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The strategy of Restricted Simplicial Decomposit ion is extended to convex programs with convex 
constraints. The resulting algorithm can also be viewed as an extension of the (scaled) Topkis-Veinott  
method of feasible directions in which the master problem involves optimization over a simplex rather 
than the usual  line search. Global convergence of the method is proven and conditions are given under  
which the master  problem will be solved a finite number  of  times. Computat ional  testing with dense 
quadratic problems confirms that the method dramatically improves the Topkis-Veinott  algorithm and 
that it is competitive with the generalized reduced gradient method.  

1. Introduction 

In a recent paper (Hearn, Lawphongpanich and Ventura, 1987) the strategy of 
Restricted Simplicial Decomposition (RSD) has been developed for nonlinear 

programs with linear constraints. This technique alternately solves a linear program- 
ming (LP) subproblem and a nonlinear master problem which has simple constraints, 
i.e., those which define a simplex. This method offers modularity in the solving of 
a nonlinear program: the choice of algorithms for both the master and subproblem 
can be made on the basis of problem structure or any other appropriate criteria. 
For example, in the cited reference, a combination of the projected Newton method 
(Bertsekas, 1982) and the primal simplex algorithm is shown to be effective on test 
problems from the Colville (1968) study as well as on large-scale nonlinear network 
flow problems. 

The objective of this paper is to extend the concept of RSD to the class of 
nonlinear programs with (quasi-)convex constraints. The convexity of the feasible 
region is necessary to guarantee that the successive simplices generated by the 
algorithm are feasible. We denote the algorithm by RSDCC. Just as RSD can be 
viewed as an extension of the Frank-Wolfe feasible direction method in which the 
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usual line search is replaced by optimization over a simplex, RSDCC may be viewed 
as a generalization of the (scaled) Topkis-Veinott (1967) method. It also alternates 
between an LP direction-finding subproblem and nonlinear optimization on a 

simplex. As will be shown, the proof  of global convergence can be established with 
arguments similar to those of Topkis and Veinott. Similar to the result in Hearn, 

Lawphongpanich and Ventura (1985), we also give conditions under which RSDCC 
converges after a finite number of major cycles. When these conditions are met, 
RSDCC inherits the local convergence rate of the algorithm chosen to solve the 
master problem. Thus, if the projected Newton algorithm is used, the local conver- 
gence will be superlinear. While this finiteness result applies in theory only if the 

binding constraints are linear, it suggests that the overall number of iterations may 
be reduced even when nonlinear constraints are binding. Computational results 
with quadratically constrained quadratic programs confirm this expectation. 

2. Problem formulation and the RSDCC algorithm 

Assumption 

Assumption 

Assumption 
is bounded. 

Assumption 
are linearly 

Consider the following problem 

min f ( x )  

s.t. gj(x)<~O, j c N q ,  (2.1) 

Ax<~ b, 

where x c N~, b c N", A is an m x n real matrix, and Nq is the set of integers from 

l t o  q. 
In addition to the notation above, we will employ Vf(x)  and Vgj(x) to represent 

gradients of the functions f ( x )  and gj(x), l will be a column vector of ones, 0 a 

column vector of zeros, and the inner product of two vectors will be denoted by 

concatenation. Define the following sets: 

S ' =  {x: gj(x) <~ O, j c Nq}, 

S"=  {x: A x <  b}, 

and consider the following assumptions: 

2.1. f ( x )  is a continuously differentiable pseudoconvex function. 

2.2. gj (x) is a continuously differentiable convex function for j ~ Nq. 

2.3. The feasible region of problem (2.1), denoted as S ( S =  S ' n  S"), 

2.4. For each x c  S, the gradients in the set {Vgj(x): g j ( x ) = 0 , j c  Nq) 
independent. 

Note that the last assumption rules out the case of nonlinear equality constraints, 
since the possibility of replacing gj (x) = 0 by gj (x) <<- 0 and -gj  (x) <~ 0 is not allowed. 
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First, we summarize the standard Topkis and Veinott algorithm. 
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Topkis-Veinott Algorithm. 
Step O. Let x ° be a feasible point and set k = 0. 
Step 1. (subproblem).  I f  ]]Vf(xk)H = 0, x k is a solution; terminate. Otherwise, let 

(z k, d k) be an optimal solution to the following problem: 

min z 

s.t. Vf (xk )d - z<~O,  

V g j ( x k ) d - z < ~ - g j ( x  k) f o r j c N q ,  

Ad - z l  <~ b -  Ax  k, 

I f  z k ~  > 0, x k is a solution; terminate. Otherwise, go to Step 2. 

Step 2 (master problem). Let 

a k c arg min{f (x  k + ad k): 0 ~< a ~< area×}, 

where 

a~ax = sup{a: gj(xk +adk)<~O, j c  Nq, A(xk  +adk)<~b}. 

Set X k ÷ l = X k + a k d  k, increase k by 1 and go to Step 1. 

The RSDCC algorithm modifies the subproblem in Step 1 by scaling the constraints 

induced by the objective function and the set of nonlinear constraints of the original 

problem. For each of these functions, the scaling factor is the norm of the gradient 

at the current iterate and it multiplies the term z. This is intended to balance the 

effect of  the objective function and the set of  near-binding constraints in the 

generation of the descent direction. In addition, the box constraints are defined by 

a parameter,  /x > 0, that bounds the size of  d. The box constraints have a center, 
denoted as 2, that changes only when the progress of the algorithm has been 

satisfactory. Under conditions to be given in Section 4, ~ eventually becomes fixed 
and the number  of major  cycles is finite. In RSDCC the line search of the master 

problem above is replaced by optimization over a simplex. This enhances the 

performance of the algorithm by impeding "zig-zagging" when the number  of cycles 
is infinite. 

A restriction parameter,  r 1> 1 and integer, is chosen by the user to control the 
size of  the master  problem. When r = 1, the master problem reduces to optimization 
on a simplex of dimension 1, i.e., a line search (Hearn, Lawphongpanich and 
Ventura, 1987). 

RSDCC Algorithm. 
Step O. Let x ° be a feasible point, r ~> 1 and integer, and /x  > 0. 
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S e t J ~ = x  °,1 ° = - / x l ,  u ° = / x l ,  W °=  o W~={x°} ,  o W s = O ,  and k = 0 .  
Step 1 (subproblem). I f  IlVf(x~)[I = o, x ~ is a solution; terminate. Otherwise, let 

(z k, d k) be an optimal solution to the following problem: 

min z 

s.t. V f(x ~)d -IlVf(x~)l[z ~ O, 

Vgj (x ~)d - IlVgj (x ~) I[z ~ -g j  (x ~) 

A d  ~ b - A x  k, 

f o r j ¢  N1, 

l k ~ d ~ u  k. 

I f  z k/> 0, x k is a solution; terminate. Otherwise, let 

= rain{l, sup{c~: gj (x  k + c~d k) <~ O, j  • Nq, A ( x  k + a d  k) << b}} 

and let yk = x k +  ~d k. 

(i) I f  ] w k l <  r, set ,.,W k+l = W~w{yk} and .,xWk+l= W~. 

(ii) I f  I wk[ = r, let yk replace the element of  W k that has minimal weight in the 

expression of x k as a convex combination of the elements of  W k to obtain W )+~. 
Let W k+l = {xk} .  

Set W k+l= W,k+lu Wx g+l and go Step 2. 

S t e p 2  (master problem). Let x k+l ~ arg min{f(x) :  x • H( wk+~)}, where H( W k+l) 

is the convex hull of  W k+l. 

Purge W~ +1 and W k+l of  all elements with zero weight in the expression of x k+l 

as a convex combination of the elements of  W k+~ and go to Step 3. 
Step 3. Define ~, I k+l and u k+l as follows: 
(i) I f  ]lN-xk+all~<½/x , set 1 k+l =--/./ ,I+(x--x k+l) and uk+l=fil~,l"l-(X,--xk+l). 

(ii) If  -xk+ llo >½ , set :~=x  k+~, 1 k+~= - / x [  and u k+l = /x l .  

Increase k by 1 and go to Step 1. 

3. Global Convergence 

The proof  of  global convergence of the RSDCC algorithm follows from similar 

arguments in Topkis and Veinott (1967) and Zangwill (1969). 

Theorem 3.1 (Motzkin's theorem). Let  B be an m x n matr ix  and  C a p x n matr ix  

with B being nonvacuous.  Then exactly one o f  the fo l lowing  two sys tems has  a solution: 

System 1 : B x  < 0 and  C x  <~ 0 f o r  some x • ~ n. 

System 2: BTv  + CVw = 0, v/> 0, w/> 0, for some nonzero v • ~m and some w ~ R p. 
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Proof. See, e.g., Mangasarian (1969). [] 
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Lemma 3.1. Let x k be a feasible solution to problem (2.1) and define 

I ~ = { j ~ n q : g ~ ( x k ) = o }  and I ~ = { j 6 N m : a J x k = b 3 } ,  

where a J is thejth row of A. I f  (z k, d k) is an optimal solution to the subproblem, then 

(i) z k >!0 if and only if  x k is an optimal solution to problem (2.1). 

(ii) z ~ < 0  if  and only if  f (xk+~)< f ( xk ) .  

Proof. It can be easily verified that zk>  0 is never a solution to the subproblem 
since (z k, d k) = (0, 0) is always a feasible point and has a lower objective function 
value. Now, since l k <  0 a n d / k >  ~, z k = 0 holds if and only if there is no solution 
to the system: V f ( x  k)d k < 0, V gj (x k)d k < 0 for all j c I~, and a Jd k <~ 0 for all j c I~. 

By Theorem 3.1, this system has no solution if and only if x k is a Fritz-John point. 
Since f ( x )  is pseudoconvex, x k is a global optimal solution. 

If z k<  0, then the solution of the subproblem is such that V gj (x k)d k<  0 for all 
j ~ I1 and aid k <~ 0 for all j e/2. This and the fact that gj (x g) < 0 for all j ~ I k and 
aJx k < bj for all j ¢  12 k imply that x k + ad k is feasible for all a c (0, 6]. Thus, d k is 

a feasible direction. Also, V f ( x k ) d k < o ;  hence, d k is an improving direction. 
Furthermore, x k+ ad k C H( W k+~) c_ S, for all a c (0, 6 ]. Thus, since x k+~ solves the 

master problem, we conclude that f ( x  k+~) < f ( x k ) .  Reversing this argument com- 

pletes the proof. [] 

Lemma 3.2. The sequence {(x k, dk)} generated by R S D C C  cannot admit an infinite 

subsequence K with the following properties: 
(i) x k ~  x~  for k c  K. 

(ii) d k ~ d ° °  f o r k ~ K .  

(iii) x k + c~d k C S for all a ~ (0, 3 ], for each k ~ K and for some ~ > O. 

(iv) Vf(x~°)d~<O. 

Proof (by contradiction). Assume that there exists a such subsequence K. By 
condition (iv), there exists a ~->0 such that V f ( x ~ ) d ~ = - ' r .  Since x k ~ x  ~ and 

d k ~ d ~ for k ~ K, and since f ( x )  is continuously differentiable, there exists a 6' > 0 
such that, for sufficiently large k ~ K, 

Vf(xk+ozdk)dk+_ 1 - ~ r  for all a c (0, 8']. (3.1) 

Now, let g = min{6', 6} > 0. Consider k c K sufficiently large. By condition (iii) 
and the fact that x k+l solves the master problem over the set H(Wk+l),  which 
includes the point ( x k + 6 d k ) ,  we must have f ( xk+l )<~f (xk+gdk) .  By the mean 
value theorem, 

f ( x  k + 8d k) = f ( x  k ) + g V f ( 2 k ) d  k, 

where 2k is in the segment (x k, xk+  gdk). By (3.1), it then follows that 

f ( x  k+~) < f ( x  k) -½~-g for k c K sufficiently large. (3.2) 
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Since the RSDCC algorithm generates a sequence of points with strictly decreasing 
objective function values, l imk~oof(xk)=f(x~). In particular, both f ( x  k+a) and 
f ( x  k) approach f ( x  ~) as k c  K approaches co. Thus, from (3.2), we have f ( x  ~) <~ 
f ( x ~ ) - l ' r ~  which is impossible since ~-, g > 0 .  Therefore, there could not be a 
subsequence with properties (i) through (iv). [] 

Theorem 3.2. Consider problem (2.1) under Assumptions 2.1-2.4. Suppose that the 
sequence {x k} is generated by RSDCC. Then, any accumulation point of  {x k} is an 
optimal solution. 

Proof (by contradiction). Assume that there exists a convergent subsequence {x k}K 
with limit x ~, not an optimal solution, and let z ~ be the optimal function value of 
the subproblem. By Lemma 3.1, there exists an ~-> 0 such that z ~ =  -~'. In addition, 
define Lo = {j ~ Nq: gj (x ~) = 0}. Assumption 2.4 guarantees the existence of a 6 > 0 
such that 8=min{[[Vgj(x~)H:j~Ioo}. For k ~ K ,  consider the subproblem of 
RSDCC, and let (z k, d k) be an optimal solution. Since {dk}K is bounded, there 
exists a subsequence {dk}K, with limit d ~. Furthermore, since f (x )  and all gj(x), 
for j~  Nq, are continuously differentiable, and xk-~ x ~, it follows that for k c K'  
sufficiently large, zk<-½T and IlVgj(xk)l[>½8 for all j ~  I~. By definition of the 
subproblem 

V f ( x k ) d k ~  IjVf(xk)Hz k < -½l[Vf(xk) N 7, (3.3) 

gj(x k) +Vgj(xk)d k <~ llVgj(xk)Hz ~ < -¼8~- for j6/co.  (3.4) 

By the continuous differentiability o f f ( x )  and the fact that HVf(x~)ll # 0, (3.3) 
implies that 

Vf(xOO)d oo < O. 

Since all gj (x) are continuously differentiable, from (3.4) there exists a F > 0 such 
that the following inequality holds for each a c (0, F]  and k c K '  sufficiently large: 

gj(xk)+Vgj(xk+c~dk)dk<--ls 'r  for j ~ I~. (3.5) 

Now, let a c (0, F].  By the mean value theorem, and since gj(xk)<~O, 

gj(xk + oed k) = gj(x k) + oeV gj(xk + fljkoMk)dk 

= (1 - oz)gj(xk)+ o~[gj(xk)+Vgj(xk+fijkO~dk)dk] 

for j ~/co, (3.6) 

where fljk ~ (0, 1]. Since fljko~ c (0, F] ,  from (3.5) and (3.6) it follows that gj(xk+ 
adk)<~ -~aS~-< 0 f o r j ~  Ioo and k~ K '  sufficiently large. 

For j  e/0o there exists a negative 8' = max{gj (x co): j ~ No , j ~ I~}. Thus gj (x k) < ~6' 
for j ~ I~ and k ~ K '  sufficiently large, and by continuity there exists a F '  > 0 such 
that for each o~ c (0, F'], gj (x k + ad k) <~ O. It also holds that A(x k + ad k) <~ b for 
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a t ( 0 , 1 ]  and k ~ K ' .  This shows that x k + a d  k is feasible for each a e  

(0, min{F, F' ,  1}) for all k ~ K '  sufficiently large. Therefore, the sequence {(x k, d k)}K, 

satisfies conditions (i) through (iv) in Lemma 3.2. But this is a contradiction and 

x °° must be an optimal solution. [] 

4. Finite convergence 

In order to show finite convergence of RSDCC, we need to consider the following 

additional assumptions: 

Assumption 4.1. Problem (2.1) has a unique solution, denoted as x*. 

Assumption 4.2. x* is in the interior of S' and IIVgj(x*)l[ is bounded from above 

f o r j c  Nq. 

When Assumption 4.2 holds, there exists el,  e2> 0 such that 

(i) s~ =min{-gj(x*)/llVgj(x*)ll: j c  Nq} 

(ii) e2 is the radius of the largest open ball B(x* ,  e2) around x* such that 
B(x* ,  e2) is in S'. 

The following four lemmas give conditions on the size of /x  (selected at Step 0) 
with respect to el and e2 that are necessary to prove the final finiteness result. 

Lemma 4.1. Assume  that 6 / ~ n l / 2 ~  e l . There exists an index 33 1 such that for  all 

k >~ Ir l , i f  ( z k, d k) solved the subprob lem, then d k c arg min { V f ( x k ) d : A d <~ b - A x  k, 
l k ~ d < ~ u k } .  

Proof. For all k/> O, 

I[dkll~ ~< max{lllkll~, Ilu~ll~} <~ ~ + l l 2 - x k l l ~  ~ + 1  = %  
ild~ll < 3/.£n 1/2. (4.1) 

Therefore, using the fact that Vf(x  k) # 0, 

- I lVf (xb l l  ? < - V f ( x k ) d  k <~ IIV/(x~)II IId~l{ 

implies 

- z  k = Izkt <~ Ildkll ~< 3/.Lnl/2. (4.2) 

Since gj (x) for j e N o is continuously differentiable, from Assumption 4.2, there 
must exist an index ~rl, such that for all k/> ~'l the following holds: 

-&(x ~) 
>%1 for j ¢ Nq. (4.3) 

Ilvgj(xk)ll 
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From (4.1)-(4.3) it follows that 

V g j ( x k ) d  k - I lVg j ( x~ ) l l z  ~ <~ IlVgj(xk)ll lid kl[- IlV gj(x~)l lz  ~ 

= I lvg j (x~) l l ( l ld~ l l - z  ~) 

<~ 3/xn'/=llV g~(xk)l [ 

~<½elllVgj(xk)]l 

< - g i ( x  k) f o r j c  Nq. 

Therefore, the constraints Vgj(x~)d-IlVgj(xk)llz<~-gj(x~) for j e  Nq become 
inactive in the subproblem. This implies that the constraint V f ( x k ) d  - I [Vf(x  k) IIz ~ 0 
will always be active since the variable z forms the objective function. Thus, if 
(z k, d k) solves the subproblem, d k must solve min{V f (  x k ) d  : A d  <~ b - A x  k, 1 k <- d <~ 
uk}. [] 

Lemma 4.2. There exists an index 7r2, such that for  all k ~  > "W2, II~-x~ll~½/x. 

Proof. Since x* is unique, by Assumption 4.2, there exists an open ball B(x* ,  ¼/X) 

around x* and an index F, such that x k ~ B(x* ,  ztx) for all k/> F. Now, consider 
the following two cases: 

(i) If  ~ does not change for k/>/7, then 7r2 = F. 

(ii) Otherwise, there exists an index ~'> F such that IIx-x~ll~>% In this case, 
Step 3(i) of  RSDCC sets 2 -- x ~. This implies that for all k >/~-, 

Ilx'-xk[l~<~ Ilx ~-x*t l~+ Ilx*-xkll~ ' <~/X ...{_ ~/X 1 =~/x 

and then 7r2= T. [] 

Lemma 4.3. Set 7r3 = max{~l,  7r2}, where 7rl and ~r2 are as defined by Lemmas  4.1 
and 4.2, respectively. For all k >~ 7r3, the points xk  + d g are extreme points o f  the 

following polytope : 

S(2) = {w: A w  <~ b, -/X l + 2 <~ w <~ /X i + 2}. 

Proof. From Lemma 4.2, 2 does not change for all k ~  > ~r3. In addition, Lemma 4.1 
states that the subproblem of RSDCC is equivalent to 

min{V f ( x k ) d  : A d  <~ b - A x  k, I k <~ d <~ u k}, (4.4) 

where I k= - / X l +  ( 2 - x  k) and u k = / x T + ( 2 - x k ) .  
By performing the change of variables w = x k + d, (4.4) becomes 

min{Vf(x k)(w - xk): A w  <~ b, -/X l + 2 <~ w <<-/Xl + 2} 

and the feasible region is S(ff). [] 
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Lemma 4.4. Given that k >>-1r 3 (as defined by Lemma 4.3), /f/~(¼+ n 1/2) <<-e2, then 

S(~) is in S'. 

Proof. Since "JT3 ~ "/T2, Lemma 4.2 imples that Xk~ B(X*, a/x) for all k ~  > ~r3, which 
further implies that for all w c S(2), 

IIx*- wII IIx*- ll + II - wll 

and, by definition of ea, S(Y) is in S'. [] 

The above lemmas show that if {x k} is the sequence generated by RSDCC and 
/x is small enough, then there exists an index ~'3 such that for all k/> ~r3, the vector 

does not change, and the subproblem generates directions {d k} such that xk+  d k 
are extreme points of the polytope S(2). In addition, this polytope contains x*, the 
optimal solution of (2.1). Therefore, problem (2.1) could also be stated as follows 

min{f(x): x ~ H(al ,  a 2 , . . . ,  aN)}, 

where {al, a 2 , . . . ,  aN} is the set of extreme points of S(ff). Define 

I*0~) = {aj: V f ( x* ) (a j  - x*) = O, j c N/c}. 

We refer to H(I*07)) as the optimal face of problem (2.1) with respect to S(2). 
The following lemma and theorems are similar to the ones for the linearly 

constrained case (Hearn, Lawphongpanich and Ventura, 1985) and, therefore, many 
of the proofs are omitted. 

Lemma 4.5. There exists an index 7F4~ 3T 3 (as defined by Lemma 4.3) such that for 
any k >1 7r4 the following hold: 

(i) V f ( x k ) ( a j - - X k ) > O  f o r a l l a j ~ I * ( ~ ) ,  

(ii) min{Vf (xk)d:  d ~ S(2) - x  k} = min{Vf (xk)d:  d ~ 1"(2) --xk}. [] 

Theorem 4.1. I f  R S D C C  generates an infinite sequence {x k} converging to x*, then 

there exists an integer 7r >~ ¢r 4 (as defined by Lemma 4.3) such that for all k >~ ~r the 
following hold: 

(i) The incoming grid point at iteration k, yk, belongs to 1"(2). 

(ii) W~ is a subset of  the smallest manifold containing I*07), denoted as M(I*(~)). 

Proof. When k ~> 3T4, Lemma 4.4 shows that S(2) is in S', which implies that x k + d k 
is feasible. Then, (i) follows directly from Lemma 4.5(ii). 

To prove (ii), assume that for some k >  ~'4, W k is not in M(I*(2)),  in particular 
the elements a l , . . . ,  ap from W~ do not belong to M(I*(2)).  Then, using similar 
arguments to Lemma 4.5 (i), at the end of Step 2, 

~ f ( x k + l ) ( a j - - x k + l ) ) o  f o r j c  Np, 
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which further implies that the weight of a~ for j ~ Np in the expression of x k+l as 
a convex combination of the elements of W k+l must all be zero. Therefore, we have 
that a ~ , . . . ,  a, satisfy the column dropping criteria in Step 2, which means that 
W~ +1 is in M(I*(~)) .  Moreover, (i) insures that only elements from I*(ff) will be 
added to the set W~ in subsequent iterations, and the desired result is obtained by 

letting ~r equal k+  1. [] 

Theorem 4.2. I n R S D C C ,  theset H ( W  k) i sas implexforal lk>~O.  [] 

Theorem 4.3. I f  r >~ dim I*(x)  + 1, RSDCC converges to x* after a finite number of  
major cycles. [] 

5. A computational test 

This section presents the results of testing the RSDCC algorithm on randomly 
generated medium- and large-scale quadratically constrained quadratic problems. 
Each test problem was solved by RSDCC with different values of r and, for 

comparison purposes, by the GRGA code developed by Abadie and Carpentier 

(1969) and Abadie (1975). The RSDCC computer program was written in double 
precision FORTRAN, compiled using the FORTRAN 77 compiler, and run on a 
VAX 8550 under the VAX/VMS operating system. The technique employed to solve 
the master problem was the projected Newton method of Bertsekas (1982) employed 
in the original RSD algorithm (Hearn, Lawphongpanich and Ventura, 1987). The 
maximum number of projections per iteration was set to r + 1; however, since all 
test problems have a convex quadratic objective function, only one or two projections 

were usually required to determine a near optimal solution of the master problem 
with a relative duality gap (min{Vf (xk) (x  k - yk ) / IV f ( xk ) yk l :  yk ~ Wk}) less than 
or equal to 10 -8. At each projection, a Cholesky factorization (Forsythe and Moler, 
1967) is employed to compute the search direction, and the stepsize for the line 
search is chosen by an Armijo-like rule (Bertsekas, 1976). The linear subproblem 
of RSDCC was solved by the linear programming subroutine LPSUBRS developed 

by Gill et al. (1983). 
In our implementation of RSDCC, the box size /x that bounds the direction 

generated by the linear subproblem changes with the problem size and iteration 
number. For problems with up to 40 variables, the strategy was /x = 81 for the first 
50 iterations, /x =~6 for the following 50 iterations, etc. until /~ ~< 10 4; then it was 
kept constant for the remaining iterations. For problems with more than 40 variables, 
the same approach was used but starting with/x = ½. 

In Step 1, the stepsize ~ used to determine the incoming extreme point yk is 
computed as follows. If gj (x k + d k) ~< 0, j C Nq, then c~ = 1. Otherwise, the bisection 
method in the interval (0, 1) is used. The number of evaluations of the constraint 
functions is reduced by analyzing first the constraints that are most infeasible at 

= 1. The Insert sorting method (Knuth, 1973) puts the constraints in nonincreasing 
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Table 1 

Summary of computat ional  results for quadratic problems 

81 

Problem Method RE <~ 10 .2 RE ~< 10 - 4  RE <~ 10 . 6  

Iter. Proj. CPU Iter. Proj. CPU Iter. Proj. CPU 

G R G A  24.6 10.2 113.8 21.3 197.6 32.2 

n = 30 r =  15 13.2 19.2 2.8 36.4 67.8 10.1 113.8 276.8 36.1 
m = 10 r = 10 13.2 19.2 2.7 36.6 71.0 10.0 115.8 281.8 36.2 

r = 5 13.2 19.2 2.8 39.6 81.0 11.0 129.2 307.0 39.7 

r = 3 13.2 19.2 2.7 50.8 93.6 14.2 147.6 308.6 43.8 

r = 1 19.8 22.2 4.5 171.4 176.0 43.8 409.0 435.8 96.5 

G R G A  112.2 67.0 161.2 81.1 195.0 90.7 

n = 40 r = 15 23.0 34.8 8.7 45.0 81.2 19.4 98.0 205.8 49.0 

m = 15 r = 10 23.6 36.0 9.0 45.2 82.2 19.3 99.0 199.2 49.7 
r = 5 23.6 36.0 9.1 45.6 84.2 19.5 105.6 222.2 52.5 

r = 3 23.6 36.0 9.1 46.4 84.8 20.0 119.2 237.4 57.4 

r =  1 28.4 36.0 11.1 182.0 228.6 80.0 317.0 358.8 147.7 

G R G A  90.0 116.7 230.8 199.1 307.8 235.2 

n = 50 r = 15 18.8 30.6 13.5 44.2 84.6 36.1 96.6 200.4 91.9 

m = 20 r = 10 18.8 30.6 13.5 44.2 84.6 36.4 97.0 202.8 93.3 

r = 5 20.6 32.2 14.5 46.2 88.4 37.6 104.2 222.2 99.3 

r = 3  20.6 32.2 14.6 63.2 115.4 51.8 131.2 252.8 121.7 

r = 1 26.4 33.0 18.7 212.0 261.2 174.5 421.0 472.0 364.1 

G R G A  250.4 529.8 318.0 630.8 389.6 695.6 

n = 60 r = 15 16.0 29.0 22.4 42.2 99.2 74.7 109.2 285.4 255.9 

m = 25 r = 10 16.0 29.0 22.9 42.6 100.4 75.0 126.2 309.8 263.0 

r = 5 16.2 29.0 23.9 51.6 128.8 88.9 144.6 310.8 296.8 

r = 3  18.0 31.4 35.5 90.0 145.2 148.9 179.4 311.6 296.6 

r = 1 65.2 75.4 130.9 200.6 212.2 350.3 400.8 424.0 607.1 

G R G A  127.2 554.2 273.0 912.1 324.2 1043.1 

n = 70 r = 15 23.4 40.0 47.7 71.4 138.4 194.0 220.0 411.6 505.2 
m = 30 r = 10 25.6 40.6 53.1 79.6 158.8 214.3 266.8 438.6 526.2 

r = 5 26.6 . 41.0 55.5 111.2 187.0 284.2 283.2 419.4 589.4 

r = 3 34.4 47.4 75.5 144.0 157.8 328.6 360.4 538.6 662.3 

r =  1 111.2 125.2 215.6 400.2 429.6 722.8 * * * 

* The indicated relative error was not achieved at the 500th iteration in at least one of the problems. 

o r d e r  o f  t h e i r  f u n c t i o n  v a l u e  a t  d = 1 ( g j  ( x  k + d k) ,  j c N q ) .  T h i s  o r d e r  s a v e s  c o m p u t a -  

t i o n a l  e f f o r t  b e c a u s e  o f t e n  o n l y  t h e  f i r s t  c o n s t r a i n t  a n a l y z e d  w i l l  b e  a c t i v e  a t  y k. T h e  

b i s e c t i o n  m e t h o d  t e r m i n a t e s  w h e n  t h e  s e a r c h  i n t e r v a l  i s  l e s s  t h a n  o r  e q u a l  t o  10 4 

f o r  t h e  f i r s t  50  i t e r a t i o n s ,  10 -5 f o r  t h e  f o l l o w i n g  50  i t e r a t i o n s ,  e tc .  W h e n  t h e  t o l e r a n c e  

b e c o m e s  10 -8 , i t  i s  k e p t  c o n s t a n t .  

T h e  q u a d r a t i c a l l y  c o n s t r a i n e d  q u a d r a t i c  t e s t  p r o b l e m s  h a v e  t h e  f o l l o w i n g  
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Fig. 1. Computat ional  results for quadratic problems of size 30 * 10. 
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Fig, 2. Computat ional  results for quadratic problems of size 40 * 15. 
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140 

formulation: 

min f (x)  = ½xTQox + e[x + do, (5.1) 

s.t. gj(x)=½xVQjx+cfx+dj<~O for jcNq .  

Data for the test problems was generated from uniform distributions represented 
by U(a, b), where a and b are the lower and upper  bounds,  respectively, of the 
uniform random variable. Dense matrices Qj were generated by the formula 

Qj = 2wiwT + diag(pj ), 
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Fig. 3. C o m p u t a t i o n a l  results for quad ra t i c  p rob l ems  of  size 50 * 20. 
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Fig. 4. C o m p u t a t i o n a l  results for qua d ra t i c  p rob l ems  of  size 60 * 25. 
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where 

wj = [wju)] , wju ) c U(O, 1), for all j, 

po=[Po(;)],  pou)~U(1 ,3) ,  

PJ=[PJu)], pj(i)EU(1,4),  f o r j c N q .  

In addition, vectors Q, scalars dj, and the initial feasible solution Xo were generated 
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Fig. 5. Computat ional  results for quadratic problems of  size 70 * 30. 
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from the uniform distributions shown below. 

Co = [Cou)], Cou~C U(-5, - 2 ) ,  

c j=[c j (n]  , c j u ) 6 U ( - 3 , - 1 ) ,  f o r j c N q ,  

do c U(50, 100), 

Xo(/) c U(-1 .5 ,  1.5), 

dj ~_l T ~xoQjxo+cTxo+e j ,  e j~  U ( - 2 , 0 ) ,  f o r j c N q .  

Note that the choice of dj causes the initial solution to be interior to the feasible 
region, and in the problems generated, a check showed that 20-30% of the constraints 

were binding at the optimal solution. 
Problems of five different sizes were generated. The problems ranged from 30 

variables and 10 constraints to 70 variables and 30 constraints. For each problem 

size, five different test problems were run. Each problem was solved by RSDCC 
with r =  1, 3, 5, 10 and 15, and by GRGA. Table 1 and Figures 1 to 5 present a 
summary of the computational results. For each problem size, Table 1 shows the 
average number of iterations, average number of master problem projections, and 
CPU time in seconds required to achieve the indicated relative error ( R E =  
[ f ( x  k ) - f ( x * ) ] / l f ( x * ) ]  , where x* is the optimal solution) of 10 2, 10-4, and 10 6. 
The figures display the contrasting convergent behavior of the five different runs of 
RSDCC and GRGA. In the graphs, the x-axis represents CPU time, and the y-axis 
is log(RE), representing the number of correct digits of the current solution, i.e., 
log(RE) = - 4  indicates that the first four digits of the objective function value are 
correct. It is interesting to observe from Figures 2 to 5 that for the four largest 
problems RSDCC with r~>3 is far superior to RSDCC with r = l ,  the scaled 
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T o p k i s - V e i n o t t  a lgor i thm,  and  it ou tpe r fo rms  G R G A  signif icantly.  On ly  for  the  

smal les t  p r o b l e m  (see F igure  1), does  G R G A  o u t p e r f o r m  R S D C C  (r  ~> 3) and  then  

on ly  for  RE<~ 10 -5. 

The  ma in  con t r i bu t ion  o f  the  R S D C C  a lgor i thm as an i m p r o v e m e n t  of  a feas ible  

d i rec t ion  m e t h o d  seems subs t an t i a t ed  by  this c o m p u t a t i o n a l  test.  The p e r f o r m a n c e  

of  the  a lgor i thm genera l ly  improves  as the  p r o b l e m  size and  r increase.  In  par t icu la r ,  

there  is a dec ided  i m p r o v e m e n t  with r >  1 versus  r = 1. In  o ther  words ,  on these 

test  p r o b l e m s ,  "z ig -zagg ing"  is subs tan t ia l ly  r e d u c e d  by  the genera l i za t ion  of  the 

l ine searches  to op t imiza t i on  over  s impl ices .  
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