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This paper examines nonsmooth constrained multi-objective optimization problems where the objective 
function and the constraints are compositions of convex functions, and locally Lipschitz and G~teaux 
differentiable functions. Lagrangian necessary conditions, and new sufficient optimality conditions for 
efficient and properly efficient solutions are presented. Multi-objective duality results are given for convex 
composite problems which are not necessarily convex programming problems. Applications of the results 
to new and some special classes of nonlinear programming problems are discussed. A scalarization result 
and a characterization of the set of all properly efficient solutions for convex composite problems are 
also discussed under appropriate conditions. 
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I. Introduction 

Consider the composite multi-objective programming problem 

(V) V-minimize (fl(Fl(X)),...,fp(Fp(x))) 

subjectto x~C, gj(Gj(x))<~O, j = l , 2 , . . . , m ,  

where C is a convex subset o f a  Banach space X,f ,  i = 1, 2 , . . . ,  p, gj,j = 1, 2 , . . . ,  m, 
are real valued locally Lipschitz functions on R n, and Fi and Gj are locally Lipschitz 
and GSteaux differentiable functions from X into ~n with G~teaux derivatives FI( '  ) 
and G~(. ) respectively, but are not necessarily continuously Fr6chet differentiable 
or strictly differentiable [6]. Note here that the symbol "V-minimize" stands for 
vector minimization. The model problem (P) with p = 1 (single objective function) 
and continuously (Fr6chet) differentiability conditions has recently received a great 
deal of attention in the literature, e.g., [1, 3, 8, 9, 13]. It is known that the scalar 
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composite programming model prolem provides a unified framework for studying 
convergence behaviour of various algorithms and Lagrangian conditions, e.g., see 
[2, 8, 27]. More recently, various first order optimality conditions of Lagrangian 
type were given in Jeyakumar [17] for single objective composite model problems 
of the form (P) without the continuously Fr6chet differentiability or the strict 
differentiability restrictions using an approximation scheme. 

Problems of multi-objective optimization are widespread in mathematical 
modelling of real world systems for a very broad range of applications. For instance, 
multi-objective optimization problems which arise in mechanical engineering are 
discussed in Stadler [31]; applications of multi-objective optimization techniques 
for the design of aircraft control systems are given in Schy and Giesy [29]; various 
other applications of multi-objective optimization in resource planning and manage- 
ment, in mathematical biology,and in welfare economics can be found in Stadler 
[30]. We are rarely asked to make decisions based on only one criterion; most often, 
decisions are based on several conflicting criteria. Multi-objective optimization 
provides the mathematical framework to deals with these situations. 

The composite model problem (P) is broad and flexible enough to cover many 
common types of multi-objective problems, seen in the literature. Moreover, the 
model obviously includes the wide class of convex composite single objective 
problems, which is now recognized as fundamental for theory and computation in 
scalar nonsmooth optimization. To illustrate the nature of the model (P), let us look 
at some examples. 

Example 1.1. Define F/, Gj : X n --> R p+m by 

F~(x)=(O,  O , . . . ,  li(x), O , . . . ,  O), i=  1 ,2 , . . . , p ,  

G j ( x ) = ( O , O , . . . , h j ( x ) , O , . . . , O ) ,  j : l , 2  . . . .  ,rn, 

where li(x) and hi(x) are locally Lipschitz and G~teaux differentiable functions on 
a Banach space X. Define f ,  gj : Np+m ~ ~ by 

f ( x ) = x i ,  i=  1 ,2 , . . . , p ,  

gj(x)  = xp+j, j = 1, 2 . . . . .  m. 

Let C = X. Then the composite problem (P) is the problem 

(NP) V-minimize (l l(X), . . . ,  lp(x)) 

subject to x ~ X " ,  hj(x)<~O, j = l , 2 , . . . , m ,  

which is a standard multi-objective differentiable nonlinear programming problem. 
Lagrangian optimality conditions, duality properties, and scalarization techniques 
for the standard multi-objective nonlinear programming problem have been exten- 
sively studied in the literature under convex and generalized convex conditions, 
see, e.g., [4, 5, 14, 28]. 
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Example 1.2. The penalty representation of the standard multi-objective nonlinear 

programming problem (NP), examined in White [34], is the multi-objective problem: 

rn 

V-minimize ( / l (X) , . . . ,  Ip(x))+ tx Y, (max(hj(x) ,  O))2e 
j = l  

subject to x ~ R", 

where e = (1, 1 , . . . ,  1) c R p and tz > 0 is the penalty parameter. The penalty problem 
is the case of  (P), where Fi : R" ~ R m+l and f : R m+l -~ R are given by 

F , ( x ) = ( t i ( x ) , h l ( X ) , . . . , h m ( x ) ) ,  i = l , 2 , . . . , p ,  

f ( a o ,  o q , . . . ,  am) = a o + ~  ~ (max(o~j,0)) 2 , i =  1 , 2 , . . . , p ,  
j = l  

respectively, and Gj : R" ~ ~" and gj : Nn ~ ~ are given by Gj(x) = x and gj(x) = O. 
White [34] considered a more general penalty function representation for the 
problem (NP) and presented a penalty function scheme, generalizing the methods 
of Zangwill [35]. 

Example 1.3. Consider the vector approximation (model) problem: 

V-minimize ( l lF l (x ) ] ] l , . . . . ,  ]lFp(x)iip) 

subject to x ~ X, 

where X is a Banach space, ]]. Hi, i=  1 , 2 , . . . , p ,  are norms in ~m, and for each 
i = 1, 2 ,  . . . , p ,  F i : X --> A m is  a Fr6chet differentiable (error) function. This problem 

is also the case of (P), where for each i = 1, 2 , . . . ,  p , f  :R" ~ R is given b y f ( x )  = ]Ix ][ i, 
and conditions on Gj and gj are the same as in Example 1.2. Various examples of 

vector approximation problems of this type that arise in simultaneous approximation 

are given in [14, 15]. For a numerical example of the above convex composite vector 
approximation problem, see Example 3.3 in [15]. 

The idea is that by studying the composite model problem (P) a unified framework 
can be given for the treatment of many questions of  theoretical and computational 
interest in multi-objective optimization. 

In this paper we present first order Lagrangian optimality and duality results for 
(convex) composite problems (P) and show that the model problem (P) allows us 
to present a unified framework for studying multi-objective optimization problems 
in regard to first order optimality conditions and duality theory. In particular, we 
show that the results for the multi-objective model problem (P) cover the correspond- 
ing results for convex and many classes of nonconvex problems, commonly encoun- 
tered in the study of first order global optimality and duality theory. The results are 
based on a method given recently in Jeyakumar [17] that emphasizes a new connec- 
tion with the Clarke subdifferential, G~teaux differentiability property and composite 
functions. Moreover, we provide some scalarization properties for the composite 
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model problem under appropriate conditions. We present results mainly for properly 
efficient solutions of the composite model problem (P). 

The outline of the paper is as follows. In Section 2, we present some preliminary 
results and obtain necessary optimality conditions of the Kuhn-Tucker  type for the 
composite model problem (P) by using an approximation scheme. In Section 3, we 

present new sufficient conditions for feasible points which satisfy Kuhn-Tucker  
type conditions to be efficient and properly efficient solutions of convex composite 
problems in which the functions f and g; are assumed to be convex. These sufficient 
conditions are shown to hold for various classes of nonconvex programming prob- 

lems. In Section 4, multi-objective duality results are presented for convex composite 
problems. Finally, in Section 5, we provide various characterizations of the set of 
properly efficient soutions for convex composite problems. 

2. Efficient solutions and necessary optimality conditions 

In this section, we introduce various notions of efficient solutions and present some 
preliminary results for locally Lipschitz functions that will be used throughout the 
paper. Then, we obtain necessary optimality conditions for (P) that extend the 

necessary conditions presented in [17] for a scalar problem (cf. [6]). Let us begin 

with the definition of an efficient solution for the multi-objective problem (P). A 
feasible point Xo for (P) is said to be an efficient solution [28, 33] if there exists no 

feasible x for (P) such that f(Fi(x))<~f(Fi(Xo)), i= 1, 2 , . . .  ,p, and f (F i ( x ) )#  
f(F~(xo))) for some i. The feasible point x0 is said to be a properly efficient solution 

[10] for (P) if there exists a scalar M > 0 such that for each i, 

fi(F,(Xo)) - f ( ~ ( x ) )  _< M 

for some j such that f j (Fj (x))>f j (F; (xo))  whenever x is feasible for (P) and 
f (Fi(x))  <f(F/ (x0) ) .  The feasible point Xo is said to be a weakly efficient solution 
[28] for 
i = 1 , 2 , .  
efficient 
different 

(P) if there exists no feasible point x for which f (Fi(xo))>f(Fi(x)) ,  
.. ,p. It is clear from the definitions that a properly efficient solution is an 
solution which is a weakly efficient solution. To see the nature of these 
efficient solutions, let us look at some simple examples: 

Example 2.1. Consider the problem 

V-minimize ( x' , x2 t 
\X2 X l /  

subject to ( x l , x 2 ) ~ 2 ,  1 - x l ~ 0 ,  1-x2~<0. 

It is easy to check that (1, 1) is an efficient solution for the problem, but it is not a 
properly efficient solution. 
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Example 2.2 [22]. Consider the problem 

V-minimize (Xl, x2) 

subject to (Xl, x=) c ~2, (xl, x2) ~ C, 

where 
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C = {(Xl ,  x2) E ~21x2  -~- x 2 ~< 1, x= ~< 0} 

{(xl, x2) c R=lxl/> 0, 0/> x=~> -1}. 

Then, we see that the feasible point (1, - 1 )  is a weakly efficient solution, but it is 
not an efficient solution. 

We note that if F : X  ~ R ~ is locally Lipschitz near a point x ~ X and G~teaux 

differentiable at x and if f :  R n ~ R is locally Lipschitz near F(x)  then the continuous 

sublinear function, defined by 

7rx(h) := max wkF'k(x)h w c 0 F(x  , 
1 

satisfies the inequality 

( f o  F)+(x, h) ~< ~rx(h) Vh 6 X. (A) 

Recall that 

q'+(x, h ) = l i m  sup,~ l(q(x+Ah)-q(x)) 
;t$o 

is the upper Dini-directional derivative of q : X -  ~ at x in the direction of h, and 

O°f(F(x)) is the Clarke subdifferential o f f  at F(x) .  The function ~rx(') in (A) is 
called upper convex approximation o f f °  F at x, see [17, 18]. Moreover, it is worth 

observing that the inequality (A) does not follow from the generalized chain rule 
for differentiation of locally Lipschitz functions in Clarke [6]. However, the following 
generalized chain rule formula [17] follows under the above mentioned assumptions 
on F and f :  

O<> ( f  o F)(x)  c o°f ( F(x)  )F'(x)  := {wT F'(x)  l w e O°f ( F(x)  )}. 

The equality holds, in particular, when f is convex. Here, Oo(f o F)(x)  denotes the 
Michel-Penot subdifferential o f f o  F at x, see [25]. Note that for a set C, int C 
denotes the interior of  C, and 

C+={vcX']v(x)>-O Vx~ C}, 

denotes the dual cone of  C, where X '  is the topological dual space of X. It is also 
worth noting that, for a convex set C, the closure of the cone generated by the set 
C at a point a, c l c o n e ( C - a ) ,  is the tangent cone of C at a and, the dual cone 
- ( C -  a) + is the normal cone of C at a in the sense of convex analysis, see [6, 26]. 

Using upper  convex approximations, we derive necessary optimality conditions 
which hold at a weakly efficient solution of our model problem (P). This extends 
the necessary conditions presented in [17] for a scalar composite problem to the 
multi-objective problem (P). 
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Theorem 2.1. For the model problem (P), assume that fi and & are locally Lipschitz 
functions, and that F~ and Gj are locally Lipschitz and G&eaux differentiable functions. 
I f  a c C is a weakly efficient solution for (P), then there exist Lagrange multipliers 
ri >I O, i = 1, 2, . . ,  p, and aj >t O, j = 1, 2 , . . .  m, not all zero, satisfying 

O~ ~. r ,o° f (Fi (a) )Fl (a)+ ~ A j O ° g j ( G j ( a ) ) O j ( a ) - ( C - a )  + 
i = 1  j - 1  

and Ajgj(@(a)) = O, j = 1, 2 , . . . ,  m. 

Proof. Let I = { 1 , . . . , p } ,  Jp = { j + p l j =  1 , . . . ,  m}, J p ( a ) = { j + p l & ( G j ( a ) ) = O ,  j =  
1 , . . . ,  m}. For convenience, we define 

f ( A  ° G ) ( x ) ,  k = 1 , . . . ,  p, 
hk(x) 

((gk_p °Gk_p)(x),  k = p + l , . . . , p + m .  

Suppose that the following system has a solution 

d c c o n e ( C - a ) ,  ~rak(d)<0, k ~ I ~ J p ( a ) ,  (*) 

where ¢r~(d) is given by 

max Y~ viFk~(a)dlv~O°fk(G(a , k c I ,  
k i = l  ~rk(d) = 

o ,,} max w,G'k,(a)dlwcO gk_p(Fk_p(a , kcJp(a ) .  
i 1 

Then the system 

d c c o n e ( C - a ) ,  h~£(a;d)<O, k ~ I u J p ( a ) ,  

has a solution. So, there exists O/1 ~> 0 such that a + a d c  (7, hk(a + c~d) < hk(a), 
k c l w J p ( a ) ,  whenever 0<o l~<a l .  Since h k ( a ) < 0  for kcJp \Jp(a )  and hk is con- 
tinuous in a neighbourhood of a, there exists ce2>0, such that hk(a+c~d)<O, 
whenever 0 < o~ <~ a2, k e Jp\Jp(a). Let ~* = min{a0, al}. Then a + ad  is a feasible 
solution for (P) and h k ( a + a d ) < h k ( a ) ,  k e I  for sufficiently small a such that 
0 <  o~ <~ a*. This contradicts the weak efficiency of (P) at x =  a. Hence, (*) has no 
solution. 

Since, for each k, 7r~(. ) is sublinear and c o n e ( C - a )  is convex, it follows from 
a separation theorem [7, 18] that there exist ri >i O, i = 1 , . . . ,  p, Aj >- O, j ~ Jp(a), not 
all zero, such that 

p 

~" giTria(X) q- E ~jq'lJa(X) ~ 0  V x e c o n e ( C - a ) .  
i = 1  j~Jp(a) 

Then, by applying standard arguments of convex analysis (see [14, 23]) and choosing 
Aj = 0 whenever j c Jp\Jp(a), we have 

p 

Oe Y~ r, Ovr~(O)+ ~ AjOvr~+P(O)-(C-a) +. 
i = 1  j = l  
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So, there exist v~ ~ O°f(F~(a)), wj ~ O°gj(Gj(a)) satisfying 

P 
T / _{_ ~, Til.) i Fi(a) ~ T , Ajw~ Gj(a)~ ( C -  a) +. 

i = 1  j = l  

Hence, the conclusion holds. [] 
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Necessary conditions of  Kuhn-Tucker  type follow from Theorem 2.1 under a 

suitable constraint qualification [17, 24] that guarantees r = (~'t, r 2 , . . . ,  ~'p) ~ 0. For 

instance, the following generalized Slater condition will do this: 

3 X o ~ c o n e ( C - a ) ,  vvG~(a)xo<O, VvcO°gj(Gj(a)),  V jEJ (a ) ,  

where J(a)  = {jlgj( Gj(a)) = O,j = 1 , . . . ,  m}. 
Choosing q c NP, q >  0 with ~-~q = 1 and defining A = qqV, we can select the 

multipliers q = Ar  = qqV,r = q > 0 and A = AA = qqTA >10. Hence, the following 

Kuhn-Tucker  type optimality conditions (KT) for (P) are obtained: 

(KT) ~-cN p, % > 0 ,  h e n  m, h~>~O, Ajgj(Gj(a))=O, 

+. 
i - -1  j - - I  

3. Sufficient optimality conditions for convex composite programs 

In this section, we present new conditions under which the optimality conditions 

(KT) become sufficient for efficient and properly efficient solutions. The sufficient 

conditions in this section are significant even for scalar composite problems as these 

conditions are weaker than the conditions given in [17] and apply to more general 

scalar composite problems (cf. [17]). 
Let x, a ~ X .  Define K : X~Rn(P+m):=H~n by 

K ( x )  = ( F l ( x ) , . . . ,  Fp(x), G l ( x ) , . . . ,  Gin(x)). 

For each x, a e X, the linear mapping Ax.~ : X  ~ R n(p+m) is given by 

ax,,(y) = (c~,(x, a)F~(a)y, . .  ., C~p(X, a)F'p(a)y, 

ill(X, a )G ' l (a )y , . . . ,  tim(x, a ) G ' ( a ) y ) ,  

where ai(x, a), i = 1, 2 , . . .  ,p and/3j(x, a),  j = 1 , . . . ,  m, are real positive constants. 
Let us denote the null space of  a function H by N[H] .  

Recall, f rom the generalized Farkas lemma [7], that K ( x ) - K ( a ) c A x . o ( X )  if 

and only if A~v,o (u) = 0 ~  uT(K (x) -- K (a))  = 0. This observation prompts us to define 
the following general null space condition: 
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For each x, aEX, there exist real constants a~(x,a)>O, i = l , 2 , . . , p ,  

fij(x, a )>  0, j =  1 ,2 , . . . ,  m, such that 
and 

N[Ax , , ] c  N [ K ( x ) -  K(a)],  (NC) 

where 

Ax, a(y) = ( c~,(x, a)F~( a)y, . . . , ap(x, a)F'p( a)y, 

fl,(x, a)G'l(a)y, . . . , tim(x, a)G~,,(a)y). 

Equivalently, the null space condition means that for each x, a c X, there exist 
real constants ai(x ,a)>O,  i = l , 2 , . . . , p ,  and f i j(x,a)>O, j = l , 2 , . . . , m ,  and 
/x(x, a) c X such that F i ( x ) - F i ( a )  = ~(x ,  a)Fl(a)tz(x,  a) and G j ( x ) -  @(a) = 

~j(x, a)Gj(a)/~ (x, a). For our general problem (P), we assume the following general- 
ized null space condition (GNC): 

For each x, a c C, there exist real constants c~i(x, a )>0 ,  i=  1,2, . . . ,p ,  and 
f i j (x,a)>O, j = l , 2 , . . . , m ,  and t x ( x , a ) ~ ( C - a )  such that G ( x ) - F i ( a ) =  
o~i(x, a)F~(a),a(x, a) and Gj(x) - Gj(a) = fij(x, a)G~(a)tx(x, a). 

A condition of this type, called representation condition, has been used in the 
study of Chebyshev vector approximation problems in Jahn and Sachs [16]. Note 
that when C = X the generalized null space condition (GNC) reduces to (NC). We 
shall show later in this section that the generalized null space condition (GNC) is 
easily verified for convex problems and various classes of nonconvex programming 
problems, such as convex composite pseudo linear programming problems, pseudo 
linear programming problems [4] and fractional linear programming problems [5]. 
Observe that (NC) trivially holds when F~'s and Gfs are affine functions. 

In [17] a related, but restricted, null space condition without the real constants 
~i, and/3j was used for a special class of scalar composite problem. The present 
null space condition (NC) allows us to treat various classes of nonconvex problems 
that cannot be handled by the theory presented in [17]. 

Theorem 3.1. For the problem (P), assume that f and gj are convex functions, and Fi 
and Gj are locally Lipschitz and G~teaux differentiable functions. Let a be feasible for 
(P). Suppose that the optimality conditions (KT) hold at a. I f  the generalized null 
space condition (GNC) holds at each feasible point x of (P) then a is an efficient 
solution of (P). 

Proof. From the optimality conditions (KT), there exist vicO°f(G(a))  and wj 
O°gj(@(a)) such that 

p ra  

~, ";ivTF;(a) + Z 
i - - I  j = l  

T t Ajwj Oj(a) ~ ( C  - a )  +. 
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Suppose that a is not an efficient solution of (P). Then, there exists a feasible x ~ C 

for (P) with 

f (G(x) )<~f (G(a) )  for all i 

and 

f,.(Fr(x))<fr(F,.(a)) for some r 6 { 1 , 2 , . . .  ,p}. 

Now, by the generalized null space condition, there exits r/(x, a ) c  ( C - a ) ,  same 
for each G and Gj, such that Fi(x) -Fi (a)= a~(x, a)F~(a)r}(x, a), i= 1 , 2 , . . .  ,p, 

and Gj(x) - Gj(a) = ~j(x, a)Gj(a)~7(x, a), j = 1, 2 , . . . ,  m. Hence, 

O>~j~l Aj (gj(Gj(x))-gj(Gj(a))) (by feasibility) 
• = /3j-(x, a) 

m 
>1 Z hj w f (Gj (x ) -  Gj(a)) (by subdifferentiability) 

j=l~j(x,a) 

= ~ ,~jwfGj(a)rl(x , a) (by (GNC)) 
j = l  

P 
- E "r~vTF'i(a)w(x, a) 

i = l  
(by a hypothesis) 

(by (GNC))  
P TiV 7 

= - • - - ( F , ( x ) - F i ( a ) )  
i=1 ai(x, a) 

- -  (f/(Fi(a)) -f , (~ (x))) (by subdifferentiability) 
P T i 

i:12 OLi(X, a) 

>0 .  

This is a contradiction and hence a is an efficient solution for (P). [] 

The following example illustrates that the generalized null space condition (GNC) 
may not be sufficient for a feasible point which satisfies the optimality conditions 
(KT) to be a properly efficient solution for (P). Consider the simple multi-objective 
problem 

V-minimize ( xl, x2) 
\x2 ~11 

subject to  (x l , x2 )~N 2, 1-Xl<~0, 1-x2<~0. 

It is easy to check that (1, 1) is an efficient solution for the problem, but it is not 
properly efficient. The generalized null space condition (GNC) holds at every 
feasible point (x~, x2) with al((xl, x2), (1, 1)) = 1/x2, ce2((xl, x2), (1, 1)) = 1/xl, 
/3i((x1, x2),(1, 1)) = 1, for i = 1, 2. 
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This example leads us to strengthen our generalized null space condition by 
constraining a~(x, a)=/3j(x, a ) =  1 Vi, j, in order to get sufficient conditions for 
properly efficient solutions for (P). From the generalized Farkas lemma [7], it is easy 
to see that this strengthened null space condition holds when C = X and N[K' (a ) ]  c 
N [ K ( x )  - K(a)] ,  for each x, a c X. 

Theorem 3.2. Assume that the conditions on (P) in Theorem 3.1 hold. Let a be feasible 
for (P). Suppose that the optimality conditions (KT) hold at a. I f  the generalized null 
space condition (GNC) holds with ai(x, a) = flj(x, a) = 1 Vi, j, for each feasible x of 
(P) then a is a properly efficient solution of (P). 

Proof. Let x be feasible for (P). Then, x is feasible for the scalar problem 

P 

(P~) minimize Y z i f (Fi(x))  
i = 1  

subjectto x c C ,  g j ( G ; ( x ) ) < ~ O , j = l , 2 , . . . , m .  

From the convexity property o f f ,  

P P P 

E ~,f~(F~(x))- E ~,f/(F,(~))~ E 
i = 1  i = 1  i = 1  

"~,vT( Fi(x) - F,( a) ). 

Now, by the strengthened null space condition, there exists # (x, a )~  ( C -  a) such 
that Fi(x) - Fi(a) = Fl(a)/z(x,  a) and G j ( x ) -  @(a) = Gj(a)l~(x, a). Hence, 

P P 

E ~,fdF,(x))-E ~,f~(F,(a)) 
i = 1  i = 1  

P 

Y' TiviTFi(a)t-t(X; a) 
i = 1  

>>-- 

j ~ l  

3 -  Ajgj(Gj(x))+ Ajgj(Gj(a)) 
j ~ l  j = l  

~> 0, 

and so, a is minimum for the scalar problem (P~). Since z # E  P, ~->0, it follows 
from Theorem 1 [10] that a is a properly efficient solution of (P). [] 

The following numerical example provides a nonsmooth convex composite prob- 
lem for which our sufficiency Theorem 3.1 holds. 
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Example 3.1. Consider the multi-objective problem 

V-minimize ( 2 x ~ - x ~  11+21______ 2~ 
\1 Xl-~- X2 ]' Xt "~ X2 / 

subject to x~-x2~<0, 1 -x l~<0,  1-x2~<0, 

Let Fl(x) = (2Xl - x2)/ (Xl + x2), F2(x) = (xl + 2x2)/(xl + x2), G, (x) = Xl - x2, G2(x) = 
1 - x ~ ,  G3(x) = 1 - x2 ,  f~(y) = ]y], fz(Y) =Y, and g~(y) = gz(Y) = g3(Y) =Y. Then, the 
problem becomes a convex composite problem with an efficient solution (1, 2). It 
is easy to see that the null space condition holds at each feasible point of  the problem 

=g(xl+x2) ,  for j = 1 , 2 , 3  and tx(x,a) with a i ( x , a ) = l ,  for i = 1 , 2 ,  /3j(x,a) 1 = 

(3(x~ - 1)/(x~ +x2),  3(x2-2 ) / ( x l  +x2)) T. The optimality conditions (KT) hold with 

v l = v 2 =  1, ~-1= 1, ~-2=3, and Aj-= 0, w j = l ,  for j =  1,2,3. 

Let us now give some classes of nonlinear problems which satisfy our sufficient 
conditions. 

Example 3.2 (Pseudolinear programming problem [4]). Consider the multi-objective 

pseudolinear programming problem 

(PLP) V-minimize ( l~(x) , . . . ,  lp(x)) 

subject to x e ~ n ,  hj(x)-bj<~O, j = l , 2 , . . . , m ,  

where li : ~n ~ ~ and hj : ~n ~ ~ are differentiable and pseudolinear, i.e., pseudocon- 

vex and pseudoconcave [4], and bj e ~, j = 1, 2 , . . . ,  m. It should be noted that a 
real-valued function h : Rn ~ R is pseudolinear if and only if for each x, y E R n, there 

exists a real constant a(x,  y ) >  0 such that 

h(y) = h (x) + ~(x, y )h ' (x ) (y  - x). 

Moreover, any fractional linear functions of the form (ax + b)/(cx + d) on N" are 
pseudolinear functions. Define F~ : N~ ~ RP+~ by 

F~(x)=(O,O, . . . , l i (x ) ,O,O, . . . ,O) ,  i = 1 , 2 , . . . , p ,  

and 

Gj(x) = (0, 0 , . . . ,  hi(x) - bj, 0 , . . . ,  0), 

Define f ,  gj : R p+m ~ ~ by 

f ( x ) = x i ,  i =  1 , 2 , . . . , p ,  

gj(x)= xp.j, 

Then, we can rewrite 
problem 

V-minimize (f,(FI(x)),...,L(F~(x)) 

subject to  x¢l~", gj(G;i(x))<~O, j = l , 2 , . . . , m .  

j =  1 , 2 , . . . ,  m. 

j = l , 2 , . . , m .  

(PLP) as the following convex composite multi-objective 
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Now, our generalized null space condition (GNC)  is verified at each feasible 

point by the pseudolinearity property of  the functions involved. It follows from 

Theorem 3.1 that if the optimality conditions 

r f i (a)+ ~ Ajgj(a)=O, Aj(gj(a)-bf l=O, 
i=l  j = l  

hold with ~'i > 0, i = 1, 2 , . . . ,  p, and Aj ~> 0 , j  = 1, 2 , . . . ,  m, at the feasible point a c ~" 
of  (PLP) then a is an efficient solution for (PLP). 

We now see that our sufficient conditions in Theorem 3.1 hold for a class of  

convex composite pseudolinear programming problems. 

Example 3.3. Consider the problem 

V-minimize (f l ( (h ° t o ) (x ) ) , . . . , f p ( (h  o qJ)(x)) 

subjec t to  x c X ,  gj((hoto)(x))<~O, j = l , 2 , . . . , m ,  

where h = (hi, h2, • . . ,  hn) is a pseudolinear vector function from X to ~n, that is, 

each component  hi is pseudolinear,  to is a Fr6chet differentiable mapping from X 

onto X such that to'(a) is surjective for each a c X, and f ,  gj are convex for each 

i,j. For this class of  nonconvex problems, the null space condition (GNC)  holds. 

To see this, let x, a 6 ~n, u = to(x), v = to(a). Then, by the pseudolinerity condition, 

we get 

hi(to(x)) - -  hi(to(a)) = h,(u) - hi(v) 

= ~ , ( u ,  v ) h l ( v ) ( u  - v ) .  

Since to'(a) is onto, u - v =  to'(a)l~(x, a) is solvable for some ix(x, a )~E" .  Hence, 

hi(tO(x)) - hi(to(a)) = ai(u, v)h'i(v)O'(a)l~(X, a) 

= a2(x, a)(hi o to)'(a)p.(x, a), 

where cx2(x, a)=e~i(to(x), to(a))>O; thus, (GNC)  holds. 

We finish this section by observing that any finite dimensional convex program- 
ming problem can also be rephrased as a composite problem (P) with G ' s  and G;'s 

identity mappings,  and that it clearly satisfies the generalized null space condition. 
For certain other sufficient conditions for global optimality of some classes of 

differentiable finite dimensional nonconvex problems, see [11]. 

4. Duality for convex composite programs 

It is known that duality results have played a crucial role in the development of 
multi-objective programming [12, 22, 28]. Following the success of multi-objective 
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linear programming duality, various generalizations of the duality theory have been 
given for multi-objective nonlinear programming problems, e.g., see [22, 28]. Here, 
we consider the primal problem 

(P) V-minimize ( f l ( F l ( x ) ) , . . . , f p ( F p ( x ) ) )  

subject to x c C, gj(Gj(x)) <~ O, j = 1, 2 , . . . ,  m, 

with f ,  gj convex and F~, Gj locally Lipschitz and G~teaux differentiable, and the 
dual problem 

(D) V-maximize (L(Fl(U)),.,L(G(u))) 
P 

subject to Oe Y riO°f(Fi(u))F~(u) 
i = l  

m 

+ 2 A j O ° g j ( G j ( u ) ) G ~ ( u ) - ( C - u )  +, 
j - - 1  

hjgj(Gj(u))~O, j =  1 ,2 , . . . ,  m, 

u c C ,  7 c ~  p, T i > 0  , A ¢ ~  m, A i ~ 0 ,  

It is worth observing that, unlike the Wolfe dual pair (see [7]), the primal and the 
dual problems here have the same form of objective functions. Duality results for 
this kind of dual pairs have recently been examined in [32, and other references 
therein]. It has been established that these dual pairs allow one to relax the standard 
convexity requirements, used in duality theorems in the literature. In this section, 
we examine duality properties for the convex composite problem that include the 
corresponding results for convex problems and other related generalized convex 
prolems. Note that the problem (D) is considered as a dual to (P) in the sense that 

(i) (zero duality gap property) if ~ is a properly efficient solution of (P) then, 
for some ~eR p, XcR m, (~, ~,X) is a properly efficient solution of (D), and the 
objective values of (P) and (D) at these points are equal; 

(ii) (weak duality property) if x is feasible for (P) and (u, z, A) is feasible for 
(D) then 

( f ( F , ( x ) ) , . . .  , fv(Fp(x)))  T -  ( f l (Fl (U)) , . . . ,  fv(Fp(u)))Y~ - ~P+\{0}. 

Theorem 4.1. (weak duality). Let x be feasible for (P) and let (u, z, A) be feasible for 
(D). Assume that the generalized null space condition (GNC) holds. Then 

( f , ( F l ( x ) ) , . . . ,  f~(F~(x))) T-  ( A ( F , ( u ) ) , . . . ,  fv(Vv(u)))T~ -- RP+\{0}. 

Proof. Since (u,z,h)  is feasible for (D), there exist ~->0, h~>0, vieO°f(F~(u)), 
w~ ¢ O°gj(@(u)), i = 1, 2 , . . .  ,p, j = 1, 2 , . . . ,  m, satisfying Ajgj(Gj(u)) >! O, for j = 
1 ,2 , . . . ,  m, and 

z iv iFi (u)+ AjwjGj(u)  ( C - u )  +. , T t T ! E 

i - - 1  j - - 1  
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Suppose that x # u and 

( f l ( F l ( x ) ) , . . .  ,fp(Fp(x))) v -  (fl(Fl(U)),  . . • ,£(Fp(u))) ~ c - ~P+\{0}. 
Then, 

P T i 
2 ~,(x, u) (f~(F,(x))-f,(F,(u)))<0, 

/=1  

since r~/a;(x, u ) >  0. Now, by the convexity o f f  and by the generalized null space 
condition (GNC), we get 

P 

Z r;J,F',(u)n(x, u) <0.  
i=1  

From the feasibility conditions, we get 

Ajgj(Gj(x))<~O, Ajgj(Gj(u)) ~> O, 

and so, 

Aj (g~(Oj(x))-g~(OAu))~o. 
~/x,  u) i = l  

Similarly, by the convexity of gj, positivity of fij(x, u), and by the generalized null 
space condition, 

•jwj O~(u)n(x, u)<-o. 
j = l  

Hence, 

"riviFi(u)+ ~ AjwTG}(U) r / (x,u)<O. 
i=1  j = l  

This is a contradiction. The proof is completed by noting that when x = u the 
conclusion trivially holds. [] 

Theorem 4.2 (strong duality). For the problem (P), assume that the generalized Slater 
constraint qualification in Section 2 holds and that the generalized null space condition 
(GNC) is verified at each feasible point of  (P) and (D). I f  a is a properly efficient 
solution for (P), then there exist .r ~ R p, 7;>0,  A c ~  m, A/~0 such that (a, r, A) is a 
properly efficient solution for (D) and the objective values at these points are equal. 

Proof. It follows from Theorem 2.1 that there exist z c R p, ~-; > 0, h c ~ m  Aj ~ 0 ,  such 
that 

0c ~ ¢;0°f,(F~(a))F~(a)+ 2 A j a % ( ~ ( a ) ) G ~ ( a ) - ( C - a )  ÷, 
i = l  j ~ l  

Ajgj(Gj(a))=O, j = l , 2 , . . . ,  m. 

Then (a, ~-, A) is a feasible solution for (D). 
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Now, from the Weak Duality Theorem, the point (a, r, A) is an efficient solution 
for (D). 

We shall prove that (a, z, A) is a properly efficient solution for (D) by the method 
of contradiction. Suppose that there exists (a*, 7", A*) feasible for (D) satisfying, 
for some i, 

fi(F/(a*)) - f i ( F i ( a ) )  > MEfj(Fj(a)) - f j (Fj(a*))] ,  

for any M > 0 and all j satisfying fj(Fj(a)) >fj(Fj(a*)) .  Let 

A = {j ~ I Ifj(F) (a) >fj(Fj(a*))}, 

where I ={1, 2 , . . . , p } .  Let B = I \ ( A U  {i}). Choose M > 0  such that 

M/lAl>~Jzi, j e A .  

Note that, for a set L, [L] denotes the number of elements in the set L. Then, 

¢i(f / (Fi(a*))-f i (Fi(a)))  > ~ zj(fj( Fj( a ) ) - fj( Fj( a *) ) ), 
jEA 

since fj(Fj(a))  -fj(F~(a*)) > 0, for j e A. So, 

p 

r i f i ( F i ( a ) ) = ' r i f i ( F i ( a ) ) - F  2 rJ;(Fj(a))+ 2 zjfj(Fj(a)) 
i--I jcA j~B 

<'ri f i (Fi(a*))+ 2 "rjfj(Fj(a*))+ ~ ~jfj(Fj(a*)) 
j~A joB 

P 
= E "rifi(Fi(a*)). 

i=1 

This contradicts the weak duality property. Hence, (a, z, A) is a properly efficient 
solution for (D). [] 

As we demonstrated in Section 3, it can easily be shown that our duality theorems 
include corresponding duality results for convex, pseudolinear and other related 
composite problems. 

5. Scalarizations in composite multi-objective programming 

Multi-objective optimization problems are often solved by transforming them into 
scalar ones. The most widely used and the simplest scalarization technique is the 
convex combination of the different objectives. This technique has been used 
successfully for solving linear and convex multi-objective problems, e.g., [12, 14, 28]. 
In this section we present a scalarization result for convex composite problems. 
These problems are not necessarily convex. As an application of the scalarization 
result we also characterize the set of properly efficient solutions in terms of sub- 
gradients [26] for convex problems. These conditions do not depend on a particular 
properly efficient solution, and differ from the conditions presented in Section 3. 
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For the multi-objective composite model problem 

(P) V-minimize (fi(Fl(X)), . . . , fp(Fp(x))) 

subject to x¢  C, gj(Gj(x))~<O, j =  1 , 2 , . . . ,  m, 

the associated scalar problem (PA) is given by 

P 

(P~) minimize E Zif(Fi(x)) 
i = l  

subjectto x~C,  gj(Gj(x))<~O, j = l , 2 , . . . , m ,  

where A c R p, A ~ 0. The feasible set /2 of (P) is given by 

g2 = { x 6  C[gj(Gj(x))<~O, j=  1,2, . . . ,  m}. 

The set of all properly efficient solutions of (P) is denoted by PE. For each h ¢ R p, 
the solution set S~ of the scalar problem (P~) is given by 

S ~ = { x ~  ~ Aif(Fi(x))=min ~ Aif(F~(y))}. 
i = l  y ~ g ~  i = 1  

The following theorem establishes a scalarization result for (P) corresponding to 
a properly efficient solution. 

Theorem 5.1. For the multi-objective probIem (P), assume that, for each i = 1, 2 , . . .  ,p, 
and ~ > O, the set 

i i F~ = {z ~ ~P [Ix c C,f(Fi(x)) < zi ,fi(Fi(x)) + c~fj(Fj (x)) < z~,j ¢ i} 

is convex. Then, 

PE= U SA. 
A i > o , ~ P =  1 Ai ~ 1 

Proof. Let a c PE. Then, there exists a scalar M > 0 such that, for each i = 1, 2 , . . . ,  p, 
the system 

f f f  Fff x ) ) <fffF~(a)), 

f (Fi(x))+ Mfj(Fj(x))<fi(Fi(a))+ Mfj(Fj(a)) V j¢  i, 

is inconsistent. Thus, 

o~ r ~ ( a )  = {z ~ R~I3x c C,f~(F,(x)) <f(F,(a)) + 4, 

f ( F , ( x ) ) +  M£(FAx))  

<fi(F/(a))  + Mfj(Fj(a)) + z~ , j  ~ i}. 

From the assumption, I '~(a)  is convex, and so by the standard separation arguments 
as in the proof of Theorem 1 [10], we can show that there exists h ~ P ,  h~>0, 
~P=I hi = 1 such that a c SA ; thus, 

PEG U S~. 
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The converse inclusion follows from Theorem 1 [10] without any convexity 

conditions on the functions involved. [] 

Remark 5.1. It is worth noting that, for each a > 0, and i = 1, 2 , . . . ,  p, the set F2 

is convex if, for instance, f is convex for each i = 1, 2 , . . . ,  p, and H(S2) is convex, 

where H : X ~ I ~ E  n is given by H ( x ) : = ( F l ( X ) , . . . ,  Fp(x)). The set H(g2) may be 

convex while F~'s are nonconvex. For instance, let H(x )  = (Ix1[, -Ix2[) T, x = (xl,  x2) 
~2, where Fl(X) = [xl[ and F2(x) = -[x2[. Then, it is easy to see that H is non-convex, 

but H(R  2) is a convex set. The convexity property of  F~ can also hold under rather 

more general conditions. For example, F~ is convex if the vector function ( f ( . ) )  

satisfies the convex-like (or subconvex-like) property (see [19, 21]) on H(~2). It is 

also worth observing that the conclusion of Theorem 5.1 can also be interpreted as 

a complete characterization of the set of properly efficient solutions in terms of the 

solution sets of  appropriate  scalar problems. 
Using the above scalarization Theorem 5.1 and a recent result of  Mangasarian 

[23] we show how the set of  properly efficient solutions for a convex problem can 

be characterized in terms of subgradients. This extends the characterization result 

of  Mangasarian (see Theorem l(a) [23]) for a scalar problem to multi-objective 

convex problems. In the following, we assume that the functions Fls, and G~s in 

problem (P) are linear functions from R n and Nm. Thus, we consider the composite 

convex problem 

(CP) V-minimize ( f~ (A~(x ) ) , . . . , f p (Ap(x ) )  

subject to x ~  C, gj(Bj(x))<~O, j =  1 , 2 , . . . ,  m, 

where Ai : R n ~ Era, i = 1, 2 , . . . ,  p, and Bj : R n -+ ~ ,  j = 1, 2 , . . . ,  m, are continuous 

linear mappings,  f ,  i -- 1, 2 , . . .  ,p, and gj, j  = 1, 2 , . . . ,  m, are convex functions on 

~ .  Note that the feasible set 

~Q = { x c  Clgj(Bj(x))<~O,j = 1, 2 , . . . ,  m} 

is now a convex subset of  R' .  

The convex scalar (parameterized) problem for (CP) is given by 

P 

(ACP) minimize ~ h i f (A i ( x ) )  
i -- t  

subject to x ~ C, gj(Bj(x)) <~ O, j = 1, 2 , . . . ,  m. 

Let the convex solution set of  (ACP) be CS~, h ~ EP. 

Corollary 5.1. Consider the convex problem (CP). Suppose that for each h ~ EP, hi > O, 

~P=l hi = 1, the relative interior of  CSx, (ri(CSh)), is non-empty. Let zx ~ ri(CSA). Then 

o } 
1i>0, ~P~I AI=I i = l  
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Proof. From the scalarization Theorem 5.1, 

PE= U {x•S2 ~ Aif(Ai(x))=min ~ Aif(A~(y))}. 
Ai>o,~P=I Ai =1 i=1 y~g2 i=l  

Since miny~a ~P=I Aif(A~(y)) is a scalar convex problem, it follows from Theorem 
l(a) [23] (see also [20]) that 

{xEg21 ~, Ai f (Ai(x))=min ~ Aif(Ai(y)) } 
i = l  ycaQ i ~ l  

Hence, the conclusion holds by the chain rule and the properties of the subditteren- 
tials. [] 

Note, in particular, that when p = 1 the solution set S of the scalar problem 

minimize f~(al(x)), 
subject to xe  O, 

is characterized by the equalities 

S = P E  = {x c g213u c Ofl(Al(X)), u-ral(x - z)  = 0}, 

where z • ri S. We conclude by noting that the sufficient conditions, presented in 
Section 3, depend on the properly efficient solution under discussion. However, the 
conditions, given in this section, are independent of a particular properly efficient 

solution. 
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