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Given a non-zero sum discounted stochastic game with finitely many states and actions one can form a 
bimatrix game whose pure strategies are the pure stationary strategies of  the players and whose penalty 
payoffs consist of  the total discounted costs over all states at any pure stationary pair. It is shown that 
any Nash  equilibrium point of  this bimatrix game can be used to find a Nash  equilibrium point of  the 
stochastic game whenever the law of  motion is controlled by one player. The theorem is extended to 
undiscounted  stochastic games with irreducible transitions when the law of motion is controlled by one 
player. Examples are worked out to illustrate the algorithm proposed. 
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I. Introduction 

Stochastic games were formulated by Shapley [12] in 1953. In this seminal paper, 
he proved that zero-sum discounted stochastic games have a value in the class of 
stationary strategies of the players. Gillette [6] introduced zero-sum stochastic games 
with the long run average cost per play for a player. 

Shapley's stochastic games were extended to non-zero sum games by many 
researchers [5, 14, 13]. For discounted games they proved the existence of Nash 
equilibrium points in stationary strategies. From an algorithmic point of  view, it is 
desirable to look for subclasses of stochastic games that admit stationary optimal 
strategies or stationary Nash equilibria. If  the algorithm has to terminate in a finite 
number of arithmetic steps, it is desirable to look for stochastic games which have 
the added property that the smallest field containing the data entries defining the 
stochastic game also contains the entries of  some solution to the stochastic game. 

Correspondence to: Dr. Andrzej Nowak0 Instytut Matematyki,  Politechniki Wroctawskieg, Wybrzeze 
Wyspianskiego 27, 50-370 Wrociaw, Poland. 

* The work of  this author  was supported in part by the NSF grants DMS-9024408 and DMS 8802260. 



250 A.S. Nowak, T.E.S. Raghavan / An algorithm for stochastic games 

Only some special classes of  stochastic games have this additional property. For 
further details on this topic see [2, 9, 10]. 

Among many such subclasses of  stochastic games, single controller stochastic 

games have many desirable properties. They possess stationary optimal strategies 

in both discounted and undiscounted zero-sum case. They possess the above men- 

tioned ordered field property for both zero-sum and non-zero sum case if we take 

as solutions Nash equilibria in stationary strategies [9, 3]. 
Single player control zero-sum games can be solved by a single linear program 

(see [9] for discounted games, and [7, 15] for undiscounted games). 

In this paper,  we prove two theorems (see Theorems 3.1 and 3.2) that can be 

used to construct finite step algorithms for Nash equilibrium points in both discounted 

and irreducible undiscounted non-zero sum stochastic games. The theorems sharpen 

an earlier result of  Filar and Raghavan [4] proved in the context of  zero-sum 

undiscounted single-controller games. Incidentally, these are thefirst algorithms (to 
the best of  our knowledge) which directly rely on the Lemke-Howson  algorithm to 

solve for stationary equilibria in stochastic games. 

2. Definitions and preliminaries 

Let S = { 1 , . . . ,  N} be the set of  states of a multistage game. Let I = { 1 , . . . ,  k} and 
J = { 1 , . . . ,  p} be finite sets of  actions available to players 1 and 2, respectively. The 

game initiates at a state, say sl,  on the first day. Knowing the state sl,  players 1 

and 2 secretly select actions i~ ~ I and jl  ~ J, respectively. This results in an immediate 

cost, given by q(s~, i~, Jl) for player 1 and r2(s~, il, j l)  for player 2. The game moves 

to a new state s2, the next day. The players know that this movement  is Markovian 

and it depends only on the state just passed and the action just selected. The players, 

knowing the new state s2, choose actions i2 ~ / ,  J2 ~ J and incur immediate costs 

rl(s2, i2, J2) and r2(s2, i2, j2) and so on. 
Let ~(&ls~,il,Jl,. . . ,Sn--~,in--l,jn--O=q(snls~--~,in--~,jn--~), n = 2 , 3 , . . . .  I f  

hn = (s~, il, J l , . . . ,  S~-l, in-~, jn-1), the history on the nth day, in general a player, 

say player 1, can select an in ~ I by a random mechanism which could depend on 
the partial history h~. Such a strategy is called a behavior strategy for player 1. In 

case a strategy depends only on the current state, then such a strategy can be denoted 
by f ( s ) =  ( f l ( s ) , . . . ,  fk(s)) ,  s c S, (where f ( s )  is the probabili ty that action i is 
selected in state s by player 1) and is called a stationary strategy for player 1. The 
idea is that player 1 ignores all past information such as the states and actions and 
dates, but retains only the information about the state he is currently in. A stationary 

strategy g(s) = ( g l ( s ) , . . . ,  gp(S)) ,  S E S, is similarly defined for player 2. The simplest 
among stationary strategies are the pure stationary strategies where, say player 1, 

chooses the same action i~ whenever state s ~ S is reached. We can identify any 
such pure stationary strategy f with an N-tuple  f =  ( i ( 1 ) , . . . ,  i (N) ) ,  where i (s )~ I 
for each s c S. We can similarly define pure stationary strategy for player 2. 
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Once we specify the initial state and any strategy pair (f, g) for the players, 

we have a probabili ty distribution over all sequences of states and actions. Let 

r(kn)(f, g)(s) be the expected cost to player k on the nth day, when the game 

starts at state s and f, g are the strategy choices of  the players. 

A/3-discounted cost (penalty) for the infinite horizon game is given by 

t~(f , ,  g)(s)  = ~ ~n-lr(kn)(f, g)(s) ,  
n - - 1  

where k = 1, 2, and s = sl.  

An undiscounted cost for the infinite horizon game is given by 

1 r 
cl)k(f, g)(s) = l i m s u p - ~  ~ r(kn~(f, g)(s), 

n = l  

where k = 1, 2, and s = Sl. 
We call a stationary strategy pair a Nash equilibrium point to the E-discounted 

stochastic game iff for each s c S, 

O f ( f * ,  g*)(s) <~ q~f( ~r, g*)(s), 

for any behavior  strategy ~- of  player 1 and 

cb~(f*, g*)(s) <~ cI)~(f*, o')(s), 

for any behavior  strategy o- of  player 2. 

Nash equilibria for undiscounted games are similarly defined. 

We call a stochastic game a player 2 control stochastic game lit the transition 

probabilities depend on the current state and current actions of  player 2 only, that 

is, 

q(tls,  i , j ) = q ( t l s ,  j ) for al ls ,  t ,i ,j .  

3. M a i n  results  

We quote the following fact which we need in the sequel (see [9, Lemma 5.1]): 

Lemma. Any pair ( f *, g * ) of  stationary strategies is a Nash equilibrium to a discounted 
player 2 control stochastic game iff it is a Nash equilibrium to a stochastic game where 
player 1 has no immediate cost beyond the first day. [] 

Now we are ready to prove the first main theorem which gives a recipe for finding 

Nash equilibrium points for player 2 control discounted stochastic games in a finite 
number  of  arithmetic steps. 
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Theorem 3.1. Let 0 < fl < 1 be a discount factor. Let N be the number of states of the 
game. Let f l  , f 2 , . . .  ,fro be an enumeration of all pure stationary strategies for player 
1. Let gl, g2, • • •, g, be an enumeration of all pure stationary strategies for player 2. 
Let (A, B) be an m × n bimatrix game with entries 

A = [ ~ r l ( s , f ( s ) ,  gj (s) ) ] ,  

where i = 1 , . . . ,  m, j = 1 , . . . ,  n. We will view A, B as cost matrices to players 1 and 
2. Let (~*, rl* ) be any mixed strategy Nash equilibrium point to the bimatrix game 
(A, B). Then 

(a) f * = Y ~ * f  and g * = ~ T g j  
i j 

constitute a Nash equilibrium point to the fl-discounted stochastic game. 
(b) For each state s, 

@~(f*, g*)(s) = ~ ~ @~2 ( f ,  gj)(s)¢* ~*. 
i j 

Proof. Since (~:*, ~7") is a Nash equilibrium point to (A, B), we have 

X rl(s , f*(s) ,  g*(s)) <~ X rl(s, f ( s ) ,  g*(s)), (1) 
s s 

for every pure stationary f Clearly, 

min rl(s , f(s) ,  g*(s))<~ rl(s, f* ( s ) ,  g*(s)), (2) 
f 

for every s e S. Hence, 

Ilfin rl(s , f ( s ) ,  g*(s)) <~ 2 rl(s, f * ( s ) ,  g*(s)). (3) 
s J s 

At the same time 

N 

7 ~ misn rl(s , f (s) ,  g*(s)) = min ~ rl(s , f(s) ,  g*(s)) 
{ f ( 1 )  . . . . .  f ( N ) }  s = l  

= rain f~ rl(s , f (s) ,  g*(s)). (4) 
f s 

From (4), (3) and (1), we get 

s 5 mifn rl(s , f(s) ,  g*(s))= • r l (s , f*(s) ,  g*(s)), 
s 

which, together with (2), gives 

rl(s , f*(s) ,  g*(s))= Ilfin rl(s , f(s) ,  g*(s)), 
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for every s ~ S. This and the above lemma imply that 

O f ( f * ,  g*)(s) <~ ~ ( f ,  g*)(s), (5) 

for every s c S and for any pure stationary strategy f of player 1. Thus, (5) holds 
for any strategy f of player 1 (see [1] or [12]). 

Consider the equilibrium inequalities for player 2 in (A, B). We have 

s i j s i 

for every pure stationary strategy g of player 2. Thus, 

2 2 @~(f*, gj)(s)~7" <<- 2 qb~(f*, g)(s), (6) 
s j s 

for every pure stationary strategy g of player 2. (Here we use the fact that the 
transition probability q is independent of player l 's  actions.) 

We claim that the stronger inequality 

2 q)~2(f*, gj)(s)n *<~ q~f(f*, g)(s) 
J 

holds, for every pure stationary strategy g of  player 2 and for all states s ~ S. Suppose 
not. Then, for some state s' and some pure stationary strategy g', we have 

Z ~2~(f *, gj)(s') r/* > @2~(f *, g')(s'). (7) 
J 

Let go be a pure stationary strategy for player 2, which is optimal against f *  [1]. 
That is, 

q ~ ( f * ,  go)(S) = min @~(f*, g)(s), (8) 
g 

for every s e S. From (7) and (8), we conclude that 

2 2 opt(f*, gj)(s)~?* > 2 ¢b~z(f *, go)(S), s e S, 
s j s 

which contradicts (6). It is therefore obvious that 

v2(s) := min q ~ ( f * ,  g)(s) = Y~ q ~ ( f * ,  gj)(s)71* , 
g j 

for all s c S. Moreover, if * • /k > 0, then 

Vz(S) = ~ ( f * ,  gk)(s) for all s e S. 

From the optimality equation for discounted dynamic programming [1], we have 

v2(s) = r2(s,f*(s), gk(S)) + fi E v2( t)q( tls, gk(S)), 
t 

for all s and for each k such that ~* > 0. Hence, if we put g * =  ~j ~7*gj, we get 

v2(s) = r2(s, f*(s ) ,  g*(s) ) + fl ~. v2( t)q( tls , g*(s)), 
t 
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for all s ~ S. This implies that 

v2(s) = @2~(f *, g*)(s) for all s ~ S, 

and the proof  is completed. 

Our second main result concerns irreducible undiscounted stochastic games, where 
we assume that the transition matrix induced by any pure stationary strategy for 
player 2 is irreducible. It is well known that the expected costs tbk(f,g)(s) tO the 
players in an irreducible undiscounted stochastic game, under any stationary strategy 

pair (f, g), are independent of the initial state s, and thus, they will be denoted by 

• k(f, g). 

Theorem 3.2. Let f l ,  f2, • • •, fm be an enumeration of  all pure stationary strategies for 
player 1. Let gl, g2, • • • , g, be an enumeration of  all pure stationary strategies for 
player 2. Let ( A, B) be an m × n bimatrix game with entries 

A = [ ~ s  r l ( s , f ( s ) , g j ( s ) )  1, 

B = [ ~ 2 ( f ,  gj)], 

where i= 1 , . . . ,  m, j = 1 , . . . ,  n. Let ((*, ~7") be any mixed strategy Nash equilibrium 
point to the bimatrix game (A, B). Then 

f * = ~ f  and g*=~?*& 
i j 

constitute a Nash equilibrium point to the irreducible undiscounted stochastic game. 

Proof. Repeating verbatim the arguments of the discounted case we have 

r l ( s , f * ( s ) ,  g* ( s ) )  ~ r l ( s , f ( s ) ,  g*(s) ) ,  

for all s, 

for all s 
player 2, 

i. Hence, we have 

Y q(tls, g*(s ) ) r , ( t , f* ( t ) ,  g*(t)) <~ ~. q(tls ,  g*(s ) ) r , ( t , f ( t ) ,  g*(t)),  
t t 

(9) 

(10) 

and i. Now using (9) and (10), since transitions are controlled only by 
we conclude that 

(i01(f* , g*) ~ (J51(f/, g*) for all i, 

which together with [1] implies that ( f* ,  g*) satisfies the equilibrium condition for 
player 1. 

For player 2, we obtain 

Z 2 t202(f, gj)~/* n~ = ~ tit)z(f*, gj)'q~ ~ @2(f*, g), (11) 
i j j 
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for each pure stationary strategy g of player 2. From (11), we conclude that every 

gj such that ~* > 0 is optimal for player 2 against f * ,  that is, 

qb2(f*, g~) = min 4~2(f*, g). 
g 

Let v = ming @2(f*, g). From the dynamic programming literature (see, e.g., [11]), 
we infer that there exists a function w : S ~ ~ such that 

= r2(s,f*(s), gk(s))+~ w(t)q( t ls ,  gk(s)) (12) 
t 

for every k such that r/* > 0 and all s c S. It follows that 

v + w(s) = r2(s,f*(s), g*(s)) +~ w(t)q( t ls ,  g*(s)), 
t 

where s c  S and g * = ~ k  ~7*gk. This and (12) imply (see [11]) that 

@2(f*, g* ) =  rain q'2(f*, g), 
g 

which completes the proof. [] 

4. Examples 

We will use the theorems proved above to constructively solve for Nash equilibria 
for discounted and also irreducible undiscounted player 2 control games. 

Example 4.1. Consider the following stochastic game with 3 states and two actions 
for each player at each state. The transitions which consist of an exact law of motion 
are indicated by an arrow entry underneath each column that corresponds to action 
of player 2. Player 1 chooses rows. Let the discount factor/3 = 0.8. 

s = l  s = 2  s = 3  

(6,3) (0,8) l r<o,,o  (9,2)] [(3,0) 1 
(0,5) ( 7 , 1 ) J '  [ ( 7 ,  S) (0,8) ' k(0,4) ( 4 , 0 ) J "  

1 2 2 3 3 1 

We can enumerate pure stationary strategies by fl  =(111),  f2 = (112) , . . .  , f s =  
(222). For example f6 = (212) for player 1 selects row 2 in state 1, row 1 in state 2 
and row 2 in state 3. The enumeration of pure stationary gj's for player 2 is done 
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similarly. The bimatrix game (A, B) 

A =  
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is given as 

B =  

9 6 18 15 3 0 

6 10 15 19 0 4 

16 13 9 6 10 7 

13 17 6 10 7 11 

3 0 12 9 10 7 

0 4 9 13 7 11 

10 7 3 0 17 14 

.7 11 0 4 14 18 

12 9" 

9 13 

3 0 

0 4 

19 16 ' 

16 20 

10 7 

7 11 

65 82 17 47.6 98 141.4 11.6 75- 

85 77 53 38.6 118 136.4 60.4 50 

40 57 23 53.6 53 80.4 22.4 105 

60 52 59 44.6 73 75.4 71.2 80 

75 100 27 72.0 91 128.8 4.6 40 

95 95 63 63.0 111 123.8 53.4 15 

50 75 33 78.0 46 67.8 15.4 70 

70 70 69 69.0 66 62.8 64.2 45 

Using the Lemke-Howson  algorithm [8], the following Nash equilibrium point was 
found 

10 39 42 192 ~ : . 0 ,  0, 0 1013~ 9~* (0,  0, ~ ,  9~, 0, 0, 9~, 0 ) . ~* = (0,  0, 1613, 1613], = 

We get f * =  ~i ~:*f and g * =  Y~j rl*g j given by 

('[ 600 1013] f /,1~q3, 1~i3, for s = 1, (?3, 163) for s = 1, 

f * ( s )  =~(0 ,  1) for s = 2 ,  g*(s) = ~(0, 1) for s = 2 ,  
[ (  192 1421,~ 4 3 l ~ 3 ,  ~ j  for s = 3, [(7,  7) for s = 3. 

The equilibrium expected costs w(1), w(2), w(3) for player 2 at states 1, 2, and 3, 

respectively, are given by 

W(1) = 34325 W(2) -- ~ ,  W(3) = 28420 
1613 , 1613 " 

These are the equilibrium expected costs for player 2 corresponding to the Nash 

equilibrium pair ( f* ,  g*). To find the equilibrium expected costs for player 1 we 
have to compute v(s)  = cI)¢(f*, g*)(s) ,  which are given by the unique solution to 

the equations 

v(s)  = r i ( s , f * ( s ) ,  g * ( s ) ) + f l  E v ( t )q ( t ] s ,  g*(s)) ,  s = 1, 2, 3. 
t 
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We get 

v ( 1 ) - ~ ,  v(2)=183966°, v(3) 23700 
- -  2 3 6 3 "  

Example 4.2. We consider here a stochastic game with undiscounted costs and with 
irreducible transition. This game has 2 states. In each state player 1 has 2 actions 
and player 2 has 3 actions. The arrow underneath each column indicates the chances 
of moving to states 1 and 2. 

s = l  s = 2  

1 (5, 7) (7, 5) (9, 3) ' [_(9, 3) (0, 9) (8, 1) " 

(0.5,0.5) (0.8, 0.2) (0, 1) (0.5,0.5) (0.2,0.8) (1, 0) 

For example if s = 2 and column 2 is chosen by player 2, the game moves to state 
1 with chance 0.2 and stays at state 2 with chance 0.8. It is easy to see that the game 
is irreducible. 

The bimatrix game (A, B) has the cost entries as follows: 

11 18 17 8 15 14 6 13 

A =  18 9 17 15 6 14 13 4 

7 14 13 9 16 15 11 18 

14 5 13 16 7 15 18 9 

37 26  13 

B =  

6.5 13 ao 53 4 
7 3 7 6 3 6 

3.5 ~ 3 41 14 53 T 8 6 3 6 
19 16 43 ~ 4 

8 7 3 7 3 7 

5 ~ 5 ~t 7 ~ 3 8 

By the Lemke-Howson algorithm we get 

12 / 
12 

17 ' 

17.1 

45  

=(0 ,~ ,0 ,~)  and = ( 0 , 0 , 5 , 0 , 0 , 0 , 0 , 0 ,  4) 

as a Nash pair. 
Since the transitions are irreducible the expected Nash equilibrium cost w ( s )  = w = 

~t for player 2. Further the induced stationary Nash equilibrium point ( f* ,  g*) is 
given by 

2 1 s = , ,  , = , ,  
[ (0 ,1) ,  s = 2 ,  g*(s) = [(0,  0,1), s = 2 .  

The Nash equilibrium cost for player 1 is v ( s )  = v = 226, s = 1, 2. 

Remark. In general any Nash equilibrium point (~*, 71") of (A, B) may not 
necessarily induce a Nash equilibrium point for the player 2 control undiscounted 
stochastic game. The following is a counter example• 
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Counter example. We consider an undiscounted stochastic game with 2 states, where 
player 1 has always a null cost. Transitions and costs of player 2 are as follows: 

s = l  s = 2  

[o, 1], [o, 1]. 

1 2  2 1  

Let gl = (11), g2 = (12), g3 = (21), and g4 = (22). For example, g3 selects column 2 
in state 1 and column 1 in state 2. Player 1 has exactly one pure strategy, say f* .  
Clearly, 

and 

A = [ 0  0 0 0] 

B : [ @ z ( f * , g j ) ( 1 ) + C b 2 ( f * , g f l ( 2 ) ] = [ O  0 0 2]. 

For example, ~:* = 1, r/* = (0, 0.5, 0.5, 0) is a Nash equilibrium point to (A, B). 
However, g * =  0.5gz+0.5g3 selects each action with chance 0.5, in every state, and 

r2( l , f*(1) ,  g*(1)) = r2(2,/*(2),  g*(2)) = 0.5. Thus @=(f*, g * ) =  0.5 > ~2( /* ,  g3) = 
0. Hence ( f* ,  g*) is not a Nash equilibrium point for the stochastic game. 
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