
Mathematical Programming 59 (1993) 117-132 117
North-Holland

A strongly polynomial algorithm for
minimum convex separable quadratic
cost flow problems on two-terminal
series-parallel networks

A r i e T a m i r

New York University, New York, USA, and Tel Aviv University, Tel Aviv, Israel

Received 25 September 1989
Revised manuscript received 27 June 1991

We present strongly polynomial algorithms to find rational and integer flow vectors that minimize a
convex separable quadratic cost function on two-terminal series-parallel graphs.

Key words: Quadratic cost flow problems, strongly polynomial algorithms, series-parallel graphs.

I. Introduction

This paper was motivated by the following model of location of undesirable or

obnoxious facilities. Given a general network the objective is to select p points on
the network so that the sum of the distances between all pairs of points is maximized.
It was shown in [6, 17] that this problem and some of its variants are NP-hard.

However, when the network is a tree, we formulated the model as a minimum
separable convex quadratic cost flow problem with integer flow variables [17]. As
such the model was solvable in polynomial time by the algorithm presented in [15].
Nevertheless, the latter algorithm was not satisfactory for our purposes. Our goal
was to obtain a combinatorial strongly polynomial algorithm for the above location
model. The algorithm in [15], as well as the one in [14] which solves the real
relaxation of the above cost flow problem, are both polynomial but not strongly
polynomial.

In this paper we deal with series-parallel networks and present strongly poly-
nomial procedures for solving the integer and the rational convex quadratic separable
cost flow problems with one source and one sink. The integer flow problem induced
by the above obnoxious location model is defined on the following special series-
parallel network: Add a node to the node set of the underlying tree and connect it
to all the tips (leaves) of the tree [17].

Correspondence to: Prof. Arie Tamir, Department of Statistics, Tel Aviv University, Ramat Aviv, 69978
Tel Aviv, Israel.

118 A. Tamir / Separable quadratic cost flow problems

A directed (multi) graph G = (V , E) is given by its node set V = { 1 , . . . , n}, its

arc set E and two mappings h, t :E ~ V which assign to each arc e c E the head

h(e) and tail t(e) of e, respectively, h(e) is the successor of t(e) and t(e) is called

the predecessor of h(e). Two arcs e and e' in E are called parallel if h(e) = h(e')
and t (e)= t(e'). Let m =]El.

Each arc e c E is associated with a nonnegative flow capacity bound ue. Also, let

xe, e e E, indicate the flow on e. Given a positive real q suppose that q units of flow
are to be transferred from a given source node, say node 1, to a given sink, say

node n. Let D be an m x m symmetric positive semi-definite matrix, and let e be

an m-component vector. The minimum convex quadratic cost flow problem on G

is to compute f (q) ,

f (q) = minimum x 'Dx + c'x

q, i = 1,

subject to (Ax) i= -q, i= n, (1.1)

O, i ¢ l , n ,

O<~xe~ue, e e E ,

where x = (xe), e • E, is the m-component flow vector and A is the node arc incidence

matrix of G. By the parametric version of the model we refer to the problem of
computing and representing the function f (q) for all q/> 0 such that (1.1) is feasible.

The discrete (integer) minimum quadratic cost flow problem is the problem obtained

from (1.1) when we add the requirement that all flow variables xe, e • E, must be

integers.
Throughout the paper we assume that all numerical input is rational. Also, when

we refer to (1.1) for a given q~>0, we assume that it is feasible. Under these

assumptions (1.1) has an optimal solution which is rational, and it can be found in
polynomial time by an ellipsoid method, [11]. Thus, (1.1) is referred to as the
rational problem. The repertoire of numerical operations used by the algorithm in

[11] consists only of comparisons and the four elementary operations, {+, - , / , *}.
The total number of operations performed by the procedure in [11] depends

polynomially on the capacity bounds {b/e} , e • E, the vector c and the matrix D.

More recently it was demonstrated in [2, 4] that (1.1) can be solved in polynomial
time where the total number of operations depends only on the matrix D. The results
in [2, 4] generalize the seminal work of Tardos [18], who was the first to prove that

the linear case, D = 0, is solvable in strongly polynomial time.
For the linear case the discrete model coincides with the rational one when q and

{Ue}, e • E, are all integer. This is not necessarily the case when D is nonzero. In

fact, the discrete version of (1.1) is NP-hard. The problem of finding a 0-1 solution
to a single equation can be reduced to (1.1) by squaring the equation.

In this study we focus on the case when D is diagonal, i.e., the objective in (1.1)
is separable and convex. Motivated by the location model mentioned above, we

restrict ourselves to series-parallel graphs.

A. Tamir / Separable quadratic cost flow problems 119

The separable convex case for general graphs was considered by Minoux in

[14, 15]. Using a sealing technique he showed in [15] that the discrete model can

be solved in polynomial time, where the complexity bound depends only on the

size of G, and the capacity bounds {ue}, e ~ E. A solution to the rational model is
derived in [14]. The polynomial complexity bound there depends also on the matrix

D.
To the best of our knowledge no strongly polynomial algorithm is known to solve

either problem (1.1) or its discrete version even when D is diagonal. In our context

a strongly polynomial time implies a complexity bound which depends (poly-
nomially) only on the size of G, i.e., on n and m. The reader is referred to [8] for

related open questions.
In the next section we use the proximity results in [5] to show how to obtain a

discrete optimal solution from a rational optimal solution for a general graph.
Section 3 is devoted to series-parallel graphs. We show that the real parametric
function f (q) , q >1 O, is convex piecewise quadratic with at most 2m breakpoints.
We present an O(mn + m log m) algorithm to generate and represent this parametric
function. Given the representation and a specific rational value of q, a rational
optimal solution will be computed in O(log m) time. In Section 4 we briefly discuss
several extensions and state some open problems.

2. Finding a discrete solution from a rational solution

In this section we use the proximity results in Granot and Skorin-Kapov [5].
Specifically we show that if we add to our repertoire of permissible operations the

"floor" operation, [. J, then an optimal solution to the discrete model of (1.1) with
a diagonal D can be obtained from any optimal rational solution to (1.1) in strongly
polynomial time. ([aJ is the largest integer smaller than or equal to a. [a] is the
smallest integer larger than or equal to a.)

First we motivate our approach. As mentioned above, a solution to the discrete

version of (1.1) can be obtained in time which is polynomial in the flow capacity
bounds, (e.g., [15]). Therefore, to solve the discrete problem in strongly polynomial
time it will suffice to exhibit a strongly polynomial transformation of the discrete
version of (1.1) into an instance of the same model where the capacity bounds
are polynomial functions of m, the number of arcs of G. We show now that
such a transformation exists whenever a solution to the rational model (1.1) is
available.

Let x* be an optimal solution to the rational model (1.1). It follows from [5],
that there exists an optimal solution to the discrete model, say z*, such that

] z e - x e l ~ m fo ra l l e~E. (2.1)

By computing [x*J for all e ~ E, we can obtain an integer flow vector y* = (y*),

120 A. Tamir / Separable quadratic cost flow problems

e e E, satisfying

Iz*-y*l<~m fora l l e6E ,

O ~ y f ~ u e fora l l e e E ,

and

f
q, i = 1 ,

(Ay*)i= -q, i= n,

O, i ¢ l, n.
(2.2)

y* is any integer feasible solution to (1.1) with the additional constraints [x*J ~< y* ~<

Ix*I, e c E. y* can be computed in strongly polynomial time by using any of the

strongly polynomial algorithms for the classical maximum flow - minimum cut
problem.

Next we find an integer nonnegative flow f* = (f*) , e ~ E, such that

y*~-m2<~f*~<~z~<~y*~ +m,

f F**, i = 1,

(Af*) , : ~ -F** , i = n,

[0, i ~ 1, n,

(2.3)

with q - m 2 <~ F** <~ q.

Consider the integer flow y* in (2.2). This flow constitutes a circulation in the

graph G 1 obtained from G by adding a directed arc from node n to node 1 with a

capacity bound of value q. We subtract a unit flow along at most m 2 simple cycles

in G 1 to obtain a nonnegative integer circulation (f*, F**), such that

and

O~<f*<~ye*-m for all e i n E w i t h y * ~ m

f * = O if y* < m.

(Decreasing a flow along an arc by one unit is done by finding a cycle containing

that arc and consisting of arcs with positive flow, and decreasing the flow on the

cycle by one unit.)

Let F** be the value of the flow along the added arc from n to 1. Therefore f *
satisfies (2.3) and

y*e-m2<~f*<~y*-m<~z*<-y*+m for all e with y* >~ m,

0=fe*~< *_< * ~ Z e ~ y e + r n foral l e w i t h y * < m ,

q-m2<~F**<~q.

(2.4)

Finally, define 1) e - - Z e - - fe for all e in E. Let v = (re), e ~ E. Therefore, by using

A. Tamir / Separable quadratic cost flow problems 121

(2.4), the integer version of (1.1) with a diagonal D is reduced to

minimize ((v + f*) 'D(v + f *) + e'(v + f *))

I q - F**, if i = 1,

subject to (Av)i =] - (q - F**), if i = n,

[0 , otherwise, (2.5)

O<~ve=(Z*-f*)<~m2+m, if y*>~m,

O<~ve=(Z*-f*)=z*<~2m, if y * < m,

ve <~ Ue--f* and ve integer for all e c E.

Since the arc capacities in (2.5) are bounded by a polynomial in m, and q - F** <~ m 2,
an optimal integer solution can be obtained in strongly polynomial time by the

algorithm in [15] mentioned above. (2.5) can also be converted to the linear case
and solved by the algorithm in [18] in strongly polynomial time.

We refer the reader to [9] where the use of proximity results and polynomial
algorithms is discussed in the context of general convex separable nonlinear objective

functions.

Remark 2.1. We have shown above that the integer solution can be derived from a

fractional solution in strongly polynomial time using the operations {+, - , / , *, [- J }.
In a certain respect the inclusion of [. J is essential to obtain a strongly polynomial
algorithm. Given two positive integers a and b, the results in [16] imply that using
the algebraic decision tree model with {+, - , / , *}, there is no strongly polynomial
algorithm to compute [b/aJ. Therefore the necessity of the [. J operation is implied

by the following observation.
Let (x~*, x*) be an optimal integer solution to the problem:

minimize 1 2 1 {~X 1 +~(a - 1)x~}

subject to Xl+ x2 = b,

Xl and x2 are nonnegative integer.

Solving the rational model and using the above proximity result on the rational and

the discrete solutions we note that x * - 1 <~ [b/aJ <~ x*. Therefore, [b/aJ = x* if
x *< - b/a, and [b/aJ = x * - I otherwise. Thus, if we could obtain x* in strongly
polynomial time using only the operations in {+, - , / , *}, we would compute [b/a]
in strongly polynomial time using the same set of operations.

3. Solving the parametric quadratic cost flow problem on series-parallel graphs

In this section we present an O(mn + m log m) algorithm to generate the parametric
separable convex quadratic cost flow function for a series-parallel graph with m arcs.

We need the following definitions:
A (two terminal) series-parallel graph is a multi-graph with exactly one source and

122 A. Tamir / Separable quadratic cost flow problems

one sink, which is defined recursively as follows:
(i) A single arc e together with t(e) and h(e) is a series-parallel graph, t(e) is

the source terminal and h(e) is the sink terminal.

(ii) If G1 and G2 are series-parallel graphs, so is the multi-graph obtained by
either one of the following operations:

(a) Parallel composition: identify the source of G1 with the source of G2,
and the sink of G1 with the sink of G2. The common source is the source of the
composition and the common sink is its sink.

(b) Series composition: identify the sink of G1 with the source of G2. The
source of G~ is the source of the composition. The sink of the composition is the

sink of G 2.

Let G = (V, E) be a series-parallel multi-graph, with V = (1 , . . . , n}. Suppose that
nodes 1 and n denote the source and sink respectively. The parametric quadratic

cost flow problem on G is to determine the function f (q) in (1.1) for all q I> 0.
It follows from quadratic programming tha t f (q) is convex and piecewise quadratic

over its domain. For general graphs the number of pieces is known to be exponential
in the number of arcs even when the objective in (1.1) is linear, [20].

Focusing on the series-parallel case we will show that for a separable quadratic

objective, f (q) has at most 2m quadratic pieces. Moreover, 2m is a sharp bound.
The linear case, D = 0 in (1.1), for series-parallel graphs was discussed by Bein,

Brucker and Tamir [1]. It is shown there that f (q) has at most m pieces, breakpoints.
Furthermore, the function f (q) can be generated efficiently by a greedy algorithm.

It is quite common to represent the recursive construction process of a series-
parallel graph G by a binary tree called a decomposition tree, [19]. The arcs of G

are represented by the leaves of the decomposition tree. Nodes of this tree, which
are not leaves, are labelled by S, indicating a series composition, or P indicating a

parallel composition.
Our algorithm generates the envelope f (q) , q >i O, by following the decomposition

tree. We start with the leaves of the tree. Each leaf represents a series-parallel graph
consisting of a single arc, say e. Therefore, its parametric cost function is a quadratic

function over its domain, 0<~ q ~ ue. In the general step we consider two series-
parallel subgraphs, Ga and G2, with their respective parametric cost functions f~(ql)

and f2(q2).
If G is obtained by a series composition of G~ and G2, then f (q) , the parametric

cost function of G, is given by

f (q) =f~(q) +fz(q).
We say t h a t f is a series composition off1 and f2. If G is a parallel composition of

G1 and (32 then f (q) is defined by:

f (q) = minimum {f~(ql) +fz(q2)}

subject to q l+ q2 = q,

ql, q2 ~>0.

In this case we say that f is the parallel composition of fl and f2-

A. Tamir / Separable quadratic cost flow problems 123

TO generate the parametric function for a series-parallel graph we will follow its

decomposition tree and recursively perform the necessary series and parallel compo-

sitions of the respective cost functions. The total number of compositions is m - 1.
Before we describe the core of the algorithm, the parallel composition, we introduce
the following terminology which is quite common for convex functions.

Let g be a real continuous convex function from some closed interval [0, a] in
R 1 to (-co, o0). We extend g to R~+, by defining g(x) =oo for x > a. g is called an
extended convex function on R 1.

Let g be an extended convex function on ~+. g is piecewise quadratic, if there
exist 0 = tl < t2 <" • • < tk < tk+l = 00, such that for each j, 1 ~<j ~< k, the reduction of
g to [tj; tj+l) is a quadratic function, say gi, defined on ~1, and for l<~ j~ < k, gJ and

gJ+~ are not identical. The points { t l , . . . , tk} are called the breakpoints of g, and
the quadratics {g~ , . . . , gk} are its components, g is differentiable everywhere but
possibly at its breakpoints. If g(tk +) = CO, then g (x) = oo for all x > tk, and tk is the
only discontinuity point of g. If g(x) < oo for all x ~> 0, g is said to be proper convex.
The derivative function, g', is piecewise linear and nondecreasing with possible

discontinuities at the breakpoints, tj, 1 ~<j<~ k, is a discontinuity point of g' if
g ' (t j -) < g'(tj +). For convenience we set g ' (0 -) = g'(0 +). Also if g(tk +) = oo, we
define g'(tk +)=oo.

An extended piecewise quadratic function g will be represented by the sorted
sequence of its breakpoints { t l< t2<""" < tk}, and the respective quadratic com-
ponents {g~ , . . . , gk}. Next we define a complexity measure for g. First define a set

BP(g) by

BP(g) = {tj-] tj, 1 ~<j<~ k, is a breakpoint of g}

w {tj+ I tj, 1 ~<j ~< k, is a breakpoint of g

and g ' (t j -) < g'(tj+) < oo}.

The complexity of g, CMPLX(g) , is defined by CMPLX(g)=IBP(g)[, i.e.,
CMPLX(g) is the sum of the number of finite breakpoints of g and the number of
discontinuity points of g'.

It follows from convexity theory that both series and parallel compositions
preserve convexity. If g, and g2 are both piecewise quadratic then so is their series
composition, g, and

CMPLX(g) <~ CMPLX(g~) + CMPLX(g2).

Furthermore, g can easily be generated from g~ and g2 in O (C M P L X (g 0 +
CMPLX(g2)) time by merging the two sequences of breakpoints.

We will next focus on the parallel composition and show that it preserves the
above properties as well.

To facilitate the discussion, let ga and g2 be a pair of convex piecewise quadratic
functions. Let O=ta.x~ta,z~' ' '~t l ,k(1)~ta,k(1)+a=oo and 0= t2 ,~< t2 .2< ' ' "<
t2,k(2) < t2,k(2)+l = o0 indicate their respective sequences of breakpoints. Consider g,

124 A. Tamir / Separable quadratic cost flow problems

the parallel composition of gl and g2:

g(q) =minimum {ga(ql)+gz(q2)}

subject to q l+ q2 = q,

ql, q2 ~0 . (3.1)

g(q) is the solution value for the classical continuous effort allocation problem with
two variables [10]. The solution to this problem can be obtained by modifying the
incremental algorithm of Luss and Gupta [12], which is originally designed for the
case where both g~ and g2 are dilterentiable strictly convex functions. Basically, the

incremental algorithm to generate g(q) for all q/>0, amounts to a (continuous)
sorting of the two derivative functions, g'~ and g~. The precise meaning of this
approach will be clear after we describe the algorithm. But an intuitive explanation
is provided when we look at the discrete version of (3.l) where qa and q2 are
restricted to integral values. In this case, the solution to the problem is obtained by
merging the two discrete derivatives, i.e., the two monotone sequences: {g l (j+ 1) -

ga(J)}, J = 0, 1, 2 , . . . , and {gz(J + 1) - gz(j)}, j = 0, 1, 2 , For any integral q 1> 0,
g(q) is obtained by selecting the qth smallest element of the merged sequence, [10].

The main idea in the solution of (3.1) is quite simple. For each value of the
argument q we look for values of q~ and q2 that sum up to q, and such that the

deravitive functions g'l and g~, evaluated at q~ and q2 respectively, are equal.
However, the derivative functions can possess discontinuities and therefore exact
equality may not be feasible. Hence, we have to consider and carefully examine the
breakpoints of g~ and g~, while parametrically varying q. This is the essence of the

detailed technical discussion of parallel composition.
We now describe the algorithm to compute the function g(q), q >! O, defined as

the parallel composition of g~ and g2.

Algorithm 1.
Step O. Initially start with q l = q2= 0. ql~ [t l j ; q.2) and q2c It2, G t2,2).
Step 1. Let q~ ~ [tl,j(l~; tl,j(~)+l), for some 1 <~j(1) <~ k(1), and q2 c [t2,j(2); tz,j(2)+l),

for some 1 ~<j(2)<~ k(2). (g(q) has already been defined and represented for all
O<~q<~ql+q2).

Consider g~(ql+) and g~(q2+), and the respective intervals (q~; tl.jo)+0 and
(q2 t2,j(2)+l), g~ and g~ are linear when restricted to the above intervals.

If g~(ql+) < g~(q2+) go to Step 2. If g~(ql+) > g,2(q2+) go to Step 3. If g~(q~+) =
g'z(q2+) proceed to Step 4.

Step 2. (g'l(ql+)< g~(q2+)). Define ~ to be the largest real g/~< tl,jo~+~ such that
g~(gl-)<~g~(q2+). For 0 f q~< ~ _ q l , define

g(q~+ q2+ q) = gl(q'+ q) +g2(q2) .

If q = oo stop. Otherwise set ql ~ c~ and go to Step 1.

A. Tamir / Separable quadratic cost flow problems 125

Step 3. (g~(ql+)>g~(q2+)) . Define c7 to be the largest real q<~t2,j(2)+l such
that g;(cT-) ~< g~(ql+). For 0<~ q ~< q - q2 define

g(q~+ q2+ q) = g~(ql)+ g2(q2+ q).

If 0 = oo stop. Otherwise set q2~ ~ and go to Step 1.
Step 4. (g~(q~+) = g~(q2+)).

If g~ is linear over (ql; t~.j(l~+a) go to Step 4.1. If g2 is linear over (q2, t2,j(2)+l)
go to Step 4.2. Otherwise go to Step 4.3.

Step 4.1. Let ~ = t13(~+1. For 0<~ q<~ g/- ql define

g(q, + q2 + q) = g~(q l + q) + g2(q2).

If ~ = co stop. Otherwise set q ~ 0 and go to Step 1.

Step 4.2. Let g/= t2,j(2)+l. For 0<~ q<~ gl-q 2 define

g (q l + q2+ q) = gl(ql) + g2(q2 + q).

If q = ec stop. Otherwise set q2 ~- 0 and go to Step 1.

Step 4.3. (gl and g2 are proper quadratic over their respective intervals). Define
qx = ql(q) and q2 = q2(q) by the unique solution to the system

g~(q l+ ql) = g,2(q2+ q2),

ql + q2 = q _ql_q2.

(qa(q) and q2(q) are both increasing functions of q.) Let ~ be the largest real such
that

q~ + ql(q) ~< tl,j(1)~-i,

q2+ q2(q) ~ t2,j(z)+a.

For 0 ~< q ~< ~ <~ ql _ q2 define

g(q~+ q2+ q) = g l (q l+ q,(q)) + gz(q2 + q2(q)).

If ~ = oe stop. Otherwise, set ql ~ ql + q~(q), q2~_ q2+ qz(q), and go to Step 1.

The validity of the above algorithm to compute g(q), q >i O, follows from the
validity of the incremental algorithm in [10].

For every q/> 0, let q*(q) and q*(q) denote the solution to the problem (3.1) as
defined by Algorithm 1. It follows that q*(q) and q*(q) are continuous, piecewise
linear and nondecreasing functions of q. Therefore, g(q) is a continuous, extended
convex piecewise quadratic function on ~+. The breakpoints of g(q) are sequentially
generated by the above algorithm. Starting with q =0, each iteration computes
the next breakpoint of g. It is given by q = q l + q 2 , where ql and q2 are defined in

Step 1. The computational effort to compute g(q), q>~O, is certainly linear in
CMPLX(gO + CMPLX(g2) + CMPLX(g).

126 A. Tamir / Separable quadratic cost flow problems

Remark 3.1. The above definition of a breakpoint of g requires that the two
quadratics defining g on both sides of the breakpoint are not identical. Due to some
degeneracy this property might not hold for some pairs (ql, q2), generated in
Step 1. However, we will ignore this aspect since the proper breakpoints can easily
be detected when Algorithm 1 terminates.

The validity of Algorithm 1 implies the following properties that we state without
a proof.

Proposition 3.2. Let q be a breakpoint of the parallel composition function g. Then
there exist q l and q2, defined in Step 1 at some iteration of Algorithm 1, such that
q = ql+q2 and,

(1) Either q l

(2) g'(q+)

g ' (q -)

g ' (q -)

g ' (q -)

(3) For every

is a breakpoint of gl or q2 is a breakpoint of g2.

= min{g~(qX+), g~(q2+)},

=g~(q~-) if q l = q and q2=O,

=g~(q2_) if q~=O and q2=q,

=max{g~(q~_), g~(q2_)} if ql, q2>0"

i = 1, 2 and q* < qg, g l (q*-) <~ gl(q*+) <~ g '(q-) . []

Theorem 3.3. Let g be the parallel composition of g~ and g2 defined by Algorithm 1. Then

CMPLX(g) <~ CMPLX(g~) + CMPLX(g2). (3.2)

Proof. By definition, CMPLX(g) is the sum of the breakpoints of g and the number
of discontinuity points of g'. To prove (3.2) we use Algorithm 1 to identify the
discontinuity points and define a one to one mapping from BP(g) to BP(gl) u BP(g2).

Using the above notation, for i = 1, 2

BP(gi) = {ti, j - [t i , j , 1 <~j<~ k(i), is a breakpoint of g~}

w {t,.j+lti J, 1 <~j<~ k(i), is a breakpoint of g~

and g',(ti.j-) < g'~(ti, j+) < ~}.

Starting with t = 0, Algorithm 1 defines all the breakpoints of g sequentially in
Step 1 above. Let 0 = tl < t2 <" • • < tr < tr+l = ~ be these breakpoints. (See Remark

3.1 above.)
Let tj = qa + q2 be such a breakpoint and suppose, inductively, that t j - has already

been mapped into some element in BP(gl)w BP(g2). The basic property of this
mapping is that it maintains the same derivative value. For example if t j - is mapped

into tl. p - then g ' (t j -)= g ~ (t l , p -).

From Step 1 we enter into one of the other following steps with a pair (ql, q2).
Suppose first that we enter Step 2. Let t j=q~+q 2. g,((ql+q2)+)=g~(qa+). If

g , ((q l+ q 2) _) = g~(ql+), then tj is not a discontinuity of g', and therefore tj+ is
not in BP(g). Otherwise, g'((ql + q2)_) < g~(q~+). If ql = 0, then q l = t1,1 = 0 and

A. Tamir / Separable quadratic cost flow problems 127

t1,1- in BP(gl) has not been yet mapped onto. Add tj+ to BP(g) and map it onto

t1,1-. If q~ > 0 we have from Proposition 3.2,

g~(ql_) ~ g, ((q l+ q2)_) < g,(q~+),

and ql is a discontinuity point of g~. Specifically, ql = tlj(l~ from some j(1) in Step
1. Moreover, since g] (q~+)> g,((ql+ q2)_), the element tl,j(l~+ in BP(gl) has not
been mapped onto by an element in BP(g). Thus, we map t~+ onto tl,j(l~+ in BP(g~).
Before we return to Step 1 we define tj+l and map tj+l-.

Consider the updating of q~ by q~ ~- 0 where q is defined in Step 2. If q = tl,j(1)+1,

augment tj+~- to BP(g) and map it onto t~j(l~+l-. Otherwise, (/< tl,j(l~+~, and is
defined by g~(~-) = g'2(q2+). If q2 = 0 then q2 = t2,~ = 0 and t2,~- in BP(gl) has not

yet been mapped onto. We add tj+l- to BP(g) and map it onto t2,~-. If q2>0, we
claim that q2 is a discontinuity point of g2. Indeed, using Proposition 3.2 we have

g,2(q2_) <~ g,((qa+ q2)_) <~ g,((q~+ q 2) +) = g~(qa+) < g~(q2+).

Therefore q2 = t2,j(2) for some j(2) in Step 1, and t2,j(2~+ is in BP(g2). We augment
tj+a- to BP(g) and map it onto t2,j(2~+. (We note in passing that in this case tj+~ is

not a discontinuity point of g' since c~ is not a breakpoint of gl and therefore

g'(tj+l+) = g~(~-) = g '(t j+l-) .)
The case where we enter Step 3 from Step 1 is totally symmetric to the case where

we enter Step 2. Thus we skip the details.
Suppose that Step 1 directs to Step 4.1, and let tj=q~+q 2. As above g'((q~+

qZ)+)=g~(q l+) . If g'((ql-t-q2)-)=g'(ql+) then, tj+ is not in BP(g). If g'((q~+
q2)_) < g](q~+), then add tj+ to BP(g) and map it as in Step 2 above.

The next breakpoint of g, t~+l, is defined in Step 4.1 by setting qa ~ / 1 , j (1) + l . Thus,
add tj+~- to BP(g) and map it onto t~,~(1~+1- in BP(g~).

The case where we enter Step 4.2 is totally symmetric and therefore the details
are omitted.

Finally, suppose we enter Step 4.3. Let t~=q~+q ~. Again if g,((ql+q~)_)=
g~(ql+) (= g~(q2+)), tj+ is not in BP(g). Let g,((ql+q~)_) < g~(ql+)(= g,(q~+)).
From Property 2 of Proposition 3.2, assume without loss of generality that

g,(q~_) = g,((q~+ q2)_) < g~(ql+),

and ql is a discontinuity point of g~. qa = t~,j(1) for some j(1) in Step 1. Augment

tj+ to BP(g) and assign it the element t~,~(~)+ in BP(g~). The new breakpoint of
g, tj+~, is defined in Step 4.3 by t~+~ = c], where q l + q l (q) = t~,~(a~+a or q2+q2(g/) =
t~,~(~+~. In the former case map t~+x- in BP(g) onto t1,~(1~+~- in BP(gl) while if
the latter holds t~+~- is mapped onto t~,~(:~+~ in BP(g~).

To conclude the proof of (3.2) we note that we have constructed a one to one
map from BP(g) to BP(gl)w BP(g2). []

We are now ready to describe the algorithm to compute f(q), the parametric
separable cost flow function in (1.1), for a series-parallel graph G with m arcs and
n nodes. Let T denote the decomposition tree representing G. Each leaf of T

128 A. Tamir / Separable quadratic cost flow problems

represents some arc of G. Thus T has m leaves and m - 1 other nodes which describe
the sequence of series and parallel compositions.

Starting with an arc e of G, its respective parametric function is quadratic in the
interval [0; Ue], where ue, defined in (1.1), is the capacity bound on the flow on e.
Viewed as an extended convex quadratic, this function has a single interior break-
point at Ue. The algorithm proceeds recursively and performs the necessary series
and parallel compositions of the respective parametric cost function. Specifically,
the parametric cost function of a series composition is obtained by a simple addition
of the cost functions, corresponding to the two composites. The parametric cost

function of a parallel composition is computed by Algorithm 1.
The total number of series and parallel compositions performed by the algorithm

is m - 1 . Let {Vl , . . . , v2m-1} be the node set of the decomposition tree T, with vl
denoting its root node. For each node vi let Li denote the set of leaf nodes in T
having v~ on the unique simple path on T connecting them to the root v~. Let f (q) ,
q ~> 0, denote the parametric cost function associated with vi and generated by the
above algorithm. In particular, if v~ is a l e a f f is quadratic in the interval [0; u¢],
f~(Ue +) = ~ , and C M P L X (f) = 2. Applying Theorem 3.3 we observe that for any
node v~ of T,

C M P L X (f) ~ Y, CMPLX(£) .
vj E Li

Therefore, CMPLX(f)<~2ILi]. f(q), q>~O, the parametric cost function of G
coincides with fl(q), q > 0, the function associated with vl, the root of T. Thus,
C M P L X (f) ~<2m. Since the complexity of Algorithm 1 to compute f is O([L~I) , it
follows that the total effort to compute f is 0(/7"/2).

The O(m 2) complexity bound can be improved to O(mn + m log m) if we apply
some preprocessing. Consider the original n node rn arc series-parallel multi-graph
G = (V, E). If there are no parallel arcs m ~< 2 n - 3 . However, in a multi-graph m
can be significantly larger than n. In such cases we apply the following preprocessing
before we use the above algorithm. In the preprocessing each subset of parallel arcs
connecting the same pair of nodes will be replaced by a single arc.

Let i and j be a pair of nodes in V, and let E(i,j) be the subset of all parallel

arcs having i a n d j as their head and tail respectively. Let m(i,j) =]E(i,j)]. Consider
G(i,j), the subgraph of G induced by E(i,j). The parametric function f(q), q >~ O,
corresponding to G(i,j) has at most 2m(i,j) breakpoints. To obtain the representa-
tion of f (q) for G(i,j) we apply Algorithm 1 recursively, using a standard divide
and conquer approach: Divide E(i,j) into two subsets of equal cardinality, recur-
sively find the f function of each subset, and then use Algorithm 1 to obtain f (q)
for G(i,j). Since Algorithm 1 takes O(m(i,j)) time, and the recursion has
O(log m(i,j)) levels, the total time to obtain the representation of f(q), q > 0, for
G(i,j) is O(m(i,j)log m(i,j)).

We apply the above preprocessing phase to all pairs of adjacent nodes in G. The
total preprocessing time is therefore O(m log m).

A. Tamir / Separable quadratic cost flow problems 129

After the preprocessing we consider G', the simple graph induced by G, i.e., for
each pair of adjacent nodes i and j we eliminate all but one arc from E(i , j) . That

arc is now associated with the function f of G(i, j) computed during the preprocess-
ing. We now apply our above algorithm, using the decomposition tree of G'. Since
G' has only O(n) arcs, and the total number of breakpoints associated with all the
graphs G(i , j) is O(m), the total time for processing G' to obtain its parametric
function f is O(mn). The total time including the preprocessing is therefore O(mn +

m log m).
The above is summarized in the following:

Corollary 3.4. Let G be a two-terminal series-parallel graph with n nodes and m arcs.

Let f (q), q >>- O, be the parametric separable convex quadratic cost flow function defined
on G by (1.1) with a diagonal matrix D. Then f (q) is a convex piecewise quadratic

function with at most 2m breakpoints. The total effort to compute all the breakpoints
o f f and its quadratic components is O(mn + m log m). []

Example 3.5. It is shown in [1] that the parametric function f (q) , q/> 0, has at most
m + 1 breakpoints in the linear case, i.e., D = 0. The following example demonstrates

that the upper bound 2m is sharp in the quadratic case.
Consider a multi-graph consisting of m parallel arcs { e (1) , . . . , e(m)}. Let the

capacity bounds be defined by

1, l<~i<~m-1 ,
Ue(i) : m , i = m.

If xe(i), 1 <~ i<~ m, is the flow on e(i), then Q(xe(i)), the corresponding cost is given

by

l iXe(i) l <~ i <~ m --1,
Q (X e (i)) ~- 1 2

t~Xe(m), i = m.

Using the above algorithm we verify that f (q) , q >~ O, is ditterentiable and has a
breakpoint at each q in {0, 1 , . . . , 2 m - 1}. Its derivative is defined by

q-½i i f i<~q<~i+l , i i s e v e n a n d i < ~ 2 m - 2 ,

f ' (q) = [~ (i + if i<~q<~i+ l, i is odd and i<~2m-3 .

4. Summary and concluding remarks

We have given an O(mn + m log m) algorithm to construct and represent the para-
metric cost flow function f (q) , q >i O, for a series-parallel graph with m arcs. Given
a value for q, say q*, it takes O(log m) time to obtain f (q*) from the above
representation. Using a binary search we locate the two consecutive breakpoints of
f (q) , say tj and tj+l, which bound q* from both sides. The restriction of f (q) to

130 A. Tamir / Separable quadratic cost flow problems

the interval [tj; tj+~] is a quadratic function, f(q*) is the value of that quadratic at
q=q*.

To solve the discrete version of (1.1) for a given value of q, say q*, we use the
approach in Section 2. We first compute the fractional solution, and then reduce

the discrete problem to the formulation (2.5). In the latter formulation all arc
capacities are bounded by m + m 2. As mentioned in Sections 1 and 2, such a problem
can be solved in strongly polynomial time even for a general graph by the algorithms
in [15, 18]. For series-parallel graphs we can use an alternative algorithm. Using a
standard transformation, the convex separable program in (2.5) can be converted
into a linear integer flow problem on a series-parallel graph with O(m 3) arcs. The

latter problem can then be solved in strongly polynomial time by the greedy algorithm
in [1].

Next we raise a question with respect to the discrete version of the parametric

quadratic cost flow problem. For each nonnegative integer q, let f (q) denote the
solution to the discrete version of (1.1) for the given series-parallel graph. We have

demonstrated above how to compute f (q) , for a given integer q, in strongly poly-
nomial time.We have also represented the parametric function for the fractional

case, f(q), q >-O, as a piecewise quadratic with at most 2m quadratic components.
Is there a compact and polynomial representation of f (q) , q ~ 0 and integer, the
parametric function for the discrete case?

One might hope that there is some real function h(q), q ~> 0, such that h(q) = f (q)
for every nonnegative integer and h has some compact representation. For example,
is h representable by a polynomial number of polynomial components of a fixed
bounded degree? We conjecture that this representation is infeasible in general. We
were only able to demonstrate that there is no efficient representation by quadratic
components.

Finally we comment on the extension of (1.1) for separable convex cost functions
defined by higher degree polynomials. Consider, for example, the case where for
each arc e the cost of flowing xe units on e is a convex cubic function with rational
coefficients, say P~(xe). Given a rational q i> 0 the objective is to minimize ~ e ~ Pe(xe)
subject to the constraints in (1.1). Let f*(q) denote the optimal objective value.
Unlike the quadratic case, x*, the optimal solution, is not necessarily rational. It is
algebraic, i.e., for each arc e, x* is a root of some minimal one-dimensional
polynomial with integer coefficients; its characteristic polynomial. The degree and
the height of this characteristic polynomial are not even known to be of polynomial
size.

To demonstrate the latter point consider the following special case of a cubic
flow problem on a tree graph.

n 3

f*(q) = minimum y~ x~
i 3ai

subject to x l+" • . + x , = q, (4.1)

x ~ O , l<~i<~n,

A. Tamir / Separable quadratic cost flow problems 131

where ai, i = 1 , . . . , n, is a positive integer. The objective in (4.1) is strictly convex
over its domain. Using Kuhn-Tucker optimality conditions we obtain the unique

optimal solution given by

,/7/q
x* - ~ j = l "~J i = 1, n. (4.2)

x*, i = 1 , . . . , n, is an algebraic number. However, the best known bound on the
degree and the height of the characteristic polynomial of x* is exponential in n.
(See [3] and the references cited there. The difficulty lies in determining the algebraic
degree and height of the expression ~=1 x/~.)

In the example given by (4.1), f*(q) is a convex cubic function of q with algebraic
coefficients. However, in general, unlike the quadratic case, f*(q) is not even
piecewise polynomial. This is demonstrated by the following:

{3 x 1 -~- 2X2} f * (q) = m i n i m u m 1 3 1 2

subject to x~+x2=q, (4.3)

Xl,X2>~O.

Remark 4.1. The above examples demonstrate some of the numerical difficulties in
computing a real solution to the flow problem with a convex, separable cubic cost
function. Nevertheless, note that the discrete version of this cubic model is poly-
nomially solvable by the algorithm in [15].

Dorit Hochbaum, [7, 8], has recently proved that there is no strongly polynomial
algorithm to solve the discrete cubic case while using only the operations {+, - , / , *}.
The reduction in Remark 2.1 is stronger. It shows that even the quadratic case is
not solvable in strongly polynomial time. In fact, using the recent results in [13]
one can argue that even if the [. J operation is permissible, the discrete cubic model
can not be solved in strongly polynomial time under a reasonable computation tree
model.

References

[1] W. Bein, P. Brucker and A. Tamir, "Minimum cost flow algorithms for series parallel networks,"
Discrete Applied Mathematics 10 (1985) 117-124.

[2] R. Chandrasekaran and S. Kabadi, "Strongly polynomial algorithm for a class of combinatorial
LCPs," Operations Research Letters 6 (1987) 91-92.

[3] R. Chandrasekaran and A. Tamir, "Algebraic optimization: the Fermat-Weber location problem,"
Mathematical Programming 46 (1990) 219-224.

[4] F. Granot and J. Skorin-Kapov, "Towards a strongly polynomial algorithm for strictly convex
quadratic programs: An extension of Tardos' algorithm," Mathematical Programming 46 (1990)
225-236.

[5] F. Granot and J. Skorin-Kapov, "Some proximity and sensitivity results in quadratic integer
programming," Mathematical Programming 47 (1990) 259-268.

132 A. Tamir / Separable quadratic cost flow problems

[6] P. Hansen and D. Moon, "Dispersing facilities on a network," RRR #52-88, RUTCOR, Rutgers
University (New Brunswick, NJ, 1988).

[7] D. Hochbaum, Private communication (May 1989).
[8] D. Hochbaum, "Optimal algorithms for the allocation problem and its extensions," Technical

Report, IEOR Department, University of California (Berkeley, CA, 1990).
[9] D. Hochbaum and J.G. Shanthikumar, "Convex separable optimization is not much harder than

linear optimization," to appear in: Journal of the A C M 1990.
[10] T. Ibaraki and N. Katoh, Resource Allocation Problems: Algorithmic Approaches (The MIT Press,

Cambridge, MA 1988).
[11] M.K. Kozlov, S.P. Tarasov and L.G. Khachian, "The polynomial solvability of convex quadratic

programming," Soviet Mathematics DokIady 20(5) (1979) 1108-1111. [English translation.]
[12] H. Luss and S. K. Gupta, "Allocation for effort resources among competitive activities," Operations

Research 23 (1975) 360-366.
[13] Y. Mansour, B. Schieber and P. Tiwari, "Lower bounds for computations with the floor function,"

SIAM Journal on Computing 20 (1991) 315-327.
[14] M. Minoux,"Apolynomialalgorithm for minimum quadratic cost flow problems," European Journal

of Operational Research 18 (1984) 377-387.
[15] M. Minoux, "Solving integer minimum cost flows with separable convex objective polynomially,"

Mathematical Programming Study 26 (1986) 237-239.
[16] L. Stockmeyer, "Arithmetic versus boolean operations in idealized register machines," Technical

Report RC 5954, IBM T.J. Watson Research Center (Yorktown Heights, NY, 1976).
[17] A. Tamir, "Obnoxious facility location on graphs," SIAM Journal on Discrete Mathematics 4 (1991)

550-567.
[18] E. Tardos, "A strongly polynomial minimum cost circulation algorithm," Combinatorica 5 (1985)

247-255.
[19] J. Valdes, R.E. Tarjan and E.L. Lawler, "The recognition of series-parallel diagraphs," SIAM

Journal on Computing 11 (1982) 298-313.
[20] N. Zadeh, "A bad network problem for the simplex method and other minimum cost flow

algorithms," Mathematical Programming 5 (1973) 255-266.

