Mathematical Programming 59 (1993) 71-85 71
North-Holland

Restricted simplicial decomposition for
convex constrained problems

Jose A. Ventura

Department of Industrial and Management Systems Engineering, The Pennsylvania State University,
University Park, PA, USA

Donald W. Hearn

Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL, USA

Received 22 June 1987
Revised 21 June 1991

The strategy of Restricted Simplicial Decomposition is extended to convex programs with convex
constraints. The resulting algorithm can also be viewed as an extension of the (scaled) Topkis-Veinott
method of feasible directions in which the master problem involves optimization over a simplex rather
than the usual line search. Global convergence of the method is proven and conditions are given under
which the master problem will be solved a finite number of times. Computational testing with dense
quadratic problems confirms that the method dramatically improves the Topkis-Veinott algorithm and
that it is competitive with the generalized reduced gradient method.

1. Introduction

In a recent paper (Hearn, Lawphongpanich and Ventura, 1987) the strategy of
Restricted Simplicial Decomposition (RSD) has been developed for nonlinear
programs with linear constraints. This technique alternately solves a linear program-
ming (LP) subproblem and a nonlinear master problem which has simple constraints,
i.e., those which define a simplex. This method offers modularity in the solving of
a nonlinear program: the choice of algorithms for both the master and subproblem
can be made on the basis of problem structure or any other appropriate criteria.
For example, in the cited reference, a combination of the projected Newton method
(Bertsekas, 1982) and the primal simplex algorithm is shown to be effective on test
problems from the Colville (1968) study as well as on large-scale nonlinear network
flow problems.

The objective of this paper is to extend the concept of RSD to the class of
nonlinear programs with (quasi-)convex constraints. The convexity of the feasible
region is necessary to guarantee that the successive simplices generated by the
algorithm are feasible. We denote the algorithm by RSDCC. Just as RSD can be
viewed as an extension of the Frank-Wolfe feasible direction method in which the
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usual line search is replaced by optimization over a simplex, RSDCC may be viewed
as a generalization of the (scaled) Topkis-Veinott (1967) method. It also alternates
between an LP direction-finding subproblem and nonlinear optimization on a
simplex. As will be shown, the proof of global convergence can be established with
arguments similar to those of Topkis and Veinott. Similar to the result in Hearn,
Lawphongpanich and Ventura (1985), we also give conditions under which RSDCC
converges after a finite number of major cycles. When these conditions are met,
RSDCC inherits the local convergence rate of the algorithm chosen to solve the
master problem. Thus, if the projected Newton algorithm is used, the local conver-
gence will be superlinear. While this finiteness result applies in theory only if the
binding constraints are linear, it suggests that the overall number of iterations may
be reduced even when nonlinear constraints are binding. Computational results
with quadratically constrained quadratic programs confirm this expectation.

2. Problem formulation and the RSDCC algorithm

Consider the following problem

min f(x)
sit. gi(x)=s0, jeN, (2.1)
Ax<b,

where xeR", beR™, A is an m X n real matrix, and N, is the set of integers from
1to g
In addition to the notation above, we will employ Vf(x) and Vg;(x) to represent

gradients of the functions f(x) and g;(x), 1 will be a column vector of ones, 0 a
column vector of zeros, and the inner product of two vectors will be denoted by
concatenation. Define the following sets:

S§'={x:g;(x)=<0, je N,},

S"={x: Ax<= b},

and consider the following assumptions:
Assumption 2.1. f(x) is a continuously differentiable pseudoconvex function.
Assumption 2.2. g;(x) is a continuously differentiable convex function for j& N,.

Assumption 2.3. The feasible region of problem (2.1), denoted as S (S=5"nS"),
is bounded.

Assumption 2.4. For each x € S, the gradients in the set {Vg;(x): g (x)=0,j€ N,}
are linearly independent.

Note that the last assumption rules out the case of nonlinear equality constraints,
since the possibility of replacing g;(x) =0by g;(x)<0and —g;(x)<0is not allowed.
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First, we summarize the standard Topkis and Veinott algorithm.

Topkis—Veinott Algorithm.

Step 0. Let x° be a feasible point and set k=0.

Step 1. (subproblem). If ||Vf(x")||=0, x* is a solution; terminate. Otherwise, let
(z*, d*) be an optimal solution to the following problem:

min z

st Vf(x¥)d-z=0,
ng(xk)d—zs—gj(xk) for je N,,
Ad —z1<b— Ax",
-i=d=1.

If z5=0, x* is a solution; terminate. Otherwise, go to Step 2.
Step 2 (master problem). Let

afcargmin{f(x“+ad*): 0= a < a,,),
where
Qax = SUP{a: gj(xk+ ad®)=0, je N,, A(x*+ad*)=b).

Set x“*'=x"+a*d", increase k by 1 and go to Step 1.

The RSDCC algorithm modifies the subproblem in Step 1 by scaling the constraints
induced by the objective function and the set of nonlinear constraints of the original
problem. For each of these functions, the scaling factor is the norm of the gradient
at the current iterate and it multiplies the term z This is intended to balance the
effect of the objective function and the set of near-binding constraints in the
generation of the descent direction. In addition, the box constraints are defined by
a parameter, u >0, that bounds the size of d. The box constraints have a center,
denoted as X, that changes only when the progress of the algorithm has been
satisfactory. Under conditions to be given in Section 4, X eventually becomes fixed
and the number of major cycles is finite. In RSDCC the line search of the master
problem above is replaced by optimization over a simplex. This enhances the
performance of the algorithm by impeding “zig-zagging” when the number of cycles
is infinite.

A restriction parameter, r=1 and integer, is chosen by the user to control the
size of the master problem. When r = 1, the master problem reduces to optimization
on a simplex of dimension 1, i.e., a line search (Hearn, Lawphongpanich and
Ventura, 1987).

RSDCC Algorithm.
Step 0. Let x° be a feasible point, r=1 and integer, and w>0.
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Set £=x° 1°=—pul, u’=pul, Wo=W2={x", W2=¢ and k=0.
Step 1 (subproblem). If |Vf(x*)]|=0, x* is a solution; terminate. Otherwise, let
(z*, d*) be an optimal solution to the following problem:

min z
st. Vfx )d—|Vf(x")|z=0,
ng(xk)d - “ng(xk)HzS —gj(xk) for je Ny,

Ad <b— Ax*,

*<sd=su"

If z5=0, x* is a solution; terminate. Otherwise, let
& =min{l, sup{a: g;(x“+ad*)<0,je N,, A(x*+ ad*) < b}}

and let y* =x"+ad".

(i) If [WK <1, set WE'= WEU{p*} and W = WE,

(ii) If |W¥ =r, let y* replace the element of W* that has minimal weight in the
expression of x* as a convex combination of the elements of W* to obtain W**!,
Let W ={x*}.

Set W 1= W'y Wk and go Step 2.

Step2 (master problem). Let x**' e arg min{f(x): x e H(W*™")}, where H( W**")
is the convex hull of W**!,

Purge W5 and WE™! of all elements with zero weight in the expression of x**!
as a convex combination of the elements of W**' and go to Step 3.

Step 3. Define %, 1°"" and u**" as follows:

() If |£—x""w=<3m, set 1" = —pT+(x—x"*") and u*"' = T+ (X —x*"").

(i) If || £ — x> 3u, set £=x""", 1" =—4uT and u*"' = pl.

Increase k by 1 and go to Step 1.

3. Global Convergence

The proof of global convergence of the RSDCC algorithm follows from similar
arguments in Topkis and Veinott (1967) and Zangwill (1969).

Theorem 3.1 (Motzkin’s theorem). Let B be an m x n matrix and C a p X n matrix
with B being nonvacuous. Then exactly one of the following two systems has a solution:
System 1: Bx <0 and Cx <0 for some xR".
System 2: BTo+ C"w =0, v=0, w=0, for some nonzero v € R” and some w € R”.
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Proof. See, e.g., Mangasarian (1969). U

Lemma 3.1. Let x* be a feasible solution to problem (2.1) and define
I'f={jeNq: gj(xk)=0} and I5={jeN,: ajx"=bj},
where a’ is the jth row of A. If (z¥, d*) is an optimal solution to the subproblem, then

(i) z"=0 if and only if x* is an optimal solution to problem (2.1).
(ii) z*<0 if and only if f(x*") < f(x").

Proof. It can be easily verified that z¥>0 is never a solution to the subproblem
since (z*, d*)=(0, 0) is always a feasible point and has a lower objective function
value. Now, since 1< 0 and u* >0, z* =0 holds if and only if there is no solution
to the system: Vf(x*)d* <0, Vg;(x*)d* <0 forall je If, and a’d“ <0 forall je I5.
By Theorem 3.1, this system has no solution if and only if x* is a Fritz-John point.
Since f(x) is pseudoconvex, x* is a global optimal solution.

If z¥ <0, then the solution of the subproblem is such that ng(xk)dk <0 for all
jeI, and a’d* <0 for all je I,. This and the fact that g;(x*) <0 for all j¢ If and
a’x* < b; for all j & I5 imply that x*+ad" is feasible for all a € (0, &@]. Thus, d* is
a feasible direction. Also, Vf(x*)d* <0; hence, d* is an improving direction.
Furthermore, x“+ ad“e H(W*"')c S, for all a € (0, @]. Thus, since x**" solves the
master problem, we conclude that f(x*"') < f(x*). Reversing this argument com-
pletes the proof. O

Lemma 3.2. The sequence {(x*, d*)} generated by RSDCC cannot admit an infinite
subsequence K with the following properties:
(i) x*>x* forke K.
(ii) d*~=d* for ke K.
(iii) x*+ ad*e S for all « (0, 8], for each ke K and for some &> 0.
(iv) VA(x*)d*<0.

Proof (by contradiction). Assume that there exists a such subsequence K. By
condition (iv), there exists a 7> 0 such that Vf(x*)d*=~7. Since x*—>x™ and
d* - d* for ke K, and since f(x) is continuously differentiable, there exists a §' > 0
such that, for sufficiently large k€ K,

Vi(x*+ad*)d* < —1r for all a€(0,8']. (3.1)

Now, let § =min{8’, }> 0. Consider ke K sufficiently large. By condition (iii)
and the fact that x**' solves the master problem over the set H( W**!), which
includes the point (x*+8d*), we must have f(x*"')< f(x*+5d*). By the mean
value theorem,

fx +8d%)y=f(x*)+ 85 Vf(zF)d",
where £ is in the segment (x*, x*+ 5d ). By (3.1), it then follows that
F(x*Yy < f(x*)~478 for ke K sufficiently large. (3.2)
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Since the RSDCC algorithm generates a sequence of points with strictly decreasing
objective function values, lim_. f(x*)=f(x™). In particular, both f(x**') and
f(x*) approach f(x*) as ke K approaches co. Thus, from (3.2), we have f(x*) <
f(x¥) =376, which is impossible since 7, 6> 0. Therefore, there could not be a
subsequence with properties (i) through (iv). [

Theorem 3.2. Consider problem (2.1) under Assumptions 2.1-2.4. Suppose that the
sequence {x*} is generated by RSDCC. Then, any accumulation point of {x*} is an
optimal solution.

Proof (by contradiction). Assume that there exists a convergent subsequence {x*}
with limit x*, not an optimal solution, and let z™ be the optimal function value of
the subproblem. By Lemma 3.1, there exists an > 0 such that z* = —r. In addition,
define I,={je N,: g;(x™) =0}. Assumption 2.4 guarantees the existence of a § >0
such that & =min{||Vg,(x™)||: je I.}. For ke K, consider the subproblem of
RSDCC, and let (z¥, d*) be an optimal solution. Since {d*}x is bounded, there
exists a subsequence {d “}x. with limit d*. Furthermore, since f(x) and all g;(x),
for je N,, are continuously differentiable, and x* > x%, it follows that for ke K'
sufficiently large, z*<—317 and |Vg;(x*)[>18 for all je I.. By definition of the
subproblem

VIx )d* < |VF(x9)| 25 < =3|VAx")], (3.3)
g (x*)+Vg(x*)d* < ||Vg,(x")||z* <—387 for je L. (3.4

By the continuous differentiability of f(x) and the fact that |V/(x*™)||#0, (3.3)
implies that

Vf(x™)d>*<0.

Since all g;(x) are continuously differentiable, from (3.4) there exists a I' > 0 such
that the following inequality holds for each @ € (0, I'] and k € K’ sufficiently large:

gj(xk)+ng(xk+adk)dk<~§67‘ forjel,. (3.5)
Now, let a € (0, I']. By the mean value theorem, and since gj(xk)<0,
gj(xk—I—ozdk)=gj(xk)+anj(xk+Bjkadk)dk
=(1—a)g(x")+alg(x*)+ Vg (x*+ Buad*)d"]
forjel,, (3.6)

where B € (0, 1]. Since Bya (0, I'], from (3.5) and (3.6) it follows that gj(xk-i—
ad®)=—tad7<0 for je I, and ke K’ sufficiently large.

For j € I, there exists a negative 8’ = max{g;(x™): je N,, j & I.}. Thus gj(x") <38’
for j# I, and ke K’ sufficiently large, and by continuity there exists a I''> 0 such
that for each a € (0, "], g;(x*+ad*)=<0. Tt also holds that A(x"*+ad*)<b for
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2€(0,1] and keK’. This shows that x*+ad"* is feasible for each ae€
(0, min{I", I"", 1}) for all k € K’ sufficiently large. Therefore, the sequence {(x*, d*)} -
satisfies conditions (i) through (iv) in Lemma 3.2. But this is a contradiction and
x® must be an optimal solution. [

4. Finite convergence

In order to show finite convergence of RSDCC, we need to consider the following
additional assumptions:

Assumption 4.1. Problem (2.1) has a unique solution, denoted as x*.

Assumption 4.2. x* is in the interior of S’ and |[Vg;(x*)|| is bounded from above
for je N,.

When Assumption 4.2 holds, there exists ;, £,> 0 such that
(i) e, =min{—g;(x*)/||Vg;(x*)|: j€ Ng}

(ii) &, is the radius of the largest open ball B(x*, ¢,) around x* such that
B(x*, &,)isin §'.

The following four lemmas give conditions on the size of w (selected at Step 0)
with respect to £, and &, that are necessary to prove the final finiteness result.

Lemma 4.1. Assume that 6un'/?><c¢,. There exists an index m, such that for all

k=, if (z¥ d*) solved the subproblem, then d* € arg min{Vf(x*)d: Ad < b — Ax",
t*sd=u*.
Proof. For all k=0,

" [lo= max{[[1¥]l, |t lo} < p + 15 = x" oo = 30 =31,

4% <3un"” @
Therefore, using the fact that Vf(x*) # 0,

—IVAGMIZ < -VA ) a = |V f () [l
implies

=z =" = ||d"||=3un'". (4.2)

Since g;(x) for je N, is continuously differentiable, from Assumption 4.2, there
must exist an index 7, such that for all k= 7, the following holds:

_gj(xk)

>1 1
]]ng(xk)” se; forjeN,. (4.3)
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From (4.1)-(4.3) it follows that
Vg (x")d " —|[Vg; (x")|z" < Ve, (x) [ |d [ - |V (x")]|z*
= Vg (x| (lld "] - 2°)
<3un'?||Vg(x")|
<3, Vg (x9)]
<-g;(x*) forjeN,.

Therefore, the constraints Vg;(x*)d —||Vg;(x")|z=< —g;(x*) for je N, become
inactive in the subproblem. This implies that the constraint Vf(x*)d — ||Vf(x*)||z=<0
will always be active since the variable z forms the objective function. Thus, if
(2%, d*) solves the subproblem, d * must solve min{V/f(x*)d: Ad <b— Ax* 1*<d <
u*1. O

Lemma 4.2. There exists an index m,, such that for all k= m;, | % — x*|| o <3pu.

Proof. Since x* is unique, by Assumption 4.2, there exists an open ball B(x* ju)
around x* and an index T, such that x*e B(x* iu) for all k=T Now, consider
the following two cases:

(i) If ¥ does not change for k=TI, then m,=1T.

(ii) Otherwise, there exists an index 7> I' such that ||£ —x7||>3u. In this case,
Step 3(i) of RSDCC sets x =x". This implies that for all k=1,

R B A P
and then m,=7. [
Lemma 4.3. Set my=max{m,, m,}, where m, and m, are as defined by Lemmas 4.1

and 4.2, respectively. For all k= my, the points x*+d* are extreme points of the
Jollowing polytope:

S(x)={w: Aw=b,—pl+x<w<pul+x}.
Proof. From Lemma 4.2, X does not change for all k= #;. In addition, Lemma 4.1
states that the subproblem of RSDCC is equivalent to

min{Vf(x*)d: Ad <b— Ax* I"*<d <u"}, (4.4)

where ¥ = —puT1+(x—x*) and u*=pul1+(x—x").
By performing the change of variables w=x"*+d, (4.4) becomes

min{Vf(x*)(w-x"): Awsbh, —pl+i<sw<pul+x}

and the feasible region is S(x). O
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Lemma 4.4. Given that k=, (as defined by Lemma 4.3), if w(z+n"?)<e,, then
S(x)isin S'".

Proof. Since 3= m,, Lemma 4.2 imples that x* e B(x*, iu) for all k= m,, which
further implies that for all we S(x),

Ix* = wl = " =5l + 17 = wl < b+ pn = w0t ) < 6y,

and, by definition of &,, S(X) isin S". O

The above lemmas show that if {x*} is the sequence generated by RSDCC and
w is small enough, then there exists an index 3 such that for all k= =5, the vector
% does not change, and the subproblem generates directions {d*} such that x*+d*
are extreme points of the polytope S(x). In addition, this polytope contains x*, the
optimal solution of (2.1). Therefore, problem (2.1) could also be stated as follows

mln{f(x) xXe H(ala 25 P aN)})
where {a,, a,,..., ax} is the set of extreme points of S(x). Define
I*(x) ={a;: Vf(x*)(a; —x*) =0, je Nx}.

We refer to H(I*(x)) as the optimal face of problem (2.1) with respect to S(x).

The following lemma and theorems are similar to the ones for the linearly
constrained case (Hearn, Lawphongpanich and Ventura, 1985) and, therefore, many
of the proofs are omitted.

Lemma 4.5. There exists an index w,= 15 (as defined by Lemma 4.3) such that for
any k= m, the following hold:

(i) Vf(x*)a;—x*)>0 forall a;¢ (%),
(i) min{Vf(x*)d: d e S(%)—x*} =min{Vf(x*)d: d e I*(%) —x*}. O

Theorem 4.1. If RSDCC generates an infinite sequence {x*} converging to x*, then
there exists an integer w = m, (as defined by Lemma 4.3) such that for all k= 7 the
Sollowing hold :

(i) The incoming grid point at iteration k, y*, belongs to I*(%).

(ii) W¥ is a subset of the smallest manifold containing I*(X), denoted as M(I*(%)).

Proof. When k= 7,, Lemma 4.4 shows that S(X) is in S’, which implies that x*+ d *
is feasible. Then, (i) follows directly from Lemma 4.5(ii).

To prove (ii), assume that for some k> m,, W is not in M(I*(x)), in particular
the elements a,, ..., a, from W do not belong to M(I*(X)). Then, using similar
arguments to Lemma 4.5 (i), at the end of Step 2,

VAx""(a;—x*"")=0 forjeN,,
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which further implies that the weight of a; for j& N, in the expression of x**" as
a convex combination of the elements of W**! must all be zero. Therefore, we have
that a,,..., a, satisfy the column dropping criteria in Step 2, which means that
WK is in M(I*(X)). Moreover, (i) insures that only elements from I*(x) will be
added to the set WY in subsequent iterations, and the desired result is obtained by
letting 7 equal k+1. [J

Theorem 4.2. In RSDCC, the set H(W*) is a simplex for all k=0. []

Theorem 4.3. If r=dim I*(x)+1, RSDCC converges to x* after a finite number of
major cycles. [

5. A computational test

This section presents the results of testing the RSDCC algorithm on randomly
generated medium- and large-scale quadratically constrained quadratic problems.
Each test problem was solved by RSDCC with different values of r and, for
comparison purposes, by the GRGA code developed by Abadie and Carpentier
(1969) and Abadie (1975). The RSDCC computer program was written in double
precision FORTRAN, compiled using the FORTRAN 77 compiler, and run on a
VAX 8550 under the VAX/VMS operating system. The technique employed to solve
the master problem was the projected Newton method of Bertsekas (1982) employed
in the original RSD algorithm (Hearn, Lawphongpanich and Ventura, 1987). The
maximum number of projections per iteration was set to r+ 1; however, since all
test problems have a convex quadratic objective function, only one or two projections
were usually required to determine a near optimal solution of the master problem
with a relative duality gap (min{Vf(x*)(x*—3")/|Vf(x*)p*|: y*€ W*}) less than
or equal to 107%. At each projection, a Cholesky factorization (Forsythe and Moler,
1967) is employed to compute the search direction, and the stepsize for the line
search is chosen by an Armijo-like rule (Bertsekas, 1976). The linear subproblem
of RSDCC was solved by the linear programming subroutine LPSUBRS developed
by Gill et al. (1983).

In our implementation of RSDCC, the box size w that bounds the direction
generated by the linear subproblem changes with the problem size and iteration
number. For problems with up to 40 variables, the strategy was u =g for the first
50 iterations, u =+ for the following 50 iterations, etc. until u <107%; then it was
kept constant for the remaining iterations. For problems with more than 40 variables,
the same approach was used but starting with u =3.

In Step 1, the stepsize @ used to determine the incoming extreme point y* s
computed as follows. If g;(x*+ d*)<0, je N,, then @ = 1. Otherwise, the bisection
method in the interval (0, 1) is used. The number of evaluations of the constraint
functions is reduced by analyzing first the constraints that are most infeasible at
@ = 1. The Insert sorting method (Knuth, 1973) puts the constraints in nonincreasing
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Table 1

Summary of computational results for quadratic problems

Problem  Method RE=10"2 RE=<10™* RE=<107¢
Iter.  Proj. CPU Iter.  Proj. CPU Iter.  Proj. CPU
GRGA 24.6 10.2 113.8 213 197.6 322"
n=30 r=15 132 19.2 28 364 678 101 113.8 2768  36.1
m=10 r=10 132 192 2.7 366 710 100 1158 2818 362
=5 132 192 2.8 39.6 810  11.0 129.2  307.0  39.7
r=3 132 192 2.7 508 936 142 1476 3086 4338
r=1 198 222 45 1714 1760 438 409.0 4358  96.5
GRGA 112.2 67.0 161.2 81.1 195.0 90.7
n=40 r=15 23.0 348 8.7 450 812 194 98.0 2058  49.0
m=15 r=10 236 360 9.0 452 822 193 990 199.2  49.7
=5 236 360 9.1 456 842 195 105.6 2222 525
r=3 236 360 9.1 464 848 200 1192 2374 574
r=1 284 360 111 1820 2286  80.0 317.0 3588 1477
GRGA 90.0 116.7 230.8 199.1 307.8 235.2
n=50 r=15 188 306 135 442 846 361 96.6 2004  91.9
m =20 r=10 188 306 135 442 846 364 97.0 2028  93.3
r=5 206 322 145 462 884 376 1042 2222 993
r=3 206 322 146 63.2 1154 518 1312 2528 1217
r= 264 330 187 2120 2612 1745 4210 4720 3641
GRGA 250.4 529.8 318.0 630.8 389.6 695.6
n=60 r=15 160 290 224 422 992 747 109.2 2854 2559
m=25 r=10 160 290 229 4.6 1004 750 1262 3098 263.0
r=5 162 290 239 51.6 1288 889 1446 3108 2968
=3 18.0 314 355 90.0 1452 1489 179.4 3116 296.6
r= 652 754 1309 2006 2122 3503 4008 4240 607.1
GRGA 127.2 554.2 273.0 912.1 324.2 1043.1
n=70 r=15 234 400 477 71.4 1384 1940 2200 4116 5052
m=30 r=10 256 406 531 79.6 1588 2143 266.8 438.6 526.2
r=5 266 . 410 555 111.2  187.0 284.2 2832  419.4 389.4
r=3 344 474 755 1440 157.8 3286 360.4  338.6 6623
r=1 1112 1252 2156 4002 4296 7228 * * #

* The indicated relative error was not achieved at the 500th iteration in at least one of the problems.

order of their function value at @ =1 (g;(x* +d*), je N,). This order saves computa-
tional effort because often only the first constraint analyzed will be active at y*. The
bisection method terminates when the search interval is less than or equal to 10™*
for the first 50 iterations, 10~ for the following 50 iterations, etc. When the tolerance
becomes 107%, it is kept constant.

The quadratically constrained quadratic test problems have the following
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Fig. 1. Computational results for quadratic problems of size 30 * 10.
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Fig. 2. Computational results for quadratic problems of size 40 * 15.
formulation:

min  f(x)=3x"Qox + cox+dy,
1. T T . (5.1)
st g(x)=3x Qx+tcjx+d;<0 forjeN,.
Data for the test problems was generated from uniform distributions represented
by U(a, b), where a and b are the lower and upper bounds, respectively, of the
uniform random variable. Dense matrices Q; were generated by the formula

Q; =2w;w; +diag(p,),
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Fig. 4. Computational results for quadratic problems of size 60 * 25.
where

wi=[w;n], wiwye U(0,1), for all j,
Po=[pow), Poye U(1,3),
P =Lp;»l Pi)E U(1,4), for je N,.

In addition, vectors c;, scalars d;, and the initial feasible solution x, were generated
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Fig. 5. Computational results for quadratic problems of size 70 = 30.

from the uniform distributions shown below.
co=[cow], comy€ U(-5,-2),
¢ =[], ¢wmeU(-3,-1), forje N,,
dye U(50,100),
Xon € U(~1.5,1.5),
d; =3x3Q;xp+ ¢/ xo+ €, €€ U(=2,0), for je N,.

Note that the choice of d; causes the initial solution to be interior to the feasible
region, and in the problems generated, a check showed that 20-30% of the constraints
were binding at the optimal solution.

Problems of five different sizes were generated. The problems ranged from 30
variables and 10 constraints to 70 variables and 30 constraints. For each problem
size, five different test problems were run. Each problem was solved by RSDCC
with r=1, 3, 5, 10 and 15, and by GRGA. Table 1 and Figures 1 to 5 present a
summary of the computational results. For each problem size, Table 1 shows the
average number of iterations, average number of master problem projections, and
CPU time in seconds required to achieve the indicated relative error (RE=
[£(x*) = F(x*)1/|f(x*)|, where x* is the optimal solution) of 10, 107%, and 1075,
The figures display the contrasting convergent behavior of the five different runs of
RSDCC and GRGA. In the graphs, the x-axis represents CPU time, and the y-axis
is log(RE), representing the number of correct digits of the current solution, i.e.,
log(RE) = —4 indicates that the first four digits of the objective function value are
correct. It is interesting to observe from Figures 2 to 5 that for the four largest
problems RSDCC with r=3 is far superior to RSDCC with r=1, the scaled
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Topkis-Veinott algorithm, and it outperforms GRGA significantly. Only for the
smallest problem (see Figure 1), does GRGA outperform RSDCC (r=3) and then
only for RE<107°.

The main contribution of the RSDCC algorithm as an improvement of a feasible
direction method seems substantiated by this computational test. The performance
of the algorithm generally improves as the problem size and r increase. In particular,
there is a decided improvement with r>1 versus r=1. In other words, on these
test problems, ““zig-zagging” is substantially reduced by the generalization of the
line searches to optimization over simplices.
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