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In this paper we describe a cutting plane algorithm for the (NP-hard) windy postman problem. This 
algorithm can also be applied to the mixed, directed, and undirected postman problems. It is based on 
a partial linear description of the windy postman polyhedron and on the simplex method. The partial 
linear description (together with cutting plane recognition strategies) provides new cutting planes and 
hence generates better and better linear programming relaxations of the windy postman polyhedron, 
and the simplex method solves these linear programs. We have investigated the performance of our 
algorithm with several test problems defined on graphs of up to 264 nodes. For most of these problems, 
we obtained optimal solutions in reasonable computation times. 

1. Introduction 

The fol lowing is a combinator ia l  opt imiza t ion  problem which arises in the postal  

service. 

"A pos tman  wants to deliver the mail  in his town. He starts at his office, delivers 

the mail  a long all streets and  then goes back to the office. The ques t ion is to 

design a tour  of m i n i m u m  cost for him."  

In  the l i terature,  the above p rob lem and  similar  ones are know n  as postman problems. 

In  the mathemat ica l  formula t ions  of  these problems,  real world t ranspor ta t ion  

networks are represented by (undirected)  graphs,  digraphs or mixed graphs, and  

the cor responding  pos tman  problems are called undirected, directed, or mixed respec- 

tively. (The undi rec ted  pos tman  problem is also know n  as the Chinese postman 

problem (short: CPP) since it was proposed  by the Chinese  mathemat ic ian  M. G ua n ,  

see G u a n  (1962).) In  m a n y  real world problems,  the cost of  traversing a street in 

one direct ion is the same as that of  traversing it in the opposi te  direction. But, for 
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some problems, this is not the case. These are called windy postman problems (short: 
WPP). (On a windy day, the cost of traversing a street with the wind will be different 
from that of traversing it against the wind.) Although the above types of routing 
problems are termed as postman problems, they arise also in many other areas, for 
instance, in waste collection, street cleaning, snow removal, road inspection, and 
school bus routing etc. 

In this paper we present a cutting plane algorithm for the WPP. The algorithm 
is based on a partial linear description of the windy postman polyhedron described 
in Win (1987) and Gr6tschel and Win (1992) and on the simplex method. As the 

initial linear program (short: LP) we solve the LP relaxation of a canonical integer 
linear programming formulation of the WPP. At each iteration, some inequalities 

that are not binding at the current fractional LP solution are deleted from the current 
LP, inequalities (that are in our partial linear description and) violated by the current 
fractional LP solution are recognized and added to the current LP, and the updated 
LP is reoptimized. The algorithm stops when the current LP solution is integral, or 
if it is fractional and violates no inequality of  our partial linear description. In the 
first case, we get an optimal windy postman tour while, in the other, we use the 
fractional LP solution to construct an approximate windy postman tour heuristically. 

Thus our algorithm is not exact, i.e., it does not guarantee termination with an 
optimal solution. Our computational results of Section 5, however, show that the 
algorithm generates optimal tours in most cases, and in the others, approximate 
tours are produced that are almost optimal. Moreover, one can transform our 
algorithm into an exact procedure by supplementing an enumeration phase like 
branch and bound. Since the undirected, directed and mixed postman problems 

can be viewed as special cases of the WPP, one can apply our algorithm also to 
such instances. 

The paper is organized as follows. In Section 2 we describe some notation, 
definitions and statements of  various postman problems. In Section 3 we summarize 
some polyhedral results on which our cutting plane algorithm is based. Then, in 
Section 4, we give a detailed description of  the algorithm. The practical performance 
of our algorithm is investigated by running it on several test problems. These 
computational results are reported in Section 5. 

2. Notation, definitions, and statements of the problems 

Most of the graph and polyhedral theory terms used in this paper are standard - -  see, 
for example, Bondy and Murty (1976) and Bachem and Gr6tschel (1982). We thus 
introduce only those that are used frequently or are nonstandard. 

We denote (undirected) graphs by G = (V, E)  where V ~  ~ is the set of nodes and 
E the set of edges. Loops are irrelevant for our purposes, so we assume throughout 
that all graphs are loopless. We allow parallel edges since, for instance, parallel 
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roads sometimes occur  in road networks.  An edge with endnodes  i and j will be 

denoted  b y / j  a l though this is slightly imprecise in case there are more  edges than 

one incident with i and j .  We make sure that this notat ion does not lead to confusion.  

For  a node  i c  V, we denote  the set o f  edges incident with i by 6(i);  its cardinali ty 

is called the degree of  i. An even resp. odd node is a node  with even resp. odd  

degree. Digraphs are denoted  by D = ( V, A) where V # 0 is the set o f  nodes  and A 

the set o f  arcs. As above, loops are neglected and parallel arcs are allowed. We 
denote  an arc a E A incident from i to j by a = (i , j) .  We denote mixed graphs by 

M = (V, E, A) where V # ~) is the set o f  nodes,  E the set o f  edges and A the set o f  

arcs. 

Let G = ( V ,  E )  be a graph and u, v~ V. A sequence w = ( i o i l ,  i l i2 , . . . ,  ik-lik) of  

edges of  E with io = u, ik = v is called a walk between u and v. ~o is open if u # v 

and closed otherwise, w is a path if is ¢ i, for 0 <~ s < t ~< k. I f  ~o is a path and ikio ~ E, 
then the sequence (ioi~, i l i z , . . . ,  ik-~ik, ikio) is a cycle. I f  a walk exists between any 
pair  of  nodes  o f  V, then G is said to be connected. A subgraph of  a graph G that 

is connec ted  and that  is maximal  with respect to this proper ty  is called a (connected)  

component of  G. Any  edge e o f  G such that the graph H obtained f rom G by 

removing e has more  componen ts  than G is called a bridge of  (3. For  a subset W 

of  V, the cut induced by W, denoted  by 3 ( W ) ,  is the set of  edges /j c E with i c W 

a n d j  ~ W. 6 (W)  is an odd cut if  the number  o f  odd  nodes in W is odd, or equivalently,  

if 18(W)I is odd.  
Let D = ( V , A )  be a digraph, and u and v be two nodes  in V. A sequence 

o) = ((i0, i0,  (il,  iz) . . . . .  (ik_~, ik)) of  arcs in A with io = u and ik = v is a diwalk f rom 

u to v. w is open if u # v and closed otherwise; w is a dipath if  is ¢ i, for 0 <~ s < t ~< k. 

I f  co is a dipath and (ik, io) c A, then the sequence ((io, il), (il, i 2 ) , . . . ,  ( /k-l ,  ik), 

(ik, i0)) is a dicycle. D is strongly connected if for each pair  of  nodes i,j ~ V, there 

are diwalks f rom i to j and f rom j to i. 

Let G =  (V, E )  be a graph and l je  E. I f  we replace the edge /j by the arc (i ,j) ,  
then we say that tj is oriented f rom i t o j  or that (i , j)  is an orientation ofij. I f  E~ ~ E 

and A1 is the set o f  arcs obtained by orienting each edge of  E1 in one of  the two 

possible directions, then we call A~ an orientation of El. I f  w is a closed walk in 

G = (V, E )  and ~" is a closed diwalk that is an orientat ion o f  w, then ~- is called a 

diorientation of  w. 

Let G = (V, E )  be a graph and c := (Ce)e~e e R e be a cost function that  assigns 

to each edge e e E a cost c~. Then,  for  any F c E, we call ~f~F Cf the cost o f f  and 
denote  it by c(F). Similarly, for a digraph D = (V, A), a cost funct ion c := (C~),~A G 
NA and an arc set B c A, we denote  the cost Y.b~B Cb of  B by c(B). Let G = (V, E)  

be a graph, A :-- {(i , j) ,  (j, i)]/ j  c E} and c := (co, Ci~)ij~e c [~a, where c~j resp. cj~ is the 

cost o f  edge /j when it is oriented from i to j resp. f rom j to i. (In the sequel, c o 
and cj~ will have these meanings  whenever  two numbers  c o and cj~ are associated 

with an edge /j'c E.) In such a case, the cost o f  a subset E~ o f  E is undefined,  but 

the cost c(Al) of  an orientat ion A1 of  El is meaningful  and is defined by c(A~) :~ 

~(i,j)~_A 1 Cij" 
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above terminology, we can now define various types of  postman 

The undirected postman problem (The standard CPP): Let G =  (V, E)  be a con- 

nected graph with cost ce c E for each edge e ~ E. A closed walk in G containing 

each edge of  E at least once is called an undirected postman tour of G. The question 

is to find an undirected postman tour of G of minimum cost. (It is obvious that an 
undirected postman tour of finite minimum cost exists if and only if ce/> 0 for each 

edge e ~ E.) 

The directed postman problem: Let D =  (V, A) be a strongly connected digraph 

with cost ca 6 ~ for each arc a c A, A closed diwalk in D containing each arc of  A 

at least once is called a directed postman tour of D. The question is to find a directed 

postman tour of D of minimum cost. (It  is obvious that a directed postman tour 

of  finite minimum cost exists if and only if D contains no dicycle of  negative cost.) 
The mixed postman problem: Let M = (V, E, A) be a mixed graph with cost ce for 

each edge e ~ E and co for each arc a ~ A. Suppose D ~  = (V, A') is the digraph 

with arc set A' := A u {(i,j), (j, i) li j c E} and cost function c' := (C'o),~A' defined by 

c] := ca for each arc a c A and c~i~):= clja):= ee for each edge e := ij E E. A mixed 
postman tour of M is a closed diwalk in DM containing each arc a ~ A at least once 

and containing one of  the arcs (i , j)  and (j, i) at least once for each e d g e / j c  E. The 

question is to find a mixed postman tour of M of minimum cost. (To guarantee 
existence of a feasible mixed postman tour, we assume that DM is strongly connected, 

and to guarantee existence of a finite optimal mixed postman tour we assume that 

DM contains no dicycle of  negative cost.) 

The windy postman problem: Let G = ( V, E)  be a connected graph with a cost 

function c := (cu, eji)~E. Here e~ resp. c)~ is the cost of edge ij when it is oriented 

as (i , j)  resp. (j, i). A diorientation of a closed walk in G containing each edge of 

E at least once is called a windy postman tour (short: WP-tour) of G. The question 
is to find a WP-tour of G of minimum cost. (It  is obvious that a WP-tour of G of 

finite minimum cost exists if and only if the digraph D = (V, A) with arc set 

A := {(i,j), (L i) l/J ~ E} contains no dicycle of negative cost.) 

Clearly, the undirected postman problem is a special case of  the WPP. Moreover,  

since an arc a = (i , j)  with cost e~ can be transformed to an edge / j  with costs c o = c~ 
and cji = m, the directed and mixed postman problems can also be viewed as special 

cases of  the WPP. 

With respect to the computational complexity of these problems, it is known that 
the undirected and directed pos tman problems are solvable in polynomial  time, cf. 
Edmonds (1965), Liebling (1970) and Edmonds and Johnson (1973). Some special 
cases of  the mixed and windy postman problems can be solved in polynomial  time, 
but they are NP-hard in general - - s e e  Edmonds and Johnson (1973), Guan  (1984), 
Win (1989), and Papadimitriou (1976). In the literature very little can be found on 
the design and analysis of  exact solution strategies for these NP-hard problems. As 
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far as we know, Christofides, Benavent, Campos, Corberan and Mota (1984) is the 

only computational study done for the mixed postman problem, and for the WPP 

no solution method with a computation analysis has been reported. 
Before closing this section, let us mention some definitions of polyhedral theory. 

Suppose a c ~ " \ { 0 }  and cec~.  Then { x ~ " l a T x = c e }  is a hyperplane in l~ n and 
{x ~ O~nlaTx <~ ~) is a half space in N". A polyhedron in N" is the intersection of 

finitely many half spaces in R ~. A linear inequality aTx <~ a with a c ~", a ~ [R is 
valid with respect to a polyhedron P, if P c_ {x ~ N"[aVx ~< o~}. A subset F of  N" is 
a face of a polyhedron P, if there exists a valid inequality a'rx <~ a for P such that 
F = P n {x ~ ~ I aTx = a}. In this situation we say that F is induced (defined) by 

the inequality aVx ~< a. A face of a polyhedron P is a facet if it is nonempty, different 

from P and maximal with respect to set inclusion. 

3. Results on the windy postman polyhedron 

In this section we summarize some polyhedral results on the WPP on which our 

cutting plane algorithm is based. 

Let G = ( V, E)  be the underlying graph of a WPP and r a WP-tour of G. We 

define the incidence vector X ~ of  ~- by X~: = (X~,Xj])ij~E, where X~ resp. Xj~ is the 
number of times ( i , j )  resp. (j, i) occurs in T. The win@postman polyhedron (short: 
WP-polyhedron) of G, denoted by WP(G) ,  is the convex hull of the incidence vectors 
of the WP-tours of G. Clearly, the WPP is equivalent to the linear program 

rain c V x 

s.t. x c WP(G).  

(3.1) 

Here c :--(c~, c j ~ ) ~  is the cost function of  the given WPP. 
To apply LP methods to (3.1), it is necessary to know a linear system describing 

WP(G)  completely. But the NP-hardness of the WPP implies that it is unlikely that 
one can find such a linear system. However, recent computational studies in com- 
binatorial optimization have shown that, quite frequently, even partial linear descrip- 

tions (of  combinatorial polyhedra like WP(G))  are useful for the design of efficient 
LP-based algorithms for NP-hard problems for instance, see Padberg and Gr6tschel 
(1985), Gr~btschel and Holland (1991), and Padberg and Rinaldi (1991) for the 
travelling salesman problem, Gr6tschel, Jfinger and Reinelt (1984) for the linear 
ordering problem, or Gr6tschel and Wakabayashi (1989) for a clustering problem etc. 

With this motivation we have determined several classes of  valid and facet defining 
inequalities of WP(G),  cf. Win (1987), Gr~tschel and Win (1992). Some of these 

i n e q u a l i t i e s -  those that are used in our a lgo r i t hm- -a re  listed in the following 
Lheorem: 
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Theorem 3.1. Let G = ( V, E) be the underlying graph of a WPP. 
(a) The following are valid equations and inequalities of  WP(G):  

(xi j -  xji) = 0 f o r a l l i ~ V ,  (3.2) 
ij~,3(i) 

xo + xji >~ l for all ij ~ E, (3.3) 

xo >~ O, xj~ ~ 0 for all ij ~ E. (3.4) 

(b) The equation system (3.2) describes the affine bull of WP(G).  
(c) The dimension of WP(G) equals 2 IE[ -  I VI + 1. 
(d) An inequality of type (3.3) defines a facet of WP(G) if and only if ij is not a 

bridge of (7. 
(e) An inequality o f  type (3.4) defines a facet of  WP(G) if  and only if ij is not a 

bridge of  G. 
(f) For any odd cut 3( W) in G, the inequalities 

(xo + xji) >~ [~( W)l + l, (3.5) 
0 ~ ( w )  

I (w)l+l 
Y, x o >~ (3.6) 

i~ w,/~ v\ w 2 ' 

18(W)l+l  
Y~ xj/>~ (3.7) 

i~ w,s~ v\ w 2 ' 

are valid with respect to WP(G) and they induce the same face. (In the sequel we will 
refer to these inequalities as odd cut inequalities.) 

(g) An inequality of type (3.5) (and thus of type (3.6) or (3.7)) defines a facet of 
WP(G)  if and only if the subgrapbs of G induced by W a n d  V \  W are connected. [] 

For the proof  of this theorem, see Win (1987) or Gr6tschel and Win (1992). 
Let us define the polyhedra P~(G) and P2(G) by 

P~(G) = {x := (xo, x~i)!j~E Ix satisfies (3.2)-(3.4)} 

and 

~ ( O )  = P~(G)n  {x lx  satisfies (3.5) for each odd cut 6( W)}. 

Thus WP(G)~P2(G)c__P~(G).  Moreover, it is easy to see that W P ( G ) =  
conv{x e PI(G) Ix integral}. Thus the following program is an integer programmint 
formulation of  the windy postman problem 

rain c T x 

s.t. X satisfies (3.2), (3.3), (3.4), (3.8 

x integral. 

It is shown in Win (1989) that WP(G)  = PI(G) if and only if G is Eulerian. Therefor~ 
for general graphs G, it seems reasonable to relax WP(G) to P2(G) (which contair 
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a large class of  facets of type (3.5)) and to hope that the linear program 

min cXx 

s.t. x ~ P2(G) (3.9) 

provides a good lower bound on the length of an optimal WP-tour. 
To check our belief and solve some real world problems, we have designed an 

LP-based cutting plane algorithm that optimizes the linear program (3.9). Our 
computational experiments of Section 5 show that P2(G) is a good relaxation of 
WP(G)  indeed. Moreover, as our next theorem shows, P2(G) possesses another 

nice property. 

Theorem 3.2. The linear program (3.9) can be solved in time polynomial in the input 

length of the given WPP. 

Proof. Note that the number of  inequalities of  type (3.5) is in general exponential 
in IV I + IEI. However, it follows from the ellipsoid m e t h o d -  see Gr6tschel, Lovdsz 
and Schrijver (1981) - - tha t  (3.9) can be solved in polynomial time if and only if 
the separation problem for P2(G) (stated below) can be solved in polynomial time. 

"Given a (rational) vector x * E Q  A (where A = { ( i , j ) ,  (j, i) I O c E}), determine 
whether x* c P2(G) and if this is not the case find a hyperplane separating x* from 
P2(G), i.e., find a vector a ( g 0 ) c Q  A and a number o ~ Q  such that aTx>-a for 
every x c P2(G) and aTx * < a." 

The separation problem for P2(G) can be solved as follows. Given x*~ QA, one 

can check in polynomial time whether x* satisfies the constraints (3.2)-(3.4) by 
direct substitution. We may thus assume that x* satisfies all of  them. For each edge 

0 ~ E, define the weight w o- := x o. + xji - 1. Since, for any odd cut 6(W),  

x* satisfies (3.5) <=> ~ * * (x~ +xji - 1) I> 1 
ij~8( w) 

one can see that the separation problem for the odd cut inequalities (3.5) reduces 
to the problem of determining an odd cut of G of minimum weight with respect to 
the nonnegative weight function w. Padberg and Rao (1982) have shown that the 

latter is polynomially solvable. Hence the theorem is proved. [] 

~. Description of the algorithm 

~Ve now describe our algorithm to solve problem (3.9) resp. the windy postman 
)roblem. By Theorem 3.2, using the ellipsoid method, (3.9) can be solved in 
~olynomial time. However, this procedure seems to be inefficient in practice because 
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of the rather poor (though polynomial) performance of the ellipsoid method. 
Therefore we have replaced the ellipsoid method by the simplex procedure in our 
algorithm. Thus our algorithm is theoretically nonpolynomial. Moreover, as men- 

tioned in Section 1, it is not guaranteed to terminate with an optimal WP-tour. But 
the computational study of the next section shows that our algorithm works quite 
efficient in practice, i.e., in most of our test problems an optimal WP-tour was 
produced in reasonable computing time. 

The algorithm is a (by now) standard cutting plane method, where an initial 
linear program is set up that is solved to optimality. One checks whether the optimum 
solution x* represents a WP-tour and if not tries to find valid inequalities that are 

violated by x*. These cutting planes are added to the current LP and the process 

is repeated. We will denote the polyhedron that is determined by the inequalities 
of the current LP by P and describe our code in more detail. 

Step I (Initialization). Set P :=  P~(G). 

This step initializes the polyhedron P with P~(G). As mentioned in (3.8), P~(G) 
has the desirable property that every integral point in P~(G) represents a WP-tour. 
Moreover, the number of constraints of  the linear system describing PI(G) (not 

counting the nonnegativity constraints) is IV[+ [E I. Linear programs of this type 
can be handled efficiently. 

Step 2 (Solving the LP). Solve the linear program 

min cTx 

s.t. x~  P. 
(4.1) 

For the solution of (4.1), we applied the simplex method. We used the linear 
programming package XMP of  Roy Marsten, see Marsten (1981). The initial LI? 
was solved by the XDUAL (dual simplex method) routine. The linear programs ot 
later stages were always solved by the XDPH2 (phase-2 of the dual simplex method~ 
routine, since a dual basic feasible solution is already known. 

Step 3 (Checking optimality). Check whether the optimal LP solution, say x*, o 
Step 2 represents a WP-tour. For this purpose we only have to check the integralitz 
of x* because the current polyhedron P is contained in PI(G) by constructior 
Thus, if x* is integral then it represents an optimal WP-tour. We construct that tou 
and stop. 

Step 4 (Deleting nonbinding constraints). From the linear system describing J 
delete some odd cut inequalities which are nonbinding at the current LP solution x 
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This step is parameter driven. Our code asks that a parameter e is set to a small 

nonnegative number. Every odd cut inequality such that the value of the correspond- 

ing surplus variable is greater than e is deleted. We usually chose e between 0.1 

and 0.3. 

Step 5 (Cutting plane recognition). Find odd cut inequalities which are violated 

by x*. 

Such inequalities, if they exist, induce cutting planes which chop off x*. How we 
did this job in our code is discussed in Sections 4.1 and 4.2. 

Step 6 (Adding cutting planes). If some odd cut inequalities violated by x* are 

found, add them to the linear system obtained in Step 4. Let P be the polyhedron 

determined by the resultant linear system and go to Step 2. 

We observed in our experiments that the number of violated odd cut inequalities 
found at each iteration is relatively small. Thus, in our program, we added all 

inequalities we found. 

Step 7 (Constructing an approximate tour). (We enter this step when the current 

LP solution is fractional and violates no odd cut inequality.) Apply a heuristic that 
uses the fractional LP solution x* to construct an approximate WP-tour, calculate 
an upper bound of its relative error and stop. 

The heuristic used in this step is described in Section 4.3. 

4.1. Cutting plane recognition: An exact algorithm 

Theorem (3.2) shows that the cutting plane recognition problem of Step 5 can be 
reduced to the minimum weighted odd cut problem which can be solved in poly- 
nomial time by the Padberg-Rao procedure. The worst-case performance of this 
exact algorithm is O(I VI 4) and hence rather expensive. Therefore, in our code we 
first tried to determine violated odd cut inequalities by some fast heuristics and 
called the Padberg-Rao procedure only if the heuristics failed. In our application 

of the Padberg-Rao procedure, we construct a complete Gomory-Hu  (or flow 
equivalent) tree and all violated odd cut inequalities which can be read from it are 
added to the current LP. The Padberg-Rao procedure calls a maximum flow 
algorithm as a subroutine; for this purpose we have used a max-flow code that is 
based on the Goldberg and Tarjan (1986) procedure. 

4.2. Cutting plane recognition: Some heuristics 

The heuristics we have applied are adaptations of those used by Gr6tschel and 
Holland (1985) in their cutting plane code for the perfect matching problem. 
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Heuristic 1. In this heuristic we construct a graph G ' =  (V, E ' )  with edge set E ' :=  
{/j c E Ix* + x* - 1 > 0}. Then we determine, by depth first search, odd components 
of G', i.e., components with an odd number of odd (with respect to G) nodes. If 

W is such a component,  then obviously the odd cut inequality induced by W is 
violated by x*. If  there exists no such component of G', then the heuristic fails to 
recognize violated odd cut inequalities. The complexity of this heuristic is O(]E'I). 
In practice, G'  is very sparse and hence the complexity is O(I V]) empirically. 

Heuristic 2. In this heuristic we construct a graph G ' = ( V ,  E')  whose edge set 

E '  = {/j ~ E ] x;j* + xj;* - 1 > ~}. Here e is a small positive number which in our code 
was set to 0.2. As in Heuristic 1, we determine odd components of G' by depth first 

search, and for each odd component,  we check whether it induces a violated odd 

cut inequality of  x*. If this is the case for some odd components, then we have 
found some cutting planes. Otherwise the heuristic fails to find odd cut inequalities 
violated by x*. The complexity of this heuristic is also O(]E'I) theoretically and 
O(I VI) empirically. 

In our code we call Heuristic 1 first and if it fails we turn to Heuristic 2. 

4.3. A heuristic which constructs an approximate WP-tour 

Let x* be the fractional LP solution which is passed to Step 7 of our algorithm. 

1. Construct the subgraph G'=(V ' ,  E') of  G that is induced by the edge set 

E ' :=  {ij~ E Ix* or x* is fractional}. 
(We have found in most of our experiments that G' is a small sparse graph 

compared with G.) 
2. For each i~ g',  define d~ := Y~ij~, ( x * - x * )  and construct the linear program 

min 5~ (cox o + cj~xji) 
ij~ E" 

s.t. }~ (xj~-xu)=d'i  forall  ie  V', 
i jcE'  

x~ + xj~ >/I for all /j c E' ,  (4.2) 

x0~0 ,  xj~>~0 fo ra l l  / j~E ' .  

(One can see that the d~"s are integers, ~i~v, d'; = 0, and that (x*, xj~)o~.* is a 

fractional feasible solution of (4.2).) 
3. Solve the linear program (4.2) (by the simplex method) to obtain an optimal 

vertex solution, say x' := (x~j, x}i)u~,. 
4. (In this step we will use the following polyhedral result of Win (1987). '°Let 

Y:= (Y;J, YJ;)0~e' be a vertex of the polyhedron of the LP (4.2). Then (i) each 
component of y is either ½ or integral and (ii) y~ = ½ implies yj~ = ½.") 

Define a vector ~ = (~j, xJ'~)0~E' by ~ -- x~' if x~j~ is integral and xu = 1 otherwise 

(i.e., if  x~j = ½). 
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(It is easy to see that ff is an integral feasible solution of (4.2) and ff together 
with (x*, X*)~;~E\E' gives a feasible WP-tour of  the given WPP.) 

5. Combine ~ and (x*, * Xji)~E\E' to get a new vector x, construct the WP-tour 
represented by ~ and stop. 

Roughly speaking, the idea of this heuristic is to fix the integral components of  
the last fractional solution x* and then to reasonably transform its fractional 
components to integers so that they together with the fixed integral components 
constitute a good feasible WP-tour. We have found that our heuristic works very 
well in practice and generates good approximate solutions which are almost optimal. 

The cost of the last fractional solution x* (which is usually a tight lower bound of 
the cost of an optimal WP-tour) is also useful for the evaluation of the quality of  
the generated approximate WP-tour. 

5. Computational results 

The practical performance of  our algorithm has been studied with several test 
problems. As the underlying graphs of  these problems, we chose six real world 
transportation networks. The number of nodes in these graphs ranges from 52 to 

264; the number of  edges from 78 to 489. Our computational study is composed of 
three parts. The first one deals with WPPs, the second one with mixed postman 
problems and the last one with standard CPPs. Clearly our major interest is in the 
first two parts that concern NP-hard problems. 

We have coded our algorithm in FORTRAN and have run it on the NORSK 

DATA ND-540 of the University of Augsburg under the operating system SINTRAN 
III-VSX/500. The CPU times reported are for the execution of the entire run 
including the input /output  operations, overhead etc. Fractions of seconds have been 
rounded up. 

5.1. Experiments with WPPs 

As mentioned above, six real world networks and the corresponding real world edge 
costs (lengths) were chosen for our computational study. The real world edge costs 
were symmetric, i.e., c~ = cji for each edge tj, and hence not suitable to use in our 
test WPPs. Thus we generated asymmetric edge costs randomly. We used two random 
cost generation procedures described in Sections 5.1.1 and 5.1.8. 

5.1.1. A random cost generation procedure 

Let G =  (V, E)  be a real world graph with real world (symmetric) integer costs c~ 
for each edge /j in E. Suppose I VI = n, the nodes of  V are indexed by the integers 
1,2 . . . .  , n, and for each node i c  V, N ( i )  denotes the set of  nodes adjacent to i. A 
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procedure which we used to generate random costs c U and cji for each edge ij ~ E 

is as follows. 

Procedure 5.1. 

For i:= 1 to n do. 

For each j c N ( i )  do. 
Begin. 
Use a random generator R to generate an integer k in an interval [ - a ,  a]. 
(Here a is an arbitrary but fixed positive integer.) 
Set c~j := c{j + k. 
If cij ~< 0 then set ci~ := 1. 

End. 

By choosing small intervals [ - a ,  a], this procedure models real world problems 

where the difference between c!j and cji is not too large. Clearly, the random costs 
generated by Procedure 5.1 depend on the random generator R as well as on the 
order of the nodes in the adjacency lists N ( i ) .  A complete documentation of our 
choices can be found in Win (1987). For the real world (symmetric) edge costs of 
our graphs, we refer to the original documentations of the problems. The graphs 
we have chosen can be found in Win (1987), or in the original documentations. 

5.1.2. WPPs with underlying graph G1 

G1 is the underlying graph of a standard CPP which, together with real world edge 

costs, was originally given in Burkard and Derigs (1980, p. 98). It contains 52 nodes 
and 78 edges. The average of the real world edge costs of this graph is 57.08. (We 
give this information so as to have an idea about the perturbation introduced by 

Procedure 5.1.) Taking G1 as the underlying graph, we created five WPPs, i.e., we 
generated five sets of edge costs by Procedure 5.1. Each set of these edge costs is 
uniquely determined by the interval I - a ,  a] and the initial value S set to the variable 
SEED of the random generator R. Therefore we can identify each of our test 
problems by the corresponding pair (S, [ - a ,  a]). Table 1 shows the identifiers of 
these problems and the corresponding computational results. All problems were 
solved to optimality, and all cuts were produced by our cutting plane recognition 
heuristics (see Section 4.2). In that table and also in the others, the column labels 

have the following meanings: 

PRO: problem identifier; 
LP: number of LPs solved (=number  of simplex calls); 
CONS: minimum and maximum number of constraints (excluding the non- 

negativity constraints) of the LPs solved (we note here that the number of variables, 

not counting slack and surplus ones, of these LPs equals 21El); 
CUT: total number of cuts recognized; 
HCUT: number of cuts recognized by heuristics; 
ERR: an upper bound of the relative error, expressed in percentage, of  the tour 

generated by the algorithm (this upper bound is defined by 100 (C  - C ' ) / C ' ,  where 
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is the cost of the tour generated by the algorithm and C' is a lower bound of the 
cost of  an optimal tour, upper bound 0% means that the generated tour is optimal); 

COST: cost of the tour generated by the algorithm; 
CPU: CPU time in min:sec  on the NORSK DATA ND-540; 
PRP: number of times the Padberg-Rao procedure is called, and the percentage 

of  the total time spent in this procedure; 
ARC: number of arcs in the tour produced by the algorithm. 

Table 1 

PRO LP CONS C UT  HC UT  ERR COST CPU PRP ARC 

( 3 , [ - 5 , 5 ] )  7 130-179 56 56 0 6635 0:13 0,0  104 
( 4 , [ - 5 , 5 ] )  6 130-179 54 54 0 6656 0:12 0 ,0  104 
( 3 , [ - 8 , 8 ] )  6 130-179 54 54 0 6602 0:12 0 ,0  104 
( 4 , [ - 8 , 8 ] )  7 130-180 56 56 0 6629 0:17 0,0  105 
(3 , [ -10 ,10 ] )  7 130-180 56 56 0 6582 0:13 0,0  104 

5.1.3. WPPs with underlying graph G2 
G2 is the transportation network of a waste collection problem. It contains 101 
nodes and 185 edges. For (32 itself and coordinates of its nodes, see Appendix A14 
and A18 of  Paessens (1981) respectively. From the node coordinates, we calculate 
the Euclidean distances between adjacent nodes, round them to the nearest integers 
and take the results as the real world costs. We use Procedure 5.1 to generate five 
WPPs. The average of these real world edge costs is 29.43. The identifiers of these 
problems and corresponding computational results are given in Table 2. We can 

see that our algorithm produced optimal WP-tours for four problems and for the 
remaining one it generated an approximate WP-tour whose deviation from the 
optimal value is not more than 1.37%. The exact cutting plane recognition algorithm 
was called in two cases. 

Table 2 

PRO LP CONS C UT  HC UT  ERR COST CPU PRP ARC 

( 1 , [ - 5 , 5 ] )  20 286-383 112 112 0 5998 1:35 0,0  219 
( 2 , [ - 5 , 5 ] )  26 286-391 125 120 0 5900 1:40 1,0.30 219 
( 1 , [ - 8 , 8 ] )  28 286-387 128 128 0 5904 1:49 0 ,0  219 
( 2 , [ - 8 ,  8]) 23 286-394 132 118 1.37 5817 1:33 2, 0.57 220 
(1 , [ -10 ,10 ] )  23 286-385 123 123 0 5842 1:43 0,0  219 

5.1.4. WPPs with underlying graph G3 
G3 is a real world transportation network containing 110 nodes and 193 edges. G3 
itself and coordinates of  its nodes can be seen in Appendix A15 and A19 of  Paessens 
(1981) respectively. The average of  the real world edge costs of this graph is 29.52. 
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As in the case of  G2, we cons t ruc ted  five test  p r o b l e m s  with G3 as the  under ly ing  

graph.  Tab le  3 collects  the identif iers  of  these  p rob l ems  and  c o r r e spond ing  computa -  

t ion results.  We  found  an op t ima l  WP- tou r  for  each test  p rob lem.  The  exact  cut t ing 

p lane  recogn i t ion  a lgor i thm was cal led in two cases. 

Table 3 

PRO LP CONS CUT HCUT ERR COST CPU PRP ARC 

(3,[-5,5]) 16 303-398 104 104 0 6611 1:15 0,0 234 
(4,[-5,5]) 14 303-407 120 101 0 6578 1:13 2,0.59 233 
(3,[-8,8]) 17 303-405 116 105 0 6524 1:22 1,0.26 234 
(4,[-8,8]) 13 303-398 102 102 0 6469 1:07 0,0 233 
(3,[-10,10]) 26 303-400 120 120 0 6466 1:35 0,0 234 

5.1.5. WPPs with underlying graph Go 

G4 is the t r anspo r t a t i on  ne twork  of  a waste  co l lec t ion  p rob lem.  It  conta ins  172 

nodes  and  247 edges.  F o r  G4 i tself  and  the coord ina te s  of  its nodes ,  see A p p e n d i x  

A16 and  A20 of  Paessens  (1981), respect ively .  The  average of  the real  wor ld  edge 

costs of  this g raph  is 24.11. 

As before ,  we cons t ruc ted  five test p r o b l e m s  with G4 as the unde r ly ing  graph.  

The  ident i f iers  of  these p rob l ems  and c o r r e s p o n d i n g  c o m p u t a t i o n  results  are l is ted 

in Table  4. F o r  each p r o b l e m  our  a lgor i thm p r o d u c e d  an op t imal  WP- tour .  The 

exact  cut t ing p lane  r ecogn i t ion  a lgor i thm was cal led  only in one case. 

Table4 

PRO LP CONS CUT HCUT ERR COST CPU PRP ARC 

(5,[-5,5]) 18 419-545 150 150 0 6947 2:26 0,0 313 
(6,[-5,5]) 23 41%553 162 162 0 7026 2:31 0,0 311 
(5,[-8,8]) 15 419-549 150 150 0 6811 2:20 0,0 312 
(6,[-8,8]) 22 41%551 158 158 0 6917 2:26 0,0 311 
(5,[-10,10]) 16 419-543 150 145 0 6704 2:48 1,0.35 312 

5.1.6. WPPs with underlying graph G5 
G5 is a real  wor ld  g raph  which,  toge ther  wi th  real  wor ld  edge costs,  can be found  

in Alewel l  (1980, p. 271). In  the or ig inal  g raph ,  an in te rsec t ion  of  two or  more  edges 

( roads)  is t aken  as a node  (and  given a node  number )  only  when  there is a cus tomer  

at that  pos i t ion .  For  our  expe r imen t  we a s sumed  all such in tersec t ions  also as nodes  

and  ass igned  node  number s  to them. Our  mod i f i ed  graph ,  shown in Win  (1987), 

conta ins  179 nodes  and  307 edges.  The average of  the  real wor ld  edge costs of  this  

g raph  is 3.94. As before ,  we c rea ted  five p r o b l e m s  with  G5 as the  unde r ly ing  graph.  

The  ident i f iers  of  these p r o b l e m s  and  c o r r e s p o n d i n g  c o m p u t a t i o n a l  stat ist ics are 

given in Table  5. Fo r  four  p r o b l e m s  our  a lgor i thm p r o d u c e d  op t ima l  WP- tours  and,  
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for the remaining one, it generated an approximate tour whose relative error is not 

more than 5.16%. The exact cutting plane recognition algorithm was called in two 

c a s e s .  

T a b l e 5  

PRO LP CONS C UT  HC UT  ERR COST CPU PRP ARC 

( 5 , [ - 5 , 5 ] )  14 486-620 172 172 0 1277 3:11 0,0  391 
( 6 , [ - 5 , 5 ] )  92 486-717 476 269 0 1265 16:55 13,3.34 390 
( 5 , [ - 8 , 8 ] )  9 486-609 144 144 0 1338 2:26 0,0  396 
( 6 , [ - 8 , 8 ] )  70 486-715 490 209 5.16 1355 11:56 15,5.45 395 
(5 , [ -10 ,10 ] )  7 486-603 138 138 0 1391 2:23 0 ,0  398 

5.1.7. WPPs with underlying graph G6 
Unlike the preceding ones, G6 is not extracted from the literature. It is the underlying 
graph of  a real world multiple travelling salesman problem which was studied at 

the University of  Augsburg in 1987. It contains 264 nodes and 489 edges. The real 
world edge costs and adjacency lists are available from the authors. The average of 
the real world edge costs of this graph is 13.35. As before, we created five WPPs 
on G6. Table 6 describes the identifiers of these problems and the associated 
computational results. For three problems we found optimal tours and for the other 
two near optimal solutions. The exact cutting plane recognition algorithm was called 

in each case. 
In the 30 runs documented, an optimal WP-tour was found in 26 cases. The exact 

cutting plane recognition procedure was needed only in 12 cases. 

Table 6 

PRO LP CONS C UT  HC UT  ERR COST CPU PRP ARC 

( 1 , [ - 5 , 5 ] )  29 753-1025 338 261 3.24 7286 13:09 4, 1.11 601 
( 2 , [ - 5 , 5 ] )  35 753-1008 319 271 0 6873 10:58 2,0.48 591 
( 1 , [ - 8 , 8 ] )  36 753-1035 343 278 2.79 7043 12:59 5,0.85 611 
( 2 , [ - 8 ,  8]) 50 753-1015 354 281 0 6587 17:40 3, 0.58 595 
(1 , [ -10 ,10 ] )  47 753-1025 370 285 0 6728 13:27 3,0.83 598 

5.1.8. An additional experiment with WPPs 
In the above 30 test problems, edge costs are generated by Procedure 5.1 and hence 
they are influenced by the real world costs. We also studied the performance of our 
algorithm on problems with purely randomly generated costs. We fixed integers 

a < b, and used a random generator to produce, for each edge, integral edge costs 
in the interval [a, b]. The edge costs generated by this procedure are uniquely 
determined by the interval [a, b] and the initial value S set to the variable SEED 
of  the random generator R. Therefore a problem with underlying graph Gi and 
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edge costs generated from the interval [a, b] by setting the initial value S to the 
variable SEED can be identified by the triplet (Gi, S, [a, b]). 

Using the above procedure we created six problems with underlying graphs G~- G6 

and integer edge costs generated from the intervals [1,100], [1,200] and [1,300]. 

The identifiers of these problems and corresponding computat ion results are listed 

in Table 7. Optimal WP-tours were obtained for all but one problem. 

Table 7 

PRO LP CONS CUT HCUT ERR COST CPU PRP ARC 

((31, l,[1,100]) 5 130-178 50 50 0 4629 0:13 0,0 108 
(G2,2,[1,100]) 8 286-356 78 78 0 8117 0:56 0,0 219 
(G3, 1, [1,200]) 11 303-381 88 88 0 19491 0:59 0, 0 241 
((]:4,2, [1,200]) 11 419-548 148 142 0 25450 2:03 1, 0.45 314 
(Gs, 1, [1,300]) 41 486-711 351 197 8.68 50452 8:40 9, 3.37 404 
(G6,2, [1,300]) 44 753-1007 357 252 0 66444 14:26 3, 1.13 602 

5.1.9. Some remarks on the computational results 

The computational  results with 36 test problems are described in Table I-7.  Of  

these problems, our algorithm produced optimal WP-tours in 31 cases. WP-tours 
very near to optimal ones were found in the other cases. This empirically shows 

that Pz(G) is a "nice" relaxation of  WP(G)  indeed. 

One can notice in the tables that most of the cutting planes were recognized by 

heuristics and that, for many problems, we reached the opt imum without calling 

the Padberg-Rao exact separation procedure at all. Thus our cutting plane recogni- 

tion heuristics work quite well in practice. The maximum number  of cutting planes 
was always recognized in the first iteration (it is nearly the number of odd nodes 
of  the underlying graph). In the later iterations we recognized relatively few cutting 

planes. The number  of nonbinding constraints deleted in each iteration was also 

rather small. 
One can see in the tables that computat ion times required by our algorithm are 

also reasonable. We found in all our test problems that about 90% of the overall 

running time was spent for solving the linear programs. Thus a significant improve- 
ment of  the LP-code we use will imply the same for our algorithm. Nearness of  the 
approximate tours (if they were produced) to optimal solutions also shows the 

efficiency of the heuristic of  Section 4.3. 
To provide the reader with a picture of  the detailed computational statistics with 

our test problems, we have chosen the one with underlying graph G5 and identifier 
(5, [ - 8 ,  8]). As Table 5 shows, we had to solve 9 LPs until we reached the opt imum 
of that problem. In Table 8 we describe the number  of cutting planes deleted in 
each iteration (abbreviated as NCD),  the number  of cutting planes added in each 
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Table 8 

Iteration No. NCD NCA TNC COLP 

1 0 0 486 1183.50 
2 0 86 572 1302.25 
3 4 18 586 1322.25 
4 7 14 593 1330.50 
5 1 12 604 1335.00 
6 4 6 606 1338.00 
7 1 2 607 1338.00 
8 2 4 609 1338.00 
9 5 2 606 1338.00 
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iteration (abbreviated as NCA),  total number  of  constraints (excluding the nonnega- 

tivity ones) of  the LP of each iteration (abbreviated as TNC) and the cost of  the 
optimal LP solution of  each iteration (abbreviated as COLP). 

One can notice that in the third iteration we are already very close to the opt imum 

value and that, starting at the sixth iteration, the optimal LP solution value is equal 

to the cost of  an optimal WP-tour. But the integral solution is obtained only in the 

ninth iteration. The distribution of running time of  this problem to each task of  our 

algorithm is as follows: 

LP solving: 95.72%, 
LP updating: 0.90%, 

cut recognition heuristics: 1.28% 

Padberg-Rao procedure: 0.00%, 

reading input data and initial LP set-up: 1.40%, 

WP-tour construction: 0.70%. 

5.2. Experiments with mixed postman problems 

We remarked in Section 2 that one can transform a mixed postman problem into 

a WPP by replacing an arc a := (i,j) of cost ca by an edge U of costs c o := ca, cji := 00. 

Thus one can apply our algorithm also to mixed postman problems. To see how 

our algorithm works on these problems, we constructed 8 mixed graphs by assigning 

some orientations to some edges of  the graphs G~-G4. As edge and arc costs of  

these mixed graphs, we have used the real world costs. Table 9 shows the computa- 
tional results with these problems. In that table, the problem identifier (Gi, a, b, c) 
states that the mixed graph is obtained from the (undirected) graph G~ and that it 
contains a nodes, b edges and c arcs. For the detailed structure of  these mixed 

graphs, see Win (1987). One can see in Table 9 that, for each problem, our algorithm 
produced an optimal solution. 

5.3. Experiments with standard CPPs 

Since standard CPPs can also be viewed as WPPs, we can apply our algorithm also 
to them. To see how our algorithm works in this case, we have tested it with six 
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Table 9 
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PRO LP CONS CUT HCUT ERR COST CPU PRP ARC 

(G1,52,47, 31) 3 130-161 32 32 0 7065 0:09 0,0 113 
(Gt, 52, 37,41 ) 7 130-168 42 42 0 6879 0:12 0,0 114 
(G2,101,122, 63) 13 286-350 74 74 0 6759 0:51 0, 0 242 
(Gz, 101, 95, 90) 20 286-350 84 84 0 8382 0:57 0, 0 282 
(G3,110, 120, 73) 19 303-391 112 94 0 7306 1:09 3, 1.17 251 
(G3,110, 101, 92) 9 303-357 58 58 0 8615 0:42 0, 0 283 
((5:4,172, 154, 93) 11 419-498 96 96 0 9451 1:19 0, 0 396 
(1~4,172, 131,116) 10 419-514 118 118 0 7645 1:24 0, 0 329 

Table 10 

PRO LP CONS CUT HCUT ERR COST CPU PRP ARC 

(Gj,52,78) 7 130-181 56 56 0 6700 0:14 0,0 104 
(G2,101,185) 19 286-385 114 110 0 6171 1:25 1, 0.32 219 
(G3,110,193) 18 303-402 110 110 0 6784 1:22 0,0 233 
(G4,172,247) 28 419-563 173 173 0 7217 3:14 0, 0 312 
(G5,179,307) 21 486-651 192 192 0 1413 3:45 0,0 374 
(G6,264,489) 17 753-973 254 254 0 7494 7:42 0,0 585 

real world CPPs. These problems are obtained from the aforementioned graphs 
G~-G6 and associated real world edge costs. We know that our algorithm is neither 
polynomial nor exact. But, to our surprise, our algorithm produced optimal tours 
for all problems. The computation times required are also quite modest, see Table 
10. In that table, the problem identifier (Gi, a, b) states that the underlying graph 
of the CPP is Gi which contains a nodes and b edges. 

6. Final remarks 

In this paper we have described a cutting plane algorithm and its implementation 
for the windy postman problem which is based on a partial linear description of 
the WP-polyhedron. This algorithm can also be applied to mixed, undirected, and 
directed postman problems. The practical performance of our algorithm has been 
investigated with several test problems defined on graphs of up to 264 nodes and 
489 edges. Our computational experiments of the previous section show that out of 
36 test-WPPs our algorithm produced optimal WP-tours in 31 cases and good 
approximate tours in the others. In the cases of mixed postman and standard Chinese 
postman problems, the algorithm produced optimal solutions of all test problems. 
Moreover, we found that the computation times required are quite reasonable. 
Therefore we believe that our algorithm is efficient enough to be used in practice. 
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To our knowledge, there is no computational study of an exact method for the 

windy postman problem in the literature. In the case of  the mixed postman problem 
Christofides, Benavent, Campos, Corberan and Mota (1984) is the only study we 
know. It proposes a branch and bound based combinatorial algorithm for the mixed 
postman problem and reports computational results with graphs of up to 50 nodes, 
85 arcs and 36 edges. However, we were not able to test our code on these problems. 

The computational experiments reported above show that our algorithm works 
quite well in practice. But further significant improvements may still be achieved. 
We mention a few possibilities. Firstly, one can add an enumeration phase like 
branch and bound to our algorithm so that optimality can always be guaranteed. 
Secondly, further classes of cutting planes should be considered. We have based 
our code on odd cut inequalities only although we know additional classes of valid 
and facet defining inequalities for the WP-polyhedron, see Win (1987) and Gr~tschel 
and Win (1992). However, we do not have polynomial time separation procedures 
for these classes. Fast separation heuristics, though, will probably help to improve 
the code, in particular, to reduce the number of calls of the LP-solver. 
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