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I. Introduction 

This paper was motivated by the following model of location of undesirable or 

obnoxious facilities. Given a general network the objective is to select p points on 
the network so that the sum of the distances between all pairs of points is maximized. 
It was shown in [6, 17] that this problem and some of its variants are NP-hard. 

However, when the network is a tree, we formulated the model as a minimum 
separable convex quadratic cost flow problem with integer flow variables [17]. As 
such the model was solvable in polynomial time by the algorithm presented in [15]. 
Nevertheless, the latter algorithm was not satisfactory for our purposes. Our goal 
was to obtain a combinatorial strongly polynomial algorithm for the above location 
model. The algorithm in [15], as well as the one in [14] which solves the real 
relaxation of the above cost flow problem, are both polynomial but not strongly 
polynomial. 

In this paper we deal with series-parallel networks and present strongly poly- 
nomial procedures for solving the integer and the rational convex quadratic separable 
cost flow problems with one source and one sink. The integer flow problem induced 
by the above obnoxious location model is defined on the following special series- 
parallel network: Add a node to the node set of the underlying tree and connect it 
to all the tips (leaves) of the tree [17]. 
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Tel Aviv, Israel. 
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A directed (multi) graph G = ( V ,  E)  is given by its node set V = { 1 , . . . ,  n}, its 

arc set E and two mappings h, t :E  ~ V which assign to each arc e c E the head 

h(e) and tail t(e) of e, respectively, h(e) is the successor of  t(e) and t(e) is called 

the predecessor of  h(e). Two arcs e and e' in E are called parallel if h(e) = h(e') 
and t (e)= t(e'). Let m = ]El. 

Each arc e c E is associated with a nonnegative flow capacity bound ue. Also, let 

xe, e e E, indicate the flow on e. Given a positive real q suppose that q units of  flow 
are to be transferred from a given source node, say node 1, to a given sink, say 

node n. Let D be an m x m symmetric positive semi-definite matrix, and let e be 

an m-component  vector. The minimum convex quadratic cost flow problem on G 

is to compute f (q ) ,  

f ( q )  = minimum x 'Dx + c'x 

q, i = 1, 

subject to (Ax) i= -q,  i= n, (1.1) 

O, i ¢ l , n ,  

O<~xe~ue, e e E ,  

where x = (xe), e • E, is the m-component  flow vector and A is the node arc incidence 

matrix of  G. By the parametric  version of  the model we refer to the problem of 
computing and representing the function f ( q )  for all q/> 0 such that (1.1) is feasible. 

The discrete (integer) minimum quadratic cost flow problem is the problem obtained 

from (1.1) when we add the requirement that all flow variables xe, e • E, must be 

integers. 
Throughout  the paper  we assume that all numerical input is rational. Also, when 

we refer to (1.1) for a given q~>0, we assume that it is feasible. Under these 

assumptions (1.1) has an optimal solution which is rational, and it can be found in 
polynomial  time by an ellipsoid method, [11]. Thus, (1.1) is referred to as the 
rational problem. The repertoire of  numerical operations used by the algorithm in 

[11] consists only of comparisons and the four elementary operations, {+, - , / ,  *}. 
The total number  of  operations performed by the procedure in [11] depends 

polynomially on the capacity bounds {b/e} , e • E, the vector c and the matrix D. 

More recently it was demonstrated in [2, 4] that (1.1) can be solved in polynomial 
time where the total number  of  operations depends only on the matrix D. The results 
in [2, 4] generalize the seminal work of Tardos [18], who was the first to prove that 

the linear case, D = 0, is solvable in strongly polynomial  time. 
For the linear case the discrete model coincides with the rational one when q and 

{Ue}, e • E, are all integer. This is not necessarily the case when D is nonzero. In 

fact, the discrete version of (1.1) is NP-hard. The problem of finding a 0-1 solution 
to a single equation can be reduced to (1.1) by squaring the equation. 

In this study we focus on the case when D is diagonal, i.e., the objective in (1.1) 
is separable and convex. Motivated by the location model mentioned above, we 

restrict ourselves to series-parallel graphs. 
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The separable convex case for general graphs was considered by Minoux in 

[14, 15]. Using a sealing technique he showed in [15] that the discrete model can 

be solved in polynomial time, where the complexity bound depends only on the 

size of G, and the capacity bounds {ue}, e ~ E. A solution to the rational model is 
derived in [14]. The polynomial complexity bound there depends also on the matrix 

D. 
To the best of our knowledge no strongly polynomial algorithm is known to solve 

either problem (1.1) or its discrete version even when D is diagonal. In our context 

a strongly polynomial time implies a complexity bound which depends (poly- 
nomially) only on the size of G, i.e., on n and m. The reader is referred to [8] for 

related open questions. 
In the next section we use the proximity results in [5] to show how to obtain a 

discrete optimal solution from a rational optimal solution for a general graph. 
Section 3 is devoted to series-parallel graphs. We show that the real parametric 
function f (q) ,  q >1 O, is convex piecewise quadratic with at most 2m breakpoints. 
We present an O(mn + m log m) algorithm to generate and represent this parametric 
function. Given the representation and a specific rational value of q, a rational 
optimal solution will be computed in O(log m) time. In Section 4 we briefly discuss 
several extensions and state some open problems. 

2. Finding a discrete solution from a rational solution 

In this section we use the proximity results in Granot and Skorin-Kapov [5]. 
Specifically we show that if we add to our repertoire of permissible operations the 

"floor" operation, [. J, then an optimal solution to the discrete model of (1.1) with 
a diagonal D can be obtained from any optimal rational solution to (1.1) in strongly 
polynomial time. ([aJ is the largest integer smaller than or equal to a. [a]  is the 
smallest integer larger than or equal to a.) 

First we motivate our approach. As mentioned above, a solution to the discrete 

version of (1.1) can be obtained in time which is polynomial in the flow capacity 
bounds, (e.g., [15]). Therefore, to solve the discrete problem in strongly polynomial 
time it will suffice to exhibit a strongly polynomial transformation of the discrete 
version of (1.1) into an instance of the same model where the capacity bounds 
are polynomial functions of m, the number of arcs of G. We show now that 
such a transformation exists whenever a solution to the rational model (1.1) is 
available. 

Let x* be an optimal solution to the rational model (1.1). It follows from [5], 
that there exists an optimal solution to the discrete model, say z*, such that 

] z e - x e l ~ m  fo ra l l  e~E. (2.1) 

By computing [x*J for all e ~ E, we can obtain an integer flow vector y* = (y*), 
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e e E, satisfying 

Iz*-y*l<~m fora l l  e6E ,  

O ~ y f ~ u  e fora l l  e e E ,  

and 

f 
q, i = 1 ,  

(Ay*)i= -q,  i= n, 

O, i ¢ l, n. 
(2.2) 

y* is any integer feasible solution to (1.1) with the additional constraints [x*J ~< y* ~< 

Ix*I,  e c E. y* can be computed in strongly polynomial time by using any of the 

strongly polynomial algorithms for the classical maximum flow - minimum cut 
problem. 

Next we find an integer nonnegative flow f*  = (f*) ,  e ~ E, such that 

y*~-m2<~f*~<~z~<~y*~ +m, 

f F**, i = 1, 

(Af*) ,  : ~ -F** ,  i = n, 

[0,  i ~ 1, n, 

(2.3) 

with q - m 2 <~ F** <~ q. 

Consider the integer flow y* in (2.2). This flow constitutes a circulation in the 

graph G 1 obtained from G by adding a directed arc from node n to node 1 with a 

capacity bound of value q. We subtract a unit flow along at most m 2 simple cycles 

in G 1 to obtain a nonnegative integer circulation (f*,  F**), such that 

and 

O~<f*<~ye*-m for all e i n E  w i t h y * ~ m  

f * = O  if y* < m. 

(Decreasing a flow along an arc by one unit is done by finding a cycle containing 

that arc and consisting of arcs with positive flow, and decreasing the flow on the 

cycle by one unit.) 

Let F** be the value of the flow along the added arc from n to 1. Therefore f *  
satisfies (2.3) and 

y*e-m2<~f*<~y*-m<~z*<-y*+m for all e with y* >~ m, 

0=fe*~< *_< * ~ Z e ~ y e + r n  foral l  e w i t h y * < m ,  

q-m2<~F**<~q. 

(2.4) 

Finally, define 1) e - - Z  e - - fe  for all e in E. Let v = (re), e ~ E. Therefore, by using 
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(2.4), the integer version of (1.1) with a diagonal D is reduced to 

minimize ((v + f* ) 'D(v  + f * )  + e'(v + f * ) )  

I q - F**, if i = 1, 

subject to (Av)i = ] - ( q -  F**), if i = n, 

[0 ,  otherwise, (2.5) 

O<~ve=(Z*-f*)<~m2+m, if y*>~m, 

O<~ve=(Z*-f*)=z*<~2m, if y * <  m, 

ve <~ Ue--f* and ve integer for all e c E. 

Since the arc capacities in (2.5) are bounded by a polynomial in m, and q - F** <~ m 2, 
an optimal integer solution can be obtained in strongly polynomial time by the 

algorithm in [15] mentioned above. (2.5) can also be converted to the linear case 
and solved by the algorithm in [18] in strongly polynomial time. 

We refer the reader to [9] where the use of proximity results and polynomial 
algorithms is discussed in the context of general convex separable nonlinear objective 

functions. 

Remark 2.1. We have shown above that the integer solution can be derived from a 

fractional solution in strongly polynomial time using the operations {+, - , / ,  *, [- J }. 
In a certain respect the inclusion of [. J is essential to obtain a strongly polynomial 
algorithm. Given two positive integers a and b, the results in [16] imply that using 
the algebraic decision tree model with {+, - , / ,  *}, there is no strongly polynomial 
algorithm to compute [b/aJ. Therefore the necessity of the [. J operation is implied 

by the following observation. 
Let (x~*, x*) be an optimal integer solution to the problem: 

minimize 1 2 1 {~X 1 +~(a - 1)x~} 

subject to Xl+ x2 = b, 

Xl and x2 are nonnegative integer. 

Solving the rational model and using the above proximity result on the rational and 

the discrete solutions we note that x * - 1  <~ [b/aJ <~ x*. Therefore, [b/aJ = x* if 
x *< - b/a, and [b/aJ = x * - I  otherwise. Thus, if we could obtain x* in strongly 
polynomial time using only the operations in {+, - , / ,  *}, we would compute [b/a] 
in strongly polynomial time using the same set of operations. 

3. Solving the parametric quadratic cost flow problem on series-parallel graphs 

In this section we present an O(mn + m log m) algorithm to generate the parametric 
separable convex quadratic cost flow function for a series-parallel graph with m arcs. 

We need the following definitions: 
A (two terminal) series-parallel graph is a multi-graph with exactly one source and 
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one sink, which is defined recursively as follows: 
(i) A single arc e together with t(e) and h(e) is a series-parallel graph, t(e) is 

the source terminal and h(e) is the sink terminal. 

(ii) If G1 and G2 are series-parallel graphs, so is the multi-graph obtained by 
either one of the following operations: 

(a) Parallel composition: identify the source of G1 with the source of G2, 
and the sink of G1 with the sink of G2. The common source is the source of the 
composition and the common sink is its sink. 

(b) Series composition: identify the sink of G1 with the source of G2. The 
source of G~ is the source of the composition. The sink of the composition is the 

sink of G 2. 

Let G = ( V, E)  be a series-parallel multi-graph, with V = ( 1 , . . . ,  n}. Suppose that 
nodes 1 and n denote the source and sink respectively. The parametric quadratic 

cost flow problem on G is to determine the function f (q)  in (1.1) for all q I> 0. 
It follows from quadratic programming tha t f (q )  is convex and piecewise quadratic 

over its domain. For general graphs the number of pieces is known to be exponential 
in the number of arcs even when the objective in (1.1) is linear, [20]. 

Focusing on the series-parallel case we will show that for a separable quadratic 

objective, f (q)  has at most 2m quadratic pieces. Moreover, 2m is a sharp bound. 
The linear case, D = 0 in (1.1), for series-parallel graphs was discussed by Bein, 

Brucker and Tamir [ 1]. It is shown there that f ( q )  has at most m pieces, breakpoints. 
Furthermore, the function f (q)  can be generated efficiently by a greedy algorithm. 

It is quite common to represent the recursive construction process of a series- 
parallel graph G by a binary tree called a decomposition tree, [19]. The arcs of G 

are represented by the leaves of the decomposition tree. Nodes of this tree, which 
are not leaves, are labelled by S, indicating a series composition, or P indicating a 

parallel composition. 
Our algorithm generates the envelope f (q) ,  q >i O, by following the decomposition 

tree. We start with the leaves of the tree. Each leaf represents a series-parallel graph 
consisting of a single arc, say e. Therefore, its parametric cost function is a quadratic 

function over its domain, 0<~ q ~ ue. In the general step we consider two series- 
parallel subgraphs, Ga and G2, with their respective parametric cost functions f~(ql) 

and f2(q2). 
If  G is obtained by a series composition of G~ and G2, then f (q) ,  the parametric 

cost function of G, is given by 

f (q)  =f~(q) +fz(q).  
We say t h a t f  is a series composition off1 and f2. If G is a parallel composition of 

G1 and (32 then f (q)  is defined by: 

f (q)  = minimum {f~(ql) +fz(q2)} 

subject to q l+  q2 = q, 

ql, q2 ~>0. 

In this case we say that f is the parallel composition of fl  and f2- 
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TO generate the parametric function for a series-parallel graph we will follow its 

decomposition tree and recursively perform the necessary series and parallel compo- 

sitions of the respective cost functions. The total number of compositions is m - 1. 
Before we describe the core of the algorithm, the parallel composition, we introduce 
the following terminology which is quite common for convex functions. 

Let g be a real continuous convex function from some closed interval [0, a ]  in 
R 1 to (-co,  o0). We extend g to R~+, by defining g(x) =oo for x >  a. g is called an 
extended convex function on R 1. 

Let g be an extended convex function on ~+. g is piecewise quadratic, if there 
exist 0 = tl < t2 <" • • < tk < tk+l = 00, such that for each j, 1 ~<j ~< k, the reduction of 
g to [tj; tj+l) is a quadratic function, say gi, defined on ~1, and for l<~ j~  < k, gJ and 

gJ+~ are not identical. The points { t l , . . . ,  tk} are called the breakpoints of g, and 
the quadratics {g~ , . . . ,  gk} are its components, g is differentiable everywhere but 
possibly at its breakpoints. If  g(tk + ) = CO, then g ( x ) =  oo for all x > tk, and tk is the 
only discontinuity point of g. If g(x) < oo for all x ~> 0, g is said to be proper convex. 
The derivative function, g', is piecewise linear and nondecreasing with possible 

discontinuities at the breakpoints, tj, 1 ~<j<~ k, is a discontinuity point of g' if 
g ' ( t j - ) <  g'(tj + ). For convenience we set g ' ( 0 -  ) =  g'(0 + ). Also if g(tk + ) =  oo, we 
define g'(tk + )=oo. 

An extended piecewise quadratic function g will be represented by the sorted 
sequence of its breakpoints { t l<  t2<"""  < tk}, and the respective quadratic com- 
ponents {g~ , . . . ,  gk}. Next we define a complexity measure for g. First define a set 

BP(g) by 

BP(g) = {tj-] tj, 1 ~<j<~ k, is a breakpoint of g} 

w {tj+ I tj, 1 ~<j ~< k, is a breakpoint of g 

and g ' ( t j - )  < g'(tj+) < oo}. 

The complexity of g, CMPLX(g) ,  is defined by CMPLX(g)=IBP(g)[ ,  i.e., 
CMPLX(g)  is the sum of the number of finite breakpoints of g and the number of 
discontinuity points of g'. 

It follows from convexity theory that both series and parallel compositions 
preserve convexity. If  g, and g2 are both piecewise quadratic then so is their series 
composition, g, and 

CMPLX(g)  <~ CMPLX(g~) + CMPLX(g2). 

Furthermore, g can easily be generated from g~ and g2 in O ( C M P L X ( g 0 +  
CMPLX(g2)) time by merging the two sequences of breakpoints. 

We will next focus on the parallel composition and show that it preserves the 
above properties as well. 

To facilitate the discussion, let ga and g2 be a pair of convex piecewise quadratic 
functions. Let O=ta.x~ta,z~' ' '~t l ,k(1)~ta,k(1)+a=oo and 0= t2 ,~< t2 .2< ' '  "<  
t2,k(2) < t2,k(2)+l  = o0 indicate their respective sequences of breakpoints. Consider g, 
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the parallel composition of gl and g2: 

g(q) =minimum {ga(ql)+gz(q2)} 

subject to q l+  q2 = q, 

ql, q2 ~0 .  (3.1) 

g(q) is the solution value for the classical continuous effort allocation problem with 
two variables [10]. The solution to this problem can be obtained by modifying the 
incremental algorithm of  Luss and Gupta [12], which is originally designed for the 
case where both g~ and g2 are dilterentiable strictly convex functions. Basically, the 

incremental algorithm to generate g(q) for all q/>0, amounts to a (continuous) 
sorting of the two derivative functions, g'~ and g~. The precise meaning of this 
approach will be clear after we describe the algorithm. But an intuitive explanation 
is provided when we look at the discrete version of (3.l) where qa and q2 are 
restricted to integral values. In this case, the solution to the problem is obtained by 
merging the two discrete derivatives, i.e., the two monotone sequences: {g l ( j+  1 ) -  

ga(J)}, J = 0, 1, 2 , . . . ,  and {gz(J + 1) - gz(j)}, j = 0, 1, 2 , . . . .  For any integral q 1> 0, 
g(q) is obtained by selecting the qth smallest element of the merged sequence, [10]. 

The main idea in the solution of (3.1) is quite simple. For each value of the 
argument q we look for values of q~ and q2 that sum up to q, and such that the 

deravitive functions g'l and g~, evaluated at q~ and q2 respectively, are equal. 
However, the derivative functions can possess discontinuities and therefore exact 
equality may not be feasible. Hence, we have to consider and carefully examine the 
breakpoints of g~ and g~, while parametrically varying q. This is the essence of the 

detailed technical discussion of parallel composition. 
We now describe the algorithm to compute the function g(q), q >! O, defined as 

the parallel composition of g~ and g2. 

Algorithm 1. 
Step O. Initially start with q l =  q2= 0. ql~ [ t l j  ; q.2) and q2c It2, G t2,2). 
Step 1. Let q~ ~ [tl,j(l~; tl,j(~)+l), for some 1 <~j(1) <~ k(1), and q2 c [t2,j(2); tz,j(2)+l), 

for some 1 ~<j(2)<~ k(2). (g(q) has already been defined and represented for all 
O<~q<~ql+q2). 

Consider g~(ql+) and g~(q2+), and the respective intervals (q~; tl.jo)+0 and 
(q2 t2,j(2)+l), g~ and g~ are linear when restricted to the above intervals. 

If g~(ql+) < g~(q2+) go to Step 2. If g~(ql+) > g,2(q2+) go to Step 3. If g~(q~+) = 
g'z(q2+) proceed to Step 4. 

Step 2. (g'l(ql+)< g~(q2+)). Define ~ to be the largest real g/~< tl,jo~+~ such that 
g~(gl-)<~g~(q2+). For 0 f  q~< ~ _ q l ,  define 

g(q~+ q2+ q) = gl(q'+ q) +g2(q2) . 

If q = oo stop. Otherwise set ql ~ c~ and go to Step 1. 
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Step 3. (g~(ql+)>g~(q2+)) .  Define c7 to be the largest real q<~t2,j(2)+l such 
that g;(cT-) ~< g~(ql+). For 0<~ q ~< q - q2 define 

g(q~+ q2+ q) = g~(ql)+ g2(q2+ q). 

If 0 = oo stop. Otherwise set q2~  ~ and go to Step 1. 
Step 4. (g~(q~+) = g~(q2+)). 

If g~ is linear over (ql; t~.j(l~+a) go to Step 4.1. If g2 is linear over (q2, t2,j(2)+l) 
go to Step 4.2. Otherwise go to Step 4.3. 

Step 4.1. Let ~ = t13(~+1. For 0<~ q<~ g/-  ql define 

g( q, + q2 + q) = g~( q l + q) + g2( q2). 

If ~ = co stop. Otherwise set q ~  0 and go to Step 1. 

Step 4.2. Let g/= t2,j(2)+l. For 0<~ q<~ gl-q 2 define 

g ( q l +  q2+ q) = gl(ql) + g2(q2 + q). 

If  q = ec stop. Otherwise set q2 ~- 0 and go to Step 1. 

Step 4.3. (gl and g2 are proper  quadratic over their respective intervals). Define 
qx = ql(q) and q2 = q2(q) by the unique solution to the system 

g~(q l+  ql) = g,2(q2+ q2), 

ql + q2 = q _ql_q2.  

(qa(q) and q2(q) are both increasing functions of q.) Let ~ be the largest real such 
that 

q~ + ql(q) ~< tl,j(1)~-i, 

q2+ q2(q) ~ t2,j(z)+a. 

For 0 ~< q ~< ~ <~ ql _ q2 define 

g(q~+ q2+ q) = g l (q l+  q,(q)) + gz(q2 + q2(q)). 

If  ~ = oe stop. Otherwise, set ql ~ ql + q~(q), q2~_ q2+ qz(q), and go to Step 1. 

The validity of the above algorithm to compute g(q), q >i O, follows from the 
validity of  the incremental algorithm in [10]. 

For every q/> 0, let q*(q) and q*(q) denote the solution to the problem (3.1) as 
defined by Algorithm 1. It follows that q*(q) and q*(q) are continuous, piecewise 
linear and nondecreasing functions of q. Therefore, g(q) is a continuous, extended 
convex piecewise quadratic function on ~+. The breakpoints of  g(q) are sequentially 
generated by the above algorithm. Starting with q =0,  each iteration computes 
the next breakpoint of  g. It is given by q = q l + q 2 ,  where ql and q2 are defined in 

Step 1. The computational effort to compute g(q), q>~O, is certainly linear in 
CMPLX(gO + CMPLX(g2) + CMPLX(g).  
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Remark 3.1. The above definition of a breakpoint of g requires that the two 
quadratics defining g on both sides of the breakpoint are not identical. Due to some 
degeneracy this property might not hold for some pairs (ql, q2), generated in 
Step 1. However, we will ignore this aspect since the proper  breakpoints can easily 
be detected when Algorithm 1 terminates. 

The validity of Algorithm 1 implies the following properties that we state without 
a proof. 

Proposition 3.2. Let q be a breakpoint of  the parallel composition function g. Then 
there exist q l and q2, defined in Step 1 at some iteration of  Algorithm 1, such that 
q = ql+q2 and, 

(1) Either q l 

(2) g'(q+) 

g ' (q - )  

g ' (q - )  

g ' (q - )  

(3) For every 

is a breakpoint of  gl or q2 is a breakpoint of  g2. 

= min{g~(qX+), g~(q2+)}, 

=g~(q~-)  if q l = q  and q2=O, 

=g~(q2_) if q~=O and q2=q, 

=max{g~(q~_), g~(q2_)} if ql, q2>0" 

i = 1, 2 and q* < qg, g l (q*-)  <~ gl(q*+) <~ g '(q-) .  [] 

Theorem 3.3. Let g be the parallel composition of  g~ and g2 defined by Algorithm 1. Then 

CMPLX(g) <~ CMPLX(g~) + CMPLX(g2). (3.2) 

Proof. By definition, CMPLX(g)  is the sum of the breakpoints of g and the number 
of discontinuity points of g'. To prove (3.2) we use Algorithm 1 to identify the 
discontinuity points and define a one to one mapping from BP(g) to BP(gl) u BP(g2). 

Using the above notation, for i = 1, 2 

BP(gi) = {ti, j - [ t i ,  j ,  1 <~j<~ k(i), is a breakpoint of g~} 

w {t,.j+lti J, 1 <~j<~ k(i), is a breakpoint of g~ 

and g',(ti.j-) < g'~( ti, j+ ) < ~}. 

Starting with t = 0, Algorithm 1 defines all the breakpoints of g sequentially in 
Step 1 above. Let 0 = tl < t2 <" • • < tr < tr+l = ~ be these breakpoints. (See Remark 

3.1 above.) 
Let tj = qa + q2 be such a breakpoint and suppose, inductively, that t j -  has already 

been mapped into some element in BP(gl)w BP(g2). The basic property of this 
mapping is that it maintains the same derivative value. For example if t j -  is mapped 

into tl. p -  then g ' ( t j - )= g ~ ( t l , p -  ). 

From Step 1 we enter into one of the other following steps with a pair (ql, q2). 
Suppose first that we enter Step 2. Let t j=q~+q 2. g,((ql+q2)+)=g~(qa+). If  

g , ( (q l+  q 2 ) _ ) =  g~(ql+), then tj is not a discontinuity of g', and therefore tj+ is 
not in BP(g). Otherwise, g'((ql + q2)_) < g~(q~+). If  ql = 0, then q l  = t1,1 = 0 and 
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t1,1- in BP(gl) has not been yet mapped onto. Add tj+ to BP(g) and map it onto 

t1,1-. If q~ > 0 we have from Proposition 3.2, 

g~(ql_) ~ g, ( (q l+  q2)_) < g,(q~+), 

and ql is a discontinuity point of g~. Specifically, ql = tlj(l~ from some j(1) in Step 
1. Moreover, since g] (q~+)> g,((ql+ q2)_), the element tl,j(l~+ in BP(gl) has not 
been mapped onto by an element in BP(g). Thus, we map t~+ onto tl,j(l~+ in BP(g~). 
Before we return to Step 1 we define tj+l and map tj+l-. 

Consider the updating of q~ by q~ ~- 0 where q is defined in Step 2. If q = tl,j(1)+1, 

augment tj+~- to BP(g) and map it onto t~j(l~+l-. Otherwise, (/< tl,j(l~+~, and is 
defined by g~(~-)  = g'2(q2+). If  q2 = 0 then q2 = t2,~ = 0 and t2,~- in BP(gl) has not 

yet been mapped onto. We add tj+l- to BP(g) and map it onto t2,~-. If  q2>0,  we 
claim that q2 is a discontinuity point of g2. Indeed, using Proposition 3.2 we have 

g,2(q2_) <~ g,((qa+ q2)_) <~ g,((q~+ q 2 ) + )  = g~(qa+) < g~(q2+). 

Therefore q2 = t2,j(2) for some j(2) in Step 1, and t2,j(2~+ is in BP(g2). We augment 
tj+a- to BP(g) and map it onto t2,j(2~+. (We note in passing that in this case tj+~ is 

not a discontinuity point of g' since c~ is not a breakpoint of gl and therefore 

g'(tj+l+) = g~(~-)  = g '( t j+l-) .)  
The case where we enter Step 3 from Step 1 is totally symmetric to the case where 

we enter Step 2. Thus we skip the details. 
Suppose that Step 1 directs to Step 4.1, and let tj=q~+q 2. As above g'((q~+ 

qZ)+)=g~(q l+) .  If g'((ql-t-q2)-)=g'(ql+) then, tj+ is not in BP(g). If g'((q~+ 
q2)_) < g](q~+), then add tj+ to BP(g) and map it as in Step 2 above. 

The next breakpoint of g, t~+l, is defined in Step 4.1 by setting qa ~ / 1 , j ( 1 ) + l .  Thus, 
add tj+~- to BP(g) and map it onto t~,~(1~+1- in BP(g~). 

The case where we enter Step 4.2 is totally symmetric and therefore the details 
are omitted. 

Finally, suppose we enter Step 4.3. Let t~=q~+q ~. Again if g,((ql+q~)_)= 
g~(ql+) (= g~(q2+)), tj+ is not in BP(g). Let g,((ql+q~)_) < g~(ql+)(= g,(q~+)). 
From Property 2 of Proposition 3.2, assume without loss of generality that 

g,(q~_) = g,((q~+ q2)_) < g~(ql+), 

and ql is a discontinuity point of g~. qa = t~,j(1) for some j(1)  in Step 1. Augment 

tj+ to BP(g) and assign it the element t~,~(~)+ in BP(g~). The new breakpoint of 
g, tj+~, is defined in Step 4.3 by t~+~ = c], where q l + q l ( q ) =  t~,~(a~+a or q2+q2(g/) = 
t~,~(~+~. In the former case map t~+x- in BP(g) onto t1,~(1~+~- in BP(gl) while if 
the latter holds t~+~- is mapped onto t~,~(:~+~ in BP(g~). 

To conclude the proof  of (3.2) we note that we have constructed a one to one 
map from BP(g) to BP(gl)w BP(g2). [] 

We are now ready to describe the algorithm to compute f(q), the parametric 
separable cost flow function in (1.1), for a series-parallel graph G with m arcs and 
n nodes. Let T denote the decomposition tree representing G. Each leaf of T 
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represents some arc of G. Thus T has m leaves and m - 1 other nodes which describe 
the sequence of series and parallel compositions. 

Starting with an arc e of G, its respective parametric function is quadratic in the 
interval [0; Ue], where ue, defined in (1.1), is the capacity bound on the flow on e. 
Viewed as an extended convex quadratic, this function has a single interior break- 
point at Ue. The algorithm proceeds recursively and performs the necessary series 
and parallel compositions of the respective parametric cost function. Specifically, 
the parametric cost function of a series composition is obtained by a simple addition 
of the cost functions, corresponding to the two composites. The parametric cost 

function of a parallel composition is computed by Algorithm 1. 
The total number of series and parallel compositions performed by the algorithm 

is m - 1 .  Let {Vl , . . . ,  v2m-1} be the node set of the decomposition tree T, with vl 
denoting its root node. For each node vi let Li denote the set of leaf nodes in T 
having v~ on the unique simple path on T connecting them to the root v~. Let f ( q ) ,  
q ~> 0, denote the parametric cost function associated with vi and generated by the 
above algorithm. In particular, if v~ is a l e a f f  is quadratic in the interval [0; u¢], 
f~(Ue + ) =  ~ ,  and C M P L X ( f ) =  2. Applying Theorem 3.3 we observe that for any 
node v~ of T, 

C M P L X ( f )  ~ Y, CMPLX(£) .  
vj E Li 

Therefore, CMPLX(f)<~2ILi]. f(q),  q>~O, the parametric cost function of G 
coincides with fl(q), q > 0, the function associated with vl, the root of T. Thus, 
C M P L X ( f )  ~<2m. Since the complexity of Algorithm 1 to compute f is O([L~I) , it 
follows that the total effort to compute f is 0(/7"/2). 

The O(m 2) complexity bound can be improved to O(mn + m log m) if we apply 
some preprocessing. Consider the original n node rn arc series-parallel multi-graph 
G = (V, E).  If there are no parallel arcs m ~< 2 n - 3 .  However, in a multi-graph m 
can be significantly larger than n. In such cases we apply the following preprocessing 
before we use the above algorithm. In the preprocessing each subset of parallel arcs 
connecting the same pair of nodes will be replaced by a single arc. 

Let i and j be a pair of nodes in V, and let E(i,j)  be the subset of all parallel 

arcs having i a n d j  as their head and tail respectively. Let m(i,j) = ]E(i,j)]. Consider 
G(i,j), the subgraph of G induced by E(i,j). The parametric function f(q),  q >~ O, 
corresponding to G(i,j) has at most 2m(i,j) breakpoints. To obtain the representa- 
tion of f (q)  for G(i,j) we apply Algorithm 1 recursively, using a standard divide 
and conquer approach: Divide E(i,j) into two subsets of equal cardinality, recur- 
sively find the f function of each subset, and then use Algorithm 1 to obtain f (q)  
for G(i,j). Since Algorithm 1 takes O(m(i,j)) time, and the recursion has 
O(log m(i,j)) levels, the total time to obtain the representation of f(q),  q > 0, for 
G(i,j) is O(m(i,j)log m(i,j)). 

We apply the above preprocessing phase to all pairs of adjacent nodes in G. The 
total preprocessing time is therefore O(m log m). 
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After the preprocessing we consider G', the simple graph induced by G, i.e., for 
each pair of adjacent nodes i and j we eliminate all but one arc from E(i , j ) .  That 

arc is now associated with the function f of G(i, j )  computed during the preprocess- 
ing. We now apply our above algorithm, using the decomposition tree of G'. Since 
G' has only O(n) arcs, and the total number of breakpoints associated with all the 
graphs G(i , j )  is O(m), the total time for processing G'  to obtain its parametric 
function f is O(mn). The total time including the preprocessing is therefore O(mn + 

m log m). 
The above is summarized in the following: 

Corollary 3.4. Let G be a two-terminal series-parallel graph with n nodes and m arcs. 

Let f (  q), q >>- O, be the parametric separable convex quadratic cost flow function defined 
on G by (1.1) with a diagonal matrix D. Then f ( q )  is a convex piecewise quadratic 

function with at most 2m breakpoints. The total effort to compute all the breakpoints 
o f f  and its quadratic components is O( mn + m log m). [] 

Example 3.5. It is shown in [1] that the parametric function f (q ) ,  q/> 0, has at most 
m + 1 breakpoints in the linear case, i.e., D = 0. The following example demonstrates 

that the upper  bound 2m is sharp in the quadratic case. 
Consider a multi-graph consisting of m parallel arcs { e ( 1 ) , . . . ,  e(m)}. Let the 

capacity bounds be defined by 

1, l<~i<~m-1 ,  
Ue(i)  : m ,  i = m. 

If xe(i), 1 <~ i<~ m, is the flow on e(i), then Q(xe(i)), the corresponding cost is given 

by 

l iXe(i) l <~ i <~ m --1, 
Q ( X e ( i ) )  ~- 1 2 

t~Xe(m), i = m. 

Using the above algorithm we verify that f ( q ) ,  q >~ O, is ditterentiable and has a 
breakpoint at each q in {0, 1 , . . . ,  2 m -  1}. Its derivative is defined by 

q-½i  i f i<~q<~i+l ,  i i s e v e n a n d i < ~ 2 m - 2 ,  

f ' ( q ) = [ ~ ( i +  if i<~q<~i+ l, i is odd and i<~2m-3 .  

4. Summary and concluding remarks 

We have given an O(mn + m log m) algorithm to construct and represent the para- 
metric cost flow function f ( q ) ,  q >i O, for a series-parallel graph with m arcs. Given 
a value for q, say q*, it takes O(log m) time to obtain f (q*)  from the above 
representation. Using a binary search we locate the two consecutive breakpoints of 
f ( q ) ,  say tj and tj+l, which bound q* from both sides. The restriction of f ( q )  to 
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the interval [tj; tj+~] is a quadratic function, f(q*) is the value of that quadratic at 
q=q*. 

To solve the discrete version of (1.1) for a given value of q, say q*, we use the 
approach in Section 2. We first compute the fractional solution, and then reduce 

the discrete problem to the formulation (2.5). In the latter formulation all arc 
capacities are bounded by m + m 2. As mentioned in Sections 1 and 2, such a problem 
can be solved in strongly polynomial time even for a general graph by the algorithms 
in [15, 18]. For series-parallel graphs we can use an alternative algorithm. Using a 
standard transformation, the convex separable program in (2.5) can be converted 
into a linear integer flow problem on a series-parallel graph with O(m 3) arcs. The 

latter problem can then be solved in strongly polynomial time by the greedy algorithm 
in [1]. 

Next we raise a question with respect to the discrete version of the parametric 

quadratic cost flow problem. For each nonnegative integer q, let f (q )  denote the 
solution to the discrete version of (1.1) for the given series-parallel graph. We have 

demonstrated above how to compute f ( q ) ,  for a given integer q, in strongly poly- 
nomial time.We have also represented the parametric function for the fractional 

case, f(q),  q >-O, as a piecewise quadratic with at most 2m quadratic components. 
Is there a compact and polynomial representation of f (q) ,  q ~ 0 and integer, the 
parametric function for the discrete case? 

One might hope that there is some real function h(q), q ~> 0, such that h(q) = f ( q )  
for every nonnegative integer and h has some compact representation. For example, 
is h representable by a polynomial number of polynomial components of a fixed 
bounded degree? We conjecture that this representation is infeasible in general. We 
were only able to demonstrate that there is no efficient representation by quadratic 
components. 

Finally we comment on the extension of (1.1) for separable convex cost functions 
defined by higher degree polynomials. Consider, for example, the case where for 
each arc e the cost of flowing xe units on e is a convex cubic function with rational 
coefficients, say P~(xe). Given a rational q i> 0 the objective is to minimize ~ e ~  Pe(xe) 
subject to the constraints in (1.1). Let f*(q)  denote the optimal objective value. 
Unlike the quadratic case, x*, the optimal solution, is not necessarily rational. It is 
algebraic, i.e., for each arc e, x* is a root of some minimal one-dimensional 
polynomial with integer coefficients; its characteristic polynomial. The degree and 
the height of  this characteristic polynomial are not even known to be of polynomial 
size. 

To demonstrate the latter point consider the following special case of a cubic 
flow problem on a tree graph. 

n 3 

f*(q)  = minimum y~ x~ 
i 3ai 

subject to x l+"  • . + x ,  = q, (4.1) 

x ~ O ,  l<~i<~n, 
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where ai, i = 1 , . . . ,  n, is a positive integer. The objective in (4.1) is strictly convex 
over its domain. Using Kuhn-Tucker optimality conditions we obtain the unique 

optimal solution given by 

,/7/q 
x* - ~ j = l  "~J i =  1, n. (4.2) 

x*, i = 1 , . . . ,  n, is an algebraic number. However, the best known bound on the 
degree and the height of the characteristic polynomial of x* is exponential in n. 
(See [3] and the references cited there. The difficulty lies in determining the algebraic 
degree and height of the expression ~=1 x/~.) 

In the example given by (4.1), f*(q) is a convex cubic function of q with algebraic 
coefficients. However, in general, unlike the quadratic case, f*(q) is not even 
piecewise polynomial. This is demonstrated by the following: 

{3 x 1 -~- 2X2} f * ( q ) = m i n i m u m  1 3 1 2 

subject to x~+x2=q, (4.3) 

Xl,X2>~O. 

Remark 4.1. The above examples demonstrate some of the numerical difficulties in 
computing a real solution to the flow problem with a convex, separable cubic cost 
function. Nevertheless, note that the discrete version of this cubic model is poly- 
nomially solvable by the algorithm in [15]. 

Dorit Hochbaum, [7, 8], has recently proved that there is no strongly polynomial 
algorithm to solve the discrete cubic case while using only the operations {+, - , / ,  *}. 
The reduction in Remark 2.1 is stronger. It shows that even the quadratic case is 
not solvable in strongly polynomial time. In fact, using the recent results in [13] 
one can argue that even if the [. J operation is permissible, the discrete cubic model 
can not be solved in strongly polynomial time under a reasonable computation tree 
model. 
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