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We study the version of the prize collecting traveling salesman problem, where the objective is to find 
a tour that visits a subset of  vertices such that the length of  the tour plus the sum of penalties associated 
with vertices not  in the tour is as small as possible. We present an approximation algorithm with constant  
bound.  The algorithm is based on Christofides'  algorithm for the traveling salesman problem as well as 
a method to round fractional solutions of a linear programming relaxation to integers, feasible for the 
original problem. 
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1. Introduction ~ 

Let G = ( V, E )  be a complete  undirected graph with vertex set V and edge set E. 

Associated with each edge e = {i, j }  ~ E is a cost ce and with each vertex i c V a 

nonnegative  penalty ~'i. The edge costs are assumed to satisfy the triangle inequality, 

that is, qi,j~ <~ C~i, kl + C~k,jI for all i, j, k ~ V. In this paper we consider a simplified 

version o f  "the prize collecting" traveling salesman problem, namely,  to find a tour 
that visits a subset o f  the vertices such that the length of  the tour plus the sum of  
penalties o f  all vertices not in the tour is as small as possible.  

Correspondence to: Prof. D. Bienstock, Department  of  Industrial Engineering and Operations Research, 
Columbia  University in the City of  New York, New York, NY 10027-6699, USA. 

Research supported in part by O N R  contract N00014-90-J-1649 and NSF contract DDM-8922712. 
1 An earlier version of this paper,  due to the first and the third authors,  contained an analysis similar 

to the one described here with a slightly worse performance bound.  This bound  was improved by the 
second and the fourth authors,  independently.  
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In the general version of the problem, introduced by Balas (1989), the edge costs 
are not assumed to satisfy the triangle inequality. Further, associated with each 
vertex there is a certain reward or prize, and in the optimization problem one must 
choose the subset of vertices to be visited so that the total reward is at least a given 

parameter Wo. 
As is well-known, there is no polynomial time approximation algorithm for the 

traveling salesman problem, with bounded ratio, unless P = NP. Consequently, the 
same holds for the general prize collecting traveling salesman problem. However, 
one sub-class of the traveling salesman problem for which there is a fixed-bound 

polynomial time approximation is that where the edge-costs satisfy the triangle 
inequality (Christofides, 1976, or Johnson and Papadimitriou, 1985) and one won- 

ders if a similar situation holds for the prize-collecting traveling salesman problem 
(with arbitrary vertex prizes and penalties). 

As a a first step in the study of this problem we consider the variant of the problem 
where the minimum reward constraint is dropped and obtain a positive answer. 
Unlike the Christofides heuristic, our algorithm is not a combinatorial one: it uses 
the ellipsoid method. We remark that the version of the problem with the reward 

constraint appears much more difficult. 
Let Z* be the optimal solution to the prize collecting traveling salesman problem. 

For any S, S_~ V, let L(S) be the length of the optimal traveling salesman tour 
through S and LC(S) be the length of the tour, that includes all vertices in S, 
produced by Christofides' algorithm. For any heuristic H for the prize collecting 
traveling salesman problem, let Z H be the cost of the solution produced by that 
heuristic. We define the worst-case performance of a heuristic as an upper bound 
on the worst-case ratio of the cost of the heuristic solution to the cost of the optimal 

solution. 
For our analysis, it is convenient to formulate the prize collecting traveling 

salesman problem in the following way: Let Z*(j) be the optimal solution to the 
prize collecting traveling salesman problem when ver texj  must be in the tour. Clearly, 

Z*=min{i~vlri, mivn{Z*(J)} } • 

In what follows we use the integer program described below, whose solution is 
Z*(j). Let Yi be one if vertex i e V is in the tour and zero otherwise. Let Xe be one 
if edge e is in the tour and zero otherwise. For every subset of vertices S, let 6(S) 
be the set of  edges with one end in S and the other in V\S. Then, the prize collecting 
traveling salesman problem, when vertex j must be in the tour, can be formulated 
as follows: 

Problem PI(j):  

Z*(j) = minimize E e~xe+ ~ ~ci(1-yi) 
e~E i~V 

xe=2yi  Vie  V, 
e~3({i}) 

subject to (1.1) 
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Xe~ 2yi V i e  V, S c  V 
e~a(S) 

such that [S~{i,j}]= 1, (1.2) 

0 <- Xe ~< 1 and integer, (1.3) 

0~<yi<~ 1 and integer V i ~ j ,  (1.4) 

yj = 1. (1.5) 

Constraint (1.1) guarantees that if i is not visited Yi gets the value zero and therefore 
in the objective function we incurred a penalty ~'i. Constraint (1.2) ensures that if 
Is  ~ {i, J}l = 1, and i is also in the tour then at least two edges from the cut set 6(S) 

should have xe = 1. 
In this paper we present a three-step heuristic for the prize collecting traveling 

salesman problem: In the first step we solve the Linear Programming (LP) relaxation 
of  Problem PI(J) (using the ellipsoid m e t h o d - - t h e  separation problem is a min-cut 
problem) for each j e V. In the second step we transform the solution of  the LP 
relaxation of problem P~(j) into a feasible solution to the prize collecting traveling 
salesman problem, thus, constructing IV[ feasible solutions to it, each corresponding 

to a different PI(J)- Finally, we choose the best of these IV] possible solutions, or 
the solution in which no vertex is visited, whichever yields the better cost. The 

construction of the feasible solution in the second step is based on Christofides' 
algorithm for the traveling salesman problem as well as a method to round fractional 
solutions obtained in the first step to integers. The algorithm is called Modified LP 
relaxation (MLP) heuristic, and we prove that its worst-case performance is 2.5, 

that is, that 

zMLP/ z *  ~ 2.5. 

For another example of an algorithm that rounds fractional solutions of a linear 
program to integers that are "nearly" feasible see Lenstra, Shmoys and Tardos (1987). 

2. Preliminaries 

In what follows we make use of two recent results concerning a lower bound on 
the length of the optimal traveling salesman tour. Consider the traveling salesman 
problem defined on the set of  vertices V. A well-known lower bound on the length 
of the optimal tour is given by Held and Karp (1971) and is the solution to the 
following LP: 

Problem P2: 

ZHK = minimize Y. CeXe 
eEE 

subject to  ~. xe~>2 V S c  V, S ¢ 0 ,  (2.1) 
e~a(S) 
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~', X e = 2 Vi C V, (2.2) 
egg({/}) 

0~<x~. (2.3) 

Note that Problem P2 with the additional constraint that the Xe'S a r e  integers is 
the integer linear programming formulation of the traveling salesman problem. This 

is true since constraint (2.1) ensures that at least two edges from every cut set 8(S) 
must be in the solution while constraint (2.2) guarantees that exactly two edges are 
connected to every vertex. 

Theorem 2.1 (Wolsey, 1980, Shmoys and Williamson, 1988). 

ZHr./ L( V) >~ ZHr.J Lc(  V) >~ ~. [] 

For the next lemma we need to formulate the following LP. Associated with each 
vertex i c  V is a given number ri which is either zero or two. Let V2={ic  Vlri =2}. 

Problem P3: 

minimize Y~ cexe 
e c E  

subject to Y, xe i> 2 
e~,~(S) 

V S c  V such that V2c~S#O,  V 2 c ~ ( V \ S ) # 0 ,  

(2.4) 

Y~ xe=ri  Vi~V,  (2.5) 
e~B({i}) 

0<~ X e. 

In the Appendix we provide a short proof  of the following result: 

(2.6) 

Lemma 2.2 (Goemans and Bertsimas, 1990). The optimal solution value to Problem 

P3 is unchanged i f  we solve it without constraint (2.5). 

Lemma 2.2 implies that in Problem P2 (Held and Karp lower bound on the length 
of  the optimal traveling salesman tour) one can ignore constraint (2.2), without 
changing the value of the lower bound. This can be seen by choosing rl = 2 for all 
i c V and applying the lemma. 

3. Analysis of  the M L P  heuristic 

The MLP heuristic generates IV I different solutions to the prize collecting traveling 
salesman problem by solving the LP relaxation of Problem Pl(J) for every j ~ V. 
The j th  solution associated with Problem P1(J) is generated in the following way. 
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Let ff and 37 be the optimal solution to the LP relaxation of Problem PI(j). Define 
new vectors 2 and )3 as follows: 

~e~  5- ~xe Ve~ E, (3.1) 

and for any i e V 

1, i f p ~  >3,  

33~= 0, otherwise. 

Observe that by definition of 33~ we have 

1-33,~<~(1-37~) Vie V. (3.2) 

Notice that we are not claiming that ~, 33 is a feasible solution to the LP relaxation 
of Problem PI(j). 

Let T = { i e  V[fi~ = 1}. The MLP heuristic constructs a traveling salesman tour 
through all vertices in T using Christofides' algorithm and therefore charges penalty 
costs for all vertices not in T. Define 

zMLP(J) = LC(T) -+- E 7Ti(1 --33i), (3.3) 
icV 

that is, zMLe(j) is the cost of the solution produced by the MLP heuristic, assuming 
j is in the tour. 

The MLP heuristic chooses the best solution among all such solutions or the 
solution in which no vertex is visited, whichever yields the minimum cost. Hence, 

zMLP = m i n i  L iz v ~ 77"i' l~ivn{ ZMLP(J)  } } " 

Theorem 3.1. zMLP/  z $ ~ 2.5. 

Proof. It is sufficient to show that zMLP(j)/Z*(j) ~ 2.5, for every j. First, note that 
the following LP yields the Held and Karp lower bound on the length of the optimal 
traveling salesman tour through the subset of vertices T: 

Problem P4: 

minimize 

subject to 

Z CeXe (3.4) 
eCE 

xe~2 VS~Vsuch tha t  T~S~sO, T~(V \S )#O,  
ec~(S) 

(3.5) 

xe=2  VieT,  (3.6) 
e~6({i}) 

x~=0 Vi~ T, (3.7) 
ecS({i}) 

X e ~ O .  (3.g) 
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By Lemma 2.2, the solution value to Problem/ '4  is unchanged when we take out 
constraints (3.6) and (3.7). Let Problem P5 be (3.4), (3.5) and (3.8), and denote by 

its optimal solution. Using Theorem 2.1, we have 

LC(T) <~3 ~ Cede" (3.9) 
e~E 

We now show that ~ is feasible for Problem Ps. Clearly ~ satisfies (3.8). To prove 
that it also satisfies (3.5) consider any S c V such that i e Tc~ S and j c T\S. By 
feasibility of 2 in Problem P1(J) and the definition of T we have, using constraint 
(1.2) and equation (3.1), 

~, ~ > 2 y ~ > 2 ( 3 )  =6 V S c V s u c h t h a t  Tc~S#O, T n ( V \ S ) # O .  
eeS(S) 

Hence, for any S c V such that T ~ S # 0 and T c~ (V\S)  # 0 we have 

e~8(S) eel(S) 

and therefore ~ satisfies (3.5). Consequently, since 2~ is optimal 

~.. CeXe ~ ~, Ce2~e. (3.10) 
eEE ecE 

Hence, 

zMLP(j) : LC(T)+ ~, 7r,(1 -Yi) 
ieV 

~3 E Ce)~e + E "D'i(1--yi) 
ecE ie V 

4 3  E Ce;e + E T'i(1--;i) 
e~ E ie V 

4 3  ~, Ce~X +_~ E 7r~(1-)7i) 
e~E icV 

5 {  e~E CeXe'~-~i~V 7ri(1 -- 37i) } 

<~ ~Z*(j). [] 

(from (3.9)) 

(from (3.10)) 

(from (3.1), (3.2)) 

4. Extensions 

The method developed here can be used for other versions of the prize collecting 
problem. For instance, consider the Steiner tree version of the prize collecting 
problem. In it, the objective is to find a Steiner tree that spans a subset of  the vertices 
such that its cost plus the penalty cost associated with all vertices not in the tree is 
minimized. Note that this problem, when vertex j must be in the tree, can be 
formulated similarly to Problem PI(j), without constraint (1.1) and by replacing 
the right hand side of (1.2) with Yi. Solving the LP relaxation of this problem and 
rounding fractional solutions in a similar way to the MLP heuristic provides a 
solution for which its worst-case performance is 3. 
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Appendix: A proof of Lemma 2.2. 

419 

Here we provide a short proof  of Lemma 2.2. Goemans and Bertsimas (1989) have 

obtained a more general result, whose proof  relies heavily on a powerful theorem 
of Lovasz (1976). Our proof  is similar to theirs with the exception that we use a 

much simpler result of Lovasz (1979). In this book of problems (exercise No. 6.51) 
Lovasz presents the following result, together with a short proof. 

Lemma A. Let G be an Eulerian multigraph and s c V( G), such that G is k-connected 
between any two vertices different from s. Then, for any neighbor u of s, there exists 
another neighbor w of s, such that the multigraph obtained from G by removing {s, u} 
and {s, w}, and adding a new edge {u, w} (the splitting-off operation) is also k- 
connected between any two vertices different from s. [] 

Lovasz's proof  of Lemma A can be easily modified to yield the following: 

Lemma B. Let G be an Eulerian multigraph, yc_ V(G) and s ~ V(G), such that G 
is k-connected between any two vertices of Y different from s. Then, for any neighbor 
u of s, there exists another neighbor w of s, such that the multigraph obtained from G 
by removing {s, u} and {s, w}, and adding a new edge {u, w} is also k-connected 
between any two vertices of  T different from s. [] 

Proof of Lemma 2.2. Let Vo = V\V2, that is, V0={i~ V[ri =0}. Let Problem P~ be 
Problem P3 without (2.5). Finally, let £ be a rational vector feasible for Problem 
P~, chosen such that 

(1) £ is optimal for Problem P~, and 

(2) subject to (1), ~e~e xe is minimized. 

Let M be a positive integer, large enough so that ~ = 2M£ is a vector of even 
integers. We may regard ~ (with a slight abuse of notation) as the incidence vector 
of the edge-set/~ of a multigraph G with vertex set V. Clearly, G is Eulerian, and 
by (2.4), it is 4M-connected between any two elements of V2. 

Now suppose that for some vertex s, ~eE6({s}) Xe > r~ (i.e., s has a degree larger 
than 2Mrs in G). Let us apply Lemma B to s and any neighbor u of  s (where 
Y = V2), and l e t / 4  be the resulting multigraph, with incidence vector Z. 

Clearly, 

E c~ie~< E Ce6e, 
e~E e~E 

and so 

e~E 



420 Bienstoek et aL / The prize collecting traveling salesman problem 

Moreover,  

e 2 M  e ~  2 M  

Hence,  by the choice o f  Y, z = i / ( 2 M )  cannot be feasible for Problem P~. 
If s c V0, then by Lemma B, z is feasible for Problem P; .  Thus, we must have 

s c V2, and, in fact ~e~8(/tl~ )~e = 0 for all t c V0. In other words /~ spans precisely 
V2, G is 4M-connected ,  and }~e~(~st~Y~>~4M+2. But we claim now that the 
multigraph /-I is 4M-connected.  For by Lemma B, it could only fail to be 4M-  
connected between s and some other vertex, but the only possible cut of  size less 
than 4 M  is the one separating s from V\{s}. Since this cut has at least 4 M  edges, 
the claim is proved as desired. Consequently,  again we obtain that z is feasible for 
Problem P~, a contradiction. 

In other words, Y.e~e Ve = 2Mr~ for all i, that is, (2.5) holds as required. [] 
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