
Mathematical Programming 55 (1992) 339-358 339
North-Holland

A cutting plane algorithm for the windy
postman problem

M. Gr6tschel
Konrad-Zuse-Zentrum f~r Informationstechnik, W-IO00 Berlin 31, Germany,
and Teehnisehe Universitiit Berlin, W-IO00 Berlin 12, Germany

Zaw Win
Department of Mathematics, University of Rangoon, Rangoon, Burma

Received 14 September 1989
Revised manuscript received 12 October 1990

In this paper we describe a cutting plane algorithm for the (NP-hard) windy postman problem. This
algorithm can also be applied to the mixed, directed, and undirected postman problems. It is based on
a partial linear description of the windy postman polyhedron and on the simplex method. The partial
linear description (together with cutting plane recognition strategies) provides new cutting planes and
hence generates better and better linear programming relaxations of the windy postman polyhedron,
and the simplex method solves these linear programs. We have investigated the performance of our
algorithm with several test problems defined on graphs of up to 264 nodes. For most of these problems,
we obtained optimal solutions in reasonable computation times.

1. Introduction

The fol lowing is a combinator ia l opt imiza t ion problem which arises in the postal

service.

"A pos tman wants to deliver the mail in his town. He starts at his office, delivers

the mail a long all streets and then goes back to the office. The ques t ion is to

design a tour of m i n i m u m cost for him."

In the l i terature, the above p rob lem and similar ones are know n as postman problems.

In the mathemat ica l formula t ions of these problems, real world t ranspor ta t ion

networks are represented by (undirected) graphs, digraphs or mixed graphs, and

the cor responding pos tman problems are called undirected, directed, or mixed respec-

tively. (The undi rec ted pos tman problem is also know n as the Chinese postman

problem (short: CPP) since it was proposed by the Chinese mathemat ic ian M. G ua n ,

see G u a n (1962).) In m a n y real world problems, the cost of traversing a street in

one direct ion is the same as that of traversing it in the opposi te direction. But, for

340 M. Gr6tschel, Z. Win / Solving the windy postman problem

some problems, this is not the case. These are called windy postman problems (short:
WPP). (On a windy day, the cost of traversing a street with the wind will be different
from that of traversing it against the wind.) Although the above types of routing
problems are termed as postman problems, they arise also in many other areas, for
instance, in waste collection, street cleaning, snow removal, road inspection, and
school bus routing etc.

In this paper we present a cutting plane algorithm for the WPP. The algorithm
is based on a partial linear description of the windy postman polyhedron described
in Win (1987) and Gr6tschel and Win (1992) and on the simplex method. As the

initial linear program (short: LP) we solve the LP relaxation of a canonical integer
linear programming formulation of the WPP. At each iteration, some inequalities

that are not binding at the current fractional LP solution are deleted from the current
LP, inequalities (that are in our partial linear description and) violated by the current
fractional LP solution are recognized and added to the current LP, and the updated
LP is reoptimized. The algorithm stops when the current LP solution is integral, or
if it is fractional and violates no inequality of our partial linear description. In the
first case, we get an optimal windy postman tour while, in the other, we use the
fractional LP solution to construct an approximate windy postman tour heuristically.

Thus our algorithm is not exact, i.e., it does not guarantee termination with an
optimal solution. Our computational results of Section 5, however, show that the
algorithm generates optimal tours in most cases, and in the others, approximate
tours are produced that are almost optimal. Moreover, one can transform our
algorithm into an exact procedure by supplementing an enumeration phase like
branch and bound. Since the undirected, directed and mixed postman problems

can be viewed as special cases of the WPP, one can apply our algorithm also to
such instances.

The paper is organized as follows. In Section 2 we describe some notation,
definitions and statements of various postman problems. In Section 3 we summarize
some polyhedral results on which our cutting plane algorithm is based. Then, in
Section 4, we give a detailed description of the algorithm. The practical performance
of our algorithm is investigated by running it on several test problems. These
computational results are reported in Section 5.

2. Notation, definitions, and statements of the problems

Most of the graph and polyhedral theory terms used in this paper are standard - - see,
for example, Bondy and Murty (1976) and Bachem and Gr6tschel (1982). We thus
introduce only those that are used frequently or are nonstandard.

We denote (undirected) graphs by G = (V, E) where V ~ ~ is the set of nodes and
E the set of edges. Loops are irrelevant for our purposes, so we assume throughout
that all graphs are loopless. We allow parallel edges since, for instance, parallel

M. Gr6tsehel, Z Win / Solving the windy postman problem 341

roads sometimes occur in road networks. An edge with endnodes i and j will be

denoted b y / j a l though this is slightly imprecise in case there are more edges than

one incident with i and j . We make sure that this notat ion does not lead to confusion.

For a node i c V, we denote the set o f edges incident with i by 6(i); its cardinali ty

is called the degree of i. An even resp. odd node is a node with even resp. odd

degree. Digraphs are denoted by D = (V, A) where V # 0 is the set o f nodes and A

the set o f arcs. As above, loops are neglected and parallel arcs are allowed. We
denote an arc a E A incident from i to j by a = (i , j) . We denote mixed graphs by

M = (V, E, A) where V # ~) is the set o f nodes, E the set o f edges and A the set o f

arcs.

Let G = (V , E) be a graph and u, v~ V. A sequence w = (i o i l , i l i2 , . . . , ik-lik) of

edges of E with io = u, ik = v is called a walk between u and v. ~o is open if u # v

and closed otherwise, w is a path if is ¢ i, for 0 <~ s < t ~< k. I f ~o is a path and ikio ~ E,
then the sequence (ioi~, i l i z , . . . , ik-~ik, ikio) is a cycle. I f a walk exists between any
pair of nodes o f V, then G is said to be connected. A subgraph of a graph G that

is connec ted and that is maximal with respect to this proper ty is called a (connected)

component of G. Any edge e o f G such that the graph H obtained f rom G by

removing e has more componen ts than G is called a bridge of (3. For a subset W

of V, the cut induced by W, denoted by 3 (W) , is the set of edges /j c E with i c W

a n d j ~ W. 6 (W) is an odd cut if the number o f odd nodes in W is odd, or equivalently,

if 18(W)I is odd.
Let D = (V , A) be a digraph, and u and v be two nodes in V. A sequence

o) = ((i0, i0, (il, iz) (ik_~, ik)) of arcs in A with io = u and ik = v is a diwalk f rom

u to v. w is open if u # v and closed otherwise; w is a dipath if is ¢ i, for 0 <~ s < t ~< k.

I f co is a dipath and (ik, io) c A, then the sequence ((io, il), (il, i 2) , . . . , (/k-l , ik),

(ik, i0)) is a dicycle. D is strongly connected if for each pair of nodes i,j ~ V, there

are diwalks f rom i to j and f rom j to i.

Let G = (V, E) be a graph and l je E. I f we replace the edge /j by the arc (i ,j) ,
then we say that tj is oriented f rom i t o j or that (i , j) is an orientation ofij. I f E~ ~ E

and A1 is the set o f arcs obtained by orienting each edge of E1 in one of the two

possible directions, then we call A~ an orientation of El. I f w is a closed walk in

G = (V, E) and ~" is a closed diwalk that is an orientat ion o f w, then ~- is called a

diorientation of w.

Let G = (V, E) be a graph and c := (Ce)e~e e R e be a cost function that assigns

to each edge e e E a cost c~. Then, for any F c E, we call ~f~F Cf the cost o f f and
denote it by c(F). Similarly, for a digraph D = (V, A), a cost funct ion c := (C~),~A G
NA and an arc set B c A, we denote the cost Y.b~B Cb of B by c(B). Let G = (V, E)

be a graph, A :-- {(i , j) , (j, i)]/ j c E} and c := (co, Ci~)ij~e c [~a, where c~j resp. cj~ is the

cost o f edge /j when it is oriented from i to j resp. f rom j to i. (In the sequel, c o
and cj~ will have these meanings whenever two numbers c o and cj~ are associated

with an edge /j'c E.) In such a case, the cost o f a subset E~ o f E is undefined, but

the cost c(Al) of an orientat ion A1 of El is meaningful and is defined by c(A~) :~

~(i,j)~_A 1 Cij"

342

Using the

problems.

M. Gr6tschel, Z. Win / Solving the windy postman problem

above terminology, we can now define various types of postman

The undirected postman problem (The standard CPP): Let G = (V, E) be a con-

nected graph with cost ce c E for each edge e ~ E. A closed walk in G containing

each edge of E at least once is called an undirected postman tour of G. The question

is to find an undirected postman tour of G of minimum cost. (It is obvious that an
undirected postman tour of finite minimum cost exists if and only if ce/> 0 for each

edge e ~ E.)

The directed postman problem: Let D = (V, A) be a strongly connected digraph

with cost ca 6 ~ for each arc a c A, A closed diwalk in D containing each arc of A

at least once is called a directed postman tour of D. The question is to find a directed

postman tour of D of minimum cost. (It is obvious that a directed postman tour

of finite minimum cost exists if and only if D contains no dicycle of negative cost.)
The mixed postman problem: Let M = (V, E, A) be a mixed graph with cost ce for

each edge e ~ E and co for each arc a ~ A. Suppose D ~ = (V, A') is the digraph

with arc set A' := A u {(i,j), (j, i) li j c E} and cost function c' := (C'o),~A' defined by

c] := ca for each arc a c A and c~i~):= clja):= ee for each edge e := ij E E. A mixed
postman tour of M is a closed diwalk in DM containing each arc a ~ A at least once

and containing one of the arcs (i , j) and (j, i) at least once for each e d g e / j c E. The

question is to find a mixed postman tour of M of minimum cost. (To guarantee
existence of a feasible mixed postman tour, we assume that DM is strongly connected,

and to guarantee existence of a finite optimal mixed postman tour we assume that

DM contains no dicycle of negative cost.)

The windy postman problem: Let G = (V, E) be a connected graph with a cost

function c := (cu, eji)~E. Here e~ resp. c)~ is the cost of edge ij when it is oriented

as (i , j) resp. (j, i). A diorientation of a closed walk in G containing each edge of

E at least once is called a windy postman tour (short: WP-tour) of G. The question
is to find a WP-tour of G of minimum cost. (It is obvious that a WP-tour of G of

finite minimum cost exists if and only if the digraph D = (V, A) with arc set

A := {(i,j), (L i) l/J ~ E} contains no dicycle of negative cost.)

Clearly, the undirected postman problem is a special case of the WPP. Moreover,

since an arc a = (i , j) with cost e~ can be transformed to an edge / j with costs c o = c~
and cji = m, the directed and mixed postman problems can also be viewed as special

cases of the WPP.

With respect to the computational complexity of these problems, it is known that
the undirected and directed pos tman problems are solvable in polynomial time, cf.
Edmonds (1965), Liebling (1970) and Edmonds and Johnson (1973). Some special
cases of the mixed and windy postman problems can be solved in polynomial time,
but they are NP-hard in general - - s e e Edmonds and Johnson (1973), Guan (1984),
Win (1989), and Papadimitriou (1976). In the literature very little can be found on
the design and analysis of exact solution strategies for these NP-hard problems. As

M. Griitsehel, Z. Win / Solving the windy postman problem 343

far as we know, Christofides, Benavent, Campos, Corberan and Mota (1984) is the

only computational study done for the mixed postman problem, and for the WPP

no solution method with a computation analysis has been reported.
Before closing this section, let us mention some definitions of polyhedral theory.

Suppose a c ~ " \ { 0 } and cec~. Then { x ~ " l a T x = c e } is a hyperplane in l~ n and
{x ~ O~nlaTx <~ ~) is a half space in N". A polyhedron in N" is the intersection of

finitely many half spaces in R ~. A linear inequality aTx <~ a with a c ~", a ~ [R is
valid with respect to a polyhedron P, if P c_ {x ~ N"[aVx ~< o~}. A subset F of N" is
a face of a polyhedron P, if there exists a valid inequality a'rx <~ a for P such that
F = P n {x ~ ~ I aTx = a}. In this situation we say that F is induced (defined) by

the inequality aVx ~< a. A face of a polyhedron P is a facet if it is nonempty, different

from P and maximal with respect to set inclusion.

3. Results on the windy postman polyhedron

In this section we summarize some polyhedral results on the WPP on which our

cutting plane algorithm is based.

Let G = (V, E) be the underlying graph of a WPP and r a WP-tour of G. We

define the incidence vector X ~ of ~- by X~: = (X~,Xj])ij~E, where X~ resp. Xj~ is the
number of times (i , j) resp. (j, i) occurs in T. The win@postman polyhedron (short:
WP-polyhedron) of G, denoted by WP(G) , is the convex hull of the incidence vectors
of the WP-tours of G. Clearly, the WPP is equivalent to the linear program

rain c V x

s.t. x c WP(G).

(3.1)

Here c :--(c~, c j ~) ~ is the cost function of the given WPP.
To apply LP methods to (3.1), it is necessary to know a linear system describing

WP(G) completely. But the NP-hardness of the WPP implies that it is unlikely that
one can find such a linear system. However, recent computational studies in com-
binatorial optimization have shown that, quite frequently, even partial linear descrip-

tions (of combinatorial polyhedra like WP(G)) are useful for the design of efficient
LP-based algorithms for NP-hard problems for instance, see Padberg and Gr6tschel
(1985), Gr~btschel and Holland (1991), and Padberg and Rinaldi (1991) for the
travelling salesman problem, Gr6tschel, Jfinger and Reinelt (1984) for the linear
ordering problem, or Gr6tschel and Wakabayashi (1989) for a clustering problem etc.

With this motivation we have determined several classes of valid and facet defining
inequalities of WP(G), cf. Win (1987), Gr~tschel and Win (1992). Some of these

i n e q u a l i t i e s - those that are used in our a lgo r i t hm- -a re listed in the following
Lheorem:

344 M. Gr6tschel, Z. Win / Solving the windy postman problem

Theorem 3.1. Let G = (V, E) be the underlying graph of a WPP.
(a) The following are valid equations and inequalities of WP(G):

(xi j - xji) = 0 f o r a l l i ~ V , (3.2)
ij~,3(i)

xo + xji >~ l for all ij ~ E, (3.3)

xo >~ O, xj~ ~ 0 for all ij ~ E. (3.4)

(b) The equation system (3.2) describes the affine bull of WP(G).
(c) The dimension of WP(G) equals 2 IE[- I VI + 1.
(d) An inequality of type (3.3) defines a facet of WP(G) if and only if ij is not a

bridge of (7.
(e) An inequality o f type (3.4) defines a facet of WP(G) if and only if ij is not a

bridge of G.
(f) For any odd cut 3(W) in G, the inequalities

(xo + xji) >~ [~(W)l + l, (3.5)
0 ~ (w)

I (w)l+l
Y, x o >~ (3.6)

i~ w,/~ v\ w 2 '

18(W)l+l
Y~ xj/>~ (3.7)

i~ w,s~ v\ w 2 '

are valid with respect to WP(G) and they induce the same face. (In the sequel we will
refer to these inequalities as odd cut inequalities.)

(g) An inequality of type (3.5) (and thus of type (3.6) or (3.7)) defines a facet of
WP(G) if and only if the subgrapbs of G induced by W a n d V \ W are connected. []

For the proof of this theorem, see Win (1987) or Gr6tschel and Win (1992).
Let us define the polyhedra P~(G) and P2(G) by

P~(G) = {x := (xo, x~i)!j~E Ix satisfies (3.2)-(3.4)}

and

~ (O) = P~(G)n {x lx satisfies (3.5) for each odd cut 6(W)}.

Thus WP(G)~P2(G)c__P~(G). Moreover, it is easy to see that W P (G) =
conv{x e PI(G) Ix integral}. Thus the following program is an integer programmint
formulation of the windy postman problem

rain c T x

s.t. X satisfies (3.2), (3.3), (3.4), (3.8

x integral.

It is shown in Win (1989) that WP(G) = PI(G) if and only if G is Eulerian. Therefor~
for general graphs G, it seems reasonable to relax WP(G) to P2(G) (which contair

M. Gr6tschel, Z. Win / Solving the windy postman problem 345

a large class of facets of type (3.5)) and to hope that the linear program

min cXx

s.t. x ~ P2(G) (3.9)

provides a good lower bound on the length of an optimal WP-tour.
To check our belief and solve some real world problems, we have designed an

LP-based cutting plane algorithm that optimizes the linear program (3.9). Our
computational experiments of Section 5 show that P2(G) is a good relaxation of
WP(G) indeed. Moreover, as our next theorem shows, P2(G) possesses another

nice property.

Theorem 3.2. The linear program (3.9) can be solved in time polynomial in the input

length of the given WPP.

Proof. Note that the number of inequalities of type (3.5) is in general exponential
in IV I + IEI. However, it follows from the ellipsoid m e t h o d - see Gr6tschel, Lovdsz
and Schrijver (1981) - - tha t (3.9) can be solved in polynomial time if and only if
the separation problem for P2(G) (stated below) can be solved in polynomial time.

"Given a (rational) vector x * E Q A (where A = { (i , j) , (j, i) I O c E}), determine
whether x* c P2(G) and if this is not the case find a hyperplane separating x* from
P2(G), i.e., find a vector a (g 0) c Q A and a number o ~ Q such that aTx>-a for
every x c P2(G) and aTx * < a."

The separation problem for P2(G) can be solved as follows. Given x*~ QA, one

can check in polynomial time whether x* satisfies the constraints (3.2)-(3.4) by
direct substitution. We may thus assume that x* satisfies all of them. For each edge

0 ~ E, define the weight w o- := x o. + xji - 1. Since, for any odd cut 6(W),

x* satisfies (3.5) <=> ~ * * (x~ +xji - 1) I> 1
ij~8(w)

one can see that the separation problem for the odd cut inequalities (3.5) reduces
to the problem of determining an odd cut of G of minimum weight with respect to
the nonnegative weight function w. Padberg and Rao (1982) have shown that the

latter is polynomially solvable. Hence the theorem is proved. []

~. Description of the algorithm

~Ve now describe our algorithm to solve problem (3.9) resp. the windy postman
)roblem. By Theorem 3.2, using the ellipsoid method, (3.9) can be solved in
~olynomial time. However, this procedure seems to be inefficient in practice because

346 M. Griitsehel, Z. Win / Solving the windy postman problem

of the rather poor (though polynomial) performance of the ellipsoid method.
Therefore we have replaced the ellipsoid method by the simplex procedure in our
algorithm. Thus our algorithm is theoretically nonpolynomial. Moreover, as men-

tioned in Section 1, it is not guaranteed to terminate with an optimal WP-tour. But
the computational study of the next section shows that our algorithm works quite
efficient in practice, i.e., in most of our test problems an optimal WP-tour was
produced in reasonable computing time.

The algorithm is a (by now) standard cutting plane method, where an initial
linear program is set up that is solved to optimality. One checks whether the optimum
solution x* represents a WP-tour and if not tries to find valid inequalities that are

violated by x*. These cutting planes are added to the current LP and the process

is repeated. We will denote the polyhedron that is determined by the inequalities
of the current LP by P and describe our code in more detail.

Step I (Initialization). Set P := P~(G).

This step initializes the polyhedron P with P~(G). As mentioned in (3.8), P~(G)
has the desirable property that every integral point in P~(G) represents a WP-tour.
Moreover, the number of constraints of the linear system describing PI(G) (not

counting the nonnegativity constraints) is IV[+ [E I. Linear programs of this type
can be handled efficiently.

Step 2 (Solving the LP). Solve the linear program

min cTx

s.t. x~ P.
(4.1)

For the solution of (4.1), we applied the simplex method. We used the linear
programming package XMP of Roy Marsten, see Marsten (1981). The initial LI?
was solved by the XDUAL (dual simplex method) routine. The linear programs ot
later stages were always solved by the XDPH2 (phase-2 of the dual simplex method~
routine, since a dual basic feasible solution is already known.

Step 3 (Checking optimality). Check whether the optimal LP solution, say x*, o
Step 2 represents a WP-tour. For this purpose we only have to check the integralitz
of x* because the current polyhedron P is contained in PI(G) by constructior
Thus, if x* is integral then it represents an optimal WP-tour. We construct that tou
and stop.

Step 4 (Deleting nonbinding constraints). From the linear system describing J
delete some odd cut inequalities which are nonbinding at the current LP solution x

M. Gri~tschel, Z. Win / Solving the windy postman problem 347

This step is parameter driven. Our code asks that a parameter e is set to a small

nonnegative number. Every odd cut inequality such that the value of the correspond-

ing surplus variable is greater than e is deleted. We usually chose e between 0.1

and 0.3.

Step 5 (Cutting plane recognition). Find odd cut inequalities which are violated

by x*.

Such inequalities, if they exist, induce cutting planes which chop off x*. How we
did this job in our code is discussed in Sections 4.1 and 4.2.

Step 6 (Adding cutting planes). If some odd cut inequalities violated by x* are

found, add them to the linear system obtained in Step 4. Let P be the polyhedron

determined by the resultant linear system and go to Step 2.

We observed in our experiments that the number of violated odd cut inequalities
found at each iteration is relatively small. Thus, in our program, we added all

inequalities we found.

Step 7 (Constructing an approximate tour). (We enter this step when the current

LP solution is fractional and violates no odd cut inequality.) Apply a heuristic that
uses the fractional LP solution x* to construct an approximate WP-tour, calculate
an upper bound of its relative error and stop.

The heuristic used in this step is described in Section 4.3.

4.1. Cutting plane recognition: An exact algorithm

Theorem (3.2) shows that the cutting plane recognition problem of Step 5 can be
reduced to the minimum weighted odd cut problem which can be solved in poly-
nomial time by the Padberg-Rao procedure. The worst-case performance of this
exact algorithm is O(I VI 4) and hence rather expensive. Therefore, in our code we
first tried to determine violated odd cut inequalities by some fast heuristics and
called the Padberg-Rao procedure only if the heuristics failed. In our application

of the Padberg-Rao procedure, we construct a complete Gomory-Hu (or flow
equivalent) tree and all violated odd cut inequalities which can be read from it are
added to the current LP. The Padberg-Rao procedure calls a maximum flow
algorithm as a subroutine; for this purpose we have used a max-flow code that is
based on the Goldberg and Tarjan (1986) procedure.

4.2. Cutting plane recognition: Some heuristics

The heuristics we have applied are adaptations of those used by Gr6tschel and
Holland (1985) in their cutting plane code for the perfect matching problem.

348 M. Gr6txchel, Z. Win / Solving the windy postman problem

Heuristic 1. In this heuristic we construct a graph G ' = (V, E ') with edge set E ' :=
{/j c E Ix* + x* - 1 > 0}. Then we determine, by depth first search, odd components
of G', i.e., components with an odd number of odd (with respect to G) nodes. If

W is such a component, then obviously the odd cut inequality induced by W is
violated by x*. If there exists no such component of G', then the heuristic fails to
recognize violated odd cut inequalities. The complexity of this heuristic is O(]E'I).
In practice, G' is very sparse and hence the complexity is O(I V]) empirically.

Heuristic 2. In this heuristic we construct a graph G ' = (V , E') whose edge set

E ' = {/j ~ E] x;j* + xj;* - 1 > ~}. Here e is a small positive number which in our code
was set to 0.2. As in Heuristic 1, we determine odd components of G' by depth first

search, and for each odd component, we check whether it induces a violated odd

cut inequality of x*. If this is the case for some odd components, then we have
found some cutting planes. Otherwise the heuristic fails to find odd cut inequalities
violated by x*. The complexity of this heuristic is also O(]E'I) theoretically and
O(I VI) empirically.

In our code we call Heuristic 1 first and if it fails we turn to Heuristic 2.

4.3. A heuristic which constructs an approximate WP-tour

Let x* be the fractional LP solution which is passed to Step 7 of our algorithm.

1. Construct the subgraph G'=(V ' , E') of G that is induced by the edge set

E ' := {ij~ E Ix* or x* is fractional}.
(We have found in most of our experiments that G' is a small sparse graph

compared with G.)
2. For each i~ g', define d~ := Y~ij~, (x * - x *) and construct the linear program

min 5~ (cox o + cj~xji)
ij~ E"

s.t. }~ (xj~-xu)=d'i forall ie V',
i jcE'

x~ + xj~ >/I for all /j c E' , (4.2)

x0~0 , xj~>~0 fo ra l l / j~E ' .

(One can see that the d~"s are integers, ~i~v, d'; = 0, and that (x*, xj~)o~.* is a

fractional feasible solution of (4.2).)
3. Solve the linear program (4.2) (by the simplex method) to obtain an optimal

vertex solution, say x' := (x~j, x}i)u~,.
4. (In this step we will use the following polyhedral result of Win (1987). '°Let

Y:= (Y;J, YJ;)0~e' be a vertex of the polyhedron of the LP (4.2). Then (i) each
component of y is either ½ or integral and (ii) y~ = ½ implies yj~ = ½.")

Define a vector ~ = (~j, xJ'~)0~E' by ~ -- x~' if x~j~ is integral and xu = 1 otherwise

(i.e., if x~j = ½).

M. Gr6tschel, Z. Win / Solving the windy postman problem 349

(It is easy to see that ff is an integral feasible solution of (4.2) and ff together
with (x*, X*)~;~E\E' gives a feasible WP-tour of the given WPP.)

5. Combine ~ and (x*, * Xji)~E\E' to get a new vector x, construct the WP-tour
represented by ~ and stop.

Roughly speaking, the idea of this heuristic is to fix the integral components of
the last fractional solution x* and then to reasonably transform its fractional
components to integers so that they together with the fixed integral components
constitute a good feasible WP-tour. We have found that our heuristic works very
well in practice and generates good approximate solutions which are almost optimal.

The cost of the last fractional solution x* (which is usually a tight lower bound of
the cost of an optimal WP-tour) is also useful for the evaluation of the quality of
the generated approximate WP-tour.

5. Computational results

The practical performance of our algorithm has been studied with several test
problems. As the underlying graphs of these problems, we chose six real world
transportation networks. The number of nodes in these graphs ranges from 52 to

264; the number of edges from 78 to 489. Our computational study is composed of
three parts. The first one deals with WPPs, the second one with mixed postman
problems and the last one with standard CPPs. Clearly our major interest is in the
first two parts that concern NP-hard problems.

We have coded our algorithm in FORTRAN and have run it on the NORSK

DATA ND-540 of the University of Augsburg under the operating system SINTRAN
III-VSX/500. The CPU times reported are for the execution of the entire run
including the input /output operations, overhead etc. Fractions of seconds have been
rounded up.

5.1. Experiments with WPPs

As mentioned above, six real world networks and the corresponding real world edge
costs (lengths) were chosen for our computational study. The real world edge costs
were symmetric, i.e., c~ = cji for each edge tj, and hence not suitable to use in our
test WPPs. Thus we generated asymmetric edge costs randomly. We used two random
cost generation procedures described in Sections 5.1.1 and 5.1.8.

5.1.1. A random cost generation procedure

Let G = (V, E) be a real world graph with real world (symmetric) integer costs c~
for each edge /j in E. Suppose I VI = n, the nodes of V are indexed by the integers
1,2 , n, and for each node i c V, N (i) denotes the set of nodes adjacent to i. A

350 M. Gr6tschel, Z. Win / Solving the windy postman problem

procedure which we used to generate random costs c U and cji for each edge ij ~ E

is as follows.

Procedure 5.1.

For i:= 1 to n do.

For each j c N (i) do.
Begin.
Use a random generator R to generate an integer k in an interval [- a , a].
(Here a is an arbitrary but fixed positive integer.)
Set c~j := c{j + k.
If cij ~< 0 then set ci~ := 1.

End.

By choosing small intervals [- a , a], this procedure models real world problems

where the difference between c!j and cji is not too large. Clearly, the random costs
generated by Procedure 5.1 depend on the random generator R as well as on the
order of the nodes in the adjacency lists N (i) . A complete documentation of our
choices can be found in Win (1987). For the real world (symmetric) edge costs of
our graphs, we refer to the original documentations of the problems. The graphs
we have chosen can be found in Win (1987), or in the original documentations.

5.1.2. WPPs with underlying graph G1

G1 is the underlying graph of a standard CPP which, together with real world edge

costs, was originally given in Burkard and Derigs (1980, p. 98). It contains 52 nodes
and 78 edges. The average of the real world edge costs of this graph is 57.08. (We
give this information so as to have an idea about the perturbation introduced by

Procedure 5.1.) Taking G1 as the underlying graph, we created five WPPs, i.e., we
generated five sets of edge costs by Procedure 5.1. Each set of these edge costs is
uniquely determined by the interval I - a , a] and the initial value S set to the variable
SEED of the random generator R. Therefore we can identify each of our test
problems by the corresponding pair (S, [- a , a]). Table 1 shows the identifiers of
these problems and the corresponding computational results. All problems were
solved to optimality, and all cuts were produced by our cutting plane recognition
heuristics (see Section 4.2). In that table and also in the others, the column labels

have the following meanings:

PRO: problem identifier;
LP: number of LPs solved (=number of simplex calls);
CONS: minimum and maximum number of constraints (excluding the non-

negativity constraints) of the LPs solved (we note here that the number of variables,

not counting slack and surplus ones, of these LPs equals 21El);
CUT: total number of cuts recognized;
HCUT: number of cuts recognized by heuristics;
ERR: an upper bound of the relative error, expressed in percentage, of the tour

generated by the algorithm (this upper bound is defined by 100 (C - C ') / C ' , where

M. Griltschel, Z. Win / Solving the windy postman problem 351

is the cost of the tour generated by the algorithm and C' is a lower bound of the
cost of an optimal tour, upper bound 0% means that the generated tour is optimal);

COST: cost of the tour generated by the algorithm;
CPU: CPU time in min:sec on the NORSK DATA ND-540;
PRP: number of times the Padberg-Rao procedure is called, and the percentage

of the total time spent in this procedure;
ARC: number of arcs in the tour produced by the algorithm.

Table 1

PRO LP CONS C UT HC UT ERR COST CPU PRP ARC

(3 , [- 5 , 5]) 7 130-179 56 56 0 6635 0:13 0,0 104
(4 , [- 5 , 5]) 6 130-179 54 54 0 6656 0:12 0 ,0 104
(3 , [- 8 , 8]) 6 130-179 54 54 0 6602 0:12 0 ,0 104
(4 , [- 8 , 8]) 7 130-180 56 56 0 6629 0:17 0,0 105
(3 , [-10 ,10]) 7 130-180 56 56 0 6582 0:13 0,0 104

5.1.3. WPPs with underlying graph G2
G2 is the transportation network of a waste collection problem. It contains 101
nodes and 185 edges. For (32 itself and coordinates of its nodes, see Appendix A14
and A18 of Paessens (1981) respectively. From the node coordinates, we calculate
the Euclidean distances between adjacent nodes, round them to the nearest integers
and take the results as the real world costs. We use Procedure 5.1 to generate five
WPPs. The average of these real world edge costs is 29.43. The identifiers of these
problems and corresponding computational results are given in Table 2. We can

see that our algorithm produced optimal WP-tours for four problems and for the
remaining one it generated an approximate WP-tour whose deviation from the
optimal value is not more than 1.37%. The exact cutting plane recognition algorithm
was called in two cases.

Table 2

PRO LP CONS C UT HC UT ERR COST CPU PRP ARC

(1 , [- 5 , 5]) 20 286-383 112 112 0 5998 1:35 0,0 219
(2 , [- 5 , 5]) 26 286-391 125 120 0 5900 1:40 1,0.30 219
(1 , [- 8 , 8]) 28 286-387 128 128 0 5904 1:49 0 ,0 219
(2 , [- 8 , 8]) 23 286-394 132 118 1.37 5817 1:33 2, 0.57 220
(1 , [-10 ,10]) 23 286-385 123 123 0 5842 1:43 0,0 219

5.1.4. WPPs with underlying graph G3
G3 is a real world transportation network containing 110 nodes and 193 edges. G3
itself and coordinates of its nodes can be seen in Appendix A15 and A19 of Paessens
(1981) respectively. The average of the real world edge costs of this graph is 29.52.

352 M. Gri~tschel, Z Win / Solving the windy postman problem

As in the case of G2, we cons t ruc ted five test p r o b l e m s with G3 as the under ly ing

graph. Tab le 3 collects the identif iers of these p rob l ems and c o r r e spond ing computa -

t ion results. We found an op t ima l WP- tou r for each test p rob lem. The exact cut t ing

p lane recogn i t ion a lgor i thm was cal led in two cases.

Table 3

PRO LP CONS CUT HCUT ERR COST CPU PRP ARC

(3,[-5,5]) 16 303-398 104 104 0 6611 1:15 0,0 234
(4,[-5,5]) 14 303-407 120 101 0 6578 1:13 2,0.59 233
(3,[-8,8]) 17 303-405 116 105 0 6524 1:22 1,0.26 234
(4,[-8,8]) 13 303-398 102 102 0 6469 1:07 0,0 233
(3,[-10,10]) 26 303-400 120 120 0 6466 1:35 0,0 234

5.1.5. WPPs with underlying graph Go

G4 is the t r anspo r t a t i on ne twork of a waste co l lec t ion p rob lem. It conta ins 172

nodes and 247 edges. F o r G4 i tself and the coord ina te s of its nodes , see A p p e n d i x

A16 and A20 of Paessens (1981), respect ively . The average of the real wor ld edge

costs of this g raph is 24.11.

As before , we cons t ruc ted five test p r o b l e m s with G4 as the unde r ly ing graph.

The ident i f iers of these p rob l ems and c o r r e s p o n d i n g c o m p u t a t i o n results are l is ted

in Table 4. F o r each p r o b l e m our a lgor i thm p r o d u c e d an op t imal WP- tour . The

exact cut t ing p lane r ecogn i t ion a lgor i thm was cal led only in one case.

Table4

PRO LP CONS CUT HCUT ERR COST CPU PRP ARC

(5,[-5,5]) 18 419-545 150 150 0 6947 2:26 0,0 313
(6,[-5,5]) 23 41%553 162 162 0 7026 2:31 0,0 311
(5,[-8,8]) 15 419-549 150 150 0 6811 2:20 0,0 312
(6,[-8,8]) 22 41%551 158 158 0 6917 2:26 0,0 311
(5,[-10,10]) 16 419-543 150 145 0 6704 2:48 1,0.35 312

5.1.6. WPPs with underlying graph G5
G5 is a real wor ld g raph which, toge ther wi th real wor ld edge costs, can be found

in Alewel l (1980, p. 271). In the or ig inal g raph , an in te rsec t ion of two or more edges

(roads) is t aken as a node (and given a node number) only when there is a cus tomer

at that pos i t ion . For our expe r imen t we a s sumed all such in tersec t ions also as nodes

and ass igned node number s to them. Our mod i f i ed graph , shown in Win (1987),

conta ins 179 nodes and 307 edges. The average of the real wor ld edge costs of this

g raph is 3.94. As before , we c rea ted five p r o b l e m s with G5 as the unde r ly ing graph.

The ident i f iers of these p r o b l e m s and c o r r e s p o n d i n g c o m p u t a t i o n a l stat ist ics are

given in Table 5. Fo r four p r o b l e m s our a lgor i thm p r o d u c e d op t ima l WP- tours and,

M. Gr6tschel, Z. Win / Solving the windy postman problem 353

for the remaining one, it generated an approximate tour whose relative error is not

more than 5.16%. The exact cutting plane recognition algorithm was called in two

c a s e s .

T a b l e 5

PRO LP CONS C UT HC UT ERR COST CPU PRP ARC

(5 , [- 5 , 5]) 14 486-620 172 172 0 1277 3:11 0,0 391
(6 , [- 5 , 5]) 92 486-717 476 269 0 1265 16:55 13,3.34 390
(5 , [- 8 , 8]) 9 486-609 144 144 0 1338 2:26 0,0 396
(6 , [- 8 , 8]) 70 486-715 490 209 5.16 1355 11:56 15,5.45 395
(5 , [-10 ,10]) 7 486-603 138 138 0 1391 2:23 0 ,0 398

5.1.7. WPPs with underlying graph G6
Unlike the preceding ones, G6 is not extracted from the literature. It is the underlying
graph of a real world multiple travelling salesman problem which was studied at

the University of Augsburg in 1987. It contains 264 nodes and 489 edges. The real
world edge costs and adjacency lists are available from the authors. The average of
the real world edge costs of this graph is 13.35. As before, we created five WPPs
on G6. Table 6 describes the identifiers of these problems and the associated
computational results. For three problems we found optimal tours and for the other
two near optimal solutions. The exact cutting plane recognition algorithm was called

in each case.
In the 30 runs documented, an optimal WP-tour was found in 26 cases. The exact

cutting plane recognition procedure was needed only in 12 cases.

Table 6

PRO LP CONS C UT HC UT ERR COST CPU PRP ARC

(1 , [- 5 , 5]) 29 753-1025 338 261 3.24 7286 13:09 4, 1.11 601
(2 , [- 5 , 5]) 35 753-1008 319 271 0 6873 10:58 2,0.48 591
(1 , [- 8 , 8]) 36 753-1035 343 278 2.79 7043 12:59 5,0.85 611
(2 , [- 8 , 8]) 50 753-1015 354 281 0 6587 17:40 3, 0.58 595
(1 , [-10 ,10]) 47 753-1025 370 285 0 6728 13:27 3,0.83 598

5.1.8. An additional experiment with WPPs
In the above 30 test problems, edge costs are generated by Procedure 5.1 and hence
they are influenced by the real world costs. We also studied the performance of our
algorithm on problems with purely randomly generated costs. We fixed integers

a < b, and used a random generator to produce, for each edge, integral edge costs
in the interval [a, b]. The edge costs generated by this procedure are uniquely
determined by the interval [a, b] and the initial value S set to the variable SEED
of the random generator R. Therefore a problem with underlying graph Gi and

354 M. Gr6tschel, Z. Win / Solving the windy postman problem

edge costs generated from the interval [a, b] by setting the initial value S to the
variable SEED can be identified by the triplet (Gi, S, [a, b]).

Using the above procedure we created six problems with underlying graphs G~- G6

and integer edge costs generated from the intervals [1,100], [1,200] and [1,300].

The identifiers of these problems and corresponding computat ion results are listed

in Table 7. Optimal WP-tours were obtained for all but one problem.

Table 7

PRO LP CONS CUT HCUT ERR COST CPU PRP ARC

((31, l,[1,100]) 5 130-178 50 50 0 4629 0:13 0,0 108
(G2,2,[1,100]) 8 286-356 78 78 0 8117 0:56 0,0 219
(G3, 1, [1,200]) 11 303-381 88 88 0 19491 0:59 0, 0 241
((]:4,2, [1,200]) 11 419-548 148 142 0 25450 2:03 1, 0.45 314
(Gs, 1, [1,300]) 41 486-711 351 197 8.68 50452 8:40 9, 3.37 404
(G6,2, [1,300]) 44 753-1007 357 252 0 66444 14:26 3, 1.13 602

5.1.9. Some remarks on the computational results

The computational results with 36 test problems are described in Table I-7. Of

these problems, our algorithm produced optimal WP-tours in 31 cases. WP-tours
very near to optimal ones were found in the other cases. This empirically shows

that Pz(G) is a "nice" relaxation of WP(G) indeed.

One can notice in the tables that most of the cutting planes were recognized by

heuristics and that, for many problems, we reached the opt imum without calling

the Padberg-Rao exact separation procedure at all. Thus our cutting plane recogni-

tion heuristics work quite well in practice. The maximum number of cutting planes
was always recognized in the first iteration (it is nearly the number of odd nodes
of the underlying graph). In the later iterations we recognized relatively few cutting

planes. The number of nonbinding constraints deleted in each iteration was also

rather small.
One can see in the tables that computat ion times required by our algorithm are

also reasonable. We found in all our test problems that about 90% of the overall

running time was spent for solving the linear programs. Thus a significant improve-
ment of the LP-code we use will imply the same for our algorithm. Nearness of the
approximate tours (if they were produced) to optimal solutions also shows the

efficiency of the heuristic of Section 4.3.
To provide the reader with a picture of the detailed computational statistics with

our test problems, we have chosen the one with underlying graph G5 and identifier
(5, [- 8 , 8]). As Table 5 shows, we had to solve 9 LPs until we reached the opt imum
of that problem. In Table 8 we describe the number of cutting planes deleted in
each iteration (abbreviated as NCD), the number of cutting planes added in each

M. GrStschel, Z. Win / Solving the windy postman problem

Table 8

Iteration No. NCD NCA TNC COLP

1 0 0 486 1183.50
2 0 86 572 1302.25
3 4 18 586 1322.25
4 7 14 593 1330.50
5 1 12 604 1335.00
6 4 6 606 1338.00
7 1 2 607 1338.00
8 2 4 609 1338.00
9 5 2 606 1338.00

355

iteration (abbreviated as NCA), total number of constraints (excluding the nonnega-

tivity ones) of the LP of each iteration (abbreviated as TNC) and the cost of the
optimal LP solution of each iteration (abbreviated as COLP).

One can notice that in the third iteration we are already very close to the opt imum

value and that, starting at the sixth iteration, the optimal LP solution value is equal

to the cost of an optimal WP-tour. But the integral solution is obtained only in the

ninth iteration. The distribution of running time of this problem to each task of our

algorithm is as follows:

LP solving: 95.72%,
LP updating: 0.90%,

cut recognition heuristics: 1.28%

Padberg-Rao procedure: 0.00%,

reading input data and initial LP set-up: 1.40%,

WP-tour construction: 0.70%.

5.2. Experiments with mixed postman problems

We remarked in Section 2 that one can transform a mixed postman problem into

a WPP by replacing an arc a := (i,j) of cost ca by an edge U of costs c o := ca, cji := 00.

Thus one can apply our algorithm also to mixed postman problems. To see how

our algorithm works on these problems, we constructed 8 mixed graphs by assigning

some orientations to some edges of the graphs G~-G4. As edge and arc costs of

these mixed graphs, we have used the real world costs. Table 9 shows the computa-
tional results with these problems. In that table, the problem identifier (Gi, a, b, c)
states that the mixed graph is obtained from the (undirected) graph G~ and that it
contains a nodes, b edges and c arcs. For the detailed structure of these mixed

graphs, see Win (1987). One can see in Table 9 that, for each problem, our algorithm
produced an optimal solution.

5.3. Experiments with standard CPPs

Since standard CPPs can also be viewed as WPPs, we can apply our algorithm also
to them. To see how our algorithm works in this case, we have tested it with six

356

Table 9

M. Gr6tschel, Z Win / Solving the windy postman problem

PRO LP CONS CUT HCUT ERR COST CPU PRP ARC

(G1,52,47, 31) 3 130-161 32 32 0 7065 0:09 0,0 113
(Gt, 52, 37,41) 7 130-168 42 42 0 6879 0:12 0,0 114
(G2,101,122, 63) 13 286-350 74 74 0 6759 0:51 0, 0 242
(Gz, 101, 95, 90) 20 286-350 84 84 0 8382 0:57 0, 0 282
(G3,110, 120, 73) 19 303-391 112 94 0 7306 1:09 3, 1.17 251
(G3,110, 101, 92) 9 303-357 58 58 0 8615 0:42 0, 0 283
((5:4,172, 154, 93) 11 419-498 96 96 0 9451 1:19 0, 0 396
(1~4,172, 131,116) 10 419-514 118 118 0 7645 1:24 0, 0 329

Table 10

PRO LP CONS CUT HCUT ERR COST CPU PRP ARC

(Gj,52,78) 7 130-181 56 56 0 6700 0:14 0,0 104
(G2,101,185) 19 286-385 114 110 0 6171 1:25 1, 0.32 219
(G3,110,193) 18 303-402 110 110 0 6784 1:22 0,0 233
(G4,172,247) 28 419-563 173 173 0 7217 3:14 0, 0 312
(G5,179,307) 21 486-651 192 192 0 1413 3:45 0,0 374
(G6,264,489) 17 753-973 254 254 0 7494 7:42 0,0 585

real world CPPs. These problems are obtained from the aforementioned graphs
G~-G6 and associated real world edge costs. We know that our algorithm is neither
polynomial nor exact. But, to our surprise, our algorithm produced optimal tours
for all problems. The computation times required are also quite modest, see Table
10. In that table, the problem identifier (Gi, a, b) states that the underlying graph
of the CPP is Gi which contains a nodes and b edges.

6. Final remarks

In this paper we have described a cutting plane algorithm and its implementation
for the windy postman problem which is based on a partial linear description of
the WP-polyhedron. This algorithm can also be applied to mixed, undirected, and
directed postman problems. The practical performance of our algorithm has been
investigated with several test problems defined on graphs of up to 264 nodes and
489 edges. Our computational experiments of the previous section show that out of
36 test-WPPs our algorithm produced optimal WP-tours in 31 cases and good
approximate tours in the others. In the cases of mixed postman and standard Chinese
postman problems, the algorithm produced optimal solutions of all test problems.
Moreover, we found that the computation times required are quite reasonable.
Therefore we believe that our algorithm is efficient enough to be used in practice.

M. Gr6tschel, Z Win / Solving the wind), postman problem 357

To our knowledge, there is no computational study of an exact method for the

windy postman problem in the literature. In the case of the mixed postman problem
Christofides, Benavent, Campos, Corberan and Mota (1984) is the only study we
know. It proposes a branch and bound based combinatorial algorithm for the mixed
postman problem and reports computational results with graphs of up to 50 nodes,
85 arcs and 36 edges. However, we were not able to test our code on these problems.

The computational experiments reported above show that our algorithm works
quite well in practice. But further significant improvements may still be achieved.
We mention a few possibilities. Firstly, one can add an enumeration phase like
branch and bound to our algorithm so that optimality can always be guaranteed.
Secondly, further classes of cutting planes should be considered. We have based
our code on odd cut inequalities only although we know additional classes of valid
and facet defining inequalities for the WP-polyhedron, see Win (1987) and Gr~tschel
and Win (1992). However, we do not have polynomial time separation procedures
for these classes. Fast separation heuristics, though, will probably help to improve
the code, in particular, to reduce the number of calls of the LP-solver.

References

K. Alewell, Standort und Distribution: Entscheidungsfdlle (Gabler, Wiesbaden, 1980).
A. Bachem and M. Gr~Stschel, "New aspects of polyhedral theory," in: B. Korte, ed., Modern Applied

Mathematics: Optimization and Operations Research (North-Holland, Amsterdam, 1982) pp. 51-106.
J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (American Elsevier, New York, and

Macmillan, London, 1976).
R. Burkard and U. Derigs, Assignment and Matching Problems: Solutions Methods with FORTRAN

Programs, Lecture Notes in Economics and Mathematical Systems No. 184 (Springer, Berlin, 1980).
N. Christofides, E. Benavent, V. Campos, A. Corberan and E. Mota, "An optimal method for the mixed

postman problem," in: P. Thoft-Christensen, ed., System Modelling and Optimization, Lecture Notes
in Control and Information Sciences No. 59 (Springer, Berlin, 1984).

J. Edmonds, "The Chinese postman problem," Operations Research 13, Supplement 1 (1965) B-73.
J. Edmonds and E.L. Johnson, "Matching, Euler tours and the Chinese postman," Mathematical

Programming 5 (1973) 88-124.
A.V. Goldberg and R.E. Tarjan, "A new approach to the maximum flow problem," Proceedings of the

18th A C M Symposium on Theory of Computing (1986) pp. 136-146.
M. Gr6tschel and O. Holland, "Solving matching problems with linear programming," Mathematical

Programming 33 (1985) 243-259.
M. Gr6tschel and O. Holland, "Solution of large-scale symmetric travelling salesman problems," Mathe-

matical Programming 51 (1991) 141-202.
M. Gr6tschel, M. Jfinger and G. Reinelt, "A cutting plane algorithm for the linear ordering problem,"

Operations Research 32 (1984) 1195-1220.
M. Gr6tschel, U Lov~isz and A. Schrijver, "The ellipsoid method and its consequences in combinatorial

optimization," Combinatorica 1 (1981) 169-197.
M. Gr6tschel and Y. Wakabayashi, "A cutting plane algorithm for a clustering problem," Mathematical

Programming (Series B) 45 (1989) 59-96.
M. Gr6tschel and Z. Win (1992), "On the windy postman polyhedron," to appear.
M. Guan, "Graphic programming using odd or even points," Chinese Mathematics 1 (1962) 273-277.
M. Guan, "On the windy postman problem," Discrete Applied Mathematics 9 (1984) 41-46.
T.M. Liebling, Graphentheorie in Planungs- und Tourenproblemen, Lecture Notes in Operations Research

and Mathematical Systems No. 21, (Springer, Berlin, 1970).

358 M. GriJtschel, Z. Win / Solving the windy postman problem

R. Marsten, "The design of the XMP linear programming library," ACM Transactions on Mathematical
Software 7 (1981) 481-497.

M.W. Padberg and M. Gr~Stschel, "Polyhedral computations," in: E.L. Lawler, J.K. Lenstra0 A.H.G.
Rinnooy Kan and D. Shmoys eds., The Traveling Salesman Problem (Wiley, Chichester, 1985) pp.
307-360.

M.W. Padberg and M.R. Rao, "Odd minimum cut-sets and b-matchings," Mathematics of Operations
Research 7 (1982) 67-80.

M. Padberg and G. Rinaldi, "A branch-and-cut algorithm for the resolution of large-scale symmetric
traveling salesman problems," SIAM Review 33 (1991) 60-100.

H. Paessens, "Tourenplanung bei der regionalen HausmiJllentsorgung," Institut fiir Siedlungswasserwirt-
schaft, Universit~it Karlsruhe (Karlsruhe, 1981).

C.H. Papadimitriou, "On the complexity of edge traversing," Journal of the Association for Computing
Machinery 23 (1976) 544-554.

Z. Win, "Contributions to routing problems," Ph.D. Thesis, Universit/it Augsburg (Augsburg, 1987).
Z. Win, "On the windy postman problem on Eulerian graphs," Mathematical Programming 44 (1989)

97-112.

