrates water deficit events and variables. Since a water deficit event is 
detected every time Qjk < Q0j, the duration (DUR) of a water deficit is the total number of 
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Figure 1. Definition of water deficit events and variables 
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months in deficit in the same sequence, and the severity (SEV, in m3/s) is the summation of 
water discharges in deficit within a water deficit period. A computer program has been 
developed to extract automatically water deficit characteristics from the data base (q..-) for 
one or several specified values of p (equation 2). To illustrate the method, analysis of water 
deficit will be performed for one representative p value on a basin used in management by 
Alcan. For the selected basin, computation of water deficit events over the data base 
provided the data sets of water deficit duration (DUR) and severity (SEV) needed for the 
analysis. 

3 Theoretical considerations 

In this section, we present expressions for estimators, ~q, of quantiles in the geometric and 
exponential distributions along with their asymptotic variance. The method of maximum 
likelihood is used for parameter estimation. These distributions are members of the 
exponential class of probability distributions, and it can be shown that the method of 
maximum likelihood leads to estimators that are sufficient statistics for the parameters 
(Lehmann 1983). Therefore, ] .  will have good asymptotic properties (consistency, 
unbiaisness, efficiency). Detailed ~erivations of the expression for ~. and its variance are 
given in appendix A for the geometric distribution and in appendix J~ for the exponential 
distribution. 

3.1 Fitting water deficit duration using geometric disoibution 

In the case of water deficit duration, monthly mean discharges U~jk are compared to their 
respective base levels, Q~j. Each observation can be classified in two mutually exclusive ways 
(positive deviation or negative deviation in comparison with the base level) (Yevjevich 1967), 
which gives rise to a two state random variable, Y, defined as follows: 

Y = 1, represents the absence of water deficit event (positive deviation, Qjk-  Q0j > 0), and; 

Y = 0, represents a water deficit (negative deviation, U~jk -- Q~j < 0). 



244 

This variable can be observed for each month in the sequence of  monthly mean 
discharges. We consider therefore the sequence formed by the T = 12 x K monthly 
realization of  the random variable Y, where K stands for the number of years: 

Y1, Y2, "", Yv "", YT 

Now, let us suppose that the state of month t depends only on the state of month t - 1. 
Moreover, suppose that the transition probabiIities are homogeneous, i.e. 

Prob (Yt = 1/Yt-1 = O) = ~ Vt 

Prob (Yt = O/Yt-1 = 1) = 13 Vt 

Prob (Yt = O/Yt-1 = O) = 1 -n  Vt 

Prob (Yt = 1/Yt-1 = 1) = 1-[3 Vt 

(5) 

This structure of  dependency, which is reasonably consistent with common hydrological 
observations is seen to constitute a Markov process of order 1 (Ross, 1980). 

Let the random variable X denote the duration of a sequence of consecutive months 
where the state of Y did not change, for instance: 

X = the number of consecutive months where Y = 0. 

Then this variate X has a geometric distribution (Ross, 1980) with p.d.f, given by 

P(X=x) = n(1-n)  x-l, x = 1, 2, 3 . . . . .  0 ~ r: < 1 (6) 

where rc is the probability defined above (equation 5). 
Estimation of the parameter n is done by the method of maximum likelihood which gives 

1 (7) 
~q = x 

The maximum likelihood estimator of Xq and the asymptotic variance of Xq are respectively 
expressed by 

In (q)  (8)  
~q - In (1 - (1/~))  

and 

Var(Rq) = ln2(q) • l a - 4 ( t - ( t ~ ) )  - 1 
32(3-t) 

(9) 

Details of the derivation of equations (8) and (9) are given in Appendix A. 
Using the central limit theorem (Lehmann 1983), an asymptotic confidence interval for 

Xq at an arbitrary ( l - e )  % level of confidence can be computed as: 
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^ 1/2 Rq-U(~2)[Var(xq)] g Xq < ~q + u(aJ2)[Var(Rq)] 1/2 (10) 

where u(a/2) is the standard normal variate with probability of exceedance a/2. 

3.2 Fitting water deficit severity using exponential disO~bution 

For water duration severity the random variable of interest, X, is equal to the summation of 
discharges in deficit over the duration of a water deficit event. As mentioned previously, 
Mathier et al. (1990) obtained good results using the Gamma distribution for fitting severity 
data obtained according to definition (1). The coefficient of skewness (Cs) of severity data 
obtained by definition (2) is near 2 (see Table 5), we may assu~ae that X follows a 
one-parameter exponential distribution which is a particular case of the Gamma distribution 
corresponding theoretically to C s = 2. Thus we assume that severity (X) is exponentially 
distributed with p.d.f, 

f(x) = _1 e_Xhx , x > 0 (11) 

The maximum likelihood estimator of ~. is expressed by 

(12) 

Therefore Xq is estimated by 

~q = ~ In (l/q) (13) 

and the asymptotic variance of ~q by 

Var(~q) = ln2(1/q) • --  x-2 (14) 
n 

An asymptotic confidence interval for Xq at a given (l-a) % level of confidence can again be 
obtained using equation (10). The derivations of equations (13) and (14) are given in 
Appendix B. 

The program DEFICIT developed at INRS-Eau (Mathier et al. 1990) allows the 
automatic fitting of the geometric and exponential distributions and gives values of 
(equations 8 and 13) and Var(xq) (equations 9 and 14) for 17 probabilities of exceedance. 
This program is applied in the next section to illustrate the fitting on observed data (DUR 
and SEV data sets) using the geometric and exponential distributions. The results of 
goodness-of-fit tests are presented as well. 

4 Applications 

For illustrative purpose, the value of p in equation (2) needed to compute the base level has 
been set to 0.35, which represents a 35% probability of being in deficit. DUR and SEV data 
sets have been extracted on this basis. 
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Prior to the fitting of the distributions, basic assumptions of independence, homogeneity 
and absence of outliers in the data sets (X1, X 2 .... .  XN) should be tested for (Bob6e & 
Ashkar 1991). This was done using the Wald-Wolfowitz test for independence (Wald & 
Wolfowitz 1943) and the Grubbs and Beck test for the detection of outliers (Grubbs & Beck 
1972). Because no heterogeneity was suspected in the data sets, no homogeneity test was 
performed. 

The result of the test of independence for the two data sets (water deficit duration 
(DUR) and severity (SEV)) indicates at a 5% level of significance that in both cases 
observations are independent. 

The Grubbs.and Beck test, at a 5% level of significance, indicates that no outliers are 
present in the two data sets. 

4.1 Fitted distributions and goodness-of-fit tests 

This section presents an example of distributions fitted to observed data of water deficit 
duration and severity (DUR, SEV). As an indicative tool we also present the results of two 
goodness-of-fit tests. Because the chi-square test is a natural choice for discrete distributions 
(D'Agostino & Stephens 1986), it will be used for the geometric distribution. This test is 
adjusted to reflect the estimation of the parameter r~ from the sample by subtracting one 
degree of freedom (Sokal & Rohlf 1969). 

In the case of continuous distributions the Kolmogorov-Smirnov test is often more 
powerful than tests of the chi-square type (D'Agostino & Stephens 1986). Since this test has 
been adapted by Durbin (Durbin 1975) for the particular case of the exponential distribution 
with parameter ~. unknown, it will be used here. Finally, events corresponding to a given 
probability of exceedance are estimated and the related asymptotic confidence intervals are 
deduced. 

4.1.1 Geometric distribution and the chi-square test 

Table 2 presents the sample moments and the estimated parameter (equation 7) of the 
geometric distribution. 

Figure 2 presents the histogram of observed water deficit duration (DUR) together with 
the fitted geometric distribution. Visual examination of this figure shows that the adequacy 
of the fitted distribution is good. Goodness-of-fit is evaluated using the chi-square test (Table 
3). 

Since the calculated value (1.539) of the chi-square test (Table 3) is less than the critical 
value (7.82) at a 5% level of significance, the test indicates that the observations are 
adequately represented by a geometric distribution. 

^ ^ 1 / 2  Using equations (8), (9) and (10) we obtain for the geometric distribution, xq, [Var(xq)] 
and the asymptotic confidence interval (95%) of the true value of x_ (Table 4). 

. . . .  1-I 

The geometric dlsmbutlon has the advantage of taking into account the discrete character 
of water deficit duration. Furthermore, the proposed method is based on a definition of 
deficit duration allowing an a priori identification of the statistical distribution of interest 
(geometric). 

4.1.2 Exponential distribution and the Kolmogorov-Smirnov test 

The sample moments of water deficit severity (SEV), and the estimate of the parameter )~ 
of the exponential distribution are given in Table 5. 

Figure 3 presents the observed water deficit severity (SEV) together with the fitted 
one-parameter exponential distribution (EX). The visual fit of the exponential distribution 
to observed data is reasonably good. For a quantitative appraisal of the fit we have used the 
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Number of observations 
Arithmetic mean (months): 
Standard deviation (months): 
Coeff. of  skewness: 
Estimate of n (monthq): 

N = 9 9  
x = 1.9394 
S = 1.2357 
C s = 1.4750 
^ 

= 0.5156 

Table 3, Chi-square goodness-of-fit test for the geometric distribution 

Class Observed Expected 
Frequency Frequency 

1 50 51.0 
2 23 24.7 
3 15 12.0 
4 7 5.8 
5 4 5.4 

Number of classes = 5 
Degrees of  freedom = 5 (-1) -1 = 3 
Chi-square = 1.539 
Critical value (a = 5%) = 7.820 

Table 4, Estimated value, Xq, of duration events, standard deviation of Xq and asymptotic confidence 
intervals for Xq at a 95% Ievel for different probabilitics of exceedance (q) using the geometric 
distribution 

Probability ~q Standard deviation Confidence intervals 
of of 

^ 

exceedance event Xq 95% 

.001 9.529 0.979 7.611 11.448 

.005 7.309 0.751 5.838 8.781 

.010 6.353 0.653 5.074 7.632 

.020 5.397 0.554 4.310 6.483 

.050 4.133 0.424 3.301 4.965 
• 100 3.176 0.326 2.537 3.816 
.200 2.220 0.228 1.773 2.667 
.300 1.661 0.171 1.327 1.995 
.500 0.956 0.098 0.764 1.149 
.700 0.492 0.051 0.393 0.591 
.800 0.308 0.032 0.246 0.370 
.900 0.145 0.015 0.116 0.175 
.950 0.071 0.007 0.057 0.085 
.980 0.028 0.003 0.022 0.033 
.990 0.014 0.001 0.011 0.017 
,995 0,007 0.001 0.005 0.008 
.999 0.001 0.0001 0.001 0.002 
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Table 5. Sample moments and estimate of the parameter of the exponential distribution 

Number of observations 
Arithmetic mean (m 3 see'l): 
Standard deviation (m 3 seel) :  
Coeff. of  skewness: 
Estimate of  i (m 3 see't): 

N = 99 
x = 105.7495 
S = 120.1997 
~s - -1 .8531  

- 105.7495 
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Figure Z Histogram of observed water deficit duration (DUR) together with fitted geometric 
distribution 
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Figure 3. The observed water deficit severity (SEV) together with fitted one-parameter exponential 
distribution (EX) using the maximum likelihood method (ML) 
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D statistic, Kolmogorov-Smirnov test 

D = 1.0405 
Critical value (a = 5%) = 1.0753 

Table 7. Estimated value, ~q, of severity events, standard deviation of ~q and asymptotic confidence 
intervals for Xq at a 95% level for different probabilities of exceedance (q) using the exponential 
distribution 

Probability ,~q Standard deviation Confidence intervals 
of of 

^ 

exceedance event Xq 95% 

.001 730.492 73.417 586.594 874.389 

.005 560.294 56.312 449.92.3 670.665 

.010 486.994 48•945 391.063 582•926 

.020 413.694 41.578 332.202 495.187 

.050 316.797 31.839 254.392 379•202 
• 100 243.497 24.472 195.531 291.463 
.200 170.197 17.I05 136.671 203.724 
.300 127.320 12.796 102.239 152.400 
.500 73.300 7.367 58.861 87.739 
.700 37.718 3.791 30.288 45.148 
.800 23.597 2.372 18.949 28•246 
.900 11.142 1.120 8•947 13•337 
.950 5.424 0.545 4.356 6.493 
.980 2.136 0.215 1.716 2.557 
.990 1.063 0.107 0.853 1.272 
• 995 0.530 0.053 0•426 0.634 
.999 0.106 0.011 0.085 0.127 

Kolmogorov-Smirnov test (D statistic) adapted by Durbin (1975) for the exponential 
distribution with unknown population mean. Table 6 shows the result of this test. 

The calculated value (1.0405) of the Kolmogorov-Smirnov test statistic is less than the 
critical value (1.0753) at a 5% level of significance (as defined by Durbin 1975), thus 
indicating that the observations" are adequately^ represented^ tr2 by ant exponentiatt distribution. 

Using equations (13), (14) and (t0), Xq, [Var(xq)] and he asympto ic confidence 
interval (95%) for the true value of Xq havebeen computed and are displayed in Table 7. 

Result of the goodness of fit test (Table 6) indicates that the fit is just barely acceptable• 
If a more precise fit is needed for the water deficit severity, the use of a distribution with 2 
or 3 parameters may be appropriate• Since the one-parameter exponential distribution is a 
special case of the 2-parameter gamma distribution (G2 (~, ~,)) with shape parameter ~. = 1 
or equivalently with C s = 2, and of the 3-parameter generalized gamma distribution (GG3 
(~, ~., s)) with shape and power parameters equal to unity ()~ = s = 1) (Bobde & Ashkar 
1991), more adequate fitting could be obtained using these distributions. This, however, 
would be at the expense of more parameters to be estimated, implying an increased variance 
of the estimator of Xq. As an example, Figure 4 shows the comparison of the fittings of the 
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Figure 4. Comparison of the fitting for the G2, GG3 and one-parameter exponential (EX) 
distributions using the maximum likelihood method (ML) (SEV data set) 

Table 8. Sample skewness and estimates of the parameters of the G2 and GG3 distributions using the 
maximum likelihood method 

Station Sample G2 GG3 
skewness ~ ~. ~ ~ 

SEVdata 1.853 0.0073 0.7763 0.0105 1.0114 0.8428 
1 2.435 0.0248 0.8463 0.0619 1.5007 0.7018 
2 1.819 0.0094 0.7606 0.0096 0.7757 0.9893 
3 2.061 0.0094 0.7851 0.0104 0.8482 0.9519 
4 1.711 0.0421 0.928t 0.0645 1.2505 0.8296 
5 2.255 0.0022 0.5795 0.0077 1.2642 0.6018 

G2, GG3 and one-parameter exponential (EX) distributions. The fittings obtained for these 
distributions are quite similar, especially for cumulative probabilities less than 98%. Table 
8 gives the sample skewness and the estimated parameters of the G2 and GG3 distributions 
by the method of maximum likelihood using the HFA software (Bobde & Ashkar 1991) for 
the SEV data set and five other stations of the Alcan hydroelectric system. 

In all cases the sample skewness is close to 2.0. Except for stations 1 and 5, the estimated 
and s parameters are close to unity. Therefore, it is reasonable to use the one parameter 

exponential distribution in this example. 
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5 Conclusion 

This paper presents an original and easy-to-use approach to study water deficit events defined 
according to economic requirements. The use of a variable threshold allows the identification 
of water deficit reflecting the risk of energetic failure and drop in power production on a 
monthly base. The approach gives a theoretical base for the choice of the geometric 
distribution to represent water deficit duration. This distribution takes into account the 
discrete character of the duration variable. Using the analogy between the geometric and the 
exponential distributions (Johnson & Kotz 1969, Feller 1957), this latter distribution has given 
reasonably good results to describe water discharges in deficit. In both cases, only one 
parameter needs to be estimated. The maximum likelihood method, which gives estimators 
with optimal asymptotical properties (Lehmann 1983) can be used for both distributions. 
Moreover, parameters n and ;~ are directly estimated from the arithmetic mean. Therefore, 
the procedure and the interpretation of the results are straightforward. If more flexibility is 
required for the frequency analysis of water deficit severity, a multi-parameter distribution 
such as the 2-parameter Gamma distribution or the generalized Gamma distribution may be 
appropriate. 

The methodology presented in this study can be used to gain a better knowledge of the 
links between droughts and energetic failure in an economic context. Future research will 
be undertaken to study the influence of different base levels on water deficit duration and 
severity variables. 
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Appendix A: Determination of the estimator ~¢q of Xq and the estimator of the asymptotic 
variance of .xq for the geometric distribution. 

Let xp...,x=,...,XN, be a sample of size N drawn from a geometric distribution with parameter r~ 
(GEO(r~)J. The probability density function (p.d.f) of X is given by: 

P(X=x) = n (1-n)  x-l, x = 1, 2, 3 . . . .  and 0 < r~ ~ 1 

The maximum likelihood estimator of n is 

1 ~ = =  
X 

where x is the sample mean. Since 0 < ( i - r  G < 1, Xq can be expressed as follows by putting yq 
= Xq-t: 

__ ~o [ 11-(1 - n ~ )  1-(1-g)yq+lt 1-(l-n) j q = P(X>xq) = ~ P(X=j) = n - 
j =Xq 

This equation is easily solved for Xq to give 

In(q) 
Xq = ln(1-n)  

Replacing = by-its estimator 1/~, we obtain the maximum likelihood estimator of Xq: 

ln(q) 
~q - ln(1 - 1/7) 

The determination of the asymptotic variance of Xq is based on the central limit theorem 
(Lehmann 1983, p. 336) and is expressed as 

V(~q) = (d~q/dg) 2 Var(x-) 

Since Var(x) = (1 - rl:)/nr~ 2, we can directly deduce that: 

V(Rq) = ln2(q) In-a(1 - =) _ _  
~2 

n(1 - =) 

Replacing ~ by its estimator l/x, the estimator of V(~q) is given by 

Var(:~q) = ln2(q) In'4(1 - lfff) 1 
n~(ff - 1) 
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Appendix B: Determination of the estimator ~q of Xq and the estimator of the asymptotic 
variance of :~q for the exponential distribution. 

Let xl,...,xj,..,xN, be a sample of size N drawn from an exponential distribution EX(~) of 
parameter ~,. The p.d.f, of X is given by: 

1 e_X/h f(x) = ~ x ~ O. 

The maximum likelihood estimator of the parameter )~ 

5 . = ~ .  

The quantity, Xq is defined by 

co 

P ( X  > Xq) = f f(x;~)dx = q 

Xq 

which in the case of the exponential distribution is easily solved lbr xq to give: 

Xq = - .a. In (q) 

The maximum likelihood estimator of Xq is obtained by replacing L by its estimator x: 

~q = - ~, In(q) = ~ ln(1Rl) 

and the variance of this estimator can be expressed as 

V(Rq) = In 2 (l/q) V(x-') = ln2(1/q) 1 ~ V(xi ) 
112 I 

= 1 . 2 0 / q )  ;~ 
n 

Replacing )~ by its estinaator x, the maximum likclibood estimator of V(xq) becomes: 

Var(~q) - [~ln(1/q)]2 
n 


