
Mathematical Programming 58 (1993) 1-32 1 
North-Holland 

Symmetric indefinite systems for interior point 
methods 

R o b e r t  J .  V a n d e r b e i  a n d  T a m r a  J.  C a r p e n t e r  

Program in Statistics and Operations Research, Princeton University, Princeton, NJ, USA 

Received 2 May 1991 
Revised manuscript received 22 July 1992 

We present a unified framework for solving linear and convex quadratic programs via interior point 
methods. At each iteration, this method solves an indefinite system whose matrix is [_~-2 A v] instead 
of reducing to obtain the usual AD2A v system. This methodology affords two advantages: (1) it avoids 
the fill created by explicitly forming the product AD2A v when A has dense columns; and (2) it can 
easily be used to solve nonseparable quadratic programs since it requires only that D be symmetric. We 
also present a procedure for converting nonseparable quadratic programs to separable ones which yields 
computational savings when the matrix of quadratic coefficients is dense. 
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I. Introduction 

Since K a r m a r k a r ' s  f undamen ta l  p a p e r  [11] a p p e a r e d  in 1984, many  in te r io r  po in t  

m e t hods  for  l inear  p r o g r a m m i n g  have been  p roposed .  These  me thods  are all i tera t ive  

a lgor i thms  that  solve a system of  the form 

A D Z A V A y  = y, (1) 

at each  i terat ion.  In  all var iants ,  D is a cer ta in  d i agona l  mat r ix  (with str ict ly pos i t ive  

entr ies)  that  changes  f rom one i te ra t ion  to the next;  y is a known  m-vec to r  tha t  

also genera l ly  changes  f rom one i te ra t ion  to the  next;  and  A is a fixed m x n cons t r a in t  

mat r ix  that  has full  row rank.  

The fact  that  the matr ix  in system (1) is pos i t ive  definite and  symmet r ic  impl ies  

tha t  one can choose  the o rde r  o f  p ivots  at the beg inn ing  wi thout  cons ide r ing  

numer ica l  issues and then use this o rde r ing  in each  subsequen t  i tera t ion.  This 

obse rva t ion  al lows one to deve lop  robus t  code  that  is also efficient because  it does  

not  have to reana lyze  the mat r ix  at every i terat ion.  

Whi le  imp lemen ta t ions  based  on this a p p r o a c h  have p roved  to be qui te  efficient, 

difficulties arise i f  the cons t ra in t  mat r ix  A has dense  co lumns  or  i f  one wants  to 

genera l ize  the  a lgor i thm to hand le  n o n s e p a r a b l e  quad ra t i c  p r o g r a m m i n g  p rob lems .  

Correspondence to: Prof. Robert J. Vanderhei, Statistics and Operations Research, Princeton University, 
Princeton, NJ 08544, USA. 
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In this paper we present a method to resolve these two difficulties by solving instead 
the following related system: 

Several variants of Karmarkar's algorithm have appeared in the literature, all of  
which can be described in terms of solutions to system (2). Table 1 shows how to 
choose D 2, o- and p to obtain the primal affine-scaling [5, 2, 27], dual affine-scaling 
[1, 17], one-phase primal-dual affine-scaling [14], and one-phase primal-dual path- 
following [13, 14, 24] methods. In this table, X denotes the diagonal matrix with 
the elements of x on the diagonal and Z denotes the diagonal matrix with z on the 
diagonal. 

Table 1 
Popular interior point methods 

Name D 2 ~r p 

primal affine-scaling X 2 c 0 
dual affine-scaling Z 2 0 b 
one-phase primal-dual affine-scaling X Z - 1  c - A T y b - A x  

one-phase primal-dual path-following X Z  -1 c -- A Ty  - -  [.zX -1 e b - A x  

We focus on one v a r i a n t - - t h e  one-phase primal-dual path-following algorithm 
(PDPF), which we implement in a code called LoQo (Linear or Quadratic 
Optimizer). LoQo's numerical "engine" is based on efficient routines for solving 
system (2), which explicitly take advantage of the inherent structure of the system 
and the fact that at each iteration only D -2, p, and cr change. Our goal is to use 
LoQo to demonstrate the efficacy of  the primal-dual interior point method based 
on system (2) for linear and quadratic programming. 

We show that the strategy based on system (2) is actually just a generalization 
of the usual method involving A D Z A  w and provide computational comparisons with 
ALPO [24] - -  an analogous code for solving linear programs based on the A D 2 A  v 

system. In most cases, LoQo automatically forms and factors the A D 2 A  x system, 
so the two optimizers perform similarly. When A has dense columns, however, 
LoQo has the flexibility to delay handling dense columns, which yields significant 
computational savings. 

In addition, LoQo does not explicitly require that the matrix D -2 negated in the 
upper left block in system (2) be diagonal; it must simply be positive definite and 
symmetric. This is precisely the structure of the system formed for convex quadratic 
programs. Thus, quadratic programs can also be addressed within this framework. 
We present computational results using LoQo to solve nonseparable quadratic 
programs and provide comparisons with MINOS [22] as a benchmark. 
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In the next section we give a brief description of the PDPF algorithm. In Section 
3 we describe the ordering strategies used, and in Section 4 we give computational 
results for linear programs comparing LoQo to ALPO. Section 5 describes generaliz- 
ing the PDPF algorithm to quadratic programming problems, with computational 
results included in Section 6. In Section 7 we describe separable formulations for 
nonseparable quadratic programs that yield significant computational savings for 
interior point methods. Extensions and future directions are discussed in the last 
section. 

2. The primal-dual path-following algorithm 

We are interested in solving the following pr ima l  linear programming problem: 

minimize c V x 

subject to A x  = b, (3) 

X~>0,  

where A c Emxn has full row rank, c ~ II~ n and b c R ' .  Associated with this primal 

problem is the dual  linear program: 

maximize b Vy 

subject to a Vy + z = c, (4) 

z~>0, 

which we have written in equality form by introducing slack variables z (also called 
reduced costs).  

The PDPF algorithm is motivated by applying the logarithmic barrier function 
to eliminate the inequality constraints in (3) and (4). The transformation of the 
primal yields the nonlinear program: 

minimize c T x -- IX ~ In xj 
j 1 

subject to A x =  b. (5) 

Likewise, the barrier transformation of the dual can also be obtained. 
If we fix/x > 0 and apply the barrier transformation to the primal and dual linear 

programs at a point that satisfies x > 0 and z > 0, the requisite first order conditions 
for simultaneous optimality in the primal and dual barrier problems are: 

a x  = b, (6) 

a V y  + z = c, (7) 

X Z e  = ~,e, (8) 
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where e denotes the n-vector of all ones. The first m equations (6) form part of  the 
primal feasibility requirement, and the next n equations (7) form part of the dual 
feasibility requirement. The last n equations are called i~-complementarity. 

Monteiro and Adler [20] provide a full theoretical development of the primal-dual 
path-following algorithm, including results which imply the following proposition: 

Proposition 1. I f  either the primal or the dual polytope is bounded and has a nonempty 

interior, then there exists a unique solution to (6)-(8) in the domain given by x ~ O, 

z>~O. [] 

Let (x . ,  y . ,  z . )  be the solution to (6)-(8) provided by Proposition 1. The map 
/x~--~(x., y . ,  z . )  is called the centralpath. As tx tends to zero, this path (x. ,  y . ,  z . )  
converges to (x*, y*, z*) where x* is optimal for the primal linear program, and 
(y*, z*) is optimal for its dual. (Assuming that the primal polytope is bounded and 
has nonempty interior, x .  tends towards the "center"  of the primal polytope and 
(y . ,  z~.) tends toward infinity in the necessarily unbounded dual as /~ tends to 
infinity.) 

2.1. The algorithm 

The primal-dual path-following algorithm can now be described quite simply. We 
start with any triple (x, y, z) satisfying x > 0 and z > 0 and with any IX > 0. We next 
use one step of Newton's method to try to find a point closer to (x. ,  y~, z.).  We 
then let this new point be our current (x, y, z), reduce t x appropriately, and start 
over. This iterative process is continued until primal and dual feasibility is attained 
and the duality gap is smaller than some predetermined tolerance. 

Applying Newton's method to (6)-(8) yields 

A A x  = p, (9) 

A T A y + A z  = o-, (10) 

Z A x  + X A z  = qS, (11) 

where 

= c - AVy -- z, p = b - Ax,  4) = ix e - XZe.  

Writing this in block matrix form, we get 

Ii °][ I!l 0 A T Ax = . (12) 

A 0 Ay 

The desired update is then 

x ~ x + a p A x ,  y ~ y + a d A y ,  Z ~ z + a d A z ,  (13) 

where 0 < ap, ad <~ 1 are chosen to keep x > 0 and z > 0. The steplengths ~p and ad 
are chosen independently for the primal and the dual, and their inclusion makes 
the overall method a damped Newton method. 
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2.2. Alternative systems 

The system of  equations (12) is usually not attacked directly, but is first simplified 
algebraically as follows. First, we use the top set of equations to solve for Az in 
terms of Ax, and then eliminate Az from the system: 

A z = X  l ( d p - Z A x ) ,  (14) 

and 

L P .J 

Note that system (15) is symmetric whereas the original system (12) is not. Also, 
the reduction from (12) to (15) entails no off-diagonal fill-in in the system of 
equations. Hence, there is no reason to prefer system (12) to system (15). 

The second reduction involves solving explicitly for dx  in terms of  Ay using the 
first set of equations in (15) and then eliminating Ax from the system: 

Ax = - X Z - ' ( t r  - X - ' cb  - A T Ay) ,  (16) 

and 
[ A X Z  'AT][Ay] = [p + A X Z - I ( c r - X  '~b)]. (17) 

The advantage of system (17) over (15) is that it is based on a symmetric positive 
definite matrix guaranteed to yield a factorization of the form L A L  v, where L is 
lower triangular with unit diagonal and A is diagonal with strictly positive entries. 
Given the L A L  T factorization, Ay is easily obtained from (17) by solving two 
triangular systems. However, the disadvantage of system (17) is that it suffers a 
great deal of  fill-in when A X Z  ~A v is formed. This is especially true if A has one 
or more dense columns. Nonetheless, most implementations of interior point 
methods are based on system (17). 

3. The symmetric indefinite system 

Gill, Murray, Poncele6n and Saunders [9] and Fourer and Mehrotra [6] advocate 
solving the indefinite system (15) to prevent fill-in. Their approaches are based on 
performing a Bunch-Parlett  [3] factorization of the indefinite matrix. When D 2= 

X Z  -1 and 

f] K =  A ' 

this factorization has the form P K P  T= L B L  T, where P is a permutation matrix and 
B is a symmetric block-diagonal matrix, with 1 x 1 or 2 x 2 blocks. Such a factorization 
is guaranteed to exist [10], but unlike the positive definite case, the pivot order 
cannot be computed symbolically because the permutation choice is based on 
numerical values. Thus, the major disadvantage of this approach is that the pivot 
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order cannot be fixed once in the analyze phase, but must be recomputed as X and 
Z are updated in each iteration. 

Sometimes, however, a factorization L A L  w may also exist for indefinite matrices. 
When it does, A is no longer positive but remains diagonal and nonsingular. The 
factors L A L  T can be obtained by judiciously picking symmetric pivot rules while 
performing symmetric elimination. For example, suppose we stipulate that the first 
n columns be eliminated before the last m. Each of the first n pivots has the 
corresponding entry in - D  -2 as a pivot element when symmetric elimination is 
performed on K. Since D is positive, no zero pivots are encountered, and after the 
nth stage of symmetric elimination the partially reduced matrix has the form 

K n =  M " 

Each stage of the elimination performs a rank-one update  of  the lower right m x m 
submatrix, and after n stages, A D 2 A  T is explicitly formed. That is, the lower right 
m x m submatrix M is sequentially formed as 

2 T M = ~ d;a ja j  = A D 2 A  T. 
j--I 

At this point the remaining matrix is positive definite and the factorization 
L M D M L ~  of M is guaranteed to exist. Moreover, the last m pivots can be performed 
in any order, using whatever efficient pivoting strategy is preferred. (For example, 
the minimum degree or the minimum local fill ordering heuristics might be used). 
When the symmetric elimination is complete, we have K = L K D K L ~  where DK is 
an (n + m) x (n + m) diagonal matrix of the form [_°-20] 

DK = 0 DM ' 

and 

[;  0] 
LK = _ A D 2  L M  • 

Hence, the old method is imbedded in the new method as one particular pivot 
strategy. We call this pivot strategy the conservative p ivot  strategy. Solving (15) and 
solving (17) are roughly equivalent under the conservative strategy. The new method 
combines the formation and factorization of A D 2 A  T into one p r o c e s s - - s i m p l y  

factoring K. Also, the number  of  arithmetic operations required to implement this 
specific pivot rule is essentially equal to the number  of  arithmetic operations required 
to form and then factor A D 2 A  T. Hence, applying this pivot strategy to system (15) 
should generally be about as efficient as working with system (17). 

To guarantee that a factorization of  the form L A L  w exists, it is not necessary to 
force all of the first n columns to be eliminated first as is done in the conservative 
strategy. All that is required is that enough columns from the first n are selected so 
that the corresponding columns of A span the entire column space of A. After a 
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spanning set of  columns is eliminated in symmetric Gaussian elimination, the lower 
right submatrix of  the partially reduced matrix is a quasi-definite matrix. We say 
that a symmetric indefinite matrix 

is quasi-definite if both E and F are positive definite. Symmetric quasi-definite 
matrices form a class of  symmetric indefinite matrices for which the factorization 
LAL T always exists. But more importantly, Proposition 2, provided by Vanderbei 

[26], assures that all symmetric permutations of  a quasi-definite matrix are factorable. 

Proposition 2. For every permutation matrix P, there exists a factorization such that 

R v 
P[  R E F ]PT= LAL T, 

where L is lower triangular with unit diagonal and A is nonsingular and diagonal. [] 

Since the LAL v factorization is guaranteed to exist for any symmetric reordering, 
a quasi-definite matrix can be symbolically analyzed to determine a pivot order. 
This property makes reducing our indefinite system (15) to a quasi-definite system 
as appealing as reducing it to a positive definite system. I f  we can determine a set 
o f  columns of rank m, we can reduce (15) to a quasi-definite system. To see this, 
partition A so that 

A = [ B I N ]  

where B has k/> m columns and rank(B) = m and then write K accordingly: 

" _ D ~  2 B T ] 

K =  --ON 2 N v . 

B N 

Pivoting on the first k diagonal elements now yields a partially reduced matrix 
whose lower right submatrix is quasi-definite: [o 2 ] 

--DN 2 N T . 

N BD~B T 

Choosing B remains an issue, but certainly letting B contain all of  the columns of  
A is guaranteed to deliver a rank m set of  columns. This choice is exactly the 
conservative pivot strategy. Another instance in which a spanning set of  columns 
is readily available is when all constraints are inequality. In the inequality constrained 
case, the columns of slack (or surplus) variables appended to transform all con- 
straints to equalities provide an immediate basis. This case is discussed further in 

Section 5.1. 
Most of  the time, however, we advocate using the conservative strategy. One 

exception is when A has dense columns. When the j th  column of A is completely 
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dense, aja~ is a fully dense m x m matrix. Consequently, A D 2 A  T is also fully dense. 
This effect is illustrated in Figure 1. I f  all of  the first n columns of K (including 
the dense columns) are pivoted out first, the matrix A D 2 A  T, formed in the lower 
right hand corner, will be dense. So, requiring that dense columns be eliminated as 
part  of  the first n pivots can dramatically impair the efficiency of solving system (15). 

I f  it is true that the nondense columns of A also span the column space of A, 
then fill-in can be reduced by grouping the dense columns with the last m pivots. 
This strategy forms a quasi-definite matrix in the lower right submatrix. Moreover, 
when the last group of pivots are arranged according to some efficient ordering 
scheme such as minimum degree or minimum local fill-in, the dense columns will 
be selected last even among this second group. Figure 2 illustrates that by eliminating 
the dense column last among the second group, no fill-in occurs from eliminating 
the dense column. This technique for delaying the elimination of dense columns is 
algebraically equivalent to the well-known Schur-complement technique for hand- 
ling dense columns. 

So, the method we propose for solving (15) consists, as usual, of an analyze phase 
which determines the order of  the pivots and sets up data structures, and a numerical 
factorization phase in which the symmetrically reordered version of K is factored. 
Moreover, we suggest a very limited mixing between the two groups of columns 
during reordering. There is mixing only when dense columns are present. A recent 
implementation by Fourer and Mehrotra [6] solves a system equivalent to (15) but 
allows a full reordering of the matrix. 

X 

dense column ¢ 

elimination 

X / 
dense submatrix ) 

Fig. 1. Eliminating dense columns--conservative strategy. 

X 

I 
dense column ) 

symmetric 

pivot 

Fig. 2. Pivoting to reduce fill-in. 
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4. Computational testing--Linear programs 

Herein, we compare LoQo which solves system (15) to A L P O - - a  similar code 
based on solving the usual A D 2 A  x system. All testing is conducted on an IBM 

RISC System/6000. Both codes are written in c and compiled with AIX version 3.1 
c compiler using the default optimization. We use the full NETLIB [7] test set in 
MPS standard format. 

The requisite optimality criteria are the same for both solvers. Namely, a relative 
measure of  the primal and dual infeasibility must be less than 1.0 x 10 -6, and the 
relative duality gap must be less than 1.0x 10 -8. The relative primal and dual 
infeasibilities are measured by 

II a x  - b 112 

I l b l l=+  1 ' 

and 

IIc-- A T y - -  zlI2 

I l c l l 2 + a  ' 

respectively, while the relative duality gap is 

cTx -- bTy 

IcWxl+l 
ALPO and LoQo use the same heuristics for determining the starting point, the 

barrier parameter /~,  and the steplengths ap and ad. Both solvers use a minimum 
degree ordering heuristic to preserve sparsity during their respective factorizations. 
LoQo does not, however, fully reorder the entire matrix K. When no dense columns 
are present, it orders the first n pivots and the last m pivots within their respective 
groups. Alternatively, when LoQo's  internal heuristic detects dense columns, it can 
elect to move dense columns from the first group into the second before reordering. 
Likewise, ALPO may split dense columns or elect to solve the dual as the primal 
when dense columns are present (see [25] for details). 

Table 2 provides a computational  comparison between LoQo and ALPO on the 
NETLIB test set. The main points of  comparison are the number  of  arithmetic 
operations needed to perform the required factorization and the total solve time 
obtained using the timo command from the U N I X  command  line. For problems 
that are not solved, the maximum number  of  digits of  agreement between the primal 
and dual objectives is given in parentheses in place of  the solve time. 

The dense co lumn threshold given in Table 2 indicates the level at which LoQo 
declares a column of K to be dense. The heuristic employed to detect dense columns 
is simple and conservative. Given K, it first selects the m sparsest columns from 
the first n and places them in the first pivot group. Then, it declares dense any 

column from the first n that has more than ten times the number  of  nonzeros as 
the densest of  these first m columns. Dense columns are placed in the second group 
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Table 2 

Statistics for netlib problems 

Problem Arithmetic operations Solution time Iterations Maximum 
name column 

A D 2 A  T K A D 2 A  T K A D2A  T K density 

Dense 
column 
threshold 

25fv47 2760211 2780905 23.99 25.80 40 40 21 
80bau3b 2945058 2482245 83.32 98.58 95 95 12 
adlittle 6776 7338 0.38 0.42 26 26 11 
afiro 1003 1156 0.14 0.18 13 13 4 
agg 230528 506107 4.47 8.99 60 65 43 
agg2 1193785 870064 10.99 8.42 38 37 43 
agg3 1127453 857144 11.45 8.85 41 40 43 
bandm 131780 134115 2.34 2.37 29 29 22 
beaconfd 192992 152646 2.50 1.86 21 20 27 
blend 22846 23482 0.38 0.47 19 19 16 
bnll 563765 581259 13.92 16.52 83 83 8 
bnl2 13690320 13358314 125.55 128.37 57 57 8 
boeingl 265999 226677 4.70 (6) 38 * 32 
boeing 2 80846 81357 1.44 1.61 34 35 23 
bore3d 93047 91175 1.87 1.91 38 38 28 
brandy 162037 145041 2.26 2.00 30 30 29 
capri 259466 244917 3.45 3.54 41 41 25 
cycle 6139656 9344502 (7) 106.81 * 60 28 
czprob 167559 181829 14.63 20.21 78 78 4 
d2q06c 26344173 33611638 249.75 311.53 58 57 34 
degen2 970554 1016637 6.59 7.38 26 27 22 
degen3 19014469 16184767 181.44 127.90 53 42 49 
e226 124091 128163 2.41 2.34 33 32 21 
etamacro 1079849 1158886 8.94 10.19 41 41 8 
fffff800 1097108 1058556 15.20 14.60 51 53 50 
finnis 162763 163461 3.58 4.20 39 39 14 
fitld 210077 224553 6.57 7.28 26 26 18 
fitlp 588603 148220 15.50 5.83 27 25 610 
fit2d 1891633 2031199 72.78 217.49 33 33 17 
fit2p 4442053 649721 227.28 47.46 32 28 2971 
forplan 231300 218645 4.50 4.20 42 42 35 
ganges 1577518 1753923 12.64 14.10 30 30 13 
g~dpnc 20385 23916 2.17 2.67 27 27 3 
greenbea 5834350 6149368 (3) (5) * * 24 
greenbeb 5834350 6149368 225.10 257.78 175 177 24 
growl5 244210 235265 4.18 3.74 25 25 20 
grow22 361096 347986 (8) 11.25 * 68 20 
grow7 110626 106441 1.87 1.60 23 22 20 
isreal 719719 105436 6.14 2.80 38 40 136 
kb2 10608 10989 0.35 0.42 28 28 14 
lotfi 41241 43187 1.30 1.30 31 31 10 
maros 1708722 1677094 19.15 19.63 44 44 20 
nesm 1597438 1980353 41.35 49.10 95 95 10 
perold 1983413 2416657 29.40 35.75 74 74 16 
pilot4 1168188 1078103 16.94 16.20 64 63 27 
pilot87 211406218 232401792 2375.41 2362.62 79 73 96 
piloja 6812674 6091671 85.70 75.80 68 66 55 
pilotnov 5866830 5821645 50.60 50.62 45 45 40 

30 
30 
30 

30 

30 

20 

20 

20 

30 
40 
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Table 2--continued 

11 

Problem Arithmetic operations Solution time Iterations Maximum 
name column 

AD2A T K AD2A "r K AD2A "r K density 

Dense 
column 
threshold 

pilots 53044741 45723391 519.56 428.70 63 59 121 
pilotwe 1010753  1017334 39.11 46.26 145 145 12 
recipe 19096 19987 0.49 0.61 17 17 10 
scl05 5455 6228 0.36 0.43 21 21 5 
sc205 11974 12594 0.62 0.76 23 23 5 
sc50a 2196 2292 0.20 0.25 18 18 5 
sc50b 2138 2276 0.20 0.25 16 16 4 
scargr25 34868 37250 1.76 2.17 33 33 9 
scagr7 8718 9414 0.56 0.63 29 29 9 
scfxml 132268 134388 2.78 2.76 36 35 20 
scfxrn2 276635 276338 5.98 6.25 40 39 20 
scfxm3 421000 417348 9.11 9.70 40 40 20 
scorpion 33676 35210 1.32 1.64 27 27 7 
scrs8 184874 190685 3.65 4.55 35 35 8 
scsdl 43153 46301 1.19 1.48 17 17 4 
scsd6 73613 79279 2.32 2.81 19 19 4 
scsd8 142703 154037 4.30 5.41 18 18 4 
sctapl 45902 47158 1.76 2.21 38 38 6 
sctap2 631744 671208 6.83 8.10 24 24 6 
sctap3 677510 689712 8.90 10.97 25 25 6 
seba 3009683 67625 24.48 4.38 44 45 230 
sharelb 28678 35300 1.16 1.38 45 45 10 
share2b 21849 22466 0.52 0.62 21 21 12 
shell 86456 95187 3.84 4.83 35 35 3 
ship041 104554 113100 4.80 5.80 25 25 6 
ship04s 74998 80904 2.77 3.45 23 23 6 
ship081 212626 230111 9.45 12.45 34 34 6 
ship08s 124698 134111 5.20 6.64 30 30 6 
shipl21 263961 285946 11.4 14.52 29 29 6 
shipl2s 137593 152618 5.85 7.57 28 28 6 
sierra 355122 366160 7.50 9.22 28 28 4 
stair 1292003 1077366 8.80 7.47 30 29 34 
standata 73155 77659 2.50 3.35 30 30 10 
standmps 136351 140057 3.64 4.54 36 36 10 
stocforl 13458 13884 0.40 0.53 19 19 6 
stocfor2 612126 622502 14.54 17.30 45 45 10 
tuff 427430 431047 6.28 6.55 45 45 25 
vtpbase 66735 68132 1.87 2.7 54 54 12 
woodlp 5197822  3738081 82.97 57.97 28 30 28 
woodw 3 5 8 2 6 8 7  3595218 48.4 57.27 44 41 21 

30 

20 

w h i l e  t he  r e m a i n i n g  c o l u m n s  are  a d d e d  to  t h e  first  g r o u p .  Th i s  s t r a t egy  g u a r a n t e e s  

t h a t  t h e r e  are  at  l eas t  m c o l u m n s  in t h e  first  g r o u p ,  a n d  o f t e n  it p l a ce s  all n c o l u m n s  

in  t h e  first g r o u p  to  y i e ld  t h e  b a s i c  c o n s e r v a t i v e  s t ra tegy .  

In  m o s t  cases ,  t h e  t i m i n g s  o f  t he  t w o  so lve r s  are  c o m p a r a b l e  a l t h o u g h  A L P O  is 

f a s t e r  o n  62 o f  t h e  84 p r o b l e m s  t h a t  a re  s o l v e d  by  b o t h .  U s u a l l y ,  w i d e l y  d i f f e r i n g  

p e r f o r m a n c e  is t h e  r e su l t  o f  d e n s e  c o l u m n  t r e a t m e n t ,  a n d  L o Q o  t e n d s  to  d o  b e t t e r  
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on these problems. Below we summarize observations on the solution of  problems 
which yield wide performance differences between the two solvers. 

• On problem agg, ALPO chooses to solve the dual problem, which clearly gives 
it an edge over LoQo even though LoQo does declare some columns as dense. 

• On problems agg2 and agg3, ALPO elects to solve the primal problem, and 
the fact that LoQo declares some columns as dense gives LoQo the edge on these 
problems. 

• On problems fitlp and fit2p, ALPO gains a substantial advantage by solving 
the dual problem, but it is not enough to match the advantage LoQo gets by declaring 
all columns with 20 or more nonzeros as dense. 

• On problem israel, LoQo declares all columns with 20 or more nonzeros as 
dense. ALPO chooses to solve the primal problem (since the problem has dense 
rows as well as dense columns) and only gets a slight improvement from splitting 
columns with 20 or more nonzeros. 

• On problem seba, ALPO solves the primal (since as currently implemented, it 
can't solve the dual for problems with ranges) and gains some advantage by splitting 
colums with 20 or more nonzeros. LoQo, however, gains a much bigger advantage 
by declaring as dense all columns with 20 or more nonzeros. 

• On problem woodlp ,  2556 of  the 2595 columns have 20 or more nonzeros and 
so the problem that ALPO solves after splitting is much larger than the original 
problem. On this problem, it would have been better if ALPO had decided not to 
split columns. ALPO solves wood lp  in 62.39 seconds when splitting is turned off, 
which is still slightly slower than the LoQo time. 

• LoQo fails to meet the termination criteria of boeingl and greenbea, boeingl 
attains both primal and dual feasibility with 6 digits of agreement between the 
primal and dual objective values, greenbea, however, is never primal feasible. 

• ALPO fails to satisfy the termination criteria of cycle, greenbea, and grow22. 
Although grow22 gets the necessary agreement in primal and dual objective values, 
it nevers satisfies the primal feasibility requirement. 

5. Quadratic programs 

We now consider the role of the symmetric indefinite system in quadratic program- 
ming. The standard form quadratic program is 

minimize c~: x + ½x V Qx 

subject to A x  = b, (18) 

x~>0, 
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where Q is an n × n positive semidefinite matrix. It has the associated dual quadratic 
program 

maximize b T y - - ½ x  T Q x  

subject to A T y ÷  z - -  Q x  = c, (19) 

z~>0. 

Once again, we can apply the logarithmic barrier function to eliminate the 
inequality constraints in (18) and (19). Simultaneous optimality in the barrier 
t ransformed problems requires 

A x  = b, A T y + z -- Q x  =- c, X Z e  = ~e. (20) 

We can now apply Newton's  method to the requisite conditions (20) to obtain a 
step direction. This is analogous to the linear case in Section 2 and is described in 
Monteiro and Adler [21]. The step direction for the quadratic program is the solution 
( Ax,  Ay, ~lz) of the system 

i , 

0 0 JL•yJ p 

where p, O-q, and ¢h are respectively the primal infeasibitity, dual infeasibility, and 
noncomplementar i ty  at the current point. The previous definitions for p and & still 
apply, but the dual infeasibility now also depends on the primal variables and is 
defined as 

O'q= c -F O x  - A T y - z. 

Having obtained Ax ,  Ay,  and Az, the new estimate is 

x ,+- x + a A x ,  y ~- y + a A y ,  z ~ z + a A z ,  (22) 

where a is a steplength chosen to ensure that x and z are sufficiently nonnegative. 
As in the linear case, we can use the first set of  equations in (21) to eliminate Az 

and get 

= 1 A Ay k p A" 

Let Kq denote the matrix in system (23). This matrix differs from K considered 
previously in that ( Q + Z X  -1) appears in the upper  left where the diagonal matrix 

Z X  -~ had been formerly. Since Q is symmetric, Kq is also symmetric and indefinite. 
Once again, it is valid to eliminate a x  from (23) using the first set of equations and 
solve 

A O - ' A T  A y = p - t - A O - l ( c r q - X  '(a) (24) 
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for Ay, where 6)= ( Q + Z X - 1 ) .  The matrix in the left-hand side of  system (24) is 
positive definite, so its LAL  T factorization can be computed.  Unfortunately, this 
requires computing 6)-1 in the process. Since Q is at least positive semidefinite and 
we add the positive diagonal matrix Z X  -1 this matrix is clearly nonsingular. In fact, 
when Q is diagonal, the analysis of  Section 3 applies directly. We simply let D - :  
in K be the diagonal matrix ( Q + Z X  -1) to form Kq. Since the upper  left matrix is 
positive and diagonal, elimination in gq  is analogous to elimination in K, discussed 
for the linear case. 

When Q is not diagonal, however, 6)-1 may be difficult to compute and fully 

dense. In addition, the fill-in that occurs in (24) results not only from the structure 
of  A, but is exacerbated by the appearance of 6)-1. Alternatively, we can factor 6) 
so that O T = LoAoLo ,  and system (24) becomes 

ALoTA o lLo lATAy  = p q- ALoTA ol Lol(o'q - X -1 q~). (25) 

This is effectively equivalent to applying the conservative strategy to solve (23). 
In the remainder of  this section, we explore symmetric elimination in Kq when 

Q is not necessarily diagonal. Since Q is symmetric, Kq is symmetric, but a 
factorization of the form Kq = L A L  T is not guaranteed to exist because it is indefinite. 
Still, we can fix an ordering to assure that this factorization is computable. Once 
again, we adopt  a conservative pivot strategy in which we require that the first n 
columns be eliminated first. The positive definiteness of  6) in the matrix 

assures that no zero diagonal elements are encountered in the first n eliminations. 
Therefore, after n stages of  elimination, the partially reduced matrix has the form 

[r 
Analogous to the linear case, the matrix M = ALOTAo1LoIA T -  the matrix which 
appears in (25). The positive definiteness of  6) (and hence its factors) guarantees 
the positive definiteness of  ALoTAolLo lA  T when A has full row rank and assures 

that the remainder of  Kq can now be eliminated in the usual way to yield a 
factorization Kq = L A L  T. Further, the work required to obtain the factors of Kq is 

essentially equivalent to the work required to first factor 6) and then form and factor 
ALoTA o 1Lo 1A T in order to solve for the Newton direction via the smaller system (24). 

Fill-in of  the lower m x m submatrix formed during elimination occurs as a result 
of  either nonzeros in A or nonzeros in Lo. A dense column and row (by symmetry) 
in Q yields a dense row in Lo and a dense column in L T - e v e n  when the 
factorization is performed to minimize fill. Likewise, Lo 1 and Lo T have a dense row 
and column, respectively. Whenever Lo T has a dense column, the product A L o  T 
has a dense column regardless of the structure of  A. Dense columns in ALo  T therefore 
occur when there are dense columns in either A or Q. Indeed, if there are few 
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quadratic variables with many cross terms, the effect should be very similar to when 
there are dense columns in A. Once again, it may be beneficial to group particularly 
dense columns in Kq with the last m columns during elimination to avoid creating 
fill. This is possible as long as the nondense portion of A L J  has rank m. By doing 
this, pivot rules are exploited throughout the solve (not just in the last m steps) to 
maintain sparsity. But as in the linear case, the reordering is mainly within the two 
groups but allows dense columns to be placed in the second group. This is in contrast 
to the method proposed by Poncele6n [23] which advocates a full reorder of  the 
indefinite system and requires a specialized procedure for factoring indefinite 
matrices. 

5.1. The inequality constrained quadratic program 

One case in which solving the indefinite system is both robust and efficient is the 
inequality constrained quadratic program: 

minimize C x  + ½x T Qx 

subject to Ax<<- b, (27) 

x~>0. 

The quadratic program (27) can always be written in standard form (18) by adding 
slack variables. We get 

minimize eVx + ½x v Qx 

subject to A x + s  = b, (28) 

X, S 9 0 ,  

where s c R m. The primal quadratic program has n + m variables and the dual has 
n + m corresponding constraints: 

A Ty + zx - Qx = c, (29) 

y + zs = 0. (30) 

We partition the dual slack variables so that z = [zx I zs] where zx is the first n and 
zs the last m slack variables. The Newton equations based on (28) are now 

s //Az,/ 
- Q  A v Ax = r. (31) 

I I As 

A I Ay 

To simplify exposition, we allow r to be a known, conformable right-hand side 
vector throughout the remainder of this section. 
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NOW we can proceed in the usual way by using the first m +n  equations to 
eliminate Azx and Azs and obtain 

-s-'z,  r (32) 

A I JLayJ 

System (32) corresponds to system (23) for the original standard form quadratic 
program where the constraint matrix is fi, = [ A l l  ]. The columns in A associated 
with the slack variables are of rank m. Thus, if we order to eliminate in these columns 
first, Proposition 2 assures that the remaining columns can be eliminated in any 
order to best preserve sparsity. Because each of the slack variable columns has only 
one off-diagonal nonzero, LoQo automatically places them among the first to be 
eliminated. Consequently, the ordering selected by LoQo yields a factorization of 
the form L A L  v whenever the constraints are in inequality form. This factorization 
is also guaranteed for inequality constrained linear programs, but we obtain an 
extra bonus in the quadratic case. 

Having eliminated the As variables in the usual way, we have 

[ - ( Q + A  ZxX-1) AT ] [  Ax] 
= r. (33) 

SZ~ 1 Ay 

The matrix in (33) is quasi-definite and can be symmetrically permuted to minimize 
fill-in. If we prohibit mixing between the two blocks, however, there are two ways 
to proceed. We can use the top set of equations to solve for Ax in terms of Ay and 
solve the system 

[A(Q + ZxX-I ) -1AT + SZs l ]Ay  = r (34) 

for Ay in the usual way. Alternatively, we can use the bottom set of equations to 
solve for dy  in terms of Ax and then solve 

- - [ ( Q + Z x X - ~ ) + A T S  ' z sa ]Ax  = r (35) 

for Ax. This second approach requires factoring one n × n matrix of known sparsity 
pattern. The first approach entails first factoring the n × n matrix (Q + z x x  -~) and 
then forming and factoring the m x m matrix that appears in (34). Solving the system 
(35) offers a clear advantage - -  especially when Q is dense. If Q is dense, no fill-in 
occurs from reducing (33) to (35), whereas the reduction to (34) does entail fill-in. 
The dense column heuristic in LoQo will likely delay the columns involving a dense 
Q until last, thereby executing the preferred strategy which forms (35). 

5.2. A note on stability 

So far, we have not explicitly considered the issue of stability beyond saying that, 
when the L AL  T factorization is guaranteed to exist, our method should be about 
as stable as the method based on the A O - 1 A  T system. In the remainder of this 
section, we attempt to formalize our consideration of stability. Before proceeding, 
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however, we note that the stability of  interior point methods (even those based on 
the AO)-IA T system) needs to be better understood. 

The overall stability of  the method based on the symmetric indefinite system 
depends on two issues. The first is whether or not the symmetric reordering places 
a set of  columns of rank m in the first group of columns to be eliminated. I f  it does, 
then eliminating these columns yields a reduced system whose matrix is symmetric 
quasi-definite and guarantees that an LAL  T factorization exists for this ordering. 

Given an ordering for which the LAL T factorization exists, whether or not it can 
be computed in a numerically stable fashion is the second issue. In [26], Vanderbei 
discusses the stability of  factoring the matrix that appears  in (33) when Q is zero. 
This matrix becomes increasingly poorly conditioned as the method progresses. On 
the last iteration, the ratio of  its largest to smallest diagonal elements (in absolute 
value) ranges from 1.0e + 18 to 1.0o +57, as given in [26]. In this light, it is somewhat  
surprising that LoQo solves almost all of  the NETLIB problems. Furthermore,  those 
problems that it does not solve do not necessarily have the largest ratios. Vanderbei 
[26] notes that for many of the NETLIB problems the matrix in (33) is actually 
converging to a singular matrix. When this is the case, any symmetric reordering is 
unstable - -  including the conservative strategy which reduces to the A6) - IA  T system. 

6. Computationl testing--Quadratic programs 

The general scheme of solving the indefinite system (23) for quadratic programs 
was suggested by Poncele6n [23] but was not computationally tested for nonsepar- 
able problems. Herein, we explore the efficacy of this approach for solving nonsepar- 
able problems. 

6.1. Test problem description 

We are not currently aware of  a publicly available set of positive semidefinite 
quadratic programs for testing. Therefore, we employ the NETLIB [7] set of linear 
programs to generate quadratic test cases. We create quadratic objective terms as 
a product based on a subset of  the rows of A. We let Ar denote a 0-1 mask of the 
first r% of the rows of A; an element of  Ar is 1 whenever the corresponding element 
of  A is nonzero and 0 otherwise. We set Q = AX~Ar so that the quadratic test problems 
are simply the NETLIB problems with this additional quadratic term. The current 

set of  test problems is formed with r = 5%. So formed, Q is typically of  low rank 
and may be quite dense. 

Our test set consists of  74 of the 89 total NETLIB problems. We omit any problem 
with: more than 2000 rows; more than 10,000 columns; or more than 500,000 
nonzeros in the Q matrix. Thus, 80bau3b, bnl2, d2q06c, dfl001, fit2d, fit2p, greenbea, 
greenbeb, pilot87, and stocfor2 are removed based on the size of  the constraint 
matrix. Czprob, fitld, and wood lp  are omitted because of the density of  Q. 



18 R.J. Vanderbei, T.J. Carpenter/Indefinite systems for interior point methods 

Table 3 

Test problem characteristics 

Problem Rows Columns Nonzeros Problem Rows Columns Nonzeros 
in Q in Q 

25fv47 821 1571 116888 pilotnov 975 2172 873 
adlittle 56 97 146 pilots 1441 3652 14456 
afiro 27 32 9 pilotwe 722 2789 6367 
agg 488 163 102 recipe 91 180 64 
agg2 516 302 511 scl05 105 103 16 
agg3 516 302 511 sc205 205 203 31 
bandm 305 472 57 sc50a 50 48 9 
beaconfd 173 262 32 scS0b 50 48 9 
blend 74 83 22 scagr25 471 500 228 
bnll 643 1175 1990 scagr7 129 140 42 
boeing1 351 384 123654 scfxml 330 457 1409 
boeing2 166 143 10705 scfxm2 660 914 2188 
bore3d 233 315 127 scfxm3 990 1371 2353 
brandy 220 249 114 scorpion 388 358 58 
capri 271 353 1727 scrs8 490 1169 209 
cycle 1903 2857 1915 scsdl 77 760 1292 
degen2 444 534 18275 scsd6 147 1350 2712 
degen3 1503 1818 120164 scsd8 397 2750 4740 
e226 223 282 1861 sctapl 300 480 270 
etamacro 400 688 8516 sctap2 1090 1880 1413 
fffff800 524 854 3554 sctap3 1480 2480 1908 
finnis 497 614 3807 seba 515 1028 1156 
fitlp 627 1677 3176 share lb 117 225 44 
forplan 161 421 1128 share2b 96 79 81 
ganges 1309 1681 1272 shell 536 1775 69168 
gfrdpnc 616 1092 267 ship041 402 2118 98 
growl5 300 645 962 shipO4s 402 1458 98 
grow22 440 946 1639 shipO8s 778 2387 21216 
grow7 140 301 684 shipl2s 1151 2763 33280 
israel 174 142 1354 sierra 1227 2036 244 
kb2 43 41 32 stair 356 467 1925 
lotfi 153 308 286 standata 359 1075 1275 
maros 846 1443 896 standmps 467 1075 2445 
nesm 662 2923 20625 stocfor 1 117 111 20 
perold 625 1376 727 tuff 333 587 196 
pilot4 410 1000 453 vtpbase 198 203 5050 
pilotja 940 1988 870 woodw 1098 8405 3312 

D e s c r i p t i v e  s ta t i s t ics  f o r  t h e  r e m a i n i n g  74 p r o b l e m s  are  p r o v i d e d  in  T a b l e  3. The  

n u m b e r  o f  c o n s t r a i n t s  p r o v i d e d  in T a b l e  3 is fo r  t h e  M P S  s t a n d a r d  f o r m .  

6.2. Numerical experiments 

In  o r d e r  to  o b t a i n  a b e n c h m a r k  fo r  q u a d r a t i c  L o Q o ,  e a c h  o f  t h e  tes t  p r o b l e m s  is 

a t t e m p t e d  wi th  b o t h  M I N O S  5.3 ( June ,  1989) a n d  L o Q o .  M I N O S  [22] is a wel l -  

k n o w n  r e d u c e d  g r a d i e n t  b a s e d  so lve r  f o r  l i n e a r  a n d  n o n l i n e a r  p r o g r a m s .  All  c o m p u -  
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tational tests are performed on an IBM RISC System/6000 workstation running the 
U N I X  operating system. 

MINOS is a FORTRAN code compiled with the xlf compiler  under the default 
optimization. In order to solve nonlinear programs, MINOS requires a user provided 
subroutine for evaluating the objective function and its gradient. This subroutine 
reads the matrix Q (in only the first call) from an external file and stores it in sparse 
matrix format. The sparse matrix representation allows us to assume that all variables 
are nonlinear without degrading performance.  The external data file contains the 
lower portion of the Q matrix in format free input where each line provides: row 
number  i; column number  j ;  and associated value Qij of  Q. 

Whenever possible, MINOS is run with the default option. In each case we declare 
all variables to be nonlinear and suppress printing a solution by specifying the 
SOLUTION NO option. By default, optimality requires that the reduced gradient 
and the primal infeasibility norms are less than 1.0 x 10 -6. 

LoQo is written in c and compiled with the AIX c compiler  under the default 
optimization. The nonzeros in the lower part  of  Q are included in a special section 
of the MPS file (called QUADS). This section has the same format  as the COLUMNS 
section but the row names now correspond to rows of Q and therefore are variable 
names themselves. 

The test problems are run with all default options in LoQo except that the minimum 
degree ordering heuristic is invoked and a parameter  specifying the minimum number  
of  nonzeros in a dense column is provided. The parameter  is high enough that no 
columns can be declared dense, and LoQo is forced to execute the conservative 
strategy in all cases. In this first set of  tests, our goal is to demonstrate the viability 
of  the simplest possible method. The next section provides results for problems with 
dense columns when this dense column threshold is not given. 

Optimality requires primal and dual infeasibility to be less than 1.0 × 10 -6, and 
the relative duality gap to be reduced below 1.0 x 10 -8. The primal infeasibility is 

measured by 

[bAx - b ll2 . 

[Ibl12+1 ' 

the dual infeasibility is 

Ilc+ Q x -  a ~ y -  zl]2 

I l c l l = + ]  ' 

and the relative duality gap is 

cTx -- bTy + xTQx 

IcTx + lxTQxl + 1" 

Table 4 summarizes the times required by LoQo and M I N O S  to solve the test 
problems. The MINOS time is the internal Mean time for entire program reported 
in the output file, whereas the LoQo time is measured externally on the U N I X  
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Table 4 

Total time in seconds 

Problem MINOS LoQo Problem MINOS LoQo 
time time time time 

"v  

25fv47 540.29 (0) pilotnov 401.84 142.19 
adlittle 0.50 0.50 pilots 1695.73 (4) 
afiro 0.09 0.16 pilotwe 424.84 95.10 
agg 2.40 27.82 recipe 0.52 0.64 
agg2 5.02 45.35 scl05 0.26 0.40 
agg3 5.18 47.51 sc205 0.50 0.75 
bandm 3.78 3.70 sc50a 0.14 0.23 
beaconfd 1.77 2.38 sc50b 0.13 0.23 
blend 0.47 0.53 scagr25 3.97 8.20 
bnll 68.80 21.34 scagr7 0.63 1.50 
boeingl 50.44 (2) scfxm 1 4.11 (7) 
boeing2 4.58 22.27 scfxm2 14.08 (7) 
bore3d 1.26 2.67 scfxm3 27.57 (7) 
brandy 2.82 2 . 4 1  scorpion 2.34 1.83 
capri 3.65 38.17 scrs8 11.71 6.17 
cycle 142.91 60.54 scsdl 3.43 1.82 
degen2 24.18 88.54 scsd6 9.49 3.55 
degen3 384.34 5438.90 scsd8 31.46 7.47 
e226 6.70 3.38 sctapl 2.61 2.56 
etamacro 19.59 58.30 sctap2 19.68 9.82 
fffff800 25.14 107.11 s ctap 3 29.27 13.10 
finnis 7.87 (7) seba 7.19 287.96 
fitlp 18.35 409.50 sharelb 1.86 1.72 
forplan 2.89 6.10 share2b 0.55 0.73 
ganges 15.96 (4) shell 29.11 269.53 
gfrdpnc 11.56 3.50 ship041 8.16 5.48 
growl5 13.32 6.57 ship04s 4.74 3.68 
grow22 34.19 11.70 ship08s 16.87 26.22 
grow7 4.22 2.83 shipl2s 29.85 32.25 
israel 2.78 15.24 sierra 17.49 (1) 
kb2 0.33 0.45 stair 6.00 45.58 
lotfi 1.18 1 . 5 0  standata 2.54 3.90 
maros 79.00 (1) standmps 4.79 7.23 
nesm 145.52 116.75 stocforl 0.45 0.54 
perold 246.80 136.70 tuff 11.59 7.83 
pilot4 27.32 26.39 vtpbase 2.53 (4) 
pilotja 590.82 304.50 woodw 111.33 76.17 

c o m m a n d  l ine  by the  t i m e  c o m m a n d .  O n c e  aga in ,  t he  m a x i m u m  n u m b e r  o f  sig- 

n i f ican t  d igi ts  o f  a g r e e m e n t  b e t w e e n  the  p r i m a l  a n d  d u a l  ob jec t ives  is g iven  fo r  

p r o b l e m s  tha t  L o Q o  c a n n o t  solve.  In  all ,  L o Q o  solves  63 p r o b l e m s  wh i l e  M I N O S  

solves  all  74. O f  the  p r o b l e m s  tha t  a re  s o l v e d  by bo th ,  M I N O S  solves  34 fas ter ,  

L o Q o  so lves  28 fas ter ,  and  o n e  t akes  the  s a m e  a m o u n t  o f  t ime  on e i the r  so lver .  

T h e r e  are  11 p r o b l e m s  tha t  b o t h  so lvers  f in ish  in u n d e r  one  s econd ;  M I N O S  

o u t p e r f o r m s  L o Q o  on  10 o f  11 o f  these ,  a n d  the  las t  is a tie.  E l i m i n a t i n g  these ,  

M I N O S  is f a s t e r  on  24 a n d  L o Q o  on  28. T h e  t imings  d e m o n s t r a t e  tha t  the  i n t e r i o r  
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point method is certainly competitive, but is hampered by dense columns in A and 
density in Q. The problems with dense columns (fitlp, israel, and seba) are all 
solved much faster under LoQo's  default pivot strategy in the following section. In 
addition, we suggest a formulaic strategy that prevents explicitly forming a dense 
Q in the following section. In particular, boeing2, degen2, degen3, fffff800, shell, 
ship08s, and shipl2s are dramatically improved. 

7. Separable equivalents 

Each of the problems in the preceding section is considered along with a separable 

equivalent. We note that any positive definite quadratic program has a separable 
analog based on the Cholesky factorization of Q. That is, given a quadratic program 
in standard form 

minimize eV x + ½xV Qx 

subject to A x  = b, 

x~>O, 

where Q is positive definite with Cholesky factor /2, we can introduce a set of  
variables w = L-rx and obtain an equivalent separable quadratic program 

minimize crx  +½wrw 

subject to A x  = b, 

L-rx - w = 0, (36) 

x~>0, 

w free. 

The quadratic program (36) based on the Cholesky factorization has a number  of  
drawbacks: it has n more constraints; it has n more v a r i a b l e s - - a l l  of which are 
free; and it requires the Cholesky factorization of Q. In compensation for these 
costs, we obtain a separable quadratic program whose iterations are not much more 
difficult than those for a linear program with the same constraints [4]. It is often 
the case, however, that a positive semidefinite Q has already been formed naturally 
from some matrix S as sTs .  When this is true, it may be advantageous not to actually 

form Q but to solve the following quadratic program instead: 

minimize crx + ½wVw 

subject to A x =  b, (37) 

S x -  w = O, 

x ~ O ,  

w free. 

In addition to being free, the matrix S may not require n rows. 
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7.1. An example: The Markowitz model 

The Markowitz [16] model for asset allocation is a widely solved nonseparable 
quadratic program for which there is a natural S used to create Q. The form of the 
model is generally 

minimize xT Qx 

subject to eTx= 1, 
(38) 

rTx ~ Frnin" 

X ~ 0 ,  

where the solution x is an investment decision that allocates funds among n different 
asset types to minimize the risk represented by the portfolio variance. In (38), e is 

an n vector of  ones; f is the mean return for each asset category; and rmi n is the 
minimum acceptable portfolio return. Typically, Markowitz models require few 
constraints. The constraints in (38) require all funds to be invested and demand 
that the expected portfolio return exceeds some minimum. In addition, there may 
be individual policy constraints. The model (38) is a basic Markowitz model and 
involves two constraints. The difficulty in solving such a model derives entirely from 
Q. The matrix Q is a sample covariance matrix. As such, it is positive semidefinite 
and fully dense. Its size is n x n where n is the number  of  asset categories. This may 
be massive. We note, however, that since Q is a sample covariance matrix, 

1 
Q = ~ - 1  (R - ,q)T(R --/~), 

where R is a t x n matrix for which t is the number  of  time periods in which returns 
are observed and Rij is the return for asset j in period i. /~ is a t x n matrix of  mean 
returns where each of its t rows is simply fT. Thus, we can define Q - - s T s  where 

1 
S = / - n - s T  (R - /~ ) .  

The Markowitz model (38) can, therefore, be rewritten as the following equivalent 
separable quadratic program: 

minimize wTw 

subject to eTx=l, 

r T x  ~ rmi n , 

(39) 
Sx-w=O,  

x ~ O ,  

w free. 

Recently, Konno and Suzuki [12] independently proposed (39) as a preferable 
formulation of the Markowitz model. 
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The quadratic program (39) has t new constraints. Often, however, it is the case 
that return data is compiled only monthly or quarterly, so the number  of observations 
t may be small relative to the number  of  asset categories. In this case, the separable 
quadratic program (37) or (39) is much easier to solve than its nonseparable 
counterpart  (18) or (38). 

In practice, we feel that many nonseparable quadratic programs arise naturally 
based on a Q of the form SVS. When S is available and has few rows relative to 
columns, the separable form (37) may be the appropriate  form to consider. We 
illustrate the potential computational advantage by generating and solving separable 
analogs of  our test problems. The size increase for the separable equivalents when 
Q = ATrAr varies depending on the size of  A. 

7.2. Numerical  results 

Since the Q matrix that appears in the test problems is derived based on a fraction 
r of  the rows of A (in this case 5%), the separable equivalents are of  the form 

minimize CT +½WvW 

subject to A x  = b, 

A , x  - w = 0, (40) 

x ~ 0 ,  

w flee. 

The problem (40) has two salient features. First, Ar is constructed from the first r% 
of  the rows of  A, so the sparsity pattern in Ar is the same as that already present 
in A. Consequently, these rows contribute no new fill in the factorization. In general, 
this is not the case, and the additional rows can produce fill. Second, the number  
of  additional rows (0.05 x m) is small relative to the overall size in each of the test 
problems. Thus, even if Q is quite dense when explicitly formed, the indefinite 
system based on the separable equivalent is not much larger (or denser) than that 
of  the original linear program. The Markowitz model is an application that also 
exhibits this feature. 

The time required to solve each of the separable equivalent problems is provided 
in Table 5. The problems maros and sierra are not solved by either solver and are 
therefore omitted. Here again, the maximum number  of  digits of  agreement between 

the primal and dual objective values is provided for problems that LoQo cannot 
solve. On the problem forplan, LoQo satisfies the complementari ty requirement but 
is not dual feasible. MINOS declares that both problems it does not solve are 
infeasible. Once again, we force LoQo to use the conservative strategy by setting a 
parameter  that specifies the minimum number  of  nonzeros in a column considered 
dense. 
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Table 5 

Solving the separable equivalent-Total time 

Indefinite systems for interior point methods 

m seconds 

Problem Nonzeros MINOS LoQo Problem Nonzeros MINOS LoQo 
in Q time time in Q time time 

25fv47 41 205.93 100.86 pilotnov 48 387.86 149.20 
aslittle 2 0.58 0.46 pilots 72 1681.37 (0) 
afiro 1 0.12 0.16 pilotwe 36 144.76 59.00 
agg 24 3.18 20.94 recipe 4 0.71 0.68 
agg2 25 5.92 31.95 scl05 5 0.32 0.42 
agg3 25 6.67 31.33 sc205 10 0.68 0.81 
bandm 15 4.73 3.11 sc50a 2 0.15 0.25 
beaconfd 8 2.75 2.41 sc50b 2 0.18 0.19 
blend 3 0.62 0.51 scagr25 23 4.86 4.64 
bnll 32 75.45 19.41 scagr7 6 0.81 0.93 
boeingl 17 12.80 26.96 scfxml 16 4.71 (6) 
boeing 2 8 2.32 3.71 scfxm2 33 15.58 (4) 
bore3d 11 1.87 2.67 scfxm3 49 30.99 (6) 
brandy 11 3.47 2.37 scorpion 19 2.89 1.96 
capri 13 3.77 (7) scrs8 24 13.43 5.81 
cycle 95 135.98 68.30 scsdl 3 3.93 1.53 
degen2 22 15.75 10.30 scsd6 7 10.61 2.98 
degen3 75 309.10 175.71 scsd8 19 33.57 6.36 
e226 11 6.77 2.71 sctapl 15 2.98 2.56 
etamacro 20 14.58 45.48 sctap2 54 21.70 9.48 
fffff800 26 20.61 30.59 sctap3 74 31.90 12.40 
finnis 24 8.65 8.36 seba 25 8.63 196.48 
fitlp 31 33.08 532.08 sharelb 5 2.19 3.60 
forplan 8 4.15 (14) share2b 4 0.78 0.70 
ganges 65 18.95 108.80 shell 26 8.06 11.22 
gfrdpnc 30 13.34 3.63 ship041 20 11.21 5.67 
growl5 15 14.33 6.76 ship04s 20 6.67 3.90 
grow22 22 31.19 10.99 ship08s 38 13.49 8.23 
grow7 7 3.93 2.73 shipl2s 57 23.48 9.51 
israel 8 2.61 13.51 stair 17 7.46 36.63 
kb2 2 0.43 0.40 standata 17 3.09 3.81 
lotfi 7 1.29 1.50 standmps 23 5.28 5.14 
nesm 33 130.52 86.59 stocforl 5 0.63 0.49 
perold 31 236.93 100.30 tuff 16 14.34 7.99 
pilot4 20 28.99 24.26 vtpbase 9 1.52 (0) 
pilotja 47 633.32 288.44 woodw 54 114.38 82.7 

T h e  s ize  i n c r e a s e  s t a t e d  in  T a b l e  5 is t h e  n u m b e r  o f  a d d i t i o n a l  r ows  a n d  c o l u m n s  

t h a t  a re  i n c l u d e d  to  c r e a t e  t h e  s e p a r a b l e  f o r m u l a t i o n .  I n  a d d i t i o n ,  i t  p r o v i d e s  t h e  

n u m b e r  o f  v a r i a b l e s  a p p e a r i n g  q u a d r a t i c a l l y .  M I N O S  is a b l e  to  so lve  b o t h  f o r m s  

o f  72 p r o b l e m s .  O f  t h e s e ,  it so lves  52 f a s t e r  in  t h e  o r i g i n a l  n o n s e p a r a b l e  f o r m ;  

h o w e v e r ,  t h e  t o t a l  t i m e  f o r  al l  t e s t  p r o b l e m s  is s m a l l e r  w i t h  t he  s e p a r a b l e  f o r m .  

H e n c e ,  i t  is n o t  c l e a r  w h i c h  f o r m a t  is p r e f e r r a b l e  f o r  M I N O S .  L o Q o ,  o n  t he  o t h e r  

h a n d ,  is i m p e d e d  b y  f i l l - in  d u r i n g  t h e  f a c t o r i z a t i o n .  D e n s i t y  in  Q c o n t r i b u t e s  fill i n  

t h e  f a c t o r i z a t i o n ,  so  L o Q o  b e n e f i t s  f r o m  c o n s i d e r i n g  t h e  s e p a r a b l e  f o r m .  L o Q o  
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solves both formulations of 61 of the test problems. Of these, only 16 are solved 
faster in the nonseparable form, while 41 are faster when posed in the separable 
form. (The solution time is unchanged for four.) Figure 3 illustrates the percent 
change in LoQo's solution time that results from solving the separable equivalent 
instead of the nonseparable formulation. 

A total of 65 of the separable problems are solved by both MINOS and LoQo. 
LoQo solves 42 faster while MINOS is faster on 23. It is apparent that the perform- 
ance of  a particular solver is affected by the formulation it is presented. In the case 
of interior point methods, it is often advantageous to sacrifice size for sparsity. The 
separable equivalent formulation, though larger, can preserve sparsity. This is 
illustrated in Table 6 which provides the number of nonzeros in the factor L of Kq 
for both the separable and nonseparable formulations. 

Further, the solution time for problems with dense columns is significantly reduced 
when no dense column threshold is supplied. In our test set, the problems fitlp, 
israel, and seba are characterized by dense columns. Allowing LoQo to automatically 
detect and delay eliminating dense columns, reduces computation time by factors 
of  4 to 67. This savings is largely due to the preservation of sparsity during 
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Fig. 3. Percent change in solution time arising from separable formulation. 
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Table 6 

Nonzeros in factors 

Problem Nonzeros in L Problem Nonzeros in L 

Separable Nonseparable Separable Nonseparable 

25fv47 49898 190128 pilotnov 72244 76782 
adlittle 828 939 pilots 252407 479511 
afiro 194 194 pilotwe 27787 36209 
agg 20032 24245 recipe 1532 1485 
agg2 27439 35219 sel05 856 848 
agg3 27455 36445 sc205 1788 1794 
bandm 7227 7009 sc50a 364 350 
beaconfd 6175 6143 sc50b 342 337 
blend 1566 1600 scagr25 4551 4634 
bnll  18420 19983 scagr7 1169 1126 
boeingl 16846 192864 scfxml 8125 11374 
boeing2 5542 21875 scfxm2 16171 20044 
bore3d 4473 4501 scfxm3 24193 27627 
brandy 5601 5655 scorpion 3818 3672 
capri 7967 12321 scrs8 10000 11106 
cycle 97320 98116 scsdl 3848 4755 
degen2 21394 82369 scsd6 7048 8984 
degen3 152963 820680 scsd8 14945 19732 
e226 6680 8281 sctapl 4446 4625 
etamacro 23951 32553 sctap2 22546 23677 
fffff800 28631 50692 scrap3 28799 31645 
finnis 10062 19485 seba 60738 69125 
fitlp 226547 192518 sharelb 2667 2898 
forplan 8946 9184 share2b 1909 1851 
ganges 36629 36700 shell 8881 117468 
gfrdpnc 4334 5112 ship041 11054 11098 
growl5 12204 12175 ship04s 7910 7944 
grow22 18116 18225 ship08s 14321 46467 
grow7 5509 5619 shipl2s 17472 65559 
israel 14353 15994 sierra 20025 19737 
kb2 856 965 stair 21592 21790 
lotfi 3022 3136 standata 6492 6998 
maros 36972 45392 standmps 9138 12790 
nesm 39278 52364 stocforl 1408 1370 
perold 33793 40852 tuff 13700 13571 
pilot4 21034 23258 vtpbase 4676 18987 
pilotja 70185 77700 woodw 85535 88150 

f a c t o r i z a t i o n .  T a b l e  7 s u m m a r i z e s  t h e  t i m i n g s  o b t a i n e d  f r o m  s o l v i n g  p r o b l e m s  w i t h  

d e n s e  c o l u m n s  u n d e r  s eve r a l  s o l u t i o n  s t r a t eg i e s ,  w h i l e  T a b l e  8 s h o w s  t h a t  t h e  n u m b e r  

o f  n o n z e r o s  i n  L is d r a s t i c a l l y  r e d u c e d  b y  d e l a y e d  e l i m i n a t i o n  o f  d e n s e  c o l u m n s .  

Z3. Free variables 

S i n c e  t h e  s e p a r a b l e  e q u i v a l e n t  f o r m a t  c a n  r e q u i r e  t h e  i n c l u s i o n  o f  m a n y  f ree  

v a r i a b l e s ,  d e v e l o p i n g  r o b u s t  p r o c e d u r e s  f o r  h a n d l i n g  f r ee  v a r i a b l e s  is i m p o r t a n t .  
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Table 7 

Solution time in seconds - Problems with dense columns 

27 

Problem Conservative strategy Default strategy MINOS 

Nonseparable Separable Nonseparable Separable Nonseparable 

fitlp 409.50 532.50 8.16 7.96 18.35 
israel 15.24 13.51 3.57 3.34 2.78 
seba 287.96 196.48 10.20 9.34 7.19 

Table 8 
Nonzeros in factors - Problems with dense columns 

Problem Conservative strategy Default strategy 

Nonseparable Separable Nonseparable Separable 

fitlp 192518 226547 11445 10703 
israel 15994 14353 4675 4552 
seba 69125 60738 6046 6104 

Herein, we describe several options for handl ing quadrat ic  free variables in the 

p r imal -dua l  interior point  method.  In particular,  we consider  three general free 

variable techniques:  (1) the simplex method  "tr ick" o f  splitting free variables into 

a difference of  two nonnegat ive variables; (2) ignoring free variables in the primal 

while forcing equality in the associated dual constraints;  and (3) al lowing free 

variables to flip signs. The last method  is incorpora ted  in LoQo.  
Perhaps the most  widely used method for incorporat ing free variables is to write 

them as a difference o f  two nonnegat ive variables: 

x2 = x f  - x ~ ,  (41) 
where x; is free; x+l ~> 0; and x; ~> 0. Lustig, Marsten and Shanno  [ 14] have incorpor-  

ated this technique in OB1 - -  a p r imal -dua l  interior point  me thod  solver for  linear 

programs.  While it performs well on the N E T L I B  set, the basic method may become 
numerical ly  unstable when there are a large number  o f  free variables. Vanderbei  

[24] suggests that  the reason for this stems f rom the fact that  the dual constraint  

associated with a free variable must  hold with equality. When  Xi is rewritten using 

(41), the associated dual has two inequali ty constraints with slack variables z + and 

z , respectively. At an optimal solution, both z + and z -  must  be zero. Thus, in the 

diagonal  block D of  K, at least one of  the terms x+/z + and x -~z -  tends to infinity. 

In fact, both terms may  go to infinity together. When  free variables appear  quadrati-  

cally, this si tuation may be somewhat  alleviated because (Q + Z X  -1) appears  in Kq 

instead of  just Z X  -1. Further, for separable quadrat ic  programs.  Carpenter ,  Lustig, 

Mulvey, and Shanno [4] show that splitting quadrat ic  free variables yields a solution 

in which at least one o f  x + and x -  is zero. 
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Variable splitting is also applicable in the nonseparable case. If we consider the 
quadratic program (18) in which some of the variables are free, x, c, and A can be 
partitioned into bounded and free parts as follows: 

X ~--- [Xb[Xf] , C = [C b [ ¢f'], A = [AblAf] .  (42) 

Likewise, Q can be written 

Q~ j .  (43) 

Now, the quadratic program (18) with free variables split is 

minimize c T x b + c T ( x + - - X - ) + I ( x b , X + - - x - ) T Q ( x b , X + - - X - )  

subject to AbXb + A f ( x  + -  x - )  = b, (44) 

Xb, X +, X- />  0. 

Letting ~ = (Xb, X +, X-)  and 

Qb QTf _QTf] 

0= Qbf Qf 
-Qb~ -Q~ Q~ J 

solving (44) is equivalent to solving 

minimize cTxb q- C~(X + -- X--) At- 1.~TOx 

subject to AbXb + Af(  x +-- X -) = b, (45) 

Xb , X+, X ~ 0. 

The positive semidefiniteness of Q guarantees that 

(Xb, X + - - x - ) T Q ( x b , X + - - X  ) ~ 0  

for any Xb, X +, X . And since 

xTOx = (Xb, X + -- x - ) T  O ( x b ,  X + -- X - )  

we have that 

~w0~0 

for any ~. Thus, (45) has a positive semidefinite objective and can be solved by the 
basic primal-dual interior point procedure. Unfortunately, because the quadratic 
program with split variables (45) is only positive semidefinite, x + and x-  may both 
tend to get large together, causing the same type of instability observed in the linear 
case, 
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A second approach for handling free variables is to simply write the dual constraint 
associated with a free variable as an equality constraint. The slack variables are 
therefore not included for these dual constraints. When there are n b bounded primal 
variables Xb and nf free variables xf, the Newton system becomes [iz0 0]f z  

--Qb - Q [ f  Ab AXb = O ' q b  (46) 

A b Af LAy J L P J 

where trq~ is the first nb and ~rqf the remaining nf elements of  Crq. Using the first set 
of  equations to eliminate Az yields 

--Qbf - Q f  A T I I A x f  O'q~ (47) 

A b Af Ay p 
y J 

Kq 

Poncele6n [23] noted that (47) can be solved as long as the pivot order in factoring 
Kq is appropriately chosen. Finding such a pivot strategy for Kq may be easier than 
for its linear programming counterpart  K in which all Q blocks are zero. When 
there are few free variables, simply eliminating them after the bounded variables 
should perform well. This method has recently been implemented by Mehrotra  [19] 
for linear programs and appears to avoid the numerical instability introduced by 
variable splitting. 

Free variables are handled in LoQo via a variable transformation. This avoids 
creating extra variables as in splitting and mitigates numerical instability that can 
result from introducing zero in the leading diagonal elements of K (or Kq). Free 
variables in LoQo are ignored in the calculation of the primal steplength ap. Thus, 
they are allowed to become negative, but after each Newton step, free variables are 
checked. Those that have become small are rotated in such a way that they are 
sufficiently positive in a transformed problem. Specifically, when a free variable xj 
falls below 1.0 we consider a problem based on the new variable x~ = 2 - x j  and 
substitute 2 - x ~  for xj in the original quadratic program. This necessitates change 
in the objective function, the right-hand side, and requires negation of a column of  
the constraint matrix. Applying this change of variables an even number  of  times 
returns the original quadratic program. 

The relationship between the original and the transformed variables is shown in 
Figure 4. Whenever a free variable stays above 1.0 it is left alone; as soon as it falls 
below 1.0 it is rotated as shown. Figure 4 illustrates that a free variable must be 
greater than or equal t o  !.0 in either the original or the transformed problem. In 
particular, a free variable never assumes the value zero (until the actual solution is 
recaptured from the transformed problem) which prevents converging to a point 
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Fig. 4. Free variable transformation. 

that does not satisfy zj = 0. This approach was implemented in the ALPO linear 
program solver [24] and was easily extended to quadratic objectives for LoQo. 

8. Conclusions and future directions 

The numerical results in Sections 4, 6, and 7 demonstrate that a primal-dual interior 
point method based on solving the indefinite system is viable for solving linear and 
convex quadratic programs. Moreover, it eliminates the need to treat dense columns 
in the constraint matrix and nonseparable objectives as special cases. We believe 
that this additional level of generality will continue to yield computational benefits. 

Still, LoQo is a development code. As such, we expect improvements both in 
terms of efficiency and robustness. First, we note that both ALPO and LoQo are 
intended to be computational workbenches designed for simplicity and ease of use. 
Thus, we feel that these ideas can certainly be incorporated in faster codes with 
more painstaking linear algebra. Also, we handle indefiniteness simply by choosing 
relatively conservative elimination strategies. In addition to this, the factorization 
can be made more robust by allowing block eliminations as a safeguard measure 
(see [23, 10, 6]). 

While there is considerable computational experience documenting the effect of 
parameter choices in linear interior point methods, this is not true in quadratic 
programming. In LoQo, we use the same starting point for linear and quadratic 
programs. Interior point methods have been shown to be quite sensitive to starting 
point; therefore, a starting point tuned for quadratic programs should be beneficial. 
Also, the current implementation always takes equal primal and dual steps. Iterations 
were significantly reduced in linear programs by allowing independent choice of 
steplengths. Allowing independent steplengths in the primal and dual quadratic 
programs appeared to be less stable than the single step variant because the primal 
variables affect dual feasibility. Nevertheless, it may be advantageous to employ a 
combined strategy that enforces the single steplength requirement more stringently 
as optimality is approached. 

Finally, the predictor-corrector method suggested by Mehrotra [18] has sig- 
nificantly reduced the time for methods based on the positive definite system to 
solve linear programs. In every iteration, the predictor-corrector variant performs 
two backsolves with the computed factorization. Thus, each iteration is more 
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expensive ,  bu t  the  me thod  often per forms  fewer  i te ra t ions  and  therefore  fewer  

fac tor iza t ions  in all. The results of  M e h r o t r a  [18] and  o f  Lustig,  Mars ten ,  and  

Shanno  [15] demons t r a t e  that  the ensuing savings can be substant ia l .  A p r e d i c t o r -  

cor rec to r  var ian t  can also be i m p l e m e n t e d  based  on the indefini te  system. In  fact ,  

Fou re r  and  M e h r o t r a  [6] inc lude  the p r e d i c t o r - c o r r e c t o r  in the i r  l inear  p r o g r a m m i n g  

implemen ta t ion .  We bel ieve  that  the quad ra t i c  solver  may  benefi t  even more  t han  

the l inear  solver  because  the requi red  fac tor iza t ions  are inherent ly  more  difficult.  

We have begun  expe r imen ta t i on  with a p r e d i c t o r - c o r r e c t o r  var iant  of  LoQo,  and  

the p re l imina ry  results  are promis ing.  The  me thod  solves 60 o f  the 74 n o n s e p a r a b l e  

p rob lems  and  yie lds  improved  so lu t ion  t imes in all bu t  three  cases. In  fact,  the  

s p e e d u p  is over  two on 14 o f  the  54 p rob l ems  tha t  are so lved  by bo th  vers ions  o f  

LoQo,  and  it exceeds  seven in one case. These  results ,  however ,  are only p r e l i m i n a r y  

because  the p r e d i c t o r - c o r r e c t o r  i m p l e m e n t a t i o n  is still in the ear ly s tages o f  

deve lopment .  

A l though  fur ther  expe r imen ta t ion  is requ i red  to tune  bo th  the overal l  m e t h o d  

and  the pa r t i cu l a r  imp lemen ta t ion ,  we feel that  the  p r i m a l - d u a l  in ter ior  po in t  m e t h o d  

based  on solving the indefini te  system has  clear  promise .  C o m p u t a t i o n a l l y ,  it opens  

the class o f  convex quadra t i c  p rog rams  for  so lu t ion  by  a genera l  pu rpose  in te r io r  

po in t  solver.  
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