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Claude Berge defines a (0, 1) matrix A to be linear if A does not contain a 2 x 2  submatrix of all ones. 
A(0, 1) matrix A is balanced if A does not contain a square submatrix of odd order with two ones per 
row and column. 

The contraction of a row i of a matrix consists of the removal of row i and all the columns that have 
a 1 in the entry corresponding to row i. 

In this paper we show that if a linear balanced matrix A does not belong to a subclass of totally 
unimodular matrices, then A or A r contains a row i such that the submatrix obtained by contracting 
row i has a block-diagonal structure. 

Key words: Polyhedral combinatorics, integrality of polytopes, decomposition. 

I. Introduction 

1.1. The main result and its implications 

Let G be a bipartite graph with no parallel edges. A cycle of  G is odd if its length 
is congruent to 2 modulo  4 and even if its length is congruent to 0 modulo  4. A 
star cutset o f  G is a node v such that the removal of  v and its adjacent nodes 
disconnects G. 

In this paper we prove the fol lowing result: 
Let G be a bipartite graph having odd cycles but no cycle of  length four. Then 

either G has an odd chordless cycle or G has a star cutset. 
The bipartite representation o f  a (0, 1) matrix A is the bipartite graph 

G ( V  ÷, V-; E)  where V ÷, V-  are the two sets o f  nodes representing the columns 
and rows of  A. For each entry a,j = 1 there exists an edge ( i , j )  of  E whose  end 
nodes are the two nodes representing row i and column j. 
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A chordless cycle or hole of length 2k of G corresponds to a circulant matrix of 
order k with two ones per row and column. A hole is odd if k is odd. Matrices not 
containing such an odd circulant are called balanced matrices and they play an 
important role in integrality issues associated with combinatorial packing and 
covering problems. This is discussed further in Section 1.2. 

Matrices whose bipartite representation has no odd cycles are a subclass of Totally 
Unimodular matrices and are well understood from a structural and algorithmic 
point of view, see Yannakakis (1985) and Conforti and Rao (1987a). 

Claude Berge defines a (0, 1) matrix to be linear if it does not contain a 2 × 2  

submatrix of all ones. This is equivalent to stating that the bipartite representation 

of  a linear (0, 1) matrix does not contain a cycle of length four. Therefore our 
theorem for bipartite graphs yields the following result in terms of (0, 1) matrices: 

Let A be a linear balanced matrix containing odd cycles. Then either A or A T 
has the following structure: 

I 

1111111111111 I 0,1 vector 
r 

- - I  . . . .  " T  . . . .  

I 
I A~ JI 0 
[. I 

0 or unit r J 

row vectors I 0 Ii A2 

The above result has the following implications for a class of simple undirected 
graphs (not to be confused with the above defined bipartite graph). 

The clique node incidence matrix A of a graph H(V, E) is the matrix whose set 
of rows is the set of incidence vectors of all maximal cliques of H. We say that the 

graph H is balanced (linear) if A is a balanced (linear) matrix. 
It is easy to see that A is linear if and only if no two maximal cliques of H have 

two common nodes. This is equivalent to saying that H is linear if and only if H 
does not contain as induced subgraph, the graph of Figure 1, which is referred to 
as a K 4 - e  or diamond graph. 

Given the bipartite representation G(V +, V-; E) of the matrix A, a node V~ V- 

which is a star cutset corresponds to a clique of H with the property that the removal 
of the nodes in the clique disconnects H. 

Fig.  1. 
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A node v c V + which is a star cutset of G corresponds to a node x of H with 
the property that the removal of x together with the set of maximal cliques containing 

x disconnects H. This operation of removing maximal cliques does not have an 

easy interpretation on the graph H unless H is K 4 - e  free. 

If H is K 4 -  e free, then every edge of H belongs to exactly one maximal clique. 
Therefore the removal of x and the set of maximal cliques containing x corresponds 

to the removal of node x in H and all the edges of H connecting two nodes in the 
maximal cliques that are removed. 

1.2. Balanced matrices 

Given an m x n (0, 1) matrix A, we define the polytopes associated with the linear 

programming relaxation of the set packing and covering problems as follows: 

P= {x cI~ n ]x~>O; Ax<~ 1}, 

Q = { y ~ R r ~ l l  ~>y~>0; yA >>- 1}. 

Berge (1972) has shown that if A is balanced, the polytopes P and Q have only 

integral vertices. Furthermore, when A is balanced, if some rows and columns of 

A are deleted, the polytopes associated with the linear programming relaxation of 
the corresponding set packing and covering problems have only integral vertices. 

The polytope P is sometimes referred to as the matching polytope and Q as the 
corresponding transversal polytope. 

Berge and Las Vergnas (1970) have shown that a matrix A is balanced if and 

only if for any submatrix A' of A, the maximum rank of a 0,1 vector in the associated 

matching polytope is equal to the minimum rank of a 0,1 vector in the corresponding 
transversal polytope. This property is known as the Konig property. 

The q-matching polytope Pq is defined as follows: 

Pq = { x c ~  n IX~0; Ax<~ q} 

where q is an n x 1 vector of non-negative integers. If A is balanced, Fulkerson, 
Hoffman and Oppenheim (1974) have shown that the following two linear programs: 

Max {lVxlx~Nn, x>~O, Ax<~q}, 

Min {yqlycRm, y>~O, y A )  l} 

have integral solutions with the same optimal objective function value. This property 
is called the Menger property. If  we define TR(A) as the matrix whose columns are 
all the minimal (0, 1) vectors in the polytope Q, then Berge (1984) has shown that 
if A is balanced then TR(A) also has the Menger property. 

The above fundamental results show the crucial role of balanced matrices in the 
study of integrality issues associated with combinatorial packing and covering 
problems. Some other integrality properties of balanced matrices are discussed in 
Berge (1980), Frank (1979) and Padberg (1975). A survey of totally unimodular, 
balanced and perfect matrices can be found in Padberg (1975). 
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A question that is of considerable interest is whether there exists a "good"  
characterization of balanced matrices that would lead to a polynomial recognition 

algorithm. Although this remains an open question, for some classes of balanced 

matrices a complete characterization has been given, the most notable result being 
that of Seymour (1980) for totally unimodular matrices. 

An approach to the characterization and the recognition of matrix in some class 

is to exhibit a sequence of compositions that produces the given matrix starting 
from "elementary" matrices which can be recognized easily. Also, one has to show 

that the composition operations cannot create submatrices that do not belong to 
the class of matrices under consideration. Seymour's (1980) characterization of 

totally unimodular matrices, the result of Yannakakis (1985) for restricted uni- 

modular (equivalently restricted balanced) matrices, i.e., matrices that are totally 

unimodular (balanced) and remain totally unimodular (balanced) even if an 

arbitrary number of ones in the matrix are turned to zero, and the result of Conforti 
and Rao (1987a) for strongly unimodular (equivalently strongly balanced) matrices, 
i.e., matrices that are totally unimodular (balanced) and remain totally unimodular 

(balanced) even if any single entry in the matrix is turned to zero, are all along this 

line of argument. The recognition problem for totally unimodular matrices has been 
solved by Seymour (1980). Recognition algorithms for restricted unimodular 

matrices are given by Conforti and Rao (1987a) and Yannakakis (1985). A recogni- 

tion algorithm for strongly unimodular matrices is contained in Conforti and Rao 
(1987a). 

Another class of balanced matrices that has been studied extensively in the class 

of  totally balanced matrices that arises in location theory, see Anstee and Farber 

(1984), Hoffman, Kolen and Sakarovitch (1985). 
In this paper, we study the properties of linear balanced matrices, that is, balanced 

matrices which do not contain a 2 × 2 submatrix with all ones. We give a decomposi- 
tion property for this class of matrices. In a subsequent paper, see Conforti and 
Rao (1988), give polynomial algorithms to test balancedness and perfection of linear 

matrices. 

2. Definitions and notation 

Throughout the rest of the paper, we are concerned only with bipartite graphs. 
Henceforth, unless otherwise stated, a graph will refer to a bipartite graph. Given 
a bipartite graph G ( V  +, V ; E),  a path of G is a sequence of distinct nodes 
v~, v2, • • •, v~ such that (vi, vi+l) c E, for all 1 ~ i ~ n - 1. The edges (vi, v__) are the 
edges of the path and an edge (v~, v~+t), I>~2 is a chord of the path. A path with 
nodes v~, v,, as end nodes is said to be a v~v~-path. If v~ and vz are two nodes of a 
path P, the path v~, v , , . . . ,  vl is said to be the vivrsubpath of P with end nodes 
v~, vt. The length of a path is the number of edges in the path. If both end nodes 
vl, vn of P belong to either V + or V , then the length of P is congruent to 0 to 
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2 rood 4. I f  only one end of P belongs to V +, the length of P is congruent to 1 or 

3 mod 4. For sake of  brevity, the word "congruent"  will be often omitted. Although 

a path is a sequence of nodes, we frequently use P to denote the set of  nodes in 

the path. Thus we assume that all set operations are defined with respect to P. 

A cycle is a sequence of nodes vl, v 2 , . . . ,  vn+l in which nodes v~, v,,+~ coincide 

but all other nodes are distinct. An edge (vi, vi+~)l ~< i<~ n, is an edge of the cycle. 

An edge of G connecting two non-consecutive nodes of  a cycle is a chord of the 
cycle. A chordless cycle is a hole. A cycle is referred to as an odd cycle if its length 

is congruent to 2 modulo 4 and as an even cycle if its length is congruent to 0 

modulo 4. Again, although a cycle C is a sequence of nodes, we frequently use C 

to denote the set of  nodes in the cycle. Thus we assume that all set operations are 

defined with respect to C. For the sake of convenience, we frequently denote a cycle 

C as vl, v 2 , . . . ,  vi, P, vj, vj+~ , . . . ,  vn where P is a path from vi to vj. Note that 

while P itself denotes a sequence of  nodes starting with vi and ending with vj, it is 
understood that in the cycle C, nodes vi and vj appear  only once and are not 

repeated. However,  by the definition of  a cycle, P would not contain any of  the 

nodes vk, k = l , 2 , . . . . i - 1  and k = j + l , j + 2 , . . . , n .  

A node y is adjacent to (or is a neighbor of) node x if edge (x, y) ~ E. Two nodes 

x, y are adjacent in a path or a cycle if edge (x, y) is an edge of  the path on the cycle. 

Let G '  be a subgraph of G. A node x not belonging to G '  is said to be strongly 

adjacent to G '  if x is adjacent to at least two nodes of G'.  A graph G is said to 
contain a subgraph G' if G '  is an induced subgraph of G. 

We say that a subset V of nodes of  G is an articulation set if the subgraph of  G 

induced by ( V + u  V- ) \  V is disconnected. 

The set N ( x )  consists of  node x and its neighbors. I f  N ( x )  is an articulation set, 

it is referred to as a star cutset. 

Given a set S, we indicate its cardinality as ISI. In this paper  we focus on congruence 

relationships (-=) modulo 4. 

3. Odd cycles and starred cycles 

An odd cycle of  a bipartite graph is said to be minimal if no proper subset of  its 
nodes induces an odd cycle. In this section we characterize a property of minimal 

odd cycles of  a linear balanced graph. 

Lemma 3.1. Every minimal odd cycle of  a linear balanced graph has a unique chord. 

ProoL Conforti  and Rao (1987b) have shown that, for every pair of  chords (ul,  /')1) 
and (u2, v2) of  a minimal odd cycle C with Ul, u2c V + and vl, v26 V-, the nodes 
must appear  in the order: vl, u2, ul, v2 when C is traversed clockwise (or counter- 
clockwise). Moreover,  nodes u~ and v2 as well as nodes u2 and v~ must be adjacent 

in C. Hence nodes Vl, Ul, v2, u2 induce a cycle of  length 4, which is a contradiction 
since G is linear. [] 
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Given a cycle C, let C + = { v i l v i c V  + n C }  and C - = { v ~ V  n C } . A n o d d  (even) 
cycle C is said to be node-minimal if there exists no other odd (even) cycle H such 

that H + c  C + or H - c  C- .  Recall that a node v not in G is strongly adjacent to C 

if v has two or more neighbors in C. We now state the following property of 

node-minimal odd cycles: 

Lemma 3.2. Let G be a linear balanced graph containing an odd cycle C with a unique 
chord. Then C is a node-minimal cycle if  and only if  no node is strongly adjacent to C. 

Proof. Conforti and Rao (1987b) have shown that if node v not in C has two 

neighbors x, y in C, and C is node-minimal,  then there exists a node z of  C that 

is adjacent to both x, y in C. This implies that nodes v, x, y, z induce a cycle of 

length four which is a contradiction. On the other hand if there are no strongly 

adjacent nodes, clearly C is node-minimal.  [3 

Definition 3.3. A cycle C is starred if its set of chords satisfies the following 

properties: 
(a) There exists two nodes x and y of  C, called the star nodes of C such that 

every chord of C has either node x or node y, but not both, as its end node. A 

chord with node x (y) as star node is a x-chord. (y-chord). 

(b) No other node of C is the end node of two distinct chords. 

(c) No two end nodes of chords are adjacent. 

Note that, according to Definition 3.3, all the chords of  a starred cycle C can 

have the same star node, or C can be chordless. Figure 2 shows three starred cycles. 

Remark 3.4. Let x, y be two non-adjacent nodes of a cycle C in a linear graph G, 

with the property that every chord of C has x or y as end node. I f  one of the two 

xy-paths in C has length less than four and C does not contain an odd hole of 

length six then, properties (a)-(c) of Definition 3.3 are satisfied. 

(a) (b) (c) 

Fig. 2. 
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Theorem 3.5. Let C be a starred cycle of a balanced graph G( V +, V-; E) and T its 
set of chords. Then C and T satisfy the following relationship: 

21T[ -tcl. 

Proof. By induction on the cardinality [T[ of the set of chords of C. The theorem 
is obviously true for [T[ ~< 1. We consider the following two cases: 

Case 1. C contains a chord (u, x) such that every chord of C other than (u, x) 

has both its end nodes contained in CL = u, P1,  X, U o r  C 2 = u, P2, X, U where P~, P2 
are the two disjoint paths connecting u and x in C, see Figure 3(a). Let 7"1 and T2 

be the sets of chords of C 1 and C= respectively. Then we have that [T~I <IT[ and 

Ir=l<lrl since T~c~T2=f) and T~uT2=T\{ (u ,x ) } .  Therefore by the induction 
hypothesis, we have 

2ITII---]C~ [ and 21T:1~[C21. 

Furthermore, we have 

2+lcl=lG[+lc2]  and l ÷ [ r l = l r ,  l+lr2l. 

These relationships imply 

2ITI-=Icl. 

Case 2. No chord satisfying the assumption of Case 1 exists. This implies that 
there exists two chords (u, x) and (v, y) of C, such that their end nodes appear in 

the order x, v, u, y when C is traversed in one direction, see Figure 3(b). 

Let P1, P2, P3 and P4 be respectively the paths connecting v to u, u to y, y to x, 

and x to v, as shown in Figure 3(b). Let T~ and T2 be the sets of chords of the cycles 

CI=V, PI ,U,x ,  P3 ,y , v  and C2=v, P4,x ,u ,  P2,y,l). 

13 

Pl 

(a) 

P2 

P3 

P4 

V - ~  II 

P 
1 

(b) 
Fig. 3. 

P2 
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As a consequence of properties (a)-(c) of Definition 3.3, we have that none of the 
following edges: (v, u), (u, y), (y, x) or (x, v) is an edge or a chord of C. This implies 
that T i n  T2=0 and Tlw T2= T\{(u,x),  (v, y)}. Therefore we have 

]Tllq-[T2I=IT]-2 and IGI+]C2]=]C]+4. 

Since ]T~] <IT] and ]T2] <IT], by the induction hypothesis we have 

21rd-=lG[ and 21r21-=[c21. 

The above relationships imply 

21TI-Icl. [] 

4. A two-star cotset theorem 

In this section we prove the following result: 

Theorem 4.1. Let (u, v) be the chord of a node-minimal odd cycle in a linear balanced 
graph G. Then N(u )w  N(v) is an articulation set of G. 

Proof. Let C be a node-minimal odd cycle with chord (u, v). Let P1 and 1°2 be the 
two uv-paths in C. Moreover, let a (b) be the neighbor of u in P1 (P2) and let c 
(d) be the neighbor of v in P1 (P2). With N(u)w  N(v) removed, let P be a shortest 
path from P1 to P2 with end nodes x c P1 and y c P2. Let Pxo (Pxc) be the xa-subpath 
(xc-subpath) of P~. Similarly define Pby and Pay subpaths of P2, see Figure 4. 

P 

P dy 

v 

Fig. 4. 
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Finally, we define the four cycles 

Cob =x, Px,, a, u, b, Pby, Y, P,x, 

Cc,~=x,P~,c,v,d, Pdy, y ,P,x,  

Cod= X,P~a,a,u, v,d, Pay, y, P,x, 

Ccb=x,P~,c,C,V,u,b, Pby, Y,P,x. 

As C is a node-minimal odd cycle, by Lemma 3.2, the neighbor of x in P has only 

one neighbor in P~, viz. x itself. Similarly for y. All intermediate nodes of  P are 

adjacent to at most one node in {a, b, c, d,} since G is linear. As a consequence of 

Remark 3.4, the four cycles defined above are starred cycles with nodes a, b; c, d; 

a, d; and c, b respectively as the star nodes. Let To, Tb, T~, Td be the set of  edges 

having one end node in P\{x, y} and nodes a, b, c, d respectively as the other end 

node. Note that To u Tb, T~ w Td, T~ u Td and T~ w Tb are the sets of  chords of  the 
starred cycles Cob, C~d, Cad and CCb respectively. Now by Theorem 3.5 we have 

ICo I-=2(IToI+IT [), ICc I=- 2(ILI+IT I), 
ICo I-=2(IToI+IT I), Iccbl-=2(Ir P+lrbl). 

Hence 

ICabI÷Ic  I+IcadI+Icc I 4(ITaI+ITbI+ITcI+IT I)-=O. 
On the other hand 

Icobl+lCc~l+lco~l+lccbl=-alP[+ 2 l c l +  2-= 2, 

which yields a contradiction. [] 

5. Expanded cycle and starred wheel 

ha order to prove the star cut set theorem, we need some properties associated with 

linear balanced graphs. These properties which are given in Lemma 5.1 and Theorem 

5.3 below are used in the next two sections to prove that if a linear balanced graph 

contains a given induced subgraph, then the induced subgraph must contain a star 

cutset of  G. Finally in Section 8, the Star Cutset Theorem is proved by applying 

the Two Star Cutset Theorem of  Section 4 to show that if G contains an odd cycle 

with a unique chord (u, v), and N(u)  is not a star cutset, then G contains one of 
the given induced subgraphs with N(v)  as a star cutset of  G. 

5.1. Expanded cycle 

Consider a graph G consisting of a starred cycle C plus two additional nodes b 

and d that are adjacent to C. Suppose C contains just one star node s and b is 
adjacent to d and s but not adjacent to any other node of C. We define the triple 
(C, b, d) to be an expanded cycle, see Figure 5. Let T be the set of chords of  C and 
Ta be the set of  edges joining d to a node of C. 



b _ d  
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Fig. 5. 

Lemma 5.1. Let G be a linear balanced graph containing an expanded cycle ( C, b, d) 
with star node s. Then IT d[ is even. 

Proof. Suppose I Tdl is odd. Then there exists a node x ¢ C adjacent to d. Let PI 

and P2 be the two xs-paths forming C consider the two cycles C1 = x, P1, s, b, d, x 
and C2 = x, P2, s, b, d, x. All the possible chords of  C1 and Cz must have either node 

s or d as an end node. By Remark 3.4, it follows that C~ and Cz are starred cycles 

with star nodes s and d. Let T1 and T2 be the chords of  C1 and C2 respectively. 

Then by Theorem 3.5 we have 2[Tl[~[Cl[,2[T2[=-[C2[ and 21rl---Ic[. Clearly Tc~ 

T~ = ~  and Ic1=1c11+1c21-6. As Zl, T2 and (x, d) partition T w  To, it follows that 

21T, l=21ru r,l-21Tl= zlLl+ zlr21+ 2-  21rl~-IC, l+lC2I-lCl+ 2=6+ 2=-o. 
Hence I Tdl cannot be odd and the lemma follows. [] 

5.2. Starred wheel 

A cycle C and a node v~ C form a wheel (C, v) if v is adjacent to at least two 

nodes of C. Node v is the hub of the wheel and edges (v, vi) where vi c C are the 

spokes of the wheel. The V~_lvi-path of  C that does not contain any other neighbor 

of  v is called a sector Si of the wheel. The corresponding cycle C~ is formed by 
V~-l, &, v~, v, v~ 1. Two sectors are said to be adjacent if they both contain the same 
neighbor of  v. Two spokes (v~, v) and (vj, v) are adjacent if (C, v) contains a sector 

with end nodes v~ and vj. 
If  C is chordless then (C, v) is a chordless wheel Clearly a balanced chordless 

wheel must have an even number  of  spokes. 

Definition 5.2. A wheel (C, v) is a starred wheel if C is a starred cycle with star 

nodes s and t satisfying the following two conditions, see Figure 6. 
(a) The star nodes s and t are adjacent to v0 where (Vo, v) is a spoke of the wheel. 
(b) No s-chord (t-chord) of  C has an end node in the sector containing t(s). 
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v 2 

~/~~Vn 1 

i s n - 

v 0 

F ig .  6. 

Theorem 5.3. Let  G be a linear balanced bipartite graph containing a starred wheel 

(C, v) with star nodes s and t. Let  Si, i = 1 , 2 , . . . ,  n be the n sectors o f  the starred 

wheel with s c S t ,  t ~ Sn. Then : 

(i) The number n o f  sectors (spokes) is even. 

(ii) All  the s-chords (t-chords) have end nodes in odd (even)  numbered sectors only. 

(iii) Let  w be a node strongly adjacent to C and having vo as a neighbor. N o d e  w 

has neighbors in only odd numbered or in only even numbered sectors but not both. I f  

w has neighbors in only odd (even)  numbered sectors, then there exists a path f rom s 

(t)  to w, not containing a node in N ( v ) .  

Proof.  We first prove the fol lowing two claims: 

Claim 1. Each sector Sj, 1 < j  < n has an even number  o f  end nodes o f  s-chords 
and an even number  o f  end nodes  o f  t-chords.  

Proof  Suppose  sector S~ with end nodes  vj_l and vj contradicts Claim 1. Without  

loss o f  generality, suppose  Sj contains an odd number  o f  end nodes of  s-chords.  

The cycle Cj = v, vj 1, Sj, vj, v defines an expanded  cycle (Cj, v0, s) with star node  

v. N o w  by L e m m a  5.1, the number  o f  end nodes o f  s-chords in Sj must  be even 

and not  odd.  Hence the claim follows. 

Claim 2. No  sector S j , j  = 1, 2, . . . ,  n, contains end nodes o f  both s-chords  and 
t-chords.  

Proof  By condi t ion (b) o f  Definition 5.2, S1 and Sn satisfy the above claim. 

Suppose  sector Sj, 1 < j  < n, contradicts  Claim 2. Then Sj must  contain two nodes  

x and y which are the end nodes o f  a s -chord  and a t -chord respectively. Furthermore,  

the xy-subpath ,  P, o f  Sj does not  contain an intermediate node which is an end 

node  of  a s -chord  or  a t-chord.  The length of  P must  be 0 rood 4 since x, P, y, t, Vo, s, x 

is a chordless cycle. In  $1 (Sn) let u (w) be the node  closest to Vl (v, 1) such that  



140 M. Conforti, M.R. Rao / Linear balanced matrices 

u (w) is adjacent to s (t). Let P~ and P2 denote the uvl and wv,_l-subpaths of $1 

and Sn respectively. Now both P~ and Pz must be of  length 0 mod 4 since 

s , u , P ~ , v l , V ,  Vo, S and t ,w ,P: , vn_~ ,V ,  Vo, t are chordless cycles. But then 

s, u, P1, v~, v, vn_l, P2, w, t, y, P, x, s is an odd hole. Thus the claim follows. 
We now prove the three properties stated in the theorem. 

(i) Let T~ and T, be the set of  s-chords and t-chords respectively of  C. Similarly 

let T~ and Tit be the sets of s-chords and t-chords respectively of C with one end 
node in Si. Then 

T s = U  T~ and ' 'J T~c~T~=0 for all i # j .  
i = l  

Similarly we have that 

T~ G T~ and i = T , c ~ T ~ = 0  for a l l i # j .  
i=1 

As a consequence of Theorem 3.5 it follows that 

2]Tls]--=-ICll a n d  21T71=-ICo[. 21<<0 T,I Icl, 
By Claim 1, we have 

for l < i < n .  

Furthermore, by condition (b) of  Definition 5.2, 21T;1=2 IT~[=0. Since Ci, i =  

2 , . . . ,  n - 1  are chordless, we have [Cil=-O, i = 2  . . . .  , n - 1 .  Then 

Icl= Is, l-= IGl-zn-= Z 2 ( I T ~ I + I T I [ ) - Z n ~ - I C I - Z n .  
i=1 i = l  i=1 

Hence 2n =- 0 and n is even. 

(ii) It is sufficient to prove that if edge (t, w) is a chord and wc  SJ, then j is 

even. By condition (b) of Definition 5.2, we have t ha t j  ¢ 1. Let P be the wt-subpath 

of C containing s. Let C* = w, P, t, w. Then by Claim 2 (C*,  v) is a starred wheel, 

therefore (C*,  v) must have an even number  of  spokes as proved in (i) above. Hence 
j is even. 

(iii) Consider a node w ~ C such that w # v but w is adjacent to v0 and strongly 

adjacent to C. Suppose w has a neighbor b in an even numbered sector and a 
neighbor d in an odd numbered sector. Let P be the bd-path along C not containing 

Vo, see Figure 7. Let C* = w, b, P, d, w. 
Then (C*, Vo, v) is an expanded cycle with star node w. But v has an odd number  

of  neighbors in C* which contradicts Lemma 5.1. Hence w has neighbors in only 
odd numbered or in only even numbered sectors, but not both. In order to complete 

the proof  of  the theorem, we have to show that if w has neighbors in only odd 
(even) numbered sectors, then there exists a path from s (t) to w, not containing a 

node in N ( v ) .  
We consider the case in which w has neighbors in odd numbered sectors only. 

The other case follows by symmetry. Let i be the smallest index such that in &, w 
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has a neighbor, say wi # v0. Note that wi #: N ( v )  since N ( v )  c~ N ( w )  = Vo. If  i = 1, 

the theorem follows since in $1, node s has a neighbor different from Vo. In fact, 

if s has a neighbor in Si, the theorem follows. Suppose now s has no neighbors in 

S~. Let j < i be the largest index such that Sj contains a neighbor of s. Note that j 
may equal 1. In Sj, let sl be the neighbor o f s  closest to vj and let P be the VjSl-Subpath 
of  Sj. In S~, let Wl be the neighbor of  w closest to v~ ~ and let Q be the w~v~_l-subpath 

of S;. Let R be the vi_~vj-subpath of C not containing Vo. Consider the cycle 

C* = Wl, Q, vi-1, R, vj, P, Sl, s, vo, w, wl. Now (C*, v) is a chordless wheel with an 

odd number  of  spokes greater than or equal to 3, which yields a contradiction. This 

completes the proof  of  the theorem. [] 

6. Odd cycle with a unique chord 

In this section, given a linear balanced graph G containing an odd cycle C with a 

unique chord (u, v), we first study the structure of nodes that are strongly adjacent 

to C. Let P1,1'2 be the two uv-paths in C and C~ and C2 be the chordless cycles 

formed by edge (u, v) with P1 and P2. The main result in this section, Theorem 6.6, 
is that if there exists a strongly adjacent node that has neighbors both in Pa\{u, v} 
and P2\{u, v}, then node u or v is a star cutset of  G. 

Classification 

Consider the following three mutually exclusive classifications of  nodes that are 
strongly adjacent to C. 

A node x strongly adjacent to C is a: 

Type 1 node if IN(x )  c~ C I is positive and even and ( N ( x )  ~ C) c Ci for either 
i =  1 or 2, see Figure 8(a). 

Type 2 node if IN(x )  ~ C I is odd and IN(x )  ~ Cil is positive and even for i = 1, 2. 
In this case, either u or v c N ( x ) ,  see Figure 8(b). 
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Type 3 node if IN(x)  ca C I is odd  and either (i) IN(x)  ca C~ I = 1 and IN(x)  c~ C21 
is positive and even or ( i i ) I N ( x ) c a  C21 = 1 and IN(x)ca C~ I is positive and even. 

Furthermore,  the unique neighbor  o f  x in Cj , j  = 1, 2, is also a neighbor  o f  u or v, 

see Figure 8(c). 

We now prove the above classification to be complete for linear ba lanced  graphs:  

Theorem 6.1. Let G( V +, V ; E)  be a linear balanced graph containing an odd cycle 
C with a unique chord (u, v). A node t that is strongly adjacent to C is a type 1 or a 
type 2 or a type 3 node. 

Proof.  As defined at the beginning of  this section let Ci, i = 1, 2 be the two chordless 
cycles formed by (u, v). Since for i = 1, 2, the cycles Ci are chordless, we have that 

if IN(t)  c~ C;I is odd,  then it is equal to 1. We now divide the p roo f  into the fol lowing 

claims. 
Claim 1. I f  IN(t)  ca C I is even, t must  be a type 1 node.  
Proof I f  IN(t)  ca C[ is even, then one of  the sectors o f  (C, t) together with t forms 

an odd cycle, say C' .  Now C '  must  have a chord. However ,  the only candidate  is 

(u, v). This yields the claim. 
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Claim 2. I f  IN(t)  n C I is odd,  t must  be a type 2 or type 3 node. 

Proof Clearly t cannot  be a type 1 node.  I f  t e  N ( u )  or t e  N(v) ,  then t must  be 

a type 2 node  since for i = 1, 2, IN(t)  n Cil is positive and even. Suppose t~: N ( u )  u 
N(v) .  We now show that  t is a type 3 node.  Because o f  symmetry,  we may assume 

that  IN(t)  n CI I is positive and even and that  IN( t )  n C21 = 1. I f  t is not  a type 3 

node  then its unique  neighbor  w in C2 is not  a neighbor  o f  u or v. We can assume 

wi thout  loss o f  generali ty that u e V + and w e V . Let x be the neighbor  o f  t in C~ 
such that the xu-path,  Q, in q does not  contain any other  neighbor  of  t. Let P~ 

and P2 be the two uw-paths in C2. Since C2 is an even cycle and u c V +, w e V 

it follows that  P1 and P2 are paths o f  lengths 1 rood 4 and 3 mod  4 (or 3 m o d  4 

and 1 mod  4) respectively. Consequent ly  either C* = t, x, Q, u, P~, w, t or C* = 

t, x, Q, u, P2, w, t is an odd  hole. Hence t must  be a type 3 node  and Claim 2 is 

proved.  This completes  the p r o o f  o f  the theorem. []  

We next prove the fol lowing lemma. 

Lemma 6.2. Let G be a linear balanced graph containing an odd cycle C with a unique 
chord (u, v). Let a, b (c, d) be the neighbors of u (v) in C. Then there cannot exist 

two nodes x and y of type 2 or 3 with N ( x )  n {a, b, u} ~ 0 and N ( y )  c~ {c, d, v} ~ ~3. 

Proof.  Suppose  the lemma is false. Let x and y be two nodes contradict ing the 

lemma, see Figure 9. There are three cases to consider. 
Case 1. Both x and y are type 2 nodes,  see Figure 9(a). 

Let P~ (P2) be the shortest path f rom x to y containing only nodes in q \ { u ,  v} 

(C2\{u, v}) as intermediate  nodes.  Let the cycle C* = x,/:'1, Y, P2, x. Then (C*,  v, u) 

is an expanded  cycle with star node  y. But since u is adjacent  to only one node  x 

o f  C*, Lemma 5.1 is violated. Consequent ly  x and y cannot  both be type 2 nodes.  

X 
X 

y 

Y 

(a) (b) (c) 

Fig. 9. 
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Case 2. x is a type 3 node and y is a type 2 node, see Figure 9(b). 

The proof  is identical to that of  case 1 except that u is adjacent to only one node 

b of  C*. 
Case 3. Both x and y are type 3 nodes, see Figure 9(c). 

Without loss of  generality we assume that x is adjacent to b. The proof  is identical 

to that of  case 2 except that now, if y is adjacent to d (c) then d (c) is the star of 

the expanded cycle C*. 
This completes the proof  of  the lemma. [] 

Definition 6.3. Let G be a linear bipartite graph containing an odd cycle C with a 

unique chord (u, r).  Let Qa and Q2 be the two uv-paths in C. Then C1 and C2 are 

two chordless cycles formed by (u, v). Suppose a and b (c and d) are the neighbors 

of  u (v) in C. We define a chordless path Pu from s c Cl\{u, v, a} to t ~ C2\{u, v, b) 
to be a minimal path if it satisfies the following two conditions. 

(i) No intermediate node of P, is in C w N ( u )  
(ii) Let x(y)  be the neighbors of  s(t) in Pu. Let N(Pu) be the set of  nodes in 

C\{s,  t) adjacent to intermediate nodes of  P, ,  other than x and y. Then N(Pu) c_ 

{a, b, v}. 

Note that N ( u )  is not a star cutset of  G separating c and d if and only if there 

exists a minimal path Pu connecting a node in Ca\{u, v, a} to a node in C2\{u, v, b). 

Definition 6.4. Let the cycles C, Ca, C2, paths Q~, Q2 and nodes u, v, a, b, ¢, d be 

as in Definition 6.3. Let Pu be a minimal path from s c Cl\{U, v, a} to t c C2\{u, v, b}, 

see Definition 6.3, that does not contain a type 2 or type 3 node. I f  the neighbor x 

(y) of  s (t) in Pu is a type 1 node, let x~ (Ya) be the neighbor of  x (y) in Ca (C2) 

such that the xla-path ,  Ta, (yab-path, 7"2) in Ca (C2) does not contain any other 

neighbor of  x (y). Similarly, when x (y) is a type 1 node, let x2n (Y2m) be the 

neighbor of  x (y) in C1 (C2) such that the x2nv-path, R1, (y2mv-path, R2) in Ca 
(C2) does not contain any other neighbor of  x (y). (Note that if xa = a, then 7"1 = a 

and x2n ~ c). I f  x (y) is not strongly adjacent to C, let xl = s (Ya = t). Let P~ be the 

xy-subpath of P~, and let the cycle C* = u, a, T1, x~, x, P1, y, y~, T2, b, u, see Figure 

10. (Note that x and y may be adjacent in which case P1 = x~ y). 

Lemma 6.5. Let G be a balanced graph containing an odd cycle C with a unique chord 

(u, v). Let C* be the cycle as in Definition 6.4. Then (C*, v) is a starred wheel. 

Proof. We first prove the following claim. 

Claim 1. ( C*, r) is a wheel. 
Proof In order to prove the claim we have to show that C* contains at least one 

other neighbor of  v besides node u. Suppose not. Then Xl, x, y, Y1¢ N(v ) .  Now 
consider the subgraph G'  induced by the nodes in C w Pu. I f  C is a node-minimal 
odd cycle in G',  applying Theorem 4.1 to G' ,  we have that C* must contain at least 
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two neighbors of v and the claim follows. Suppose now C is not node-minimal in 

G'. Then x or y or both must be type 1 nodes. We consider the case in which both 

of them are type 1 nodes, The other case is similar and hence omitted. Consider 

the odd cycle C = u, a, 7"1, xl, x, x2n, Ra, v, R2, Y2m, Y, Yl, 7"2, b, u. 

Now we want to show that C has only one chord, (u, v). Suppose not. Then 

the only other chord of C must be (x,y). But note that both x and y are not 

in N ( u ) u N ( v ) .  Let Q1 and Q2 (Q3 and Q4) be the uy and ux-subpaths (vy 
and vx-subpaths) of C. Then it follows that either u, Q l , y , x ,  Q4, v, u or 

u, v, Q3, Y, X, Q2, u is an odd hole. If  C is a node-minimal odd cycle in G' let P1 

as defined earlier be the xy-subpath of Pu. Then applying Theorem 4.1 to G'  since 

is node-minimal we have that C* must contain at least two neighbors of v, thereby 

proving the claim. Suppose now C is not node-minimal in G'. Then the neighbor 

w of x in P1 or the neighbor z of y in P1 or both are in N ( a )  u N(b ) .  First note 

that w ¢ z for otherwise it would imply that w c N ( a )  w N ( b )  is strongly adjacent 
to C but w is not a type 1 or a type 2 or a type 3 node. Now if w or z is in N(v) ,  

C* contains two neighbors of v and the claim follows. Suppose both w and z are 

not in N ( v ) .  We now show that w~ N(b) .  Suppose w e  N(b) .  Then the xaa-path, 

Ta, in C 1 must be of length 3 mod 4 for otherwise the cycle w, x, xl, T1, a, u, b, w 

would be an odd hole. This implies that the x2nv-path, Ra, in Ca must be of length 

1 mod 4. Then the cycle w, x, x2,,, RI,  v, u, b, w is an odd hole. Hence w~ N(b ) .  By 

symmetry, z ¢_ N ( a ) .  Now since (~ is not node-minimal in G', we must have w c N ( a )  

or z ~ N ( b )  or both. We consider the case in which w c N ( a )  and z c N(b ) .  The 

case in which only w c N ( a )  or z ~ N ( b )  but not both is similar and hence omitted. 

Clearly w ~ N ( z ) .  Let C = u, a, w, x, x2n, R1, V, R2, Y2m, Y, z, b, u and P2 = Pl\{x,  y}. 

Now (~ is a node-minimal odd cycle in G'  since a neighbor of w or z in P2 can not 

be in N ( a )  u N ( b )  and moreover w and z can not have a common neighbor in P2. 

Applying Theorem 4.1 to G', since C is node-minimal it follows that C and hence 

C* must contain at least two neighbors of v. Thus the claim follows. 

Now, all the chords of C* have a or b as one of the end nodes, see Figure 10. 

Thus condition (a) of Definition 5.2 is satisfied. It remains to show that condition 

(b) of the same definition is satisfied. Let Si, i = 1, 2 , . . . ,  n, be the sectors of the 

wheel with a c S~ and b e Sn. We next show that $1 does not contain an end node 

of a b-chord and by symmetry it follows that Sn does not contain an end node of 

an a-chord. Note that if xa = s = e, then Sa has c and u as end nodes and hence $1 

does not contain an end node of a b-chord. On the other hand if x is adjacent to 

v, then sector $1 has x and u as end nodes and hence $1 does not contain an end 
node of a b-chord. Suppose none of the above holds. Let va and u be the end nodes 

of $1, see Figure 10. We now divide the proof  into the following two claims: 

Claim 2. $1 cannot contain both a-chord and end nodes of b-chords. 

Proof Suppose the contrary. Let (a, m) be a chord in $1 and Ic  SlC~ N ( b )  be 

such that the m/-subpath, P2 of  P, does not contain any other neighbor of a or b. 
Next we show that x ~ m, L If x = m, then (a, m) is an edge of Sa and not a chord 
of Sa. If  x = I, then x would be a type 3 node. But since P, contains no type 3 node, 
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it follows that x ¢ m, /. Now P2 must be of  length 0 mod 4 for otherwise the cycle 
a, m, P2, 1, b, u, a would be an odd hole. Let R be the ba-path in C not containing 

u. Then the cycle a, m,/ '2 ,  l, b, r, a is an odd hole. Consequently the claim follows. 

Claim 3. $1 cannot contain end nodes of  b-chords. 

Proof In view of Claim 1 it is sufficient to show that $1 does not contain end 

nodes of  b-chords only. I f  x is a type 1 node, let Xzn be the neighbor of  x in C1 

such that the x2nv-subpath, R1, of  C1 does not contain any other neighbor of  x, see 
Figure 10(a). I f  x is not a type 1 node, let x2,, = s, see Figure 10(b). Let P2 be the 

XVl-Subpath of P,. Then H = x, P2, v~, v, R1, x2n, x is even hole. Therefore (/4, u, b) 

x 
1 <- 

x 

a u h 

Yl 

PU 

(a) 

a u 
b 

Yl 

y 

(b) 

Fig. 10. 
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is an expanded  cycle and L e m m a  5.1 implies that b must  have a positive even 

number  o f  neighbors.  N o w  the cycle C = u, $1, vl, v, u is chordless since Sa does 

not  contain any chords.  But node  b has an odd  number  o f  (/>3) o f  neighbors  in C. 

Thus Claim 3 follows and the p r o o f  o f  the l emma is complete.  [] 

We next prove the main  result o f  this section. 

Theorem 6.6. Let G( V +, V-; E)  be a linear balanced graph containing an odd cycle 
C with a unique chord (u, v). Let a and b (c and d) be the neighbors o f u  (v) in C. 

Suppose a node w strongly adjacent to C is a type 2 or type 3 node and w is adjacent 

to one of  the nodes u, a or b (or v, c or d). Then N ( u )  ( N ( v ) )  is a star cut set o f  G, 

separating c and d ( a and b ). 

Proof.  Let Q1 and Q2 be the two uv-paths in C. Then let C1 and C2 be the two 

chordless cycles formed by (u, v) with Q1 and Q2 respectively. Assume node  w is 

adjacent  to one o f  the nodes u, a or  b. Suppose the theorem is false. Then there 

exists a minimal  path  Pu from s • Cl\{U, v, a} to t • C2\{u, v, b} as in Definition 6.3. 

There are two cases to consider. 

Case 1. The first (x) or the last (y) intermediate node  of  P going f rom s to t is 

a type 3 node.  

Without  loss o f  generality, assume that x is a type 3 node.  Node  y may be a type 

3 or  a type 1 node  or neither, see Figure l l ( a ) .  
Without  loss o f  generali ty we assume that u • V +. Then {x, e, d } c  V + and 

{a, v, b} c V . Let xi • C1, i = 1 , 2 , . . . ,  2n, be the neighbors  o f  x. Then xi • V-. Fur- 

thermore  xl ¢ a and x2, ¢ v for otherwise we would  have a cycle of  length 4. Let 

xa (x2n) • C~ be the neighbor  o f x  such that the x l a - subpa th  (x2nc-subpath), 7"1 (T2), 

o f  C1 not  conta ining v (u) also does not  contain any other  neighbor  of  x. N o w  

consider  the subgraph G '  induced by the nodes in {C u P}\{bU~"=~ xi}. In G' ,  let 

P '  be the shortest  path connect ing x to a or  v whichever  is closest. Note  that  if y 

is a type 3 node,  P '  would  be f rom x to a. Otherwise P '  would  be f rom x to v. No  

intermediate node  of  P ' ,  except possibly node  y is adjacent  to a node  in C1. Moreover  

y is not  adjacent  to any node  in C~\{a}. N o w  C* = x, x~, T~, a, u, v, e, T2, x2n, x 

is a chordless cycle and hence C* must  be o f  length 0 mod  4. Since x • V + and 

a • V , the two xa-pa ths  as well as the two xv-paths in C* must  be such that  one 

o f  them is o f  length 1 mod  4 and the other  is o f  length 3 rood 4. I f  P '  is f rom x to 

a (v) it would  close an odd  hole with one of  the xa-pa ths  (xv-paths) in C*. 

Consequent ly ,  x and y are not  type 3 nodes. So we must  have Case 2 below. 
Case 2. x as well as y is not  a type 3 node.  

Note  that  x (y) may be a type 1 node. We now have two sub-cases. 

Case 2.1. w is a type 3 node,  see Figure l l (b ) .  

Define x~, Yl, 7"1, T2 and P~ as in Definition 6.4. N o w  by Lemma 6.5, we have 

that (C*,  v) is a starred wheel, where C* = u, a, T~, x~, x, P~, y, Yl, T2, b, u. Hence  

v must  have a positive even number  o f  neighbors  in C*. Let R be a shortest  path 
f rom w to y with intermediate nodes  conta ined in C2\{u}. N o w  consider the cycle 
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= w, R, y, P1, x, x l ,  Tx, a, w. Then (C, u, v) is an e x p a n d e d  cycle with node  a as 

s tar  node.  But v has an odd  n u m b e r  o f  ne ighbors  in C the reby  con t rad ic t ing  L e m m a  

5.1. Hence  a min ima l  pa th  Pu as in Def in i t ion  6.3 can not  exist. Consequen t ly  N ( u )  

must  be a s tar  cutset  separa t ing  c and  d. 
C a s e  2.2. w is a type  2 node ,  see F igure  l l ( c ) .  
The wheel  (C* ,  v) as def ined above  in Case  2.1 is still a s tar red  whee l  and  

hence  node  v must  have an even (~>2) n u m b e r  o f  ne ighbors  in C*. Let R1 ( R J  be 
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a shortest path from w to x (y) with intermediate nodes contained in C l \ u  (C2\u).  

Now consider the chordless cycle C = w, R1, x, P~, y, R2, w. Then (C, u, v) is an 

expanded cycle with w as the star node. But v has an odd number  of neighbors in 

thereby contradicting Lemma 5.1. Again this implies that a minimal path Pu as 

in Definition 6.3 can not exist. 

This completes the proof  of  the theorem. [] 

Lemma 6.7. Let G be a linear balanced graph containing an odd cycle C with a unique 

chord (u, v). Then either: 

(i) N ( u )  is a star cutset o f  G separating c and d, 

(ii) N ( v )  is a star cutset o f  G separating a and b, 

(iii) there exists a node-minimal odd cycle, say C* with edge (u, v) as the unique 

chord. Suppose a* and b* (c* and d*) are the neighbors of  u (v) in C*. Then from 

a to a* and b to b* (c to c* and d to d*), there exists a path not containing a node 

in S ( v )  (N (u ) ) .  

Proof. I f  there exists a type 2 or type 3 node that is strongly adjacent to C, then 

by Theorem 6.6 either N ( u )  or N ( v )  is a star cutset of  G and the lemma follows. 

Suppose there are no type 2 or type 3 nodes. I f  there is a type 1 node, then no node 

is strongly adjacent to C. Moreover C* = C, a* = a, b* = b (c* = c, d* = d) and the 
lemma follows by Lemma 3.2. Suppose now there is a type 1 node x. Let P1, P2, C1, C2 

be as defined at the beginning of this section. Without loss of generality assume 

that xi, i = 1 , 2 , . . . ,  2n are the neighbors o f x  in C1. Suppose Xl (x2n) is the neighbor 

of  x in C1 such that the x~u-path, R (x2,v-path, Q) does not contain any other 

neighbor of  x. Then the odd cycle C = u, R, Xl, x, X2n , Q, D, t'2, U has (u, v) as the 

unique chord. Moreover  the length of C is less than the length of C. I f  xl = u 

(x2n = v) then x2n ~ N ( v )  (x~¢. N ( v ) )  and a = x  ( ~ = x )  is a neighbor of  u (v) in C. 
Clearly, there is a path from a to ~ (c to ~) with intermediate nodes contained in 

C ~ \ N ( v )  ( C I \ N ( u ) ) .  Now if C has a type 2 or type 3 node, the lemma follows 

with C = C. Otherwise repeating the above process must result in either a node- 

minimal odd cycle C* with (u, v) as the unique chord or we must have a type 2 or 

type 3 node. In the former case, let a* and b* (c* and d*) be the neighbors of u 

(v) in C*. In this case, clearly, the process of  redefining the odd cycle is such that 

(iii) holds. In the latter case, by Theorem 6.6, either (i) or (ii) holds. [] 

7. Parachutes and star cutsets 

In this section we first define a parachute and prove that a parachute in a linear 
balanced graph G must contain a star cut set of  G. The proof  of  the Star Cutset 
Theorem requires this result. 
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7.1. Chordless wheel with two spokes 

Definition 7.1. A parachute (C, v, v3,/'3) is a chordless cycle C and a node v which 

has two neighbors v~,/.)2 in C and a path of length >2 from v to a node z of C 

such that no intermediate node of this path is adjacent to a node in C. Let v3 be 

the neighbor of v in this path, see Figure 12. 

Let P0,/ '1, P2 be respectively the paths connecting/v~ and/.)2, v~ and z, z and v2, 

and making up the cycle C. Let P3 be the path connecting /.)3 to z, as in Figure 12. 

The length of  both paths / '1,/ '2 is greater than one. 

P0 

P1 ~P2 

Fig. 12. 

Theorem 7.2. Let G be a linear balanced graph containing a parachute ( C, v,/.)3, P3) 

with two spokes (v, /vO, (v, /.)2) and corresponding paths Po, P~, P2, see Definition 7.1. 

Let a ~ P1, b c Po ( c ~ P2, d c Po) be the neighbors of  Vl ( v;) in C. Suppose every node 
w ~ N ( v )  which is strongly adjacent to C to P3 has exactly two neighbors in C to P3, 

both of  which are in Po or in P1 vo P2 to P3 . Then N ( v ) is a star outset of  G separating 

{a, c} and {b, d}. 

Proof. With nodes of N(v )  removed, let P~ be a shortest path from s c Po\{ t ) l , / - )2}  

to t c P 1 u P 2 t o P 3 \ { V l ,  v2, v3}, see Figure 13. Let x (y) be the neighbor of s (t) in 

P~. Let Pxy be the xy-subpath of P~. If  x is strongly adjacent to Po, let xl be the 
neighbor of x closest to /vl in Po- Otherwise, let Xl = s. In either case, let R be the 

xlv~-subpath of Po. Now consider the two cycles C1 =/.)2, Po,/')1, P1, z, P3,/.)3, v,/.)2 

and C2 =/')1, Po,/.)2, P2, z, P3,/.)3, v, Vl. Both C1 and C2 are odd cycles with a single 

chord (v, Vl) and (v, v2) respectively. Now there are two cases to consider depending 

upon whether y is strongly adjacent to /'1 to P2 v3 P3 or not. 
Case 1. y is not strongly adjacent to P~ to P2 vo P3, see Figure 14. 
There are two subcases depending upon whether t c P1 vo P2 or t ~ P3. The latter 

case is identical to the first case and hence we consider only the case t ~ P~ vo Pz. 
Because of symmetry we need to consider only the case t ~ P2, see Figure 14(a). 
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Let Q be the zt-subpath of P2. Consider the cycle C * = t , y ,  Pxy, X, Xl, 

R, vl, v, v3, P3, z, Q, t. Now applying Lemma 6.5 to C2 and P~, we have that 

(C*, v2) is a starred wheel with vl and v3 as the star nodes. By Theorem 5.3, v2 

must have a positive even number of neighbors in C*. Consider the starred cycle 
= t, y, Pxy, x, X1, R, D1, P1, z, Q, t with /91 as the star node. Now (C, v, v2) is an 

expanded cycle. But since N(/92) (3 ( C * \ C )  =/.3, we have a contradiction to Lemma 

5.1. 

Case 2. y is strongly adjacent to PlW P 2 u P 3 ,  see Figures 13 and 15 to 17. In 

P1<3 P2u / ' 3 ,  let t and y~ be the neighbors of y. There are four subcases. The 

arguments in all four subcases are identical to those in Case 1 except that in each 

subcase the starred wheel and the expanded cycle that are identified may be different. 
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Case 2.1. Both t, Yl ~ P~ or t, y~ c P2. 

Because of symmetry, we need to consider only the case t, y~ c P2, see Figure 

13. Without loss of generality, we assume that in P2, Yl is closer to v2 than t. Now 

the starred wheel and the expanded cycle are identical to those in Case 1. 

Case 2.2. Both t, y~ c/93, see Figure 15. 

Without loss of generality, we assume that in P3, Y~ is closer to v3 than t. Let 

Q1 and Q2 be the v3Yl and zt-subpaths of P3. Now consider the cycle C * =  

Y~, Y, Pxy, x, Xl, R, v~, v, v3, Q1, yl. As in Case 1, it follows that (C*, v2) is a starred 

wheel and v2 must have a positive even number of neighbors in C*. Now C = 

t, y, Pxy, x, x~ , R, vl , P~, z, Q2, t is a starred cycle with Vl as the star node. Then 

(C, v, v2) is an expanded cycle. But since N(v2) c~ ( C * \ C )  = v, we have a contradic- 

tion to Lemma 5.1. 

Case 2.3. t ~ P1 L3 Pz\{Z}, Yl ~ P3\{z}, see Figure 16. 

Without loss of generality, we assume that t c P2\{z}. Let Q~ and Q2 be the v3y~ 

and zyl-subpaths of P3. Now let C* = y~, y, Pxy, x, x~, R, v~, v, v3, Q1, Y~. Again 

(C*, v2) is a starred wheel and v2 must have a positive even number of neighbors 

in C*. If  y~ # v3, let C = y~, y, Pxy, x, x~, R, v~, P1, z, Q2, yl. If  y~ = v3, let Q3 be the 

zt-subpath of P2 and C = t, y, Pxy, x, x l ,  R, v~, P~, z, Q3, t. Note that if y~ = v3, then 

t~ N(v2). In either case, (C, v, v2) is an expanded cycle and N ( v 2 ) n  ( C * \ C ) =  v. 

Hence we have a contradiction to Lemma 5.1. 

Case 2.4. t ~ P2\{z},  Yl ~ Pl \ {z} ,  see Figure 17. 

Note that if Yl ~ N(v~)  then t¢~ N(v2) .  Conversely, if t~  N(v2) ,  then y~ ¢1 N(v z ) .  

Because of symmetry, we can assume without loss of generality that t ~ N(Vl). Let 

Q1 be the VlYl-Subpath of P~ and Q2 be the zt-subpath of P2. Now consider 

C *=  t, y, Pxy, x, x l ,  R, vl ,  ~), v3, P3, z, Q2, t. Again (C*, v2) is a starred wheel 

and v2 must have an even number of neighbors in C*. Let C =  

y~,y ,  Pxy, X,X~, R, v~, Q~,y~. Now (C, v, v2) is an expanded cycle. Again since 

N(v2) ~ ( C * \ C ) = / )  we have a contradiction to Lemma 5.1. 
Thus in all cases we have a contradiction to Lemma 5.1. Hence the theorem 

follows. [] 

8. Wheels  and star cutsets 

The main result in this section is that if a linear balanced graph contains a starred 
wheel with at least 4 spokes, then the hub v of  the wheel defines a star cutset N ( v ) .  

Definition 8.1. Consider a linear graph G and a chordless wheel (C, v) with no 

node in V \ N ( v )  strongly adjacent. Let s, t 6 C. We define a chordless path P from 

s to t as a minimal  path if it satisfies the following two conditions: 

(i) No intermediate node of P belongs to C • N ( v )  and 

(ii) The set N ( P )  of nodes in C\{s ,  t) adjacent to intermediate nodes of P is 
contained in N ( v ) .  
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8.1. Chordless wheel with at least 4 spokes 

Let (v, v~), i = 0 ,  1 . . . .  , n - 1  be the n spokes  of  a chord less  wheel  (C, v). Let  

S~, i = 1, 2 , . . . ,  n with end nodes  V~_l and  v~ (where  v, = Vo) be the n sectors o f  the 

same wheel.  

Lemma 8.2. Let  G be a linear balanced bipartite graph containing a chordless wheel 

( C, v) with at least four  spokes and no node in V \ N ( v )  strongly adjacent to C. Let 

s, t ~ C. Suppose P is a minimal path f rom s to t with the additional condition : IN(P) ]  <~ 1. 

Then the following properties hold. 

(i) I f s = Vk and t = vj, k # j, then k - j  is odd. Moreover N ( P ) = O, see Figure 18(a). 

(ii) I f  s e Si \ N ( v ) and t = vj then j = i o r j  = i - 1 and N ( P ) c { vi, vi-1}, see Figure 

18(b). 

(iii) I f  s c S i \ N ( v )  and t~  S j \ N ( v )  then i - j  is even, see Figure 18(c). 

p Y 
X 

=v k = t 

(a) (b) (c) 

Fig. 18. 

Proof. Let Q1 and  Q2 be the two s t - subpa ths  of  C. Let Cg = s, P, t, Qi, s for  i = 1, 2. 

Then  for  i = 1, 2 we have the fo l lowing:  

Claim 1. I f  Qi c~ N ( P )  = 0 then  ]Qi c~ N(v ) ]  is even or  equal  to one.  

Proof. If  v is s t rongly  ad jacen t  to C~, then  (Cf, v) is a chordless  wheel  and  the 

n u m b e r  o f  spokes  mus t  be even. 

Claim 2. I f  s = Vk and  t = vj, k # j ,  then  k - j  is odd.  

Proof. F o r  i = 1, 2, we have tha t  IQ~ c~ N ( v )  I ~> 2 since nodes  Vk, Vj C Q~, i = 1, 2. 

But ] N ( P ) ] ~  < 1 impl ies  that  Q i n  N ( P )  = 0  for  e i ther  i =  1 or  2. Wi thou t  any  loss in 

genera l i ty ,  suppose  Q1 ~ N ( P ) = 0 .  Then  (C~, v) is a chordless  wheel ,  hence  we 

have that  ]Q1 c~ N ( v ) l  is even. This impl ies  that  k - j  is odd.  

Claim 3. I f  s = vk and  t = vj, k # j  then  N ( P )  = O. 
Proof. Suppose  N ( P ) =  {vg}. Let x, y be the ne ighbors  o f  vg in P such tha t  the  

sx - subpa th  P1 and  y t - s u b p a t h / ' 2  of  P are shortest .  Note  that  x and  y may  coinc ide .  

N o w  app ly ing  C la im 2 with j = g (k  = g)  and  P = vk, / '1 ,  x, vg ( P  = vg, y , / ' 2 ,  vj) we 
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get that k - g  ( g - j )  is odd. But this implies that k - j  is even which contradicts 

Claim 2. 
Property (i) now follows from Claims 2 and 3. 

Claim 4. I f  s c S ~ \ N ( v ) ,  t = vj and N ( P )  = 0, then vj ~ S~. 

Proof. Since node vj is the end node of  both Q1 and Q2, we have that ]Q~ r~ N(v)]  

is odd for either i =  1 or 2. Without loss of  generality, suppose ]Q1 c~ N ( v ) l  is odd. 

Then by Claim 1, we have that [Q~ c~ N(v)[  = 1 and the claim follows. 
Claim 5. I f  s c  S ~ \ N ( v ) ,  t = v j  and N ( P ) = { v g } ,  then { %  vg}c_ Si. 

Proof. Let x, y be the neighbors of  Vg in P such that the sx-subpath P~ of P and 

yt-subpath P2 of P are shortest. Now applying Claim 4 wi th j  = g and P = s, P1, x, vg 
we get that vg c Si. Hence N ( P )  = {vg} c {vg, Vi_l}. Without loss of generality, assume 

that vg = v~. We now prove that j = i -  1 thereby proving the claim. Now applying 

Claim 2 with k = i and P = vi, y, P2, vj it follows that i - j  is odd. Let Q~ be the 
svj-subpath of  C not containing vg. Then IQ1 (~ N(v)] is odd since s ~ S ~ \ N ( v )  and 

i - j  is odd. But Q1 c~ N ( P )  = •. Consequently by Claim 1, we have t h a t  IQI ('~ N ( V ) ]  = 

1. This implies j = i - 1. 

Claims 4 and 5 together prove property (ii). We now prove property (iii): Suppose 

s c S A N ( v ) ,  t c S j \ N ( v )  and i - j  is odd. Then for i = 1, 2, we have that IQi c~ N(v) l  

is odd. Since (C, v) has at least 4 spokes, we assume, without loss of generality, 

t h a t  [Q1 (-3 g ( v ) l  ~ 3. Clearly we must have 0 ~ N ( P )  c Q1 c~ N ( v )  for otherwise C1 

is a chordless wheel with an odd number  of  spokes. Now, let vg ~ N ( P ) .  Since 
vg c Q1 c~ N ( v )  and [Q1 r~ N(v)[ />3,  vg can not be an end node of both Si and Sj. 

We assume that vg is not an end node of S~. Let x be the first neighbor of  vg along 

P going from s to t. Then let P~ be the sx-subpath of P. Now applying Claim 4 

with s e S ~ \ N ( v ) ,  t=Vg and P = s ,  P~,x ,  vg we get that g o { i - l ,  i} which is a 

contradiction. Consequently i - j  is even. Therefore property (iii) follows and the 
proof  of  the lemma is complete. [] 

We now prove the Star Cutset Theorem for chordless wheels with at least four 
spokes. 

Theorem 8.3. Let  G be a linear balanced graph containing a chordless wheel ( C, v) 

with at least four  spokes. Let (v, vi), i = O, 1 , . . . ,  n - 1, be the spokes o f  the wheel. For 

i = 1, 2 . . . .  , n, let dil,  di2 c Sg be the two neighbors o f  vi 1 and v~ respectively. Let  

D1 = {dil, di2]i is odd}, D2 = {dil, di2]i is even}. Suppose S is the set o f  nodes that are 
strongly adjacent to C. I f  So_ N ( v ) ,  then N ( v )  is a star cutset o f  G, separating D 1 
and D 2 . 

Proof. Suppose the theorem is false. Then there must be a minimal path Q (see 
Definition 8.1) between b E S A N ( v )  and d c S j \ N ( v )  where i is odd a n d j  is even, 

see Figure 19. Now IN(Q)]/> 2 for otherwise Q would satisfy all the three conditions 
of  Lemma 8.3 and since i - j  is odd, property (iii) of  the same lemma would be 
violated. Next we show that IN( Q)] < 3. Suppose ]N(Q)[~> 3. Then it is easily verified 
that N ( Q )  contains three nodes Vk, vg and Vh such that the following condition holds: 
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Q contains nodes  x ~ N ( v k )  and y c N ( V h )  and the xy- subpa th  P~ of  Q is such 

that  Pl\{X, y} contains one or more  neighbors  of  vg but  does not contain any other  

ne ighbor  of  a node  in N ( v )  n C\{%}.  

But now apply ing  L e m m a  8.2 with s = vk, t = Vh, P = Vk, X, P1, Y, Vh and noting 
that  IN(P)]  = 1, we get a contradic t ion to p roper ty  (i) o f  L e m m a  8.2 which states 

that  N ( P ) =  0. Consequent ly  IN(Q)]  = 2. 

N o w  let N ( Q )  = {vk, %}. Let x (y) be the first (last) ne ighbor  of  vk in Q going 

f rom b to d. Let P1 (P2) be the bx-subpa th  (dy-subpa th)  of  Q. Then apply ing  L e m m a  

8.2 with s = b ~ S A N ( v ) ,  t=  Vk and P =  b, P~, x, Vk, proper ty  (ii) implies that  k c 

{i - 1, i}. But then  apply ing  again L e m m a  8.2 with s = d c S j \ N ( v ) ,  t = Vk and P = 

d, P2, y, vk, prope r ty  (ii) implies that  k ~ { j -  l , j } .  Consequent ly  k = { i -  l,  i} c~ 

{ j -  1,j}. A similar  a rgument  shows that  g = {i - 1, i} c~ {j - 1,j}. But since (C, v) 
has at least four  rays it follows that  k = g. But this leads to a contradic t ion thereby 

proving  the theorem.  [] 

Theorem 8.4. Let  G be a linear balanced graph containing a chordless wheel (C, v) 

with at least four  spokes. Suppose (u, v) is one o f  the spokes and nodes x and y are 

adjacent to u in C, see Figure 20. Let  T be the set o f  nodes that are strongly adjacent 

to C. Suppose each h ~ T \ N (  v) satisfies the following condition: 

(i) Node h has exactly two neighbors in C with one o f  them being either x or y. In 

C, suppose hi is the other neighbor o f  h. Then every neighbor o f  h, not including hi ,  x 

or y, does not have any neighbor in C. 

Then N ( v )  is a star cutset o f  G, separating x and y. 

Proof .  I f  T \ N ( v ) = 0 ,  the result follows f rom Theo rem 8.3. Therefore ,  we assume 
that  T \ N ( v )  # O. Let h c T \ N ( v ) .  Note  that  two nodes  h, g ~ N ( x )  ~ T can not  
have  a c o m m o n  ne ighbor  other  than  x. I f  g c N ( x )  c~ T and h ~ N ( y )  c~ T, then h 
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and g do not have a common neighbor. Let Si, i = 1, 2 , . . . ,  n, be the sectors of  the 

chordless wheel (C, v) with x c  S~ ( y c  S,,) having end nodes u and vl (u and Vn 1), 

see Figure 20. 

Claim 1. I f  h ~ N (y ) c~ T ( h c N ( x ) c~ T) let h~ the other neighbor of  h in C. Then 
the index i of  sector Si containing hi is even (odd). 

Proof  Suppose the claim is false and hi c Si, i odd. Let vi-1 and vi be the end 
nodes of  S~. Let Q be the yhl-subpath  of C not containing u and C =y,  Q, h~, h, y. 

Now (C, u, v) is an expanded cycle with y as the star node. But node v has an odd 
number  of neighbors in C, contradicting Lemma 5.1. Hence the claim follows. 

There are two cases to consider depending upon whether both g ~ N ( x )  c~ T and 

h ~ N ( y )  c~ T exist or only one of them exists. We consider the case in which both 
g and h exist. The other case is similar and hence omitted. 

Let g e N ( x ) c ~  T and h c N ( y ) c ~  T be chosen such that the following holds: 

Node g has a neighbor gl e C, gl # x, and h has a neighbor h~ e C, h~ # y, such that 
the glh~-subpath H of C not containing u, does not contain an intermediate node 
which is a neighbor of  a node in T \ N ( v ) ,  see Figure 20(a). I f  N ( x ) c ~  T=fJ  

( N ( y )  n T = 0), then g = x (h = y). Let C* = u, x, g, g~, H, hi, h, y, u. Then (C*,  v) 

h I 

h 

(a) 

u 

(b) 

Fig. 20. 
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is a chordless wheel with all strongly adjacent nodes contained in N(v ) .  Note that 

(C*,  v) has at least two spokes with (u, v) being one of them. There are two cases 

to consider. 

Case 1. (C*, v) has at least four spokes, see Figure 20(a). 

Let S be the set of  nodes that are strongly adjacent to C*. Since S c_ N ( v ) ,  by 

Theorem 8.3, N ( v )  is a star cutset of  G, separating x and y. 

Case 2. (C*, v) has two spokes, see Figure 20(b). We further divide this case 

into two sub-cases. 
Case 2.1. Edge (vi, v), i ¢  1 or n - l ,  is a spoke of (C*, v). Let vi and vi+ 1 be 

the end nodes of the sector S~+I. Without loss of generality, assume that gl c S~ and 

h I c S i+l .  Let Q be the v~_~g~-subpath of Sg. First we note that Q is of length 3 mod 4 

for otherwise the cycle u, v, vi_~, Q, gl,  g, x, u would be an odd hole. Now we want 

to show that (C*,  v) together with a node va and a path P3 defines a parachute that 

satisfies Definition 7.1. 
Let R~ be the glv~-subpath of S~ and R2 be the vih~-subpath of Si+~. Suppose 

P0 = u, y, h, hi,  R2, Vi; P1 =g~,  g, x, u; P2 = Vi, R~, g~ and P3 = v, vi 1 ,  Q, gl.  Clearly, 
C* = u, P0, v~, P2, g~, P1, u. Consequently (C*, v, v~-l, P3) with the corresponding 

paths Po, P1 and P2 is a parachute. It is easily verified that a node x ~  N ( v )  but 

which is strongly adjacent to C* u P3 has exactly two neighbors, one of them being 

x c P1 and the other neighbor in P3. Now by Theorem 7.2, N ( v )  is a star cut set of 

G, separating x and y. 
Case2.2. Edge (v~, v), i = 1 or n - 1, is a spoke o f ( C * ,  v). Because of symmetry, 

we need to consider only the case with i = n - 1. The proof  however, is identical to 

that of  Case 2.1 with i replaced by n - 1. 

This completes the proof  of the theorem. [] 

8.2. Starred wheel with at least 4 spokes 

In this section, we consider a starred wheel (C, v) with at least four spokes and 

show that if the strongly adjacent nodes satisfy a given condition, the hub v defines 

a star cutset N ( v ) .  

Theorem 8.5. Let G be a linear balanced graph containing a starred wheel ( C, v) with 

at least 4 spokes. Let a and b be the star nodes adjacent to node u where ( v, u) is a 

spoke of  the wheel. Let D be the set o f  nodes that are strongly adjacent to C. Suppose 

each d ~ D \  N (  v) satisfies the following conditions: 
(i) Suppose d ~ N(u ) .  Then d has exactly two neighbors in C with one of  them 

being either node a or b. Furthermore, every neighbor of  d, say node w ~ C does not 

have any neighbor in C. 
(ii) Suppose d ~ N ( u ) \ { v }  and a neighbor old,  say r~ C, has a neighbor, rl, in C. 

Then every neighbor o f t ,  other than d and rl, does not have a neighbor in C. (Note 

that by (i) above every neighbor of  d not in C has at most one neighbor in C.) 
Then N ( v )  is a star cutset o f  G, separating a and b. 
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Proof. If  node d ~ N ( u )  ~ D, by property (iii) of Theorem 5.3, d has neighbors in 

only odd numbered or in only even numbered sectors but not both. Hence N ( u ) \ { v }  

can be partitioned into three disjoint sets as follows: 

To = {x Ix ~ N ( u ) \ { v }  and x has a neighbor in an odd numbered sector 

of (c, v)}, 

Te = {x l x  c N ( u ) \ { v }  and x has a neighbor in an even numbered sector 

of (C, v)}, 

T n = { x ] x c  N ( u ) \ { v }  and x has no neighbors in C}. 

Note that a c To and b E T~. Hence To and Te are non-empty. We now construct a 

chordless wheel (C*, v) from the starred wheel (C, v). Let x c  To and y~  Te be 

chosen such that the following holds: 

Node x has a neighbor g ~ C and y has a neighbor h c C such that the gh-subpath 

H of C not containing u does not contain an intermediate node which is a neighbor 

of a node in Tow Te, see Figure 21. 

x 

v, 
g • h 

J Vn - i 

x 

(a) (b) 
Fig. 21. 

/ 

\ 
~[11 - r l -1  

Note that such a choice of x and y is always possible. Let C* = u, x, g, H, h, y, u. 

Then (C*, v) is a chordless wheel. Moreover, if x ~ a (y ~ b), by property (iii) of 

Theorem 5.3, there exists a path from x to a (y to b) not containing a node in N(v ) .  
We now have two cases to consider. 
Case 1. (C*, v) has two spokes. 
We further divide this case into two sub-cases. 

Case 1.1. Edge (vi, v), i S  1 or n - l ,  is a spoke of (C*, v), see Figure 21(a). 

Let Si be the sector with end nodes vi-1 and vi. Let g c S~ and h c Si+l. Note 

that x has a positive even number of neighbors in Sj. Let Qi be the v~h-subpath of 

Si+l. The cycle C = u, v, v~-l, Sj, v~, Qi, h, y, u has (v, v~) as the unique chord, see 
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Figure 21(a). Let w~Si and zcS~+l be the neighbors of vj in C'. Now x is a type 3 
node with respect to C. Consequently by Theorem 6.6, N(v)  is a star cutset of  G, 

separating w and z. Now since x has a neighbor g c Si and y has a neighbor h c Si, 

it follows that N(v)  is a star cut set of G, separating x and y. But there exists a 

path connecting x to a (y to b) and not containing a node in N(v).  Hence N(v)  
is a star cutset of G, separating a and b. 

Case 1.2. Edge (v~, v), i = 1 or n - 1, is a spoke of (C*,  v), see Figure 21(b). 
Because of symmetry, we need to consider only the case with i =  n - 1 ,  see 

Figure 21(b). Now let Q,,-1 be the v~_~h-subpath of Sn. Then C = u, v, vn-2, 

Sn_~,vn_~,Q, ~,h,y,u has the unique chord (v, v,_0.  Let w~Sn_~ and zcS~ be 

the neighbors of  vn-~ in C. Node x has a positive even number  neighbors in S,-1 

and is a type 3 node with respect to C. Consequently by Theorem 6.6, N(v)  is a 

star cut set of G separating w and z. Now by arguments identical to those in Case 
1.1, it follows that N(v)  is a star cutset of (3, separating a and b. This completes 
the proof  for Case 1. 

Case 2. (C*, v) has at least four spokes. 

Without loss of generality, assume that in (C*, v), x c S~ and y c S,. Now if x = a 

(y = b) then x c C (y c C) and consequently by condition (i) of the theorem, a 

neighbor of  x (y) which is strongly adjacent to C* has exactly two neighbors in 

C* with one of them being x (y). I f  x ¢ a (y ~ b), by condition (ii) of the theorem, 

again a neighbor of x (y) can have at most two neighbors in C*. In either case, it 
is easily verified that (C*,  v) is a chordless wheel satisfying condition (i) of Theorem 

8.4. Hence N(v)  is a star cutset of  G, separating x and y. Again since there exists 

a path from x to a (y to b) not containing a node in N(v),  it follows that N(v)  is 

a star cutset of  G1 separating a and b. 

This completes the proof  of the theorem. [] 

9. Star Cutset Theorem 

We first give a definition and prove a lemma before proving the Star Cutset Theorem. 

Definition 9.1. Let G be a linear balanced graph containing a node minimal odd 
cycle C with a unique chord (u, v). Suppose a and b (e and d) are the neighbors 

of  u (v) in C. Let C1 and C2 be the two chordless cycles formed by (u, v). Let 
a, c c C1 and b, d c C2. Suppose there exists a minimal path Pu, as in Definition 6.3, 
from g ~ C~\{u, v, a} to h c C2\{u, v, b}. From among the collection of all such 

minimal paths, let p* be the set of paths that have the shortest length. Let p* ~ p* 

be the set of  paths from sc C~\{u, v, a} such that node s is closest to u in the 
cu-subpath of C~ not containing v. Let P,, ~ p* be a minimal path to t c C2\{u, v, b} 
where t is closest to u along tu-subpath of C not containing v. Let P~ (P2) be the 
as-subpath (bt-subpath) of  C1 (C2), not containing u. Now define the cycle C * =  
u, a, P~, s, P~,, t, P2, b, u, see Figure 22. 
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Lemma 9.2. Let C* be a cycle as in Definition 9.1. Let D be the set of  nodes that are 

strongly adjacent to C*. Suppose f ~ D. Then the following two properties hold: 

(i) Suppose f E N(u ) .  Then f has exactly two neighbors in C* with one of  them 
being either node a or b. Furthermore every neighbor o f f  other than the two neighbors 
in C*, does not have any neighbor in C*. 

(ii) Suppose f c N(u ) \ {v} .  A neighbor o f f  say rE C*, has a neighbor, rl, in C*. 

Then every neighbor of  r, other than f and rl, does not have a neighbor in C*. 

Proof. We first prove three claims which in turn prove property (i) of  the lemma. 

Claim I. A node w~ C* u N ( u )  u N ( a )  ~ N ( b )  has at most one neighbor in C*. 

Proof Suppose a node w ~ C* w N ( u ) u N ( a ) u N ( b ) has two or more neighbors 
in C*. First we show that w~ C \ C * .  I f  w e  Ca\C* then it must have a neighbor, 

say x ~  s in P~,. The sx-subpath, Psi, of  P~ has l e n g t h ~ 2  for otherwise x would 

be type 1 or type 2 or type 3 node. Let Pxt denote the xt-subpath of Ps,. Then Is, E p* 

since Pw~=w,x, Px,, t is a shorter path than Ps,. Hence wE CI\C*.  Similarly 

wE C2\C*. Hence wE C \ C * .  Clearly w can not have two neighbors in C ~ C* or 

in Ps, since C is node-minimal and Ps, is a shortest path. Hence w must have one 

neighbor, say x ~ Ps,\{s, t} and one neighbor y ~ C c~ C*. Without loss of  generality, 
assume that y ~ C~ c~ C*. Note that y # u, a, b. Now the sx-subpath, P~, of  P~t must 
be of  length 1 or 2 for otherwise Py, = y, w, x, P~,, t would be shorter than P~. I f  P~ 
is of  length 2, both P~, and P~, have the same length, contradicting the choice of  

P,, such that s is closest to u in the cu-subpath of  Ca, not containing v. Consequently 

s must be a neighbor of  x. This implies that s, x, w, y is a path of  length 3 between 
s and y ~ Ca. Note that since C is node-minimal,  x can not have any other neighbor 
in C. But then one of the two sy-subpaths of  C1 would close an odd hole. Thus the 
claim follows. 
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Claim 2. I f f ~  D \ N ( u )  t h e n f c  N ( a )  u N(b) .  Moreover node f has exactly two 
neighbors in C*, one of them being a or b and the other one in P~,\{s, t}. 

Proof Since f c D \ N ( u ) ,  by Claim 1, f ~ N ( a )  u N(b ) .  Clearly f can not have 

two neighbors in C ~ C* or in Ps,. Hence it must have exactly one neighbor in 
P~,\~s, t}. 

Claim 3. Suppose f c  D \ N ( u ) .  Then a neighbor o f f ,  say node w~ C* not have 
any neighbor in C*, see Figure 23(a). 

£ 

w \ 

\ u 
\ 

(al 

f 

F ig .  23, 

Proof By Claim 2, f c  N(a)c~ N ( b )  and has exactly one neighbor, say g, in 

P~,\{s, t}. Without loss of  generality, assume t h a t f c  N(a) .  Consider now a neighbor 

o f f ,  say node w ~ C*. Suppose w has a neighbor, say h, in C*. Note that h ~ a, b, u. 

Now there are 3 cases to consider: 
Case 1. h c Ca c~ C*. 
The path a,f, w, h is of length 3. Hence the ha-subpath of C1, not containing 

u, must be of length I rood 4. Let Ph~ be the hv-subpath of C1, not containing u. 
Then u, v, Phi, h, w, f, a, u is an odd hole. 

Case 2. h ~ P~,\{s, t}. 
The path g,f,  w, h is of length 3 and is between g, h ~ Ps,\{s, t}. This implies 

that the length of the hg-subpath of P~t must be at least 5 which contradicts the 
choice of Ps, such that it is the shortest path~ 

Case 3. h ~ C2 c~ C*. 
Since the path g,f,  w, h is of  length 3, the choice of  Ps, implies that the 

gt-subpath,  Pg,, of  P~, must be of  length 1 or 2. Now we show that Pg, does not 
contain a neighbor of  v. Assume the contrary. The path P* = v, u, a, f, g is of length 
4. I f  Pg, is of length 1, then t must be a neighbor of v, but the hole v, P*, g, t, v is 
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of  length 6. I f  Pgt is of  length 2, then let q be the intermediate node of Pg,. Then q 

is a neighbor of  v and the hole v, P*, g, q, v has length 6. Hence Pg, does not contain 

a neighbor of  v. By Lemma 6.5, (C*,  v) is a starred wheel, and by Theorem 5.3, v 

has an odd number  of  neighbors in P~,. This implies that f has exactly two neighbors 
a and g in C* with a in an odd numbered sector and g in a even numbered sector. 

Let Pag be the ag-subpath of C* not containing u. Then C = a, Pag, g,f, a is starred 
A 

cycle with a as the star node. This implies that (C, u, v) is an expanded cycle and 
C has an odd number  of  neighbors of  v, contradicting Lemma 5.1. 

Thus in all cases it follows that w can not have a neighbor in C* and the claim 

follows. 
Claims 2 and 3 together prove property (i). 

We now prove property (ii). L e t f ~  Dc~ N(u) \ {v} .  Let r~  C* be a neighbor of  

f. Since r~ N ( u )  u N ( a )  u N ( b )  by Claim 1, r has at most one other neighbor in 

C*. Suppose r has a neighbor rl ~ C*. Note that rl # a, b, e, d, u. Now rl ~ C c~ C* 
for otherwise the path u , f  r, rl has length 3 and is from u to r~, which are both in 

C1 or both in (72. But that clearly implies the existence of  an odd hole. Hence 

rl ~ P~,\{s, t}. Consider now a neighbor of  r, say g ~ C*, see Figure 23(b). Now 

g ~ N ( u ) u N ( a ) w N ( b ) .  By Claim 1, g can have at most one neighbor in C*. 

Suppose g has a neighbor, say g~ c C*. The path r~, r, g, g~ is of  length 3. Now there 

are two cases to consider: 

Case 4. gl C Ps,. 
The rig ~-subpath, Q, of Ps, must be of length at least 5. But then the path r~, r, g, g~ 

is shorter than Q and contradicts the choice of  Ps, such that it is the shortest. 

Case 5. gl~ ClC~ C* or g ~  C2c~ C*, see Figure 23(b). 

Becuase of  symmetry, we can assume that g~ c C1 c~ C*. Now, since rl, r, g, g~ is 

a path of  length 3, the choice of  Ps, implies that the r~s-subpath, Q, of  Ps, must be 

of  length 1 or 2. Then noting that u,f,  r, rl is a path of  length 3, it follows that Q 

can not contain a neighbor of v or a neighbor of node a. Let v~ be the neighbor v 

closest to r 1 in P~t. Let R~ be the v~r~-subpath of Ps, and let R2 be the r~a-subpath 
of  C*, not containing u. I f  R~ does not contain a neighbor of  a, define C =  

v~, R~, r~, R2, a, u, v, v~. I f  R1 contains a neighbor of  node a, let a 1 c R~ be the 

neighbor of  node a such that the a~rl-subpath, Q1, of R1, does not contain any 

other neighbor of  node a. Now define C = a~, Q~, rl, R2, a, a~. In both instances 

the path r~, r, g, g~ which is of  length 3 closes an odd hole with one of the r~gl- 

subpaths of  C. Hence g can not contain a neighbor in C* and part (ii) of  the lemma 
is proven. [] 

Theorem 9.3. Let G be a linear balanced graph containing an odd cycle C with a 

unique chord ( u, v ). Let ~ and b ( ~ and d) be the neighbors of  u ( v ) in C. Then either 
(i) N ( u )  is a star cut set of  G, separating ~ and ~l or 

(ii) N ( v )  is a star cutset of  G, separating ~ and b. 

Proof. By Lemma 6.7, we have one of the following: 
(i) N ( u )  is a star cutset of  (3, separating ~ and a~. 
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(ii) N ( v )  is a star cutset of G, separating ~ and /~. 
(iii) There exists a node-minimal odd cycle, say C, with (u, v) as the unique 

chord. Let a and b (c and d) be the neighbors of u (v) in C. Then there exists a 
path form a to a and b to/~ (c to ~ and d to d), not containing a node in N ( v )  (N(u) ) .  

If  (i) or (ii) holds, there is nothing to prove. Suppose (iii) holds. By Lemma 3.2, 

no node is strongly adjacent to C. Suppose N(u)  is not a star cutset of G separating 
c and d. Then we want to show that N ( v )  is a star cut set of G separating a and 
b. Let C1 and C2 be the two chordless cycles formed by (u, v). Let a, c c C1 and 
b, d c C2. Since N ( u )  is not a star cutset separating c and d, there exists a minimal 

path, Pu, as in Definition 9.1, from g c C l \ { U  , ~), a} to h c C2\{u, v, b}. Let the path 
Ps, and the cycle C* be as in Definition 9.1. By Lemma 6.5, (C*, v) is a starred 

wheel. There are two cases to consider. 
Case 1. The starred wheel (C*, v) has four or more spokes. 

By properties (i) and (ii) of Lemma 9.2, it follows that the two conditions of 
Theorem 8.5 are satisfied. Hence by Theorem 8.5, N ( v )  is a star cut set of G, 
separating a and b. Now since (iii) holds, the theorem follows. 

Case 2. The starred wheel (C*, v) has only two spokes, see Figure 24. 
Let (v, u) and (v, vt) be the two spokes and $1 and $2 be the two sectors of (C*,  v) 

with a E S1, b ~ $2. Since v has only one neighbor in Ps,, we assume, without any 
loss in generality, that s ¢ c. 

Now we have the following two claims: 
Claim 1. If  w c N ( a )  (w c N(b ) )  is strongly adjacent to C*, then w has exactly 

two neighbors in C*, one of them being node a (b) and the other neighbor is in 

S, c~ Ps,\{s, vl} ($2c~ P~,\{t, vl}). 

w 1.l 

I 
Fig. 24. 
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Proof By Lemma 9.2, w has exactly two neighbors, one of them being node a. 

By arguments identical to those in the proof  of  Claim 1 which is a part of  the p roof  

of  Theorem 8.4, it follows that in C*, the other neighbor of  w must be in $1. Now 

noting that w can not be strongly adjacent to Ca, the claim follows. 

Claim 2. I f  a node w ~ N ( u ) \ { v }  has neighbors in Pst\{s, t} then N ( v )  is a star 

cutset of  G, separating a and b. 

Proof Without loss of  generality assume that w ~ N ( u ) \ { v }  has neighbors in $1. 
Note that w may coincide with a and vl may coincide with d but not e. By property 

(iii) of  Theorem 5.3, w can not have any neighbors in $2. Let 1°2 denote the shortest 

path from b to vl containing only nodes in C2\{u, v}w P~,. Let Q~ be the sv-subpath 

of Ca, not containing u and Ts be the svl-subpath of Ps, Then the cycle C = 

u, b, P2, vl, Ts, s, Qs, v, u has only one chord (v, v~). But then w is a type 3 node 

with respect to C. Let h~ e S~ and h2 c $2 be the neighbors of  vl in C*. Then by 

Theorem 6.6, N ( v )  is a star cutset of G separating ha and h2. Note that t = d implies 
that v~ = t and h2 e (72. But from hi to a and from h2 to b there exists a path, not 

containing a node in N(v) .  Hence the claim follows. 

I f  a node w e  N ( u ) \ { v }  has neighbors in P~,\{s, t}, since (iii) holds by Claim 2, 

the theorem follows. Suppose now every node w e N ( u ) \ { v }  has no neighbors in 

P~,\{s, t}. Then C* is chordless and a node w~ C* but w ~ N ( u ) \ { v }  is not strongly 

adjacent to C*. Next we want to show the existence of a parachute that satisfies 

Definition 7.1. 

Let Po be the path from u to Vl containing only nodes in (C2\{v})uP~t; PI be 
the us-subpath of  C~, not containing v; P2 be the v~s-subpath of P~, and P3 be the 

sc-subpath of  Ca, not containing u. Let C* = vl, P0, u, P1, s, P2, Vl. Note that s ~ a, c. 

Furthermore v~ is not a neighbor of  s, since C is a node-minimal odd cycle. Hence 

it follows that both Pa and P2 have length greater than 1. Thus (C*, v, c, P3) is a 

parachute satisfying Definition 7.1. Now we prove the following claim. 

Claim 3. Either N ( v )  is a star cutset of G separating a and b or every node 
w ~ N ( v )  that is strongly adjacent to C* w P3 has exactly two neighbors, in C* u P3, 

both of  which are in Po or in P~ u P2 u P3- 

Proof Suppose N ( v )  is not a star cutset of  G separating a and b. Then by Lemma 

9.2 and Claim 2, only nodes in N ( a )  w N ( b )  w {v} may be strongly adjacent to the 

chordless cycle C*. Now there can not be a node w that is strongly adjacent to Pa 

or to P3 or to P~ w P3 for otherwise it would imply the existence of a node strongly 

adjacent to G .  Since every node w E N ( u ) \ { v }  has no neighbors in Ps~\{s, t}, the 
choice of  P~, implies that there can not be a node strongly adjacent to Pz. 

By Claim 1, a node w e N(b )  that is strongly adjacent to C* must have a neighbor 
in the tva-subpath of Ps,. Hence w is strongly adjacent to Po and has exactly two 

neighbors in C*. Similarly, a node we  N ( a )  that is strongly adjacent to C* is 
strongly adjacent to P~ w P2 and has exactly two neighbors in C*. There may be a 

node w~ ( C * w  P3) which is strongly adjacent to P2w P3. But such a node w must 
have exactly one neighbor in P3, say g, and one neighbor in P2, say x, which is not 
a neighbor of  s but both x and s have a common neighbor, say h, in P2, see Figure 
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25(a). Note that x # vl for otherwise it would imply a path of length 3 between 

node v and node g in C~. 

We now show that every node w ~ C* u P3 u {v} can not have neighbors in both 

P0 and in P~uP2~P3\{u, vl}. By Lemma 9.2 and Claims 1 and 2, it follows that 

there cannot be a mode w which is strongly adjacent to C* and has one neighbor 
in Po and the other in P~\{u} or in P2\{v~}. Now if t = v,,  node minimality of  C 

ensures that every node w~ C * u  P3u {v} cannot have neighbors in both P0 and 

P3. I f  t # Vl, the vs and Vlt-Subpaths of P~t must have length at least 3. Now the 

choice of Ps, ensures that every node w ~ C* • P3 u {v} can not have neighbors in 

both Po and P3, see Figure 25(b). Hence the claim follows. 
By Claims 2 and 3, either N(v) is a star cutset of  G separating a and b or there 

exists a parachute (C*,  v, c, P3) satisfying Definition 7.1 and every node w ~ N(v) 
that is strongly adjacent to C* w P3 has exactly two neighbors in C* ~ P3 both of 

which are in Po or in P1 ~ P2u P3- In the latter case, by Theorem 7.2, N(v) is a star 
cutset of G separating a and b. Now since (iii) holds, the theorem follows. 

This completes the proof  of  the theorem. [] 

10. Concluding remarks and a conjecture 

The main result is simple to state and so it is natural to look for a more elementary 
and elegant proof. We believe that results along these lines might shed some light 
on the structure of the class of balanced matrices. Furthermore, in view of the nature 
of  our result, an obvious question is whether this leads to a polynomial algorithm 
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to test membership of a matrix in the class of linear balanced matrices. Such an 

algorithm is described in Conforti and Rao (1988). Finally, we propose the following 

conjecture: 

Conjecture. Let A be a balanced matrix. Then A contains an entry a 0 = 1 such that 
the matrix obtained from A by setting a~j to zero is still balanced. 

Partial evidence for the above conjecture is the fact that a similar result holds for 

totally balanced and strongly balanced matrices. Totally balanced bipartite graphs 
have the property that every cycle of length greater than 4 has at least one chord. 
It is well known, see Anstee and Farber (1984), that if G is totally balanced, then 
it contains an edge (u, v) such that the subgraph induced by the nodes in N(u)u 
N(v) is a complete bipartite graph. Hence (u, v) cannot be the only chord of a 

cycle of length greater than 4 containing nodes u and v. Therefore, the graph G' 
obtained from G by removing edge (u, v) is still totally balanced or equivalently 

the corresponding matrix obtained by turning the entry au~ to zero is still totally 

balanced. 
We recall that a graph is strongly balanced if every odd cycle of the graph contains 

at least two chords. Conforti and Rao (1987a) have shown the following: 
If  G is strongly balanced and contains an odd cycle, then G contains a complete 

bipartite subgraph K~D such that the removal of the edges of  KBD disconnects the 
graph. This implies that we can sequentially remove the edges not contained in any 
complete bipartite articulation and still retain the strongly balanced property. When 

all such edges have been removed, the resulting graph is the union of disjoint 
complete bipartite graphs and hence is totally balanced. Then proceeding as in the 

case of totally balanced matrices, the matrix is reduced to the null matrix. 
The conjecture is true for the class of linear balanced graphs if one could prove 

the following statement: 
If G is linear, balanced and contains an odd cycle, then G contains a star cutset 

v such that the subgraph induced by the nodes of one connected component of 
G-  N(v) together with the nodes of N(v) is without odd cycles. 
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