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A present trend in the study of the Symmetric Traveling Salesman Polytope (STSP(n)) is to use, as a 
relaxation of the polytope, the graphical relaxation (GTSP(n)) rather than the traditional monotone 
relaxation which seems to have attained its limits. In this paper, we show the very close relationship 
between STSP(n) and GTSP(n). In particular, we prove that every non-trivial facet of STSP(n) is the 
intersection of  n + 1 facets of GTSP(n), n of which are defined by the degree inequalities. This fact 
permits us to define a standard form for the facet-defining inequalities for STSP(n), that we call tight 
triangular, and to devise a proof technique that can be used to show that many known facet-defining 
inequalities for GTSP(n) define also facets of STSP(n). In addition, we give conditions that permit to 
obtain facet-defining inequalities by composition of facet-defining inequalities for STSP(n) and general 
lifting theorems to derive facet-defining inequalities for STSP(n + k) from inequalities defining facets of 
STSP(n). 
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I. Introduction and notation 

Let K .  = (Vn, E.)  be the complete graph on n vertices and let ~ , ,  represent the set 
of  all real vectors whose components  are indexed by the set E..  We denote by 
e--  (u, v) the element of E.  having u and v as endpoints. For every real vector x 

in R E~, we denote by Xe, or by x(u, v), the component  of x indexed by e = (u, v). A 
Hamiltonian cycle H of K.  is the edge set of  a connected spanning subgraph of Kn 
for which every node has degree 2. Given a vector 1 c R E-, which assigns the length 
le to every edge e ~ E.,  the Symmetric Traveling Salesman Problem consists of  finding 
a Hamiltonian cycle of  K.  with minimum length. This is one of the most extensively 
studied combinatorial  optimization problems; we assume the reader to be familiar 

* Partially financed by P.R.C. Math6matique et Informatique. 
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with the basic concepts related to it. We refer to Lawler et al. (1985) for the necessary 
background. 

Let Wn be the set of Hamiltonian cycles of K,.  With every H c g(, we associate 
a unique incidence vector X H in R e- by setting 

XeH__{10 i f e ~ H ,  
otherwise. 

The Symmetric Traveling Salesman Polytope (STSP(n)) is the convex hull of  the 
set of the incidence vectors of all Hamiltonian cycles of  K, ,  i.e.: 

STSP(n) = conv{x" ] H c ggn}. 

Let ~ be a polyhedron in ~ " ;  an inequal i ty fx~fo  defined on R m is said to be 
valid for ~ if it is satisfied by all points of ~, it is said to be supporting for ~ if it 
is valid and the set {x~Rm]fx  =f0, x~  ~} is nonempty, finally it is said to be 
facet-defining for ~ if it is supporting and the set {x c ~m Ifx =f ) ,  X C ~} is a facet 
of ~. For the definition of facet, and for all the related basic topics of polyhedral 
theory we refer to Nemhauser and Wolsey (1988). 

By a theorem due to Weyl (1935) it is known that there exists a finite linear system 
of inequalities facet-defining for STSP(n ) whose set of solutions is given by STSP(n). 
However, it is very unlikely that such a system can be completely described and 
that it can be given by classes of inequalities for which there exists an ??~-description 
(see Pulleyblank (1983)). To date, only a partial description of  the linear system of 
STSP(n) is known. However, this incomplete characterization of the polytope can 
be efficiently used to solve large instances of the problem to optimality by polyhedral 
cutting-plane algorithms (see Padberg and Gr6tschel (1985)). Recently, by means 
of  polyhedral methods it has been possible to solve to optimality very large instances 
of  the problem: Gr6tschel and Holland (1991) report on the solution of instances 
up to 1000 nodes and Padberg and Rinaldi (1987, 1991) report on the solution of 
some "real world" instances with up to 2392 nodes. These results show the validity 
of  the polyhedral approach to the solution of this hard combinatorial problem, and 
motivate to continue the study of the associated polytope in order to enlarge its 
partial linear description. Besides this algorithmic issue, since the traveling salesman 
problem is one of  the most investigated combinatorial optimization problems, the 
study of the linear system of STSP(n) is attracting and challenging by itself: it has 
interested many researchers and it began far before the successful computational 
results based on the polyhedral cutting-plane algorithms were obtained. 

In Dantzig, Fulkerson and Johnson (1954), a class of valid inequalities, the subtour 
elimination inequalities, is introduced. In Chv~ital (1973), another class of valid 
inequalities, the comb inequalities, is given. These inequalities are a generalization 
of the 2-matching inequalities defined in Edmonds (1965) where they are used to 
give a complete linear characterization of the 2-matching polytope. In Chvfital 
(1973), an inequality defined by the Petersen graph is shown to be facet-defining 
for STSP(10). In Maurras (1975), it is shown that the inequality defined by the 



19. Naddef G. Rinaldi / The Symmetric Traveling Salesman Polytope 55 

graph obtained from the Petersen graph by replacing an edge and its endpoints by 
a clique of size k ~> 2 is facet-defining for STSP(n + k -  2). In Gr~tschel and Padberg 
(1979a), (1979b), the subtour elimination inequalities are proven to be facet-defining 
for STSP(n), n/>4. Moreover, the Chv~ltal comb inequalities are generalized and 
the members of the new class, called the comb inequalities, are proven to be 
facet-defining for STSP(n ), n/> 6. In Gr/Stschel and Pulleyblank (1986), the clique-tree 
inequalities are defined and proven to be facet-defining for STSP(n), with n ~> 11. 
This new class properly contains the comb inequalities. For a complete description 
of all these classes of inequalities we refer to Gr6tschel and Padberg (1985). Very 
recently Boyd (1988) and Hartman (1988) have independently proved that the chain 
inequalities, defined in Padberg and Hong (1980), are facet-defining for STSP(n), 
n ~> 8. In Naddef  and Rinaldi (1992), the crown inequalities are defined and shown 
to define facets of STSP(n), n ~> 8. In a sequel paper (Naddef  and Rinaldi (1988)) 
we exploit the results presented here to show that some large families of inequalities 
define facets of STSP(n). These families generalize the comb, the clique-tree and 
the chain inequalities. Finally, for the sake of completeness we want to mention a 
few more inequalities that do not belong to the above families. These inequalities 
are the ladder inequality, introduced in Boyd and Cunningham (1991) and proven 
to be facet-defining for STSP(8); three inequalities described in Christof, Jiinger 
and Reinelt (1990), that define facets of STSP(8), and two inequalities discovered 
by Queyranne and Wang (1989), that are facet-defining for STSP(9). At present we 
do not know how these inequalities can be generalized for higher values of n, even 
though it is likely that the extensions described in Section 4 of this paper apply to 
them. To our knowledge to date no other inequalities are known to be facet-defining 
for STSP(n). 

The incidence vectors of all Hamiltonian cycles of K, satisfy the following system 
of equations, called the degree equations: 

Anx = 2, 

where An denotes the node-edge incidence matrix of K,, and 2 denotes the vector 
in R v', with all the components equal to 2. Consequently, STSP(n) is not full 
dimensional. With two different techniques it is shown in Gr6tschel and Padberg 
(1975, 1979a) and Maurras (1975), respectively, that the dimension of STSP(n) is 
]En ] - n; we give an alternative proof  of this result in Section 2. Let ~ be a polyhedron 
in E'~; we say that two inequalities defined on R m are equivalent if they define the 
same face of ~. If ~ is full dimensional, then two facet-defining inequalities f i x  ~>f~ 
and f 2 x  >~f~ are equivalent if one can be obtained from the other by multiplication 
by a positive real number. Since STSP(n) is not full dimensional two facet-defining 
inequalities f i x  >~f~o and f 2x  >~f~ are equivalent if there exist a positive number 
and a vector h c ~ v  such that f 2 =  zrfl+hA~ and f ~ =  zrf~+h2. This makes the 
recognition of two equivalent inequalities more complicated than in the case of a 
full dimensional polyhedron. For this reason when dealing with a polyhedron 
which is not full dimensional, it is customary to embed it into a larger polyhedron 
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~R such that ~R is full dimensional, and ~ is a face of  ~R. The polyhedron ~R 
is called a relaxation of ~. The usual way to proceed is to first describe inequalities 

that define facets of  ~R and then look for conditions that guarantee that these 
inequalities, that are valid for ~,  are also facet-defining for it. A desirable property 
that not all relaxations have, is that every facet of  ~ is contained in exactly one of 
the facets of  ~R which do not contain the entire ~. I f  this property holds, then 
there is a one to one correspondence between a subset of  these facets of  ~R and 
all facets of  ~. To date, the most studied relaxation of STSP(n) is the Monotone 
Traveling Salesman Polytope (MTSP(n))  (see Gr6tschel and Padberg (1985)), that 
does not have this nice property (see Section 2). 

In this paper,  we make use of  a different relaxation, the Graphical Traveling 
Salesman Polyhedron and show how this polyhedron is strongly related to STSP(n). 

Let G =  (V, E)  be a graph; a family of  edges of G is a collection F of elements 
of  E. Several copies of  the same element of  E may appear  in the collection. For 
every element e of  E, we call multiplicity of e in F the number  of times e appears  
in F. As usual, a set of  edges of  G is a family where every element has multiplicity 
1. Let F1 and Fe be two families of edges of  G and let F I +  F2 denote the family 
such that the multiplicity of  every element is given by the sum of its multiplicities 
in FI and Fe, respectively. By F + e and F -  e we denote the families for which the 
element e has multiplicity one more and one less than in F, respectively. Finally, 
k{e} denotes the family containing only the element e with multiplicity k. 

Let F be a family of  edges of  G = (V, E). By G[F] we denote the multigraph 
having node set V and having, for every pair of  distinct nodes u and v in V, as 
many edges with endpoints u and v as the multiplicity of  (u, v) in F. For every 
node v in V the degree of v in F is the degree of v in the multigraph G[F], and 
the neighbors of  v in F are the neighbors of 'v  in the multigraph G[F]. With every 
family F of edges of  G we associate a unique incidence vector X F ~ R E by setting 

F Xe equal to the multiplicity of  e in F for every e ¢ E. I f  c is a vector in R ~, the 
c-length of F, also denoted by c(F),  is defined as c(F)  = cx v. 

A tour of a graph G = (V, E)  is a family T of edges of  G such that: 

(i) the degree in T of every v c V is positive and even; 
(ii) G [ T ]  is connected. 
Observe that a Hamiltonian cycle in G is a tour where every node has degree 2, 

and that a tour is not in general a Hamiltonian cycle. The set of  all tours of Kn is 
denoted by 3-*. While ~ ,  is a finite set (since it contains ½(n-  1)! elements), J *  
contains an infinite number of  elements, since if T c  ~*  g / , ,  then T + k { e } c  J-* for 

every e e E~ and for every positive even number  k. In the following, we will be 
mainly interested in tours which are minimal under the operation of removing edges; 
therefore we define the set of  minimal tours by 

= o . , X  ~X I .  

By definition, the components of  the incidence vector of  a minimal tour have value 
0, 1 or  2. 
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Now, we define two subsets of g ,  and 3-n, respectively, that are associated with 
every inequality in R Eo and that are often used in this paper. For every inequality 
fx ~>f0 in R ~n, we call extremal the Hamiltonian cycles and the minimal tours whose 
incidence vectors satisfy the inequality with equality. The set of extremal 
Hamiltonian cycles and extremal tours are denoted by ~j7 and 3-j7, respectively, 
and formally defined by 

~ f  = {H c Yr, I fx"  =fo}, 

3-f = { T o  3-,[fxT=fo}. 

The Graphical Traveling Salesman Polyhedron (GTSP(n))  is the convex hull of  
the set of the incidence vectors of  the elements of 3-*, i.e.: 

GTSP(n) = conv{xT [ T c 3-*}. 

a t *  Since gn c g¢, it follows that STSP(n) c GTSP(n),  and so GTSP(n) is a relaxation 

of STSP(n). 
For every graph G, the set 3-* of all tours of G represents the solution set of  the 

Graphical Traveling Salesman Problem defined in Cornu6jols, Fonlupt and Naddef  
(1985) and in Fleischmann (1988). In the first paper the polyhedral structure of the 
polyhedron GTSP(G)  = conv{xr  [ T c 3-*} (the convex hull of  the incidence vectors 
of all tours of G) is investigated. It is shown that GTSP(G)  is full dimensional if 
G is connected and that, under connectivity conditions that are always satisfied by 

Kn, the cocycle inequalities 

x(6(U))>-2, f o r 0 # U c V ,  

where 6(U) is the cocycle { ( u , v ) c E [ u ~ U ,  v c V - U }  of the set U, are facet- 
defining for GTSP(G).  Moreover, a family of inequalities, the path inequalities, is 
defined and proven to be facet-defining for GTSP(G).  In Naddef  and Rinaldi (1991) 
a composition of inequalities is defined. This composition yields new facet-defining 
inequalities from facet-defining inequalities for GTSP(G) .  In the same paper the 
new family of path-tree inequalities is defined and its members are shown to be 

facet-defining for GTSP(G).  
In Section 2, we investigate the relationship between the polyhedra GTSP(n)  and 

STSP(n), and we show that every nontrivial facet of STSP(n) is contained in exactly 
n + 1 facets of GTSP(n),  n of which are defined by the degree inequalities, i.e., by 
the cocyle inequalities of the subsets of V with only one element. This permits to 
define a special form for the inequalities facet-defining for STSP(n) that is par- 
ticularly suitable for proving most of the results of the other sections and to devise 
a proof  technique that is used to show when an inequality defines a facet of STSP(n). 
We call such a form, tight triangular. The transformation of a facet-defining inequality 
into the tight triangular form allows one to easily check whether or not two given 
inequalities define the same facet of STSP(n). In Section 3, we extend the results 
on the composition of facet-defining inequalities for GTSP(n) ,  given in Naddef  and 
Rinaldi (1991), to STSP(n). In Section 4, we give some general lifting theorems that 
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are used to derive facet-defining inequalities for STSP(n*), with n * >  n, from 
inequalities defining facets of STSP(n). 

In the sequel paper Naddef  and Rinaldi (1988) we show, using these results, that 
the path and the path-tree inequalities define facets of STSP(n). These inequalities 
generalize the comb inequalities and the clique-tree inequalities, respectively. 
Moreover, we give some examples of application of the results of the Sections 3 
and 4 and we prove, e.g., that some new inequalities that generalize the chain 
inequalities are facet-defining for STSP(n). 

2. The polyhedra GTSP and STSP 

In this section, we show how the polyhedron GTSP(n)  and the polytope STSP(n) 
are closely related. We start by introducing two concepts concerning the inequalities 
in ~ E  that are extensively used in the following: the definition of the edge set J r (u )  
associated with an inequality fx  ~>fo and with every node u in V,, and the definition 
of tight triangular inequality. 

For any inequality fx>~fo and for each node u c V, the edge set A t ( u ) c  E, is 
defined as follows: 

~af(u) -- {(v, w) c E,,lu ~ v, u ~ w,f(v ,  w) =f (u ,  v) + f (u ,  w)}. 

The set As(u) is a key concept in our treatment: most of the results we give in the 
following are expressed in terms of  properties of As(u) for every node u in Vn. 

Definition 2.1. An inequalityfx>~fo defined on NE is said to be tight triangular ~ or 
in tight triangular form if the following conditions are satisfied: 

(a) The coefficients f~ satisfy the triangular inequality, i.e.: f (u ,  v)<~f(u, w)+  
f (w ,  v) for every triple u, v, w of distinct nodes in Vn. 

(b) At(u ) ~ {O for all u in Vn. 
We abbreviate tight triangular by TT and tight triangular form by TT form. 

Almost every inequality facet-defining for GTSP(n) is tight triangular as stated 
in the following proposition. As customary we use the notation 3(u) instead of 
~({u}) to denote the cocycle of the singleton {u}. We call xe~>0, for e e E , ,  the 
trivial inequalities. The trivial facets are those defined by the trivial inequalities. We 
call nontrivial every inequality and every facet which is not trivial. 

Proposition 2.2. An inequality cx >~ co facet-defining for GTSP(n) falls in one of  the 
following three categories: 

(i) trivial inequalities xe >i 0 for all e c En ; 
(ii) degree inequalities x (~(v) )  >~ 2 for all v e Vn ; 

(iii) tight triangular inequalities. 

1 In  a p rev ious  ve r s ion  o f  this  p a p e r  a n d  in m a n y  ta lks  o n  th is  sub jec t  we  used  the  t e r m  strongly 
triangular. 
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Proof. Let cx >i Co be a facet-defining inequality for GTSP(n).  First, suppose that 
the inequality does not satisfy the condition (a) of  Definition 2.1. It follows that 
there exists a triple u, v, w of distinct nodes in V, with c(u, v )> c(u, w)+c(w,  v). 
But then, for every tour T in 3-f containing the edge (u, v), the tour T ' =  
T - (u, v) + (u, w) + (v, w) has c-length strictly less than Co, contradicting the assump- 
tion that the inequality is valid. Consequently, no tours of  the set S-~ contain the 
edge e = (u, v), and so the inequality is the trivial inequality xe/> 0. 

Now, suppose that the inequality satisfies (a) but not (b) of  Definition 2.1. 
It follows that there exists a node u in Vn such that for every pair v, w of  distinct 
nodes in Vn-{u} ,  c ( u , v ) + c ( u , w ) > c ( v , w ) ,  which further implies e (u , v )> O  
for all v in Vn-{u}. Let T be a tour of  or* ~/, where u has degree higher than 2. 
I f  T contains 2{(u, v)}, let T ' =  T - 2 { ( u ,  v)}. Otherwise there is a pair of  distinct 
neighbors y, z of  u in T such that the edge family T ' =  T - ( u ,  y ) - ( u ,  z )+(y ,  z) is 
a tour. In both cases T' is a tour of  or. ~/, with c (T ' )  < c(T).  Consequently in none 
of the tours satisfying cx >~ Co with equality the node u has degree higher than 2, 
and so the inequality is the degree inequality x(~(u))>12. [] 

It is straightforward to see that if an inequality cx>~ Co defined on R z,, satisfies 
the condition (a) of  Definition 2.1, then ce ~> 0 for all e c En. Hence Proposition 2.2 
implies that all facet-defining inequalities for GTSP(n)  have nonnegative coefficients. 

From Proposition 2.2 it follows that for any nontrivial facet of STSP(n) there is 
an inequality defining that facet which is tight triangular. 

From the proof  of  Proposition 2.2 we get the following observation. 

Proposition 2.3. Let cx >~ Co be a TT inequality facet-defining for GTSP(n).  Then 
(a) for every edge e ~ E, there exists a tour T c J ~  such that e c T; 
(b) for every node v c Vn there exists a tour T' c 3-~ such that v has degree at least 

4 i n  T'. [] 

Since the definition of TT inequality applies only to inequalities defined on 
complete graphs, Propositions 2.2 and 2.3 do not hold in general for the polyhedron 
GTSP(G)  associated with a general graphy G. 

Let T be a tour in S-c with t > n edges. To prove some of the following results, 
we often need to derive from T a new tour T' in J-~7 having a smaller number  of  
edges. For this purpose, we show how, for TT inequalities, this can be achieved by 
a sequence of elementary operations. 

Definition 2.4. For every ordered triple (u, v, w) of  distinct nodes in V~, we call 
shortcut on (u, v, w) the vector su~w c R ~,, defined by 

f 1 i f e = ( v , w ) ,  
Su~w(e) = - 1  if e c {(u, v), (u, w)}, 

0 otherwise. 

Lemma 2.5. Let cx>~ Co be a tight triangular inequality which is supporting for 
GTSP(n) ,  and let T 6  J-~ be a tour having t>  n edges and containing the edge e. For 
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every node u ~ Vn with degree k >i 4 in T, there exists a shortcut Suvw such that the edge 

family having incidence vector X r +  suo~ is a tour with t -  1 edges belonging to S~. and 

containing the edge e. Moreover, the edge (v, w) belongs to A~(u). 

Proof. Let u be a node in V, with degree k/> 4 in T. Since every tour of J-7 contains 
at most twice the same edge, only three cases are possible (see Figure 1). 

Case (a). The families 2{(u, v)} and 2{(u, w)}, with w ¢ v, are contained in T. 
Case (b). The node u is adjacent in T to 3 distinct nodes v, w, and z and 2{(u, v)} 

is contained in T. Without loss of  generality we assume here that (u, w) ¢ e. 

w v w 

v 

a) b) c) 
Fig .  1. S h o r t c u t  r e d u c t i o n s  o f  a t ou r .  

Case (c). The node u is adjacent to 4 distinct nodes. Let (u, v) ¢ e and (u, y) ¢ e 
be any pair of  distinct edges in T incident with u. I f  the edge family T'  having 
incidence vector XT:'=Xr+S~y is connected, we set w =y.  Otherwise, let (u, z ) ~  e 

be an edge in T with z ¢ y and z ¢ v. Now, the family T'  having incidence vector 
Xr'=XT+Suvz is necessarily connected and we set w = z. 

In all cases, the edge family T' having incidence vector X r' = X T + Suvw is connected, 

and so it is a tour and contains e. Since the triangular inequality holds and cx >~ Co 

is supporting, it follows that Co<~ c(T')<~ c ( T ) =  Co; hence T ' c  3-2 and (v, w) 
~c(u). [] 

Observe that, by repeatedly applying Lemma 2.5, it is possible to obtain a 

Hamiltonian cycle H c Y¢2 containing the edge e from a tour T c 3-7 containing an 
edge e. We say that the tour T has been reduced to the cycle H or that the cycle 
H has been obtained from T by shortcut reductions. The following corollary is an 
immediate consequence of this observation. 

Corollary 2.6. I f  cx >1 co is tight triangular and facet-defining for GTSP(n),  then for 
every edge e in En there exists a Hamiltonian cycle of  ~ that contains e. 

The following lemma permits to show how the polyhedral structures of STSP(n) 
and GTSP(n)  are related. 
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Lemma 2.7. Let cx>~co be a facet-defining inequality for STSP(n). An inequality 

f x  >~fo equivalent to cx ~ Co is tight triangular if  and only if  f = AAn + zrc and fo = 
A2+ zrCo, where ~ > 0 and A ~ R v" satisfy 

h u = ½ z r m a x { c ( v , w ) - c ( u , v ) - c ( u , w ) l u ,  v, w 6 V , , u C v ~ w } .  (2.1) 

Proof. It is easy to verify that if A and ~- satisfy (2.1) the inequality f x  >fo is tight 
triangular. Suppose now that f x  >~fo is tight triangular. By imposing the condition 
(a) of  Definition 2.1 we have 

a, ~- ~Tr( c( v, w ) - c ( u ,  v ) - c ( u ,  w)) for all u ¢ v #  we Wn. (2.2) 

By condition (b) of Definition 2.1, for every u c V, there is a triple of distinct nodes 
u, v, w ~ V, for which (2.2) holds with equality. [] 

Many known inequalities defining facets of STSP(n) can be written in the following 
form: 

a~x(y(&)) <~ ~ a, IS, 1- r(6e), (2.3) 
i = 1  i = 1  

or equivalently 

azx( 6( S,) ) >12r(Se), (2.3') 
i = 1  

where ow= {S~, $ 2 , . . . ,  S,} is a collection of subsets of  Vn, 7(S)-~ E, denotes the 
set of edges with both the endpoints contained in S, and r ( . )  denotes a suitable 
rank function defined for 5 e. 

The support graph of an inequality cx >t Co defined on R E,, is the weighted graph 
G, = (V,,, E,,  c), where the weight of each edge e c En is given by Ce. 

In the Figures 2 and 3 we show the support graph of two facet-defining inequalities 
for STSP(n). We represent the support graph of an inequality in the form (2.3) by 
a collection of subsets of V, ; next to each subset Si we write its associated coefficient 
c~i. Here and in the following the support graph of a TT inequality is represented 

® 

_<8 _>10 

7"% 

a) b) 

Fig. 2. Equivalent comb inequalities for STSP(10). 
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1 

1 I 
1 

a) b) 

Fig. 3. Equivalent ladder inequalities for STSP(8). 

2 > 2 0  

) 

as a weighted graph where some edges are missing to make the picture more readable. 
The coefficients of a missing edge is the length of the shortest path connecting its 
endpoints in the graph. Figure 2(a) shows a comb inequality for STSP(10) in the 
form (2.3) and Figure 2(b) shows its equivalent TT inequality. Figure 3(a) shows 
a ladder inequality for STSP(8)in the form (2.3) and Figure 3(b) shows its equivalent 
Tl" inequality. 

Note that (2.1) implies that if cx >t Co is a facet-defining T r  inequality for STSP(n), 
then every TT inequality f x  ) f o  equivalent to it is obtained by multiplication by a 
positive real number. This observation suggests to associate with every nontrivial 
facet of STSP(n) an inequality which is tight triangular and that defines that facet. 
Like in the case of full dimensional polyhedra this inequality is unique to within 
multiplication by a positive real number. Therefore, from now on we consider only 
inequalities facet-defining for STSP(n) which are tight triangular. Observe that given 
an inequality facet-defining for STSP(n) which is not tight triangular, by Lemma 
2.7 the coefficients of a TT inequality equivalent to it can be computed in O(n 3) 
time. In this way we have a polynomial algorithm to check whether or not two 
inequalities define the same facet of STSP(n). 

Using the definition of tight triangular inequality we give now an alternative proof 
that the dimension of STSP(n) is ]Enl-  n. The proof is based on the following lemma. 

Lemma 2.8. I f  cx >~ Co is a TT inequality satisfied with equality by the incidence vectors 

o f  all Hamiltonian cycles o f  Kn, then c is the null vector. 

Proof. The c-length of all Hamiltonian cycles of Kn is Co. Consequently for all 
w c V, there exist two reals aw and bw such that for all distinct u and v c V, (see 
Berenguer (1979)) 

c(u, v) = au + b~. (2.4) 

Since c(u, v) = c(v, u), au - bu = a~ - b~. It follows that, for some real t, 

a w - b w = t  for a l lwcVn .  (2.5) 
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Since the inequality is tight triangular, for all w • V, there exist u and v e Vn, with 
u # v # w, such that c(u, v )= c(u, w)+ c(v, w), and so (2.4) and (2.5) imply that 
aw =i t  and bw =-½t  for all w e  V,, and the lemma follows. [] 

Theorem 2.9. The dimension of  STSP(n) is [Enl-  n. 

Proof. Lemma 2.8 implies that every equation satisfied by the incidence vectors of  
all Hamiltonian cycles of K,  is a linear combination of the degree equations A,,x = 2. 
Since A, has full row rank the theorem follows. [] 

Observe that the TT form for an inequality facet-defining for STSP(n) has been 
introduced here mainly for theoretical reasons to emphasize and to exploit the 
relationship between the two polyhedra. However, the form (2.3) may sometimes 
be more suitable to represent a facet-defining inequality for STSP(n) in a polyhedral  
based cutting-plane algorithm: the efficiency of these algorithms usually increases 
by using inequalities with a large number  of  zero coefficients (see Padberg and 
Rinaldi (1991)). While a simple inequality (see Section 4.2) has no zero coefficients, 
there always exists an equivalent inequality which is not tight triangular, has at least 
n zero coefficients, and it can be obtained by the reduction procedure described in 
Gr6tschel and Pulleyblank (1986). On the other hand this is not always the case: 
one can construct examples of  inequalities in TT form obtained by zero-lifting (see 
Section 4.2) of  simple inequalities, having more zero coefficients than their equivalent 

inequalities in the form (2.3). 
A basis of an inequality cx>~ Co defining a facet of  GTSP(n)  is a set ~c of  ]En] 

tours in 3-, whose incidence vectors are linearly independent.  We say that a tour 
T is almost Hamiltonian in u if u e V, has degree 4 in T and every other node in 

Vn has degree 2 in T. 

Definition 2.10. A basis ~, of  an inequality cx >1 Co defining a facet of  GTSP(n)  is 
called canonical, if it contains I En I - n Hamiltonian cycles and n almost Hamiltonian 
tours (i.e., if for every u e V,, there exists a tour T, e ~c almost Hamiltonian in u 
such that its incidence vector satisfies the equation x ( 6 ( u ) ) =  4, and such that for 
every tour T e  ~c - T, the v e c t o r  , T satisfies the equation x(6(u) )  = 2). 

The following theorem is a consequence of Definition 2.10. 

Theorem 2.11. A nontrivial TT inequality cx >1 Co which is facet-defining for STSP(n) 

defines a facet of  GTSP(n).  

Proof. For every u c 1/., construct a tour T. c 3-~ in the following way: Let e = (v, w) 
be any edge in A~.(u) and He • ~ c  be a cycle containing e; this cycle exists otherwise 
the inequality would be equivalent to the trivial inequality xe>~0. Then define 
7". = He - e + (u, v) + (u, w). Since cx >1 Co is facet-defining, there is a set ~ of  [E. [ - n 



64 D. Naddef, G. Rinaldi / The Symmetric Traveling Salesman Polytope 

Hamil tonian cycles o f  ~ 7  whose incidence vectors are linearly independent.  Suppose 

that the vectors {X/~ I H c ~} w {x~l  u c W,,} are not linearly independent .  Then there 
exist A 6 R  ~ and ~ c R  v such that 

2 AI4X" + Y. tz.X L = 0. (2.6) 
H E ~  uE V,, 

Since the vectors {X H [ H c ~ }  are linearly independent ,  at least one componen t  o f  

p~ is nonzero.  Let v and w be any two distinct nodes  of  V,. By multiplying all 
vectors in (2.6) by the incidence vectors of  8(v)  and 6(w),  we get 

2 ~ h . + 2  ~ ~ + 4 / x ~ + 2 t X w = 0  
Hc~3 u~V. {v,w} 

and 

2 ~ A H + 2  Y, /~u+2/~v+4tZw=0,  
HegJ3 uc V,,-{v,w} 

respectively. From the last two equat ions it follows that /z~ = tZw, and so we can 

assume, wi thout  loss o f  generality, that  /~u = 1 for all u in V.. This implies that 

~ . ~  AH = --(n + 1). Let us now multiply all vectors in (2.6) by c. Since all these 

vectors satisfy the inequality cx >~ Co to equality, the resulting equation is 

( 5~ AH) c ° + n c ° = - ( n + l ) c ° + n c ° = O ' H ~  

which implies Co = 0 and contradicts the assumpt ion that the inequality cx >~ Co is 

facet-defining. Consequent ly  ~ w {XLIu c Vn} is a canonical  basis of  cx >~ Co. [] 

To see why Theorem 2.11 does not  apply to trivial inequalities in TT form, take 

a trivial inequality xe ~> 0, with e = (u, v). The inequali ty is facet-defining for STSP(n)  
if n ~> 5, and so we assume that we are in this case. By Lemma 2.7, we can find a 

TT inequalityfx>~f~ equivalent to it with respect to STSP(n).  It is easy to see that 

fo = 2 ( n - 2 ) ,  and that for all e c En (see Figure 4) 

/12 if ec~({u, v}), 
f~ = otherwise. 

The inequality fx  >~fo is support ing for GTSP(n) ,  but  is not  facet-defining. Since 
Ay(w) = {(u, v)} for all w c V. - {u, v}, and since (u, v) ~ H for all H c ~ r ,  it follows 

2 2 

Fig.  4. A t r iv ia l  i nequa l i t y  in TT fo rm.  
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that in all tours of  3-)- every node of the set V, - {u ,  v} has degree 2. Hence f x  >~fo 
defines a face of  GTSP(n)  of  at most dimension ½n(n - 1) - n +2.  

The inequalities Xe <~ 1 for e c En define facets of  STSP(n), for n/>4. Some authors 
(see, e.g., Gr6tschel and Padberg (1985)) also call these inequalities trivial. In our 
setting the inequality xe ~< 1 is nontrivial and its TT form is the cocyle inequality 
x(6({u, v})/>2, where e = (u, v), which is facet-defining for GTSP(n),  as said in 
Section 1. 

Theorem 2.12. Every nontrivialfacet of  STSP(n) is contained in exactly n + 1 facets 
of  GTSP(n),  n of  which are defined by the degree inequalities. 

Proof. Let F be a nontrivial facet of  STSP(n). F belongs to the n facets of  GTSP(n)  
defined by the degree inequalities. Every other facet of  GTSP(n)  containing F is 
defined by a TT inequality. By Lemma 2.7, there is only one such a facet and the 
theorem follows. [] 

This theorem shows that the polyhedral structure of  STSP(n) is very closely 
related to that of  GTSP(n).  This strong relationship between the two polyhedra 
motivates our choice of GTSP(n)  as a relaxation of STSP(n). 

It is very simple to see that Theorem 2.12 does not hold when GTSP(n)  is replaced 
by the MTSP(n).  Take, e.g., a comb inequality in the form (2.3), where the sets Si, 
i = 1 , . . . ,  t, are the handle and the teeth of the comb. The inequality is facet-defining 
for MTSP(n),  since it satisfies the conditions of  Theorem 9 in Gr6tschel and Padberg 
(1985, p. 272). I f  we substitute any of the sets Si of  the inequality by its complement  
Si, we obtain an equivalent inequality for STSP(n) that still satisfies the conditions 
of  the above mentioned Theorem 9, and so it defines a different facet of  MTSP(n) .  

A natural question to ask at this point is whether or not any TT inequality 
facet-defining for GTSP(n)  defines also a facet of  STSP(n). Corollary 2.6 is not 
sufficient to guarantee a positive answer to this question; on the other hand we do 
not know any example of  a TT inequality facet-defining for GTSP(n)  which does 
not define a facet of  STSP(n). Definition 2.10 implies that a TT inequality facet- 
defining for GTSP(n)  defines a facet of  STSP(n) if and only if it has a canonical 
basis. The basic observation that permits us to derive conditions that guarantee that 
an inequality has a canonical basis is contained in the following remark. 

Remark 2.13. Let cx>~ Co be a TT inequality facet-defining for GTSP(n)  and ~c be 
one of  its bases. Let {T, l u c  Vn} be a set of  n almost Hamiltonian tours of  3-7, 
where by T, we denote a tour almost Hamiltonian in u. I f  every tour T of ~c can 
be reduced to a cycle of  Yg~ by using only shortcuts obtained by a linear combination 

of the incidence vectors of  elements of  ~/c = Yf£ w {T,[u  ~ Vn}, then M~ contains a 
canonical basis of  cx >I Co. To put it differently, the incidence vector of  T can be 
expressed as a linear combination of the incidence vectors of  elements of  Mc. In 
general, it is sufficient that every shortcut be obtained as a linear combination of 
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the incidence vectors  of  e lements  of  s/~ with coefficients in N. However ,  in order  

to obtain s imple sufficient condi t ions  based  on some proper t ies  of  ~ ,  we restrict 
the coefficients o f  the l inear combina t ion  to the set { -1 ,  0, 1}. 

Let e = (u, v) and f =  (w, y)  be two distinct edges in E ,  and let z be a node  in 
V,. We say that  e and f are c-adjacent if there exists a Hami l ton ian  cycle H • Y(c 
containing bo th  e and f We say that  e and f are e-adjacent in z if: 

(i) e and f be long to A,(z) ;  
(ii) there exists a tour  T~ • 3-2 a lmost  Hami l ton i an  in z that  contains (z, u), 

(z, v), (z, w) and  (z, y);  

(iii) T ~ -  (z, u ) -  (z, v ) +  e is a Hami l ton i an  cycle (and so T ~ -  (z, w ) -  (z, y ) + f  is 
also a Hami l ton ian  cycle). 

A set of  edges J_~ E ,  is said to be c-connected if for  every pair  of  distinct edges 

f l  and f 2 •  J there exists a sequence  of  k edges e ~ , . . . ,  ek in J, with e~---f~ and 
ek ------f2, such that  e~ is c-adjacent  to e l l ,  for  i = 1, . . . ,  k -  1. A set of  edges J c  E ,  
is said to be c-connected in z if  for  every pair  of  distinct edges f l  and f2 • J there 
exists a sequence of  k edges e ~ , . . . ,  ek in En (not necessari ly belonging to J ) ,  with 
e~ -=f~ and ek --=f2, such that  e~ is c -adjacent  in z to e~+l, for  i = 1 , . . . ,  k - 1. Observe  
that  the not ion of  c-connectedness  in z is " w e a k e r "  than  that  o f  c-connectedness ,  
in the sense that,  contrari ly to what  happens  for  the usual  concept  of  connectivity,  
in this case every subset  of  a set c -connected  in z is c -connected  in z as well. 

Lemma 2.14. Let  cx>~ Co be a T T  inequality facet-defining fo r  GTSP(n) .  I f  A , ( u )  is 

c-connected in u f o r  every u • V~ then cx >~ Co has a canonical basis, and so it is 

facet-defining fo r  STSP(n) .  

Proof.  Let u be  a node  in V,, and { T ~ [ v c  Vn} be any set o f  n almost  Hami l ton ian  
tours of  3-~.. This set always exists by Corol la ry  2.6, since cx ~ Co is tight t r iangular ,  
and can be const ructed as in the p r o o f  of  Theo rem 2.11. By L e m m a  2.5 there exists 
a shortcut  suye, with (y, if) c A , ( u )  that  can be used to reduce  Tu to a cycle H in 
Ygc. Consequent ly  we have 

s,;~ = X H - X L,  

and so S,yz is a l inear  combina t ion  with coefficients in { -1 ,  1} of  the incidence 
vectors  of  e lements  in s¢~ = ~ u {T ,  lu c V,}, I f  ]At(u)[ = 1 we are done. Otherwise  
let e = (v, w) and  f =  (y, z) be two distinct edges in A t ( u )  e-adjacent  in u. The fact 
that  the two edges m a y  or may  not  have a c o m m o n  endpoin t  does not change the 
proof .  Let us assume that  the shor tcut  S,y~ is a l inear combina t ion  with coefficients 
in { -1 ,  1} of  the incidence vectors  of  e lements  of  ~ .  Since e and f are c-adjacent  
in u there exists a tour  T" • 3-7 a lmost  Hami l ton i an  in u containing (u, v), (u, w), 
(u, y)  and (u, z), and  the two Hami l ton i an  cycles 

H1 = r ' - ( u ,  y ) - ( u ,  z )+(y ,  z), 

H2 = T ~ - ( u , v ) - ( u ,  w ) + ( v ,  w) 
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belong to Y(~- by the triangular inequality. The shortcut S,~w can be expressed as 

follows: 

Suvw = X H2 -- X HI "~ Suyz, 

and so it is a linear combination with coefficients in {-1 ,  1} of the incidence vectors 
of  tours in ~ .  By the assumption that At(u) is c-connected in u, it follows that for 
all u e V, and for all (v, w) e A~(u) the shortcuts su~ can be expressed as a linear 
combination of  the incidence vectors of  elements in ~,., and by Remark 2.13 the 

lemma follows. [] 

The conditions of  Lemma 2.14 are too strong, since the choice of  the basis Y3c of 
the inequality cx >1 Co and the choice of  the shortcuts in the process of  reducing a 
tour in ~ to a cycle in Y(~ can be completely arbitrary. I f  we consider a particular 
basis of  the inequality and we restrict ourselves to a suitably chosen subset of  
shortcuts for the reductions of  the tours of  the basis, we can weaken the conditions 
of  Lemma 2.14 by requiring that only a subset of  A~(u) be e-connected in u. The 
weak version of  Lemma 2.14 is the following lemma, that is the one we use in the 
following sections to prove that some families of inequalities define facets of  
STSP(n). 

Lemma 2.15. Let  cx >~ co be a "IT inequality facet-defining for  GTSP(n).  I f  there exists 

a basis ~ ,  o f  cx >~ Co and i f  for  every u e Vn there exists a nonempty set o f  edges 

Ju c_ Ac(u ) c-connected in u, such that every tour T c  ~c can be reduced to an element 

o f  Y(~ by using only shortcuts in the set {Su~w I(v, w) c J~, u e Vn}, then cx >1 co has a 

canonical basis, and so it is facet-defining for  STSP(n). 

Proof. For every u e Vn let (v, w) be any edge in Ju. By Corollary 2.6 there exists 
H e Yfc containing the edge (v, w). Let Tu be the almost Hamiltonian tour defined 
as T, = H - ( v ,  w ) + ( u ,  v ) + ( u ,  w). By Remark 2.13 and a process analogous to that 
of  the proof  of  Lemma 2.14 it follows that the set .ff~ = ~(~ w {Tul u e Vn} contains 
a canonical basis for cx >~ Co and the lemma follows. [] 

3. Composition of facet-defining inequalities 

Due to the complex polyhedral structure of the polyhedra GTSP(n)  and STSP(n) 
the description of families of  inequalities facet-defining for them may become a 
very complicated task. To simplify this description we use the following approach.  
We assume that some "elementary" facet-defining inequalities are known and we 
use them as "building blocks" of  more complex facet-defining inequalities. To do 
so we describe some operations that permit to obtain new facet-defining inequalities 
from the building blocks. We give two kinds of  operations: the node lifting, that 
we describe in Section 4 and the composit ion of inequalities that we describe in 
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this section. An application of this approach is given in Naddef  and Rinaldi (1988) 
where we prove that path inequalities are facet-defining for STSP(n) and then we 
use them as building blocks to which we apply the operations described in these 
two sections. 

In Naddef  and Rinaldi (1991) it is described a composit ion operation that permits 
to obtain new facet-defining inequalities from pairs of  facet-defining inequalities 
for GTSP(n).  This operation is called s-sum and is based on the s-sum operation 
of the support  graphs of the two inequalities. We describe here this operation for 
s = 2  (2-sum) and then we show how it produces inequalities that are, under 
additional conditions, facet-defining for STSP(n). 

We say that two weighted graphs G 1 = ( V 1, E 1, C 1) and G 2 = (V 2, E 2, C 2) are 

isomorphic if there exists a one-to-one correspondence p between their node sets 
that preserves the weight function, i.e., for every edge (u, v ) ~ E  l, the edge 
(p(u), p(v)) belongs to E 2 and el(u, v) = c2(p(u), p(v)). 

1 Definition 3.1. Let c l x  I ~ C O and cZx 2 >i c 2 be two TT inequalities valid for GTSP(nl)  

and G T S P ( n 2 )  , respectively, and let e I = ( u l ,  Vl) C En~ and e 2 = (U2,  V2) C E,,  2 be two 
edges such that cl(ul,  vl) = c2(u2, v2) = e > 0. Denote by V 1 the set V , , -{u l ,  vl} and 
by V 2 the set Vn2-{u2, v2}. Then a 2-sum of the two inequalities, obtained by 
identifying u~ with u2 and vl with v2, is the inequality cx >~ C~o+ c2-2e  defined on 
~E,,, with n = nl + n2 -- 2 ,  whose support  graph Gc = ( Vn, E,,, c) is defined as follows: 

(i) v,  = v l +  V2+{u, v}; 

(ii) the subgraph of Gc induced by v l+{u ,  v} is isomorphic to Gc~ and u and 
v correspond to Ul and Vl, respectively, in the isomorphism; 

(iii) the subgraph of Gc induced by V2+{u, v} is isomorphic to G,2 and u and 
v correspond to u2 and v2, respectively, in the isomorphism; 

(iv) the coefficients of  the edges with one endpoint in V1 and the other in V2, 
that we call the crossing edges of  the 2-sum, are computed in the following way: 
an ordering of the crossing edges el, ez, • • . ,  ek is given. For every i c { 1 , . . . ,  k}, let 
T i be a minimum c-length tour among all tours in Gi=(Vn,  E~), where E ~= 

En -{e~+~, . . . ,  ek}, that contain the edge ei. Then % is the value for which c(T  ~) = 
c~+ Co 2 -2e .  

2 The inequalities c lx l>  c~ and c2x2>~ Co are called the component inequalities of  
the 2-sum. 

The condition that cl(ul,  vl) = c2(u2,  v2) given in Definition 3.1 is not restrictive, 
since it can always be satisfied by multiplying one of the two inequalities by a 
suitable positive number. 

The procedure described at the point (iv) of  Definition 3.1 is the usual sequential 
lifting procedure (see, e.g., Padberg (1973)). The ordering of the crossing edges is 
called lifting sequence. In general the values of the coefficients of  the crossing edges 
depend on the lifting sequence, therefore for a given pair of  inequalities there may 
be many 2-sum inequalities obtained by different lifting sequences. 
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We call a 2-sum inequality h-liftable if the coefficients of  its crossing edges can 
be computed by a lifting sequence such that, for every crossing edge e~, the minimum 
c-length tour in G ~ containing e¢ can be reduced to a Hamiltonian cycle in G g 
having c-length c0~+ co 2 -  2e and containing e~. 

For the sake of  simplicity, from now on every time that the correspondence 
between nodes, edges, and tours of  each of the graph Gq and G~2 and their 
corresponding isomorphic subgraphs of G~ is evident, we omit to mention it 
explicitly. 

Let cx >~ co be an inequality supporting for GTSP(n);  a node v c V. is said to be 
k-critical for the inequality if the c-length of a minimum c-length tour of K.  -{v}  
is co-  k. 

Remark 3.2. The value k in the above definition cannot exceed the value /~= 
2 min{c,[e c 8(v)}, because otherwise there is a tour of  Kn with c-length less than 
Co. In this paper we consider only two types of critical nodes, 0-critical and/~-critical, 
where/7 is defined as before. Observe that to show that v is/~-critical it is sufficient 
to exhibit any tour of K , - { v }  of  c-length co-/~ 

1 2 Remark 3.3. For the remaining of  this section we assume that clx  ~ >~ Co and c2x 2 >1 Co 

are TT inequalities supporting for GTSP(n0  and GTSP(n2), respectively, and that 
the nodes ul ¢ vl e Vn, and u2 ~ v2 c Vn2 are such that c~(u~, v~) = c2(u2, v2) = e. We 
assume that the inequality cx >~ Co defined on Re,,, with n = n~ + n2-2 ,  is the 2-sum 
of  the two inequalities obtained by identifying u~ with u2 and v~ with v2 and we 
call v and u, respectively, the nodes resulting from these identifications. Finally, we 
denote by V ~ and V 2 the node sets V,,-{u~, v~} and Vn2-{u2, v2}, respectively. 

The following theorem proven in Naddef  and Rinaldi (1991) gives conditions for 
a 2-sum inequality to be facet-defining for GTSP(n).  

Theorem 3.4. Under the assumptions o f  Remark 3.3, let clxl>~ c~ and c2x2 ~ c~ be 

facet-defining for  GTSP(n0  and GTSP(n2), respectively. The 2-sum inequality cx >~ Co 
is facet-defining for GTSP(n) i f  vl is 2e-critical for c l x l ~  c~ and at least one o f  the 

2 two nodes u2 and v2 is 2e-critical for c2x2 ~ Co. [] 

The condition given in Naddef  and Rinaldi (1991) for Theorem 3.4 is weaker 
than the one given here. In fact it is required that there exist 7"1 ~ J-~ with 2{(Ul, Vl)} c 
T1, and T2 ~ J-~ with 2{(u2, v2)} c T2. This condition is implied by the 2e-criticality 
of vl and u2 (or v2). In this paper we prefer to give the theorem in the current form, 
because 2e-criticality is necessary in the following Theorem 3.5. 

The next theorem is the corresponding of Theorem 3.4 for STSP(n). 
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2 Theorem 3.5. Under the assumptions of  Remark 3.3, let clx~>~ c~ and c2x2>~ Co be 
nontri/)ial and facet-defining for STSP(nl) and STSP(n2), respectively. The 2-sum 
inequality cx >>- Co is facet-defining for STSP(n) i f  it is h-liftable and: 

(a) /)1 is 2e-critical for clx  1 >~ Cio, 
(b) 8(u2) is c2-connected, 

and either (case (A)) 
2 (c') u2 is 2e-critical for c2x2>~ Co, 

(d') 6(/)1) is cl-connected, 
or (case (B)) 

(c") /)2 is 2e-critical for c2x2 >~ c 2, 
(d") 3(Ua) is cl-connected, 
(e") there exists a Hamiltonian cycle H~ c ~ containing the edge (u~, /)~) and any 

edge e I C Ac,(/)l) , 
(f") there exists a Hamiltonian cycle Hec  2g2~ containing the edge (u2, /)2) and any 

edge e 2 e Ac2(/)2). 

Proof. To prove the theorem we first construct a basis ~c of  cx >~ Co. Then we define 
for every w ~ V~ a set of  edges Jw ~-At(w) such that every tour in ~c, where the 
node w has degree higher than 2, can be reduced to a tour where w has degree 2, 
by using only shortcuts in the set {Swyz I (Y, z) c Jw}. Then by Lemma 2.15 it is sufficient 
to show that Jw is c-connected in w for all w c Vn. Let c¢1 and c¢2 be two canonical 
bases of  c~x ~ >~ c~ and c2x2>~ c 2, respectively. ~ and c¢2 always exist since the two 

inequalities are nontrivial and facet-defining for STSP(nl) and STSP(n2), respec- 
tively. For i = 1, 2, we call 7",, and T~, the tours in % which are almost Hamiltonian 
in u~ and /)~, respectively. Let F~ be a Hamiltonian cycle of  K,~-{/)1} of cl-length 
c~ -  2e and let F2 be a Hamiltonian cycle of c2-1ength c~ -  2e of the graph K,~ - {u2} 
if we are in case (A), and of the graph K,~-{/)2} if we are in case (B). By Lemma 
2.5 the cycles F~ and F2 always exist. I f  we are in case (A) we assume without loss 
of  generality that 

T~ = F1 w 2{(Ul,/)1)}, 

Tv2 = F2k-3 2{(u2,/)2)}- 

I f  we are in case (B) we assume without loss of generality that 

T~l = Cl u 2 { ( u l , / ) 1 ) } ,  

Tv, = H l - e ,  d-(w', /)l)t- ( wit, /)1), 

gu 2 ~-/"2 k_) 2{(a2, / )2)} ,  

T ~ = H 2 - e 2 + ( z ' ,  /)2)q-(Z", /)2), 

where (w', w") = e 1 and (z', z") = e2. 
Let @~ c 3-2 be the set of tours obtained by adding the edges of  F2 to each tour 

in cg~ and Ne c 3-2 be the set obtained by adding the edges in F~ to each tour in 
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cg2. Finally, since cx>~ Co is h-liftable there is a sequence of the crossing edges 
{e l ,  e2 . . . .  , ek} and a sequence of Hamiltonian cycles {Hi,  H 2 , . . . ,  Ilk} belonging 
to YC~, such that the cycle Hi, with 1 <~ i ~< k, contains only edges in E,  l w E~ 2 u 
{ejl 1 <~j ~ i}. Let ~3 c Y(£ be the set 

~3={Hi[ l~ i<~k} .  

The set N1 u N2 ~ ~ 3  contains ½n(n - 1) elements (the tour F~ u / '2  u 2{(u, v)} is 
contained in both N~ and ~2) and (see Naddef  and Rinaldi (1991)) is a basis for 
cx >-Co, and so this inequality is facet-defining for GTSP(n).  Since ~ 3  is a set of  
Hamiltonian cycles, to prove that cx >! Co is facet-defining for STSP(n) it is sufficient 
to apply Lemma 2.15 to the set ~ u  Nz. Every node we  V~-{u, v} has degree 2 
in all tours in N~ u N2 except one, where w has degree 4. Consequently, Jw has 
cardinality 1, and so it is c-connected in w, for we  V , - { u ,  v}. 

Case (A). The sets J,  and J~ are given by: 

J~ = {(y', y") ly ' e  V2w {v}, y "e  {tl, Zl}}, 

• Iv ={(y ' , y 'Dly 'e  V I u { u } , y " e { t 2 ,  z2}}, 

where h and zl are the neighbors of u in F~ and t; and z2 are the neighbors of v 
in F2. Take now two nodes Sl and s2 in Vaw {u} such that the edges (v, s~) and 
(v, s2) are c~-adjacent, and so they both belong to a cycle H e  2(~. Since the tour 
To = H ~ 12, almost Hamiltonian in v, contains (v, sO, (v, s2), (v, t2), and (v, z2) and 
since by triangular inequality all edges (s~, t2), (Sl, z2), (Sz, t2), and (s2, z2) belong 
to A,(v), it follows that these four edges are pair wise e-adjacent in v. The edge set 
a(v) is cwconnected, and so J~ is e-connected in v. Analogously it can be proven 
that J~ is c-connected in u and this completes the proof  for the case (A). 

Case (B). In this case the node v has degree 2 in all tours of N~ ~ N2, except 
for T~, +/ '2 and T~ + F1. Consequently, the sets Ju and J~ are  given by Ju = Jlu U j 2  

and J~ = {el,  e2}, where 

J~. = {(y',  y") ]y' e v '  u { v}, y " e  { t~, ~}} 

and 

J~ = {(y', y")]y'e V2u {v}, y"c  {t,, z,}}, 

and where tl, zl, t2, and z2 are defined as in case (A). Using the same argument 
as in case (A), it follows that J~ and J~ are e-connected in u, and since their 
intersection is nonempty it follows that Ju is c-connected in u. Finally, consider the 
Hamiltonian cycles H1 and H2 of the conditions (e") and (f"). The Hamiltonian 
cycle H 1 u  H~--(ul, Vl)-(u2,  v2) belongs to ~ 7  and contains el and e2. Con- 
sequently, J~ is c-connected in v. [] 

As already shown in Naddef  and Rinaldi (1991) the 2-sum operation can be 
applied to two inequalities which are themselves 2-sum inequalities. The process 
can go on indefinitely and produce the tree-inequalities. To show that a tree-inequality 



72 D. Naddef,, G. Rinaldi / The Symmetric Traveling Salesman Polytope 

is facet-defining for GTSP(n) or STSP(n) the Theorems 3.4 and 3.5 can be inductively 
applied. To do so it is essential that some properties of the component inequalities 
that are required by these theorems are inherited by the resulting 2-sum inequality. 
The following lemmata give conditions for these properties to be hereditary. 

1 Lemma 3.6. Under the assumptions of  Remark 3.3, let w c V~, be k-critical for c 1 x 1 ~ Co, 
and c1~ =½k for some edge e c 6(w) in K~,. The corresponding node w ~ V~ is k-critical 
for cx >1 Co if  cx >1 Co is supporting for GTSP(n) and any of  the following conditions 
holds: 

(a) w ~ Vl and u2 is 2e-critical for c2x2>~ c 2, 
(b) w # Ul and v2 is 2e-critical for c2x2>~ c 2. 

Proof. Let T 1 be a minimal cl-length tour of K n - { w }  of cl-length c l - k .  Let T 2 

denote a minimal c2-1ength tour of K,~-{u2} if (a) holds and of K,~-{v2} if (b) 
holds. The c2-1ength of T 2 is c~-2e.  The tour of K, -{w} whose edges correspond 
to the members of T l + T 2 has c-length c l+  c~ - 2e - k. Since the edge corresponding 
to e belongs to 6(w) in K,,  the lemma follows by Remark 3.2. [] 

Lemma 3.7. Under the assumptions of  Remark 3.3, / f  there exists a Hamiltonian cycle 
H c ~ containing two nonadjacent edges e and f c  E~, and at least one of  the two 
nodes u2 and v2 is 2e-critical for c2x2>~ c~, then there exists a Hamiltonian cycle 
H* c ~ containing the edges in E~ corresponding to e and f, respectively. 

Proof. Without loss of generality, let v 2 be 2e-critical. Then by Lemma 2.5 there 
exists a Hamiltonian cycle H 2 of K,  2 - {v2} of c2-1ength c~ - 2e. The tour of K,  whose 
edges correspond to the elements of  H + H 2 is almost Hamiltonian in u2 and belongs 
to 3-7. By Lemma 2.5 this tour can be reduced to a Hamiltonian cycle in Y(c that 
contains both e and f since they cannot be both incident with the node u2. [] 

Lemma 3.8. Under the assumptions of  Remark 3.3, let 6(w) in K~, be cl-connected 
for every node w c Vnl and let 6(w) in Kn2 be c2-connected for every node w c V,2. 
Then 6 (w) in Kn is c-connected for every node w c Vn if the following conditions hold : 

(i) cx >! Co is h-liftable; 
(ii) at least one of the two nodes ul and v~ is 2e-critical for clx~>~ c~; 

(iii) at least one of  the two nodes u2 and v2 is 2e-critical for c2x2>~ c~. 

Proof. For i = 1, 2 and for every w ~ Vn, let /~(w) c En denote the set of  edges 
corresponding to g(w) in K,,~. Let w be a node of V~,-{ul, Vl} and let (y, w) and 
(z, w) be two edges of 81(w) whose corresponding edges of  Kn, are c~-adjacent. It 
follows that there exists a cycle H E ~7, containing (y, w) and (z, w). Without loss 
of generality, let v: be 2e-critical for c2x2>~ c~. Then, there exists a Hamiltonian 
cycle H 2 of K,2-{u2 } having length c2-2e.  The tour H + H  2 of K,  is almost 

Hamiltonian, has length Co, and can be reduced to a cycle containing both (y, w) 
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and (z, w). Since 6(w) in Kn, is cl-connected, it follows that 61(w) is c-connected. 
The edge set ~(w) of K,  is the union of 61(w) and of a subset of the crossing edges. 
Consequently, since the inequality cx >~ Co is h-liftable, it is easy to show that also 
6(w) is c-connected. Similarly, it can be shown that ~(w) is c-connected for all w 

in Vn2--{U2, V2}. 
Consider now the case w = v and let /4,  (y, w), and (z, w) be defined as for the 

2 previous case. If  v2 is 2e-critical for c2x2~ Co, then as before one can construct a 
Hamiltonian cycle in Kn containing both (y, w) and (z, w), and show that the two 
edges are c-adjacent. Otherwise, u2 is 2e-critical, and so there exists a Hamiltonian 
cycle H 2 of Kn2-{u2} with length c2-2e.  Let w' and w" be the two neighbors of  v2 
in H 2. The edge (y, u) is c-adjacent to the edge (u, w') because the cycle H + H  2 -  
(z, u ) - ( u ,  w")+(z, w") in Y£~ contains both of  them. The edges (z, u) and (u, w') 

are c-adjacent because they belong to the cycle H + H 2 -  (y, u ) -  (u, w")+ (y, w") in 
Yg~-. Following the same argument for two c2-connected edges of 62(w) and 
observing that 6(u)= S l (u )w  32(u) and 61(U)~ 62(U)= {(U, V)}, it is easy to show 

that ~(w) is e-connected. The case w = u is completely analogous to the previous 
one. [] 

4. Node lifting 

Figure 5(a) shows the support graph of a 2-matching inequality defined on R E°. The 
graphs of the Figures 5(b) and 5(c) are the support graphs of comb inequalities 
defined on R ET. The coefficients of the three inequalities coincide for all edges with 
both the endpoints in the set {1, 2 , . . . ,  6}. Therefore each of the two inequalities 
of the Figures 5(b) and 5(c) can be considered as an "extension" of the inequality 
of Figure 5(a). 

In Gr6tschel and Padberg (1979b) the operations that leads to extended 
inequalities is called "lifting" and some conditions are given under which the lifting 
applied to a facet-defining inequality produces a facet-defining inequality in a higher 
dimensional space. Then the comb inequalities are proven to be facet-defining in a 
two-step process. First it is shown that the 2-matching inequalities are facet-defining 

2 2 2 

a) b) c) 
Fig. 5. 
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for STSP(n), n I> 6. Then it is shown that all comb inequalities are obtained by 
applying the lifting to the 2-matching inequalities and that the aforementioned 
conditions for this lifting are satisfied. 

In this section we describe many kinds of  extensions for facet-defining inequalities 
for STSP(n) in TT form. We call the extension node lifting and we give conditions 
that guarantee that the extended inequality is facet-defining. These conditions are 
satisfied not only by the 2-matching inequalities, but by most of the facet-defining 
inequalities known to date. 

Let Kn = (Vn, En) and Kn. = (Vn., E~.) be two complete graphs with n nodes and 
m edges and n * >  n nodes and m* edges, respectively. We denote by V, = 
{ul, u 2 , . . . ,  u,} the nodes of  Kn and by V,. = Vn u {Un+l, • • •, u,.} the nodes of  K~.. 
We say that an inequality c*x*>~ co* defined on ~ - *  is obtained by node lifting of 
the inequality cx >i Co defined on R Eo if 

C:g(Ui, Uj)=C(Ui, Uj) fo ra l l  l<~ i<j<~n .  

An inequality c * x * ~  co* obtained by node lifting of the inequality cx >1 Co is com- 
pletely defined by co* and the coefficients of the edge sets 6(v),  v ~ {u ,+~ , . . . ,  un.}. 

A special case of  node lifting occurs when c*(v, u) = 0 for some u c V, and all 
v ~ {u~+~, . . . ,  un.}. We say in this case that the inequality c*x*>~ co* is obtained 
from cx >~ Co by zero-lifting o f  node u. For a TT inequality obtained by zero-lifting 
the following property holds as a direct consequence of Definition 2.1. 

Proposition 4.1. For a T T  inequality c ' x *  ~ Co obtained f rom cx >>- Co by zero-lifting 

o f  node u c Vn the following holds: 
(i) c*(v, w) = c(u, w) for  all w c  Vn - {u}  and all v c { u , + l , . . . ,  u,.}; 

(ii) A c . ( v ) = A c ( u ) u U { ~ ( v ' ) - ( v ' , v ) l v ' ~ { u , u , + l , . . . , u , . } , v ' ~ v }  for  all v c  

{u ,+~ , . . . ,  u,.}, where 8(v ' )  is a subset o f  En.. [] 

The zero-lifting of a node u can be seen as the operation of replacing u with a 
clique of q > 1 nodes in the support  graph of an inequality ex >1 Co defined on RE. 
The coefficient of the inequality c ' x *  >~ Co associated with the resulting graph are 
defined as follows. The value of the coefficients of  all edges of  the clique is set to 
zero and for every node v of  the clique and every node w c V,, - {u} the coefficient 
c*(v, w) is set equal to c(u, w). For this reason the zero-lifting is also called 
clique-lifting in Padberg and Rinaldi (1990), where a general separation procedure 

for inequalities obtained by clique-lifting is described. 

4.1. 1-Node lifting 

When n* -- n + 1 we have a special case of  node lifting that we call 1-node lifting. 

The next theorem gives conditions that are satisfied by Co* and the coefficients of  
the edge set 6(un+l) when c ' x *  >1 co* and cx >~ Co are facet-defining for GTSP(n + 1) 
and GTSP(n),  respectively. 
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Theorem 4.2. Let c*x *>>- c* be an inequality facet-defining for GTSP(n + 1) which is 
obtained by 1-node lifting of a TT inequality cx >~ Co facet-defining for GTSP(n);  then 
the following conditions hold: 

(i) e 'x* >1 c* is tight triangular; 
(ii) c* = Co; 

(iii) for all e~ A~.(u.+l) there exist e '~  e, e' c Ac.(u.+O and H c Y(~ such that e 
and e' belong to H; 

(iv) every connected component of  the graph ( Vn, A~.(u.+~)) contains at least one 
odd cycle. 

Proof. If e*x >1 c* is not tight triangular, by Proposition 2.2 it is either a trivial or 
a degree inequality. Since these inequalities cannot be obtained by 1-node lifting 
of  TT inequalities (i) follows. 

The coefficients of the inequality e 'x*  >~ e* satisfy the triangular inequality; this 
implies that e* >~ Co. Since the inequality c*x*>~ c* is tight triangular there exists 
an edge (v, w)c  Ac.(u.+~) and since the c x ~  Co is facet-defining for GTSP(n) ,  by 
Proposition 2.3 there exists a tour T~ ffc  containing (v, w). For the tour T* of  
K.+I obtained from T by removing (v, w) and adding (v, u.+~) and (u.+~, w) we 
have c*x T*= Co ~> c* and (ii) follows. 

Let e be any edge in ac.(U.+l). Since e*x*~c*  is nontrivial there exists by 
Corollary 2.6 a Hamiltonian cycle H c Y(~. containing e. Let v and w be the neighbors 
of  u.+~ in H. The Hamiltonian cycle H - ( u . + l ,  v)-(un+~, w)+(v,  w) belongs to 
W~-, contains e and (v, w). The edge (v, w) belongs to ac.(un+O and (iii) follows. 

The graph (Vn, Ac.(u.+~)) spans K..  In fact for any node u c V~ there exists, as 
before, H e  ~ - .  containing (u, u.+~). Let w be the second neighbor of u.+~ in H. 
Then the cycle H '  = H -  (u.+l,  v) - (u.+~, w) + (u, w) belongs to ~gc and the edge 
(u, w) belongs to a~.(u.+0. We consider two cases. 

Case (a). The inequality e 'x* >i C*o is obtained by zero-lifting of some node u c V.. 
By Proposition 4.1 the graph (V.,  A~.(u.+~)) is connected and contains at least one 
odd cycle and (iv) follows. 

Case (b). c*(u~+~, v) > 0 for all v c V.. Assume that (iv) is not verified. It follows 
that there exists a connected component (U, F)  of the graph (V., dc.(U.+l)), with 
[U[ 1> 2, that does not contain odd cycles. Let e be defined as follows: 

| - r e = g mln{ e ,  e"}, 

where 

e ' =  min{c*(u.+~, v)+ c*(u.+l, w ) - c * ( v ,  w), (v, w )c  E . -  Ac.(u.+,)}, 

e "=  min{c*(u.+,, v), v c V.}. 

Note that e' is nonzero by definition of  Ac*(Un+l) and that e" is nonzero by the 
assumption that c*(u.+l,  v) > 0 for all v ~ Vn ; hence e is strictly positive. 
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Let fi be a node of the component  ( U, F)  and define two new inequalities c÷x * >>- c* 
and c -x*  >1 co* in the following way: 

• C+(Un+l, /~)= C#:(Un+l, /~)~-E; 
• e+(u.+l, v ) =  c*(u.+~, v ) + e  for all v # fi belonging to U and connected to a 

in (U, F)  by a path with an even number  of  edges; 

• c+(u.+~, v) = e*(u.+~, v ) -  e for all v # fi belonging to U and connected to t7 
in (U, F)  by a path with an odd number  of  edges; 

+ 
• e~ = c*, for every other edge e in E.+~ ; 
• for the coefficients of  the inequality e - x *  >! e* : 

l e * - e  if  e + = e * + e ,  

c~-= c * + e  ife~ + = c * - s ,  

/ ee~ if C+e - -  e e . 

These two inequalities are well defined since the component  ( U, F) does not contain 
odd cycles and all the coefficients are nonnegative by definition of e. 

By the definition of e, e', c ÷ and c-  it follows that 

and that 

a.+(uo÷,) = a c - ( u . + , )  = a c . ( U . + , ) ,  

c + ( v , w ) < ~ c + ( u . + l , v ) + c + ( u . + l , W )  for all (v, w) e E. ,  
(4.1) 

c ( v , w ) < ~ c - ( u n + l , v ) + c - ( u , + l , W )  f o r a l l ( v , w ) e E , .  

Suppose that c+x*>~ c* is not valid, then since the coefficients of  c+x*>~ Co* are 
nonnegative, there exists a minimum c+-length tour T c 5rn+l such that c+x r < c*. 

I f  the degree of Un+l in T is more than 2 we can reduce T by shortcuts to a tour :F 
where u,+l has degree 2. Observe that c+ ( 7") = c+ ( T)  by (4.1) and since T is a 
minimum c÷-length tour. Therefore we assume without loss of  generality that u,+l 
has only two (not necessarily distinct) neighbors v and w in T. 

I f  v and w coincide let T'  be the tour of  K,  defined by T ' =  T-2{(un÷~,  v)}. 
Since c+(un+~, v ) > 0  we have that c+xT '<  C*. I f  V and w are distinct let T'  be the 
tour T' = T -  (u.+l,  v) - (u.+~, w) + (v, w). By (4.1) T'  has c+-length c+XT'<~ c+X T < 

co*. This leads to a contradiction since T' is a tour of  K .  and the components of 
c + and e coincide in E..  The same argument shows that c-x*>~ co* is valid. Let T 
be any tour of  3-7.. I f  c+x 7 > co* then e-X r < co* ; hence e+X r = co* and 3-j. ~ 3-7+. 
Since there is no real 7r such that c* + = ~c , the assumption that c * x * ~  co* is 
facet-defining for GTSP(n + 1) is contradicted and the theorem follows. [] 

By condition (ii) of  the previous theorem it follows that the inequality c ' x *  >1 c* 
is completely defined by coefficients of  the edges in 6(u.+1). Moreover,  the node 

U.+l is 0-critical for c * x * ~  C*o. 

Theorem 4.3. Let  cx >i Co be a T T  inequality facet-defining for  GTSP(n);  an inequality 

c ' x *  >1 Co which is obtained by 1 -node lifting o f  cx >~ Co is facet-defining for  GTSP(n + 1) 
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if it is tight triangular and there exist an edge set Fc_ A~.(u,+~) and a basis ~ of 
cx >1 Co such that: 

(i) F ~  T ~ O f o r a l l  T 6 ~ c ;  
(ii) for all ec  F there exist e '~ e, e'~ d~.(u,,+~) and H e  ~ .  such that e and e' 

belong to H; 
(iii) every connected component of the graph ( Vn, F) contains at least one odd cycle. 

Proof. The validity of c*x*>~ Co immediately follows from the fact that it is tight 
triangular. Let T be any tour in Ydc ; since there exists an edge (u, v) in the intersection 
Tc~F the tour T - ( u ,  v)+(u, u~+l)+(v, un+~) belongs to J~ . ,  and so 3-~. is non- 
empty. Let f*x*>~fo be any inequality facet-defining for G T S P ( n + I )  such that 
3-~.c 3-~.. Take any edge e = ( u , v ) c F .  By (ii) there exist e ' = ( y , z ) ~ e ,  e'~ 
dc.(un+O and HcYg~ such that e and e' belong to H. The tours T ~= 
H-(y , z )+(u~+i , y )+(u~+~, z )  and T 2 = T l - ( u , v ) + ( u " + l , u ) + ( u ~ + l , v )  belong 
to J-~., and so they belong to i f / . .  Therefore, f * ( T ~ ) = f * ( T  ~) and f*(u,  v ) =  

f*(u,+,,  u)+f*(u,+l ,  v), and so 

FG Af*(un+O. (4.2) 

Let f be the vector in Ne, defined by 

fe = f*  for all e c E,.  

Take any tour T c  Nc. By (i) T contains an edge (y, z )~  F, and so the tour T * =  
T -  (y, z) + (U,+l, y) + (un+l, z) belongs to 3-;-. ; hence it belongs to 3~[.. By (4.2) 
it follows that T c 3" 3 and this implies that 3"-~ c 3-T. Since cx >~ Co defines a facet 
of GTSP(n) it follows that fx  >~fo defines the same facet and 

f =  ere, (4.3) 

for some real ~ '>0.  Consider now a subset F '  of  F with IF'[=n and whose 
corresponding columns of An are linearly independent. By (iii) this set exists. In 
fact it is well known (see, e.g., Gr6tschel and Pulleyblank (1986)) that the columns 
of  A, corresponding to a set J of n edges of/4,,  are linearly independent if and 
only if every connected component of  the graph ( V,,, J )  has at least one odd cycle 
(consequently, since ]J] = n, every connected component of ( V., J )  has exactly one 
odd cycle and no even cycles). By (4.2) and (4.3) we have 

f * ( u , + l , y ) + f * ( u , + l , z ) = f * ( y , z ) = c r e * ( y , z )  for ( y , z ) ~ F ' .  (4.4) 

The coefficient matrix of the system of equations (4.4) is the transpose of the 
submatrix of An corresponding to the elements of F ' ,  and so it is nonsingular and 
(4.4) has a unique solution. The vector c* satisfies the system 

c*(u,+l, y) + c*(u,+l, z) = c*(y, z) for all (y, z) ~ F ' .  (4.3') 
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The systems (4.4) and (4.3') have  the same coefficient matr ix  and their right hand  
sides differs by  the factor  ~-. It  follows that  

f *  = 7rc~* for  all e c 6(u~+1). (4.5) 

By (4.3) and (4.5) we have that  f *  = ~rc*, with 7r > 0, and  the theorem follows. [] 

Observe that  in Theo rem 4.3 all the condi t ions  except  (i) are necessary by Theo rem 
4.2. We were not  able to prove  that  also (i) is necessary,  but  we conjecture so. 

We give now an equivalent  o f  Theo rem 4.3 for  the STSP(n)  polytope.  

Theorem 4.4. Let cx >1 Co be a TT inequality that is facet-defining for STSP(n) ;  an 

inequality c*x*>~ Co which is obtained by 1-node lifting of  cx >i Co is facet-defining for 
STSP(n + 1) i f  it is tight triangular and there exist an edge set F c A~.(u,+l) and a 

canonical basis c¢ c of  cx >t co such that: 

(i) F c ~ H  #O for all HEq¢~; 
(ii) for all e E F there exist e ' ¢  e, e'E A¢.(u~+~) and H e  Wc such that e and e' 

belong to H;  

(iii) every connected component of  the graph ( V,, F) contains at least one odd cycle; 

(iv) F is c*-connected in U.+l. 

Proof. By T h e o r e m  4.3 the inequal i ty  c * x * ~  Co is facet-defining for GTSP(n  + 1). 
To prove  that  it is also facet-defining for  S T S P ( n + I )  we first construct  a set of  
tours  N*  c ~ .  containing a basis  o f  c ' x *  ~ Co. Then  we define for every w E V,+1 
a set of  edges Jw c_ Ac(w ) such that  every tour  in ~ *  where  the node w has degree 
greater  that  2 can be reduced to a tour  where  w has degree 2, by  using only shortcuts 
in the set {Swyz] (y, z )E Jw}. Then  by L e m m a  2.15 it is sufficient to show that  Jw is 
c*-connec ted  in w for  all w E Vn+l. For  every e = (u, v) E F by (ii) there is e '  = (y, z) # 
e E A¢.(U,+l) and He E Y~2 such that  e and e' be long to He. Define the two tours TI~ 
and T~ associa ted with e as follows: 

Tie = H e - ( y ,  z ) - b  (Un+l, y) d- (Un+l, Z), 

T2e = Tie - (u, v) + (un+,, u) + (u~+,, v). 

For  every tour  T E  c~,. define the tour  T '  as T ' =  T - ( y , z ) + ( u , + l , y ) + ( u ~ + ~ ,  z), 

where (y, z) is an edge in T be longing to F, that  by (i) always exists. Then the set 
N*  is defined as 

93" = {T~e, T ~ ] e E F } u { T ' J  r e  c¢~} 

and contains a basis  of  c ' x*  >~ Co, because  it contains all tours  used in the p r o o f  of  
The o rem 4.3 to show that  c ' x *  >1 Co is facet-defining for  G T S P ( n  + 1). It  is easy to 
see that  every node  w ~ V, has degree 4 in exactly one tour  in N* and has degree 
2 in all the others.  Consequent ly ,  Jw has cardinal i ty 1, and  so it is c*-connec ted  in 
w for  all w E V,. Final ly since J~,,+, ___ F, by  (iv) the t heo rem follows. [] 
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4.2. Zero-lifting 

By using Proposition 4.1 we derive now a specialization of  Theorems 4.3 and 4.4 
for the inequalities obtained by zero-lifting. 

Theorem 4.5. Let c*x*>~ Co be a TT inequality defined on R %* and obtained by 

zero-lifting of  node u c Vn from a TT inequality cx >>- c o that is facet-defining for 
GTSP(n).  Then c 'x*  >1 Co is facet-defining for GTSP(n*).  

Proof. We first assume that n* = n + 1. Let F be defined by F = 8(u) u {(v, w)}, with 
(v, w)c  At(u).  Since every tour of K,, contains at least two edges in 8(u) the 
conditions (i) and (ii) of Theorem 4.3 are satisfied. The condition (iii) holds because 
the graph (Vn, F )  contains only one connected component with only one cycle on 
the three nodes u, v and w. The proof  is then completed by induction on n*. [] 

The result of  Theorem 4.5 is given already in Cornu6jols, Fonlupt and Naddef  
(1985) and has been given here as an application of Theorem 4.3. 

Lemma 4.6. L e t  c x  >- Co be a nontrivial TT  inequality facet-defining for STSP(n). I f  
c(u, v) = 0 for some u ~ v c Vn the edge sets 6(u) and 6(v) are c-connected. 

Proof. Every edge (w, u) with w ~  v is c-adjacent to (u, v). In fact let H c  Y~- be 
a Hamiltonian cycle containing (w, u), which exists by Corollary 2.6. If (u, v) does 
not belong to H, let w '~  v be a neighbor of u and let z and z' be the neighbors 
of  v in H. The Hamiltonian cycle H '  = H -  (z, v) - (z', v) + (z, z') - (u, w') + 
(u, v)+(v,  w') contains both (w, u) and (u, v) and belongs to Y(~. Analogously it 
can be proven that 8(v) is c-connected. [] 

Theorem 4.7. Let c*x*>~ Co be a TT inequality defined on R E,,* and obtained by 
zero-lifting of  node u c V, from a nontrivial TT inequality that is facet-defining for 
STS P(n). I f  the edge set 6 (u) c En is c-connected then c 'x*  >t Co is facet-defining for 
STSP(n*). 

Proof. We first assume that n * = n + l .  Let F be defined by F = ~ ( u ) u { e } ,  with 
e = (v, w)c  At(u).  By the same argument used in the proof  of Theorem 4.5 the 
conditions (i), (ii) and (iii) of Theorem 4.4 are satisfied. Observe that if two edges 
f and g in 6(u) are c-adjacent then they are c*-adjacent in Un+l. By Corollary 2.6 
there exists a Hamiltonian cycle in ~ containing the edge e. Let f be an edge of  
this cycle belonging to 6(u). Consequently, e and f are c*-adjacent in u,+l and the 
condition (iv) of  Theorem 4.4 is satisfied. By Lemma 4.6, ~(u) in K,+I is c*- 
connected. Consequently, the proof  can be completed by induction on n*. [] 

The following lemma gives conditions that guarantee the c-connectivity property 
in an inequality obtained by general 1-node lifting. 
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Lemma 4.8. Let cx >I co be a TT inequality facet-defining for STSP(n), c*x *>- Co be 
an inequality obtained by 1-node lifting of  cx>~ Co and F be a subset of  A~.(un+~) 
such that F c~ H is nonempty for all H c ~(~ and the conditions (ii), (iii) and (iv) of 
Theorem 4.4 are satisfied. Then the following two conditions hold: 

(a) The edge set 6(u~+1) c E,+1 is c*-connected if  the graph (V~, F)  is connected. 
(b) For every v c V, the edge set 6(v) c E~+I is c*-connected if the edge set 6(v) c E,  

is c-connected. 

Proof. Let e = (v, w) be an edge in F and H c ~ be a Hamiltonian cycle containing 
e. The cycle H - ( v ,  w)+(v,  un+l)+(w, u,+l) belongs to 9(~, and hence (v, Un+l) and 
(w, u,+l) are c*-adjacent and (a) follows. 

Consider two c-adjacent edges e = (v, w) and f =  (v, z) in 6(v), with w ~ z. Then 
there exists a Hamiltonian cycle H ~ 9(~ containing them. I f  neither e n o r f  belongs 
to F, H must contain an edge in F and it can be extended to a Hamiltonian cycle 

in Y(7. containing e a n d f  I f  both e a n d f  belong to F they are c*-connected because 
of the two Hamiltonian cycles H - ( v ,  z )+(v ,  u.+O+(z, Un+l) and H - ( v ,  w)+ 
(v, u.+O+(w, u.+~) in N2.. I f  only one of the two edges, say e, belongs to F, by (ii) 
of  Theorem 4.4 there exist e' = (v', w') ~ d~.(u.+~), with e' ~ e, and H '  c ~ S  contain- 
ing e and e'. Let y ¢ w  be the second neighbor of v in H ' .  Then e and f are 
c*-connected because of the Hamiltonian cycles H - (v, w) + (v, U.+l) + (w, U.+l), 
H ' - ( v ,  w)+(v,  U.+l)+ (w, U.+l) and H ' - ( v ' ,  w')+(v ' ,  u.+O+(w',  U.+l), which all 
belong to Y() and (b) follows. [] 

A TT inequality of cx >i Co defined on R E- with c e > 0 for all e c En is called simple. 
Suppose we are given a TT inequality cx >~ Co which is not simple. It is easy to 

see that Vn can be partit ioned into h sets V1 , . . . ,  V h such that: 

(a) Ce=O for all e c y ( V i ) ,  i = l , . . . , h ;  

(b) ce=cs for all e, f c ( V i :  W )  and for all i # j ~ { 1 , . . . ,  h}, 
where by ( U : W) we denote the edge set ( U: W) = {(u, w)l u c U, w c W}. The simple 
inequality associated with cx >~ co is the inequality g$ I> Co defined on ~ Eh with 

5(Ui, Uj)~--Ce, e c ( W : W ) ,  fora l l l<~i<j<~h.  

From Theorem 4.5 it follows that a TT inequality cx >1 co is facet-defining for GTSP(n)  
if its associated simple inequality ?ff I> Co is facet-defining for GTSP(h).  

For STSP(n) we have the following theorem that can be easily proven by induc- 
tively applying Theorem 4.7. 

Theorem 4.9. A TT inequality cx >1 Co is facet-defining for STSP(n) if its associated 
simple inequality g$ >~ Co is nontrivial and facet-defining for STSP(h) and for every 
v ~ Vh the set ~(v) in Kh is ?-connected. [] 

An example of  inequality which is not simple is the general comb inequality, 
whose associated simple inequality is the 2-matching inequality. 
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Theorems 4.5 and 4.9 suggest to restrict the study of the polyhedral structure of  
GTSP(n)  and STSP(n) only to simple inequalities. In fact once a new simple 
inequality cx>-co in TT form is proven to define a facet of  STSP(n) the only 
additional work to be done is to prove that 8(v) is c-connected for every node v 
in Vn. Thus all inequalities having cx>l Co as associated simple inequalities are 
automatically proven to be facet-defining for GTSP(n*)  and STSP(n*). 

We do not know of any simple inequality in TT form that is facet-defining for 
STSP(n) for which the conditions of  Theorem 4.9 do not hold. 

4.3. 2-Node lifting 

We introduce here a new kind of node lifting that cannot be obtained by sequentially 
applying the 1-node lifting described before. In fact in this lifting a pair of  nodes 

is added at once to the graph Kn and the right-hand side Co* is greater than Co. 

Definition 4.10. Let cx >>- Co be a TT inequality defined on E E  and e be an edge in 
E,.  We say that the inequality c*x*>~ co* defined on E E,,÷2", with h ~> 1, is obtained 
from cx >i Co by cloning the edge e (h times) in the following sense. The inequality 
is obtained by node-lifting of cx>1 Co and defined as follows, where we assume 
without loss of  generality that e = (un-l,  un): 

C*o = Co + 2hce, 

= I c(ui' Un--1), 
C*(U,, U.+j) tC(U,, U.), 

c*(u°+;, u°+j) = {2c~, 
Ce, 

for 1 ~ i ~< n - 2, 1 ~<j ~ 2h - 1 and j odd, 

for l ~ i < ~ n - 2 , 2 < ~ j < ~ 2 h  and j even, 

for - l<~i<j<~2h  and j - i  even, 

for - l<~i<j<~2h  and j - i  odd. 

The inequality c*x*>~ c* of  Definition 4.10 can be alternatively obtained from 
cx>! Co by iterating the process of  cloning the edge e (one time). Therefore the 
following proofs are given for h = 1 and then can be easily completed by induction 
on h. 

Let cx~co be a TT inequality valid for GTSP(n) ;  we call an edge e= (u ,  v) 
c-clonable if the c-length of every tour T of Kn is at least Co+ ( d - 2 ) c e ,  where d is 
the minimum of the degrees of  u and v in T. 

Lemma 4.11. Let cx>~ Co be a TT inequality valid for GTSP(n)  and c*x*>~ C*o be the 
inequality of  R e . . . .  obtained from cx>~ Co by cloning e = (un-1, un) (h times). Then 
the following two propositions are equivalent: 

(a) e is c-clonable; 
(b) the inequality c*x*>~ C*o is valid for GTSP(n +2h)  and every edge of  the set 

( { U n  1, U n + l , "  • " ,  Un+2h-1):{Un, U n + 2 , ' ' ' ,  Un+2h)) is c*-clonable. 
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Proof. We prove the lemma for h = 1. Then a complete proof  can be obtained by 
induction on h. We first prove that (a) implies (b). For every tour T c 3-*+2 we 
define b°(T) c 3-* to be the tour obtained by contracting each of the sets {un_l, un+~} 
and {u,, u,+2} into a single node. Observe that by definition c(5¢(T))<~c*(T). 
Assume that either the inequality c'x* >- c* is not valid or that some edge of  the 
set ({un_~, Un÷l}:{u,, u,÷2}) is not c*-clonable. Due to the symmetry of  the 
coefficients of  the pair 6(u._O and 6(un+O and of the pair ~(u.)  and 6(Un+2) we 
can assume without loss of generality that (u. 1, u.) is not c*-clonable. It follows 
that there exists T * c  * 3-.+2, where U._l and u. have degree at least d, with c*(T*) < 
c*+(d-2)c*.  We consider two cases: 

Case (i). Both the families T* c~ 6({u._1, U.+l}) and T* c~ 6({u., un+2}) have at 
least d + 2  edges. Then the tour St(T*) has both u._l and u. with degree at least 
d + 2 ;  hence its c-length is at least co+dce=C*+(d-2)c *. This leads to a 
contradiction. 

Case (ii). Without loss of  generality we assume that T* c~ 3({u., u.+2}) contains 
d edges. Then (u. ,  un+2)~ T* and c(9~(T*))= c*( T*)-  2ce. Consequently, e is not 
c-clonable. 

Now we prove that (b) implies (a). Suppose that there is a tour T c  3-* where 

u._~ and u. have degree at least d />4  and that c(T)< Co+(d--2)Ce. We consider 
3 cases. 

Case (i). There are at least three edges different from e incident with un ~ and 
u.,  respectively. Then there are two neighbors v~ and v2 of U._l in T and two 
neighbors Wl and w2 of u. in T such that the family 

T * = T - ( v , , u ,  l)-(v2, u , -1) - (w, ,u , ) - (w2,  u,) 

-~- (/')1 , Un+l) -{- (V2, Un+l) "[- (Wl, /'/n+2) 37 (W2, Un+2) 

is a tour of  Kn+ 2. 

Case (ii). T contains two copies of e. Then there is a neighbor v of  u._a in T 
and a neighbor w of un in T such that the family 

T * = T - ( v , u . _ , ) - ( u .  1,u.)-(w,u~) 

"[- (/), Un+l) 71- (~n+l, Un+2) q- (W, Un+2) 

is a tour of Kn+ 2. 

Case (iii). T contains at least three copies of  e. Then let T* be the tour of  Kn+2 
defined by 

T * =  T - 3 { ( u . _ , ,  u . )}+  (u.-1,  un+2)+ (U.+l, u.+2)+(u., Un+l). 

In all the three cases we have c*(T*)=c(T)<c*+(d-4)Ce. Since u. ~ and u. 
have both degree at least d - 2  in T* it follows that either d = 4  and c*x*>~ C*o is 
not valid or d > 4 and e is not c*-clonable. [] 
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Theorem 4.12. Let cx>~ Co be a TT inequality facet-defining for GTSP(n )  and e = 
(u , - l ,  un) be a c-clonable edge such that un-1 and u, are 2Ce-Critical for cx >1 Co. The 

following hold: 
(a) the inequality c*x*>~ c* obtained from cx>~ co by cloning e ( h times) is facet- 

defining for G T S P ( n  + 2 h ) ;  
(b) the nodes u , - l ,  un, u , + l , . . . ,  U,+2h are 2c*-critical; 
(c) / f f  = (Zl, z2) # e is an edge in En such that Zl and z2 are 2cf-critical for cx >1 Co, 

then zl and z2 are 2c~-critical for c*x*>~ c*. 

Proof.  We prove  the theorem for  h = 1. Then  the p r o o f  can be comple ted  by induct ion 
on h. The inequal i ty  c 'x*  >1 C*o is valid for  G T S P ( n  + 2 )  by  L e m m a  4.11 and suppor t -  
ing since, as it is shown in the following,  J-7, is nonempty .  Consequent ly ,  it defines 
a face of  G T S P ( n  + 2). Let f ' x *  ~>f0* be an inequal i ty  defining a facet of  G T S P ( n  + 2) 
that  contains the face defined by c*x*>~ c*. Therefore  we have 3-~.___ ~-f . .  We 
construct  a subset  o f  J-c-. and we prove  that  it is a basis  o f  c 'x*  >- c*. In fact  by 
using only vectors  in this subset  it can be shown that  f *  = 7rc*, for  some 7r > 0. For  
nota t ional  convenience  we name  the fol lowing 6 edges in En. as: e =  (u.  1, u .) ,  

a = (u.  1, u.+~), b = (u._1, u.+2), c = (u.,  u.+l), d = (u.,  u.+2) and g = (U.+l, u.+2) 
(see Figure 6). By assumpt ion  and  by L e m m a  2.5 there exist two Hami l ton ian  cycles 
F~ and F2 of  Kn -{un}  and K .  -{un-1},  respectively,  o f  length Co-2Ce. Let vl be  
one o f  the two neighbors  of  u.-1 in /'1 and v2 one o f  the two neighbors  of  u. in 
/72. We set Yd = { 7"1, T2, T3, T4, HI , / - /2 ,  H3}, where  T/, i = 1 , . . . ,  4 and Hi, i = 1, 2, 3, 
belong to 3-~-. and are defined as (see also Figure 7): 

T1 =/~1 - (/-)1 , Un-l)  -~- (Vl,  Un+l) "~ 2{e} + b + g, 

T2 = F 1 -  (Vl, Un_l) q- (~)1, u, ,+,)+2{c}+b+g, 

T3= F2- (v2 ,  u~)+ (v2, u.+2)+ 2{e}+ c+ g, 

T4= F2- (v2 ,  u . ) +  (v2, u.+2)+ 2{b} + c+ g, 

H l = F l - ( V l ,  Un_l) q- (•1, u . + l ) + e + d + g ,  

H2 = F ~ -  (v , ,  u ._ , )+(v , ,  u . + O + b + d + c ,  

H3 = F 2 -  (v2, u . )  + (v2, un+2)+b+a+c. 

u n e ~ u n +  2 

Fig. 6. 
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T1 T 2 T 3 T 4 

C 
H I H H 

2 3 

Fig. 7. 

From f*(Tl)=f*(T2), f*(T3)=f*(T4), f*(H,)=f*(H2), f*(H,)=f*(TO and 
f* (H3)  =f*(T4)  it follows: 

r*  - r *  - c* - r *  and f * = f * = 2 f * .  (4.6) . le  - - J b  - - J c  - - d g  

For every tour T e 3-~- containing the edge (w, U._l) we define two "extended" tours 
g l (T)  and g~(T) belonging to 3-~-. in the following way: 

Case (i). e c  T (see Figure 8): 

gI(T) = T-e+b+c+g,  

~ ( T )  = T-(w, u,_0  + (w, U,+l)+b+g. 

Case (ii). e~ T. Let v be any neighbor of un in T (see Figure 9): 

~I(T) = T-(v,  u.)+(v, u.+2)+c+g, 

~(T) = T-(w, u._O-(v, u.)+(w, u.+,)+(v, u.+2)+b+c. 

If  ~ ( T )  is not a tour we take the edges e and g instead of b and c. 
For every tour T ~ J-~ containing the edge (w, un) we analogously define the two 

extended tours ~2(T) and ~ ( T )  in 3-~.. 
For every node w c Vn - { u . - 1 ,  u} we call H~ and H 2 two Hamiltonian cycles in 

~ 7  containing (w, u.-1) and (w, u.), respectively. By f*(~,(H~w))=f*(~(H~w)), 
f*(~z(Hw))2 --f*(~(Hw))' 2 and (4.6) it follows that 

f*(w, U n _ I ) = f * ( w ,  Un+l),  WC V n - { u  n 1}, 
(4.7) 

f*(w, u.)=f*(w, u.+2), we V. -{u.} .  

We add to ~ the set 

{ ~ , ( H ' ~ ) ,  ' ' ~ l ( H w )  ' ~ 2 ( H 2 ) ,  , 2 ~2(Hw)lWC V.-{u. 1 ,  Urz}}" 

Observe that, besides the 4 almost Hamiltonian tours T1, T2, T3, and T4, the set 
contains only Hamiltonian cycles. 



D. Naddef, G. Rinaldi / The Symmetric Traveling Salesman Polytope 85 

u n Un+ 2 
Fig. 8. 

W ~ n - l U n + I W ~ W ~ v  JU  " n  "U n+2 V or w ~ ~  

Fig. 9. 
Let us define the inequality f x  >~fo on ~ .  by: 

fo = f o* -- 2fe. 

Let ~c be a basis for cx>l Co, T be a tour of Yac, and ~ (T)  be any of the tours 
~1(T), ~'I(T), ~2(T), ~ ( T ) .  Then ~ ( T ) c  J-~7., and so ~ ( T ) c  J-f. .  By (4.6) and 
(4.7) it follows that f * ( ~ ( T ) ) = f ( T ) + 2 f e  = f * ,  and so T c  J - f  and ~c _c ~7 .  Since 
cx >~ Co defines a facet of GTSP(n) it follows that f x  >~fo defines the same facet and 
for some 7r > 0: 

f =  ~rc, 
(4.8) 

)Co = f o * -  27rc~ = rrco. 

From (4.6), (4.7) and (4.8) it follows that f *  = 7re* and f *  = rrc*, with 7r> 0; hence 
Ya vo {g(T)l  T c  Ya,} contains a basis for c*x*> c* and (a) follows. To prove (b), 
consider the tours T3-2{e}, T~-2{e}, H 2 - b - d + e  and H 3 - a - c + e ,  that have 
c*-length c * -  2c* and apply Remark 3.2. To prove (c), take a tour T of K,  -{z~} 
of c-length Co-2C s. Let ~ ( .  ) and g2(" ) be two transformations, defined in the same 
way as g l ( ' )  and g2( ') ,  respectively, that extend a tour of K,  1 of c-length l into 
a tour of K,+~ of length l+2c~. If e~ T, call T' the tour ~I(T);  otherwise call T' 
the tour ~2(T). The tour T' of K,+~ has c*-length Co - 2 c y ,  and so by Remark 3.2 
the node z~ is 2c~-critical for c ' x *  >~ c*. The same holds for z2 and (c) follows. [] 

Theorem 4.13. Let cx>~ Co be a nontrivial TT inequality facet-defining for STSP(n) 
and e = (un 1, un) be a c-clonable edge such that un 1 and un are 2c~-critical for cx >i Co. 
Then the following hold : 

(a) the inequality c*x*>~ c* obtained by cloning e (h times) is facet-defining for 
STSP(n +2h) ;  

(b) the edge subsets g(un-1) , . . . ,  6(U~+zh) of  En+eh are c*-connected; 
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(C) for v c  V~-{u ,  1, u,} if  t3(v) in K~ is c-connected, then 6(v) in K,+2h is 
c*-connected. 

Proof. We prove the theorem for h = 1. Then the proof  can be completed by induction 
on h. Since cx>~ Co is nontrivial and facet-defining for STSP(n) it has a canonical 
basis ~c- Let / '1 ,  F2, ~1(" ), ~ ( ' ) ,  ~2(" ), ~ ( "  ), ~(" ) and ~ be defined as in the 
proof  of Theorem 4.12. Weithout loss of generality we can assume that Tu. 1 = 
F1 + 2{e} and Tun =/ '2 + 2{e} belong to ~c. Since ~ ( T , .  1) e N and ~(Tuo) e ~,  the 
set 

u {~(T)I  T c  c~e- { T, ..... Tu.}} 

contains a canonical basis of c*x*>~ c* and the inequality is facet-defining for 
STSP(n + 2). 

Assume now that v~ V , -{U,_ l ,U,} .  If  two edges (Wl, v) and (Wz, V) are c- 
adjacent let H c ~ -  be a cycle containing both of them. Then there exists a cycle 
~ ( H )  ~ Y(2* containing (Wl, v) and (w2, v). For i = 1, 2, there exist w ~ V, and a 
cycle Hi G ff(~ containing (v, u,+~-2) and (v, w). The cycle ~'~(H~)e ~2. contains 
(v, w) and (v, u,+i). Hence if 6(v) in Kn is c-connected, 6(v) in K,+2 is c*-connected. 

For i = 1,2, let v = u,+~-2. For every w c V, - {U~-l, u,} there exists a cycle Hw c Yd,- 
that contains (w, v) because cx>~co is a nontrivial facet-defining inequality for 
STSP(n). The cycle ~(Hw) ~ ~ .  contains both (w, v) and (u,+l,  u,+2). Moreover, 
the edges in y({un-1, u,, u,+~, u~+2}) are c*-connected because of the cycles H1, 
/-/~, and Ha defined in the proof  of Theorem 4.12. Consequently, 6(u,,+~_2) is 
c*-connected. Due to the symmetry of the coefficients of the edges in 6(u,,+~_2) and 
6(u,+~), ~(u,+~) is also c*-connected. [] 

Observe that, differently from other node lifting theorems, in the lifting by 
edge-cloning no extra conditions are required in the case of STSP(n). 

As shown in Naddef  and Rinaldi (1988), Theorem 4.13 can be exploited to prove 
that some inequalities, generalizing the chain inequalities defined in Padberg and 
Hong (1980), are facet-defining for STSP(n), n ~> 8. These inequalities are obtained 
from the comb inequalities by repeated application of edge-cloning and zero-lifting 
operations. A proof  that the chain inequalities are facet-defining is given already 
by Boyd (1988) and by Hartman (1988). However, the range of application of 
Theorem 4.13 goes beyond the comb inequalities. In fact, as shown in Naddef  and 
Rinaldi (1988, 1992), the theorem can be applied to prove that inequalities obtained 
by edge-cloning from some path inequalities, that generalize comb inequalities, and 
from crown inequalities are facet-defining for STSP(n). 
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