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Abstract: This paper presents the principles underlying a recently developed numerical technique for mod- 
eling transport in heterogeneous porous media. The method is then applied to derive the concentration 
mean and variance, the concentration CDF, exceedance probabilities and exposure time CDF, which are 
required by various regulatory agencies for risk and performance assessment calculations. The dependence 
of the various statistics on elapsed travel time, location in space, the dimension of the detection volume, 
natural variability and pore-scale dispersion is investigated and discussed. 
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1 Introduction 

The increasing complexity of environmental regulations has made it necessary to formulate ground- 
water transport models in a probabilistic rather than deterministic framework. The appropriate 
type and form of model output is designated or implied by the applicable regulatory standard(s). 
For example, the U.S. Environmental Protection Agency (EPA) and the U.S. Nuclear Regulatory 
Commision (NRC) have promulgated regulations regarding the disposal of high level nuclear waste 
that  stipulate specific exceedance probabilities and time oriented limits. The EPA rules include a 
containment requirement that  the facility must be designed to assure that the probability of ex- 
ceeding a radionuclide-specific cumulative release limit is less than 1 in 10 and the probability of 
exceeding ten times this limit is less than t in a 1000 over a 10,000 year period. In addition, the NRC 
rules include minimum groundwater travel times from the facility to the accessible environment. 

An example of a regulation with an implied statistical approach is the requirement for a feasibility 
study to remediate a Superfund site under the Comprehensive Environmental Response, Compensa- 
tion and Liability Act (CERCLA). These studies typically include a risk assessment which requires 
an exposure assessment aimed at quantifying the environmental fate and transport of contaminants 
to predict concentration levels over time at particular locations (Reichard et al., 1990; EPA, 1988). 
Transport modeling as part of the exposure assessment must provide input for other portions of the 
risk assessment and the estimated concentrations must be developed in a format consistent with 
the dose-response information (EPA, 1986a). For these instances, the type of output, its statistical 
moments, and the estimated time of exposure are important since the dose-response data may be 
in a variety of formats and can be for short or long time periods (IIallenback and Cunningham, 
1986). In general, the risk assessment process encourages the use of stochastic formats to generate 
percentiles of concentration whenever possible (EPA, 1986b). 

These regulatory trends are reflected in many recent studies involving contaminant transport 
modeling. Varshney et al. (1993) developed a framework for determining exceedance probabilities 
for analyzing the transport of pesticides in groundwater. Their results are presented as exceedance 
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probabilities versus pesticide concentration at a given time and location. McBean and Rovers (1992) 
analyzed the effect of assumed distributions on exceedance probabilities utilized as inputs to risk 
assessment. Helton (1993) developed a conceptual model to determine complementary cumulative 
distribution functions (CCDFs) to indicate the probability of exceeding individual consequence val- 
ues as defined by the EPA release limits for high level nuclear waste repositories. Likewise, Cambell 
and Cranwell (1988) specify the need for results from flow and transport models to be in a probabilis- 
tic format to facilitate incorporation with other modelsto develop a CCDF of the released limits (or 
summed ratios) as part of a performance assessment for a proposed site. Dagan and-Nguyen (1989), 
Rautman and Treadway (1991) and Rubin and Dagan (1992) present their approach to account for 
geological uncertainties as part of an overall model to generate probability density functions (CDFs) 
of travel times for a nuclear waste repository to address NRC requirements. 

Based on the present form of environmental regulations, it has become necessary to establish 
transport modeling techniques which can indicate the concentration and travel and exposure time 
of contaminants in a probabilistic format. The more appropriate forms of model output include 
exceedance probabilities over a range of concentrations and distribution functions for concentrations, 
mass releases, travel times and exposure times. 

As already mentioned, an intensive research effort has been devoted in recent years toward mod- 
eling of contaminant transport in heterogeneous, geologically uncertain groundwater environments, 
and toward quantifying the associated uncertainties. No effort, however, was invested in develop- 
ing a comprehensive yet computationally reasonable approach which is oriented toward regulatory- 
mandated risk and performance assessments. Specifically, there is a large disparity between the 
type and form of model output that is required by regulatory agencies for health and environmen- 
tal risk assessment on one hand and the type of output that can be supplied by the most current 
methods. The reason is the enormous computational effort required to process and produce the 
necessary information. The statistics required are quite complex and computationalty involved, yet 
the ability of the hydrologic community to stand up to the challenge is still limited. This leads to a 
growing difficulty in performance and risk assessment, and in turn to a slow response, cumbersome 
and sometimes belated decision-making process, and eventually to costly litigation. 

The purpose of this paper is to review and assess some of the statistics required by the regulatory 
agencies for risk and performance assessment, and in particular on the effects of natural variability 
and geologic uncertainty. Our work is facilitated by capitalizing on a numerical method developed 
and presented in Bellin, Rubin and Rinaldo (1993) which is computationally very efficient. The 
numerical method is reviewed here briefly for completeness, and the larger part of this paper is 
devoted to new applications. 

2 Me thodo logy  

The computations described in this paper were carried out using an algorithm which is described 
in Bellin et al. (1993). Since the description of the method is not the main goal of this paper, it is 
only briefly described in this section. 

The basic idea of the algorithm is to achieve computational efficiency by relying on stochastic and 
geostatistical principles. We observe that: 

1. The fluid velocity in heterogeneous media displays a seemingly random behavior. This ran- 
domlike behavior stems from the spatial variability of the hydraulic conductivity in the case 
of nonreactive transport, and in addition, from the variability of reaction coefficients when 
reactive transport is involved. 

2. For a specified stochastic-spatial structure of the input hydrologic variables and for specified 
boundary conditions, the spatial correlation structure of the velocity can be derived using the 
flow equation (cf., Rubin, 1990, Rubin and Dagan, 1992, and Zhang and Neuman, 1992 for 
analytically-derived covarianees based on assumption of small variability in the logconductivity, 
and Bellin et al., 1992, and Levin et al., 1992, for numerical solutions). The spatial correlation 
structure is expressed through a set of anisotropic covariances. 

3. In the quite prevalent case of normally-distributed logconductivities (Hoeksema and K itanidis, 
1984), and for relatively small logconductivity variance, the velocity is also Gaussiam In that  
case, its statistical structure is exhastively characterized through its expected value and spatial 
covariances. 
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4. The prediction of the velocity at a generic point x can be carried out using Gaussian condi- 
tioning (Mood and Graybill, 1963), which is mathematically analogous to kriging. 

Consider that  {N} defines the N data available over the aquifer domain, i.e., measured data and 
coordinates. The estimator for the velocity U(x) is given by [U(x)I{N}], with the vertical bar 
denoting conditioning. In practice, [U(x)I{N}] translates into a series of algebraic equations, which 
are well documented in the literature (Mood and Graybill, 1963; Journel and Huijbregts, 1978), and  
which require that  the spatial covariances between the attributes contained in {N} and U be known. 

An important feature of the set [U(x)I{N}] is that  it does not depend on actual values measured 
at the N nodes, but only on their relative spatial configuration. Additionally, among the N data 
available, the most influential will be those who are closest to x. This effect is often referred to in 
the geostatistics literature as screening. The result is that  the set [U(x)I{N}] can be replaced by 
[U(x)I{N'}], with N' representing only a portion of the N data which are nearest to x, without any 
consequence to the actual results, but with a significant reduction in the computational effort. 

The two properties of the set [U(x)I{N}] can be summarized succinctly in the following way: 

• the set [U(x)I{N}] is equivalent to [U(x)I{N'}], with N' smaller than N, and with N' repre- 
senting the measured data nearest to x, under quite general conditions; 

• the set of equations needed to solve for obtaining [U(x)I{N}] is equivalent to the set needed for 
solving [U(xl)I{N1}], provided that  {N} and {Nt} have the same spatial configuration, i.e., 
that  {N} and {N1 } overlap if simply translated in space (and without rotation, if the spatial 
covariances are anisotropic). 

At this point, the steps constituting the method employed here for transport calculations can be 
summarized as follows: 

(i) Compute the spatial covariances of the velocity U for a given spatial structure of the logcon- 
ductivity, Y, and for given boundary conditions and space dimensionality (this is just a preparatory 
step, and need not be carried out prior to any simulation if the applicable covariances are already 
available); 

(ii) Define a set of nodes xl, i = 1, ..., M, which are spread over the aquifer domain. In our 
method, the set of nodes defines a regular grid. The goal is now to generate a large number of 
replicates of the velocity field. In each replicate, velocities are assigned to each of the M nodes, and 
it is understood that  those velocities must be in agreement with the physics of the flow equation as 
welt as spatially correlated as defined by the velocity covariances. 

(iii) Compute the set of interpolation coefficients needed to project the relevant measurements 
in {N} onto U(x). These interpolation coefficients are used to compute the conditional mean and 
conditional variance of U(x), conditional to {N'}, with N' < N. 

(iv) Consider a generic node xt. Once the conditional mean and variance of U(xe) are available, 
they are used as input to a standard multivariate normal random generator, and random deviates 
are generated for the various components of the vector U. The generated values are viewed as a 
realization of the velocity at node xt for that  particular realization. 

(v) The velocity generated for node xe is added to {N}, and we proceed now to a new node. 
We choose the next node such that  we can condition its velocity on a subset of {N} which is 
topologically identical to the one used at the previous node, such that there is no need to recompute 
the interpolation coefficients. Moving systematically over a regular grid, this is a very easy task to 
achieve, and the set {N'} is taken as all the points within {N} which fall within an a-priori defined 
search neighborhood. 

(vi) Once velocities are computed over the set of M nodes, the production of a single replicate 
is completed. This procedure can be of course repeated as many times as needed, or according to 
some a-priori set convergence criteria. The set of coefficients, however, needs to be computed only 
o n c e ,  

(vii) Transport is simulated over each replicate through particle tracking. 
The generated velocity fields were shown (Bellin et al., 1993) to reconstruct the spatial structure 

as defined by the covarianees. Furthermore, they are found to be mass conservative, within an 
acceptable error, which can be controlled by the spacing between the nodes. 

The applicability of the methodology is restricted according to the assumptions employed in the 
derivation of the velocity covarianees. For example, if the velocity covariances are derived under the 
assumption of small variability in the logconductivity, as is the ease for all the analytically-derived 
velocity covariances presently reported in the literature, then the method in general is limited by 
that assumption. 
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The biggest advantage of the method, however, is in its computational efficiency. This advantage 
stems from the need to compute the set of interpolation coefficients only once, which it can then be 
used repeatedly for computing the velocity at each node. In other methods, notably the numerical 
ones, the production of each replicate requires solving the flow equation over the entire domain, and 
this effort needs to be repeated anew for each and every additional realization. 

3 Visua l i za t ion  of  t h e  veloci ty  field a n d  of  t he  p l u m e  

Figures 1 and 2 each depict a single realization of the generated velocity field, with each arrow 
representing the magnitude of the velocity and its direction. These figures were produced with the 
variances of the logeonductivity ~r~ equal to 0.2 and 0.8, respectively. The increase in ~ clearly 
leads to a larger variability in the velocity field. While in the case of the small variance (Figure 1) 
the lateral components of the velocity are practically unnoticeable, these components become much 
more prevalent with an increase in the variance (Figure 2). 

The variability in the velocity field metamorphoses continuously the topology of a solute body 
moving in that area. This has been demonstrated in several analyses of field studies. Modeling 
that  process is a central issue in transport modeling, the difficulty arising mainly from the existence 
of sharp concentration fronts. One way t ° tackle that  issue is to avoid it altogether, for example 
by representing the change in the geometry through the spatial moments of a cluster of particles 
which represents the plume (Smith and Schwartz, 1980; Bellin et al., 1992). The particle tracking 
technique assumes that  the displacement of a solute parcel can be represented by the displacement 
of a material point of equivalent mass and which is located at its eentroid. This assumption is of no 
consequence for computation of spatial moments. Difficulties arise, however , when there is a need to 
visualize the displacement of the plume, or whenever there is a need to compute concentrations. The 
reason is that  a solute particle is not only being translated in space, it also changes its shape, and 
that effect cannot be modeled through the displacement of a material point. Furthermore, when it 
comes to measuring the concentration using a finite volume device, a material point can be modeled 
as either inside or outside the device, while in reality there is a large specrum of possibilities in 
between. 

In order to enjoy the robustness of particle tracking on one hand, and preserve the integrity of the 
solute body on the other, we model its displacement in space through the translation of a cluster 
of particles which defines its circumference. Each point is translated independently of the others 
using fixed time steps, and the geometry of the solute body at each time step is computed by simply 
connecting all the points in the proper order. If pore scale dispersion is neglected, then the inside 
of this contour defines the area over which the concentration is equal to the initial one, Co, while 
the outside is the area over which the concentration is naught. Concentration can assume values in 
between if the sampling device is covered only partly by the solute body. 

The application of this method is demonstrated next. Figures 3 and 4 contain each a time sequence 
showing the evolution of a solute body whose initial geometry and position are depicted at t = 0, for 
cr~ equal to  0.2 and 0.8, respectively. Note that  the mean flow direction is from left to right. In both 
cases, the edge of the solute body is jagged, and a larger distortion of the plnme's original geometry 
occurs in the case of the larger variance. It also appears that the plumes are close to disintegrating 
into several smaller ones. 

The effect of larger variances on spatial spread can be readily evaluated from these two figures. 
Figure 3 shows that  the plume did not stretch laterally (normal to mean flow direction), while Figure 
4 shows a considerable lateral stretching. The major impact, however, is manifested in the form 
of relative longitudinal (mean flow direction) displacement of the different portions of the plume. 
These observations are in agreement with theory (Dagan, 1984) which predicts larger longitudinal 
and lateral spreads with larger variances. It appears, however, that describing the shape of the 
plume through its moments is only partly informative, since in each realization the plume is not 
"space filling", but highly irregular. 
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F igure  1. Example of a single replicate of the velocity field for ~ = 0.2 
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Figure 2. Example of a single replicate of the velocity field for tr~ = 0.8 
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4 On the  concen t ra t ion  mean  and  variance 

Different approaches for predicting solute concentrations in situations of natural heterogeneity and 
geological uncertainty were reported (Dagan, 1982; Graham and McLanghlin, 1989a, 1989b; Rubin, 
1991a, 1991b; Vomvoris and Gelhar, 1990; Kabala and Sposito, 1992) and in general, they concen- 
trate on the derivation of the first two moments of the concentration. Higher order moments can 
also be derived by some methods, but at an exorbitantly large computational price. This implies 
that in most approaches the concentration variance is viewed as the only means for quantifying 
uncertainty. The validity of this approach will be discussed subsequently, however, some analytical 
results for the first two moments of the concentration have been published, and are used here for 
validation purposes. 

As an example, consider Figure 5, which depicts the geometry of an injection volume and that of 
a detection volume at a certain distance downstream. The mass injected is assumed to be spread 
uniformly over V0, thus producing an initial concentration equal to Co. 

For application, we focus on the case of two-dimensional flow, uniform in the average, with the 
logconductivity Y being multinormM and defined by an exponential, isotropic covariance. The 
solution for the mean concentration is given by (Bellin et ai., 1993): 

( c ( x , , - ) )  _ 
8~I~A~A2 

i=l j= l  

with 

Zl = X l - X l , 0 + A 1 / 2 + g l - ~ -  Z2 = x l - x l , 0 + A 1 / 2 - e l - r  

(1) 

Z3 = x l - x l , 0 - A 1 / 2 - g l - r  Z4 = x l - x l , 0 - A 1 / 2 + ~ l - r  

x2 - x~,0 + A2/2 + g~ x2 - x2,0 + A2/2 - ~2 

W3 = x 2 - x 2 , 0 - A ~ / 2 - l ~  W4 = x 2 - x ~ , 0 - A ~ / 2 + g ~  

with notations defined on Figure 5. Xll and X~ are the longitudinal and lateral single particle 
displacement variances (Dagan, 1984). Figure 6 depicts the numerical results obtained for the case 
of a line source with gl = 0.01I and ~2 = lI (I being the integral scale of the logconduetivity) and 
for different times and for three detection volumes. The logconductivity variance ~r~, was set at 0.2. 
The numerical results compare quite favorably with the analytic solution (equation 1). 

Closed-form, analytic results for the concentration variance were reported in the literature by 
Vomvoris and Gelhar (1990) and Dagan (1982). In both cases the concentration is given for a 
"point" detection volume. Only Dagan (1982) reports a solution for the case of no pore scale 
dispersion, in the form: 

= c----Y-- Co 

where ~rc ~ is the concentration variance, r denotes time, and C(x,v) denotes the concentration at 
x at time v. Since pore scale dispersion and an increase in the dimension of the detection volume 
both act to reduce variability in the concentration, the concentration variance as given by equation 
2 constitutes an upper bound. 
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F i g u r e  5. Example of injection and detection volumes, with nomenclature used in equation l 
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F i g u r e  6. Comparison of analytical solutions for the mean concentration with model results at  3 locations 
for A = 0.1 and ¢r~ = 0,2 
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Figure 7. Comparison of the analytical solution for the coefficient of variation with model results extrapo- 
lated to A = 0 for a~c = 0.2, location [2,0],,and r = 2 

Figure 7 depicts the concentration's coefficient of variation as a function of the dimension of the 
detection volume A. The detection volume is located two integral scale downstream from the source, 
x and all the other parameters are precisely those employed to produce Figure 6. As A decreases, 
the coefficient of variation increases. The intercept of the line connecting the two points nearest 
the origin falls exactly on the analytic result computed by equation 2, and this confirms that  the 
asymptotic limit (equation 2) is in agreement with our results. 

The results presented here and subsequently are applicable in a direct manner for the case of a non- 
reactive contaminant. However, simple transforms can be  used in order to apply the results for the 
case of radionuclide transport  since the displacement of the contaminant and the decay mechanism 
are independent of each other. For example, in the case of first-order decay, the mean concentration 
(C(t)) can be obtained by multiplying the present results by exp[-)~t] and the concentration variance 
can be obtained by multiplying the present results by exp[-22t], where ~ is the radioactive decay 
constant. 

5 T h e  c o n e e n t r a t i o n ' s  c u m u l a t i v e  d i s t r i b u t i o n  f u n c t i o n  ( C D F )  

The use of the first two moments of the concentration for predictive purposes is justified when the 
concentration is either Gaussian or log-Gaussian. Bellin et al. (1993) showed that  while for very 
large A, a Gaussian distribution, truncated at zero, can be used to model quite well the Goncentra- 
tion, a generM case for the concentration being either Gaussian or log-Gaussian cannot be made 
since the concentration is bounded by Co and zero. As a result, a fast way to compute the entire 
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Figure 8. Cumulative probability distribution function of C/C0 for different locations at mean travel times 
with A = 0.1 and a~ = 0.2 concentration's CDF, without assuming any parametric distribution, 

appears to be a reasonable Mternative. 
Using our methodology, the concentration CDFs are easy to obtain, and are the subject of dis- 

cussion of this section. Figure 8 depicts the concentration CDF at three different locations at times 
equM to the mean travel times to these locations. 

The first thing to note about the shape of the CDFs is the large proportion of zero values, which 
increases with distance from the source. Another interesting point is the monotonous increase of 
the CDF from close to zero up to about C/C0 = 0.2, followed by a discontinuity, which however 
becomes blurred with distance from the source. This is not a numerical artifact, but a physical 
effect. The wlue  of 0.2 corresponds to the ratio between 2£1, the width of the initial volume, and 
A, the dimension of the detection volume. For a constant velocity field, the only two values possible 
for C/Co to assume are 0.2 and zero. In a heterogeneous field, this ratio can change if the plume 
changes it shape, i.e., becomes tortuous or disintegrates, such that  particles that, were originally side 
by side start  to trail one another. The probability for that  to occur near the source is small, since 
the shape of  the plume is very much determined by its original shape. At larger times, however, the 
probability for such an occurrence increases, and the discontinuity will vanish altogether. 

Figure 9 repeats the previous exercise, but using ~ = 0.8. It shows that  the proportion of zeroes 
increases, which is of course the  result from the enhanced scatter of the plume. The CDF is also 
smoother next to C/C0 = 0.2. The larger variance leads to a larger possibility for the solute particles 
to. realign or for the plume to disintegrate, and creates a wider range of possible values for C/C0. 
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A statistic of importance from a regulatory point of view is the probability of the concentration 
exceeding an a-priori defined threshold value. Subsequently we refer to it as the exceedance prob- 
ability. Figure 10 depicts a sequence of contour maps of the exceedance probability Prob[C > 0.05 
Co] at nondimensional times r = 1, 2, 3 (r  is defined as Ut/I, where U is the average velocity, t is 
dimensional time and I is the integral scale) with o~ = 0.2 and for an initial injection volume as 
depicted on Figure 5 and for a detection volume of dimension 0. tI. 

The shape and behavior of the "probability plume" resembles the behavior of a tracer plume: (i) 
the largest probabilities are located around the average travel distance (centroid) and it reduces with 
distance from the center; (ii) the plume's shape at small time is dictated largely by the shape of 
V0, but much less so at larger v, (iii) the exceedance probability reduces with travel time/distance, 
much like the maximum concentration itself. 

Figure 11 shows a similar sequence, only for the case o f ~  = 0.8. The behavior of the "probability 
plume" is similar in principle to the previous case (Figure I0) only that the maximum exceedance 
probabilities are smaller. This can be explained by the larger spatial variability in the logconductivity 
which causes a larger spatial spread of the plume (ef., Dagan, 1984 for a theoretical derivation, 
Bellin et al., 1992 for numerical simulations) and this in turn reduces the probability to find a large 
number of solute parcels in any single detection volume. The reduction in the maximum exceedance 
probabilities around the centroid is accompanied by an increase in the exceedance probabilities away 
from the centroid. The larger a~ leads to a larger spread in the velocity, and this implies that solute 
parcels can move either faster or slower than before, in both the mean flow direction and normal to 
it. Thus, solute parcels may appear now in places which were unreachable beforehand. 

The resemblance between the probability plume and the concentration plume has been recognized 
in the past, but only indirectly. In the limiting ease of an infinitely small detection volume and 
no pore scale .dispersion, the concentration can be either zero or Co. Its statistical distribution is 
bimodal, and given by (Dagan, 1982): 

Co Prob = cCL~o 
c = (3) 

0 P r o b  --  I - 

and hence it is completely determined by (C). Larger detection volumes alter the distribution from 
bimodal into a continuous one, but nevertheless, the underlying principle remains applicable. It can 
also be shown (Risken, 1984) that for Brownian motion, the concentration CDF satisfies the Focker 
Planck equation with velocities and dispersion coefficients identical to those which are used for the 
convection dispersion equation. 

Rather than computing the concentration CDF at a single point, it can be computed over the entire 
domain. One way of representing the results is through a contour map of the different percentiles. 
Figure 12, for example, depicts the 95th percentile of C/C0 with A = 0.1I at r = 2 for ~r~ equal to 
0.2 and 0.8. The importance of this statistic is in signifying the probability of the extreme values in 
the distribution to be above the acceptable limits. We find higher values around the center in the 
case of the smaller variance, and lower ones away from the center. Note also that in the case of the 
smaller variance, the shape of the contours is dictated by the geometry of Vo, while an increase in 
the variance reduces that effect. 

Another statistic of importance is the exposure time of the accessible environment to concentra- 
tions exceeding the acceptable limits. Its importance is in that it allows the computation of the 
source term for release of hazardous materiM to other pathways such as the atmosphere. Figure 13a 
depicts some generic results in the form of a CDF for the exposure time (non-dimensional) for con- 
centrations above different critical values at a distance of two integral scales downstream from the 
injection point. The probability to observe a certain value of exposure time reduces as the critical 
value increases, and the proportion of zero exposure times increases. It is clear that as the threshold 
value increases, the CDF approaches a step function at Tex p : 0. 

The comparison in Figure 13b exposes the pattern of nonstationarity of the exposure time CDF. 
Translation along the mean flow direction leads to changes which are minor compared to those 
observed for translations normal to mean flow direction. Locations which are off the cen- troid's 
trajectory have a smaller probability for long duration exposures. 
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6 On the effects of  pore-scale dispersion 

Results discussed earlier in this paper were obtained for large Peclet number, i.e., under the assump- 
tion of negligible pore scale dispersion. In this section, the effect of pore scale dispersion (psd) is 
briefly discussed. 

Consider first Figure 14. which shows the single particle displacement variances Xll and X22 for 
large Peclet number and for Peeler number equal to 10 ~. We find that the effect of psd on the longi- 
tudinal displacement variance is quite small. It becomes more significant in the case of X~2, but for 
larger ~r~ the effect of psd can be safely expected to become equally insignificant. 

When dealing with the concentration CDF, however, the role of psd becomes much more signif- 
icant. On Figure 15 we show the concentration CDF for large and small Peclet numbers, and for 
different A. In both cases, psd leads to a smaller variance by narrowing the range of observed values. 
The psd acts to dilute the mass contained in the solute parcels, and hence it reduces the maximum 
observed values on one hand, and it increases the proportion of non-zero values on the other. The 
increase in the non-zero values, however, does not prevent the shifting of the entire range of values 
toward smaller ones. 

It appears also that  psd is more significant for smaller A. For large A, a larger part of the 
displacements occurring because of psd leads to nothing but mass transfer within the detection 
volume boundaries, and hence the reduced effect. 

7 Summary 

This paper presents the principles underlying a recently developed numerical technique (Bellin et 
aL, 1993) for modeling transport in heterogeneous media. The methodology developed based on 
these principles allows a significant reduction in the computational effort associated with deriving 
statistics which are necessary for environmental risk assessment. 

The method is applied to derive the concentration mean and variance, the concentration CDF, 
exceedanee probabilities and exposure time CDF. These statistics are required by various regulatory 
agencies. 

We show that  the concentration is generally non-Gaussian (Belliu et al., 1993, showed that  a 
Gaussian model truncated at zero is applicable only for large detection volumes), and the availability 
of its first two moments is insufficient for predictive purposes. The concentration CDF strongly dep- 
ends on location and on the elapsed time since injection. At early travel times, it also depends on 
the ratio between the dimension of the detection volume and injection volume, which determines an 
approximate upper bound on the concentration. 

Larger variability in the logconductivity leads to a reduction in the probabilities to observe high 
concentrations in the area close to the plume's centroid, because of the enhanced spatial spreading 
of the injected mass. This, however, is associated with an increase in the probability to observe high 
concentration at locations away from the centroid. 

Finally, the exposure time CDF is investigated, and is also found to be nonstationary, time depen- 
dent, with a smaller proportion of long exposure times as the variability of the medium increases. 
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