
Mathematical Programming 66 (1994) 79-101

Bundle-based decomposition for large-scale convex
optimization: Error estimate and application to

block-angular linear programs

D e e p a n k a r M e d h i *

Computer Science Telecommunications Program, University of Missouri-Kansas City, 5100 Rockhill Road,
Kansas City, Missouri 64110, USA

Received 17 August 1988; revised manuscript received 12 October 1993

Abstract

Robinson has proposed the bundle-based decomposition algorithm to solve a class of structured
large-scale convex optimization problems. In this method, the original problem is transformed (by
dualization) to an unconstrained nonsmooth concave optimization problem which is in turn solved
by using a modified bundle method. In this paper, we give a posteriori error estimates on the
approximate primal optimal solution and on the duality gap. We describe implementation and present
computational experience with a special case of this class of problems, namely, block-angular linear
programming problems. We observe that the method is efficient in obtaining the approximate optimal
solution and compares favorably with MINOS and an advanced implementation of the Dantzig-Wolfe
decomposition method.

Keywords: Large-scale optimization; Nonsmooth optimization; Bundle method; Decomposition; Block-angular
linear programming

1. Introduction

Robinson [23] has proposed the bundle-based decomposit ion method to solve the fol-

lowing convex optimization problem:

N

inf ~_, f i (x l) (1.1a)
X I " ' " X N i ~ l

subject to

* E-mail: dmedhi@cstp.umkc.edu

0025-5610 © 1994--The Mathematical Programming Society, Inc. All rights reserved
SSDIOO25-5610(94)EOlO5-N

80 D. Medhi /Mathematical Programming 66 (1994) 79-101

N

Aix i = a , (l . lb)
i = 1

where a ~ ~ m, and for i = 1 N , A i ~ ~ "~ × n~, xi ~ ~ nl, and each f/is a closed proper convex
function taking values in the extended real line (- ~ , ~]. Note that each f~ is allowed to
take the value + ~. Typically, the number of coupling constraints, m, is much smaller than
the dimension of the whole problem (nl + " " + n~).

An example of (1.1) is the well-known block-angular linear programming problem [1].
To illustrate this point, set

f~(xl) =f (c~xi)l.+ if Bix i = b i , xi ~>0; (1.2)
otherwise,

(C i ~ m, b i ~ m~, a i E ~ 'hi×hi, for i=1 N) and assume that the feasible regions
{xi ~ ~"~[B~xi = bi, x; >~ 0 } are nonempty and bounded. Then, clearly, each f~ is a closed
proper convex function and the problem (1.1) is equivalent to

min (c l , x l) + " " + (CN, XN)
Xl ,...,XN

subject to

B~ x l = bl
B 2 x z = b 2

".. " (1 . 3)

BNX N = b N

A l x l + "" + ANx~v = a

xi >~O, i = 1 N .

The first step of the bundle-based decomposition (BBD) method involves dualization of
problem (1.1) to obtain a nonsmooth concave problem, which may be solved in various
ways. For example, subgradient methods (such as [22,5]) may be applied. A possible
disadvantage of these subgradient methods, however, is the difficulty of obtaining a solution
that satisfies primal optimality conditions within a certain tolerance; if these methods
terminate at a point where the subgradient is nonzero, there is no simple way to find a
primal-feasible solution (see the remark in Section 2.1). In the BBD method, on the other
hand, the nonsmooth problem is solved using the bundle method [14], which allows an
approximate primal-feasible solution to be calculated easily; see Theorem 2.5 in Section
2.2. We note also that Ha [4] suggested an alternative approach based on applying the
proximal point algorithm [27] to create a sequence of smooth dual problems that may be
solved by, for example, the BFGS method ([3, p. 119]).

In this paper, we give a posteriori error estimates on the approximate primal optimal
solution (see Theorem 2.5 in §2.2) and on the duality gap. (For a priori convergence, see
[24].) We also describe implementation and present computational experience for (1.3)
which indicates the method to be promising. We observe from computational experience
that, in practice, the approximate primal optimal solution obtained by this method produces

D. Medhi / Mathematical Programming 66 (1994) 79-101 81

a duality gap on the order of a user-specified tolerance level (e of the optimality condition
(1.4) introduced at the end of this section). Based on our comparison with both MINOS
5.0 [20] and DECOMP [7,1 1], an advanced implementation of the Dantzig-Wolfe Decom-
position method, we observe this method to be competitive.

The rest of the paper is organized as follows. In Section 2, we describe the bundle-based
decomposition method and give results on error estimates on both the primal optimal
solution and the duality gap. The implementation of the method is described in Section 3
for the problem (1.3). In Section 4, we give computational experience.

We briefly describe our notations and definitions here. The number of elements in a set
is denoted by # (9) . The scalar product of two vectors x and y in R n is denoted by (x,

y). The 2-norm (x, x) 1/2 of a vector x in Nn is denoted by IlxU. Most of the definitions
related to convex functions can be found in [25]. For clarity, we present some of them

here. The conjugate of a convex function f, denoted b y f *, is given by

f *(x) := sup {(x, z)-f(z)} .
z

The subdifferential of a concave function g(-) at y ~ N'~ is defined as the set

Og(y) ,= { 7rlVz, g(z) <~g(y) + (Tr, z - y) } •

An element of the subdifferential set will be called a subgradient. The e-subdifferential

(e>/0) of a concave function g(•) at y ~ N" is defined as the set

O ,g(y) := { 7rlVz, g(z) <,g(y) + (Tr, z - y) + e}.

An element of O,g(y) is called an e-subgradient. We say that 37 is e-optimal for the problem
of maximizing g(.) if and only if 0 ~ 0,g(37). We, further, define the following property of

an approximate maximizer 37 of a concave function g(.):

);is an e&optimal solution if and only if for any dE O,g(y-), it holds that Ildll < 8.
(1.4)

2. Bundle-based decomposition

In this section, we describe the bundle-based decomposition (BBD) method and give a
posteriori error estimates on the approximate primal optimal solution and on the duality
gap. We start with the method.

2.1. The method

The Rockafellar dual [26] of the problem (1.1), obtained by perturbing the coupling
constraints (1. lb) , is the unconstrained problem:

max g(y) (2.1a)
Y

82 D. Medhi /Mathematical Programming 66 (1994) 79-101

where

N

g(y) := (a, y) - ~ f *(A~y)
i = 1

and where

f ~*(A~y) := sup {(ATy, xi) --fi(xi) },
Xi

(2.1b)

i = 1 N . (2.1c)

Note that g (-) is a nonsmooth concave function. Under the constraint qualification that

N

a ~ ~ Ai(ri d o m f) ,
i = 1

the infimum in problem (1.1) is equal to the maximum in (2.1). Here, ri stands for relative
interior (see [25]), and

Ai(ri d o m f) := {Aiz[z E ri d o m f } .

Furthermore, if the condition

N

N (i m A / T n r i d o m f *) ~
i = 1

(see [25]) is satisfied, then one has

N

Og(y) = a - ~, AiOf ~*(A Ty) (2.2a)
i=l

where

Of * (A ~y) = argmin {f(xl) - (A TY, x~) }, i = 1 N . (2.2b)
xi

Thus, for a given y, if one solves the N smaller subproblems (2.1c) to obtain solutions
x~(y), i.e., xi(y) ~ Of *(ATy), for i = 1 N then a subgradient

7r(y) = a - ~.u= 1 A~i(y) ~ Og(y) can be computed. Also, from the optimal objective func-
tion values of the subproblems, the dual objective g(y) can be computed using (2. lb) .

Remark . One may not obtain a primal optimal solution using a Polyak-type subgradient
algorithm [22] to solve the nonsmooth dual problem (2.1). To see this, suppose we know
a dual optimal solution 37. Then for this y, the corresponding subgradient ~(y) may not be

0. Thus, corresponding solution xl (Y) of the subproblems (2.1 c) produce

N

a- E Aixi(y-) ~ 0 . (2 . 3)

i = 1

Then, x = (xl (37) XN(37)) would not be a feasible solution to the problem (1.1).

The BBD method solves the dual problem (2.1) by a modified bundle method. Instead

D. M edhi /Mathematical Programming 66 (1994) 79-101 83

of using a subgradient for a search direction, as in Polyak-type algorithms, this method
keeps and uses a bundle of subgradients (and a corresponding primal bundle) to obtain an
ascent direction, and to obtain an approximate primal optimal solution readily in the end.
We shall use the following notation in the algorithm and subsequent results:

a(yk, yj, ~) :=g(yj) _ g (y k) "4- (~7 J, yk y j) .

We present the BBD algorithm below:

Step 0. Initialization.
Select initialization parameters, e, 6> O, an initial g~> e, and a number b for the maximum
size of the bundle. Choose]3, y and/x such that

0 < 3 , < / 3 < 1 , / 3 + / x < l , / x>0 .

Pick a starting dual point y 1. Set k ~- 1, E 1 ~- ~.
Step 1. Compute the dual function and the subgradient for the starting point.

For given y 1, solve the N subproblems (2. lc). Let x] be the computed optimal solution
(i.e. x~ ~ Of * (A ~ y 1)) and z ~ be the optimal objective function value for the ith subproblem
(2.1c). Compute the dual function g(yl) and a subgradient 7r 1 ~ Og(yl). Set

~ , - - { (x l ,x~ ,)} ,

J U ~ { 1 } ,

0gll (- - 0 .

Step 2. Compute a search direction.
Update

ek ~- max{ e, min{ E k, g} } .

Solve the following quadratic programming (QP) problem

1
min [[~ Aj'M[[2

subject to

h ~ = l ,

E
j ~ . ~

a~ >0, j ~ " (2.4)

to obtain the solution { h~, j ~ ~T }, the direction

d k= ~ h)Tr i (2.5a)
j ~ s f

84 D. Medhi /Mathematical Programming 66 (1994) 79-101

and

V k := lldk }12 + Sk ek (2.5b)

where sk is the dual multiplier associated with the constraint ~j~aj-kAj ~< ek.
Step 3. Test fo r convergence.

If Ildk[I < & and ~j ~a~aj~A~ ~< e, then we are done. Compute an approximate primal optimal
solution as follows:

Ajx i , i = l N , (2.6)

and then compute the final objective function value. STOP. Else, if]ldk[[< 6 but
~ j ~ a j k A ~ > e, then g~/~#, and go to step 2. Else, go to step 4.

Step 4. Reduction o f bundle.

If # (,Zf) = b, then

2" + {,n-/lj~,Uf},

~' ,-- {(x{ xJN) I j ~ T } .

If # (~ ') = b, then (still too large, reduce to a singleton set)

"B'k ('-- d k ,

2 ~ { ~ r k} ,

~- { (x~ x~) = Xj(x~ x ~) } ,
k j

j ~

or

and, either

g (u k + l) > g (yk) + TtkVk,

ce(y k, u k+l, rr k+l) <~ txek.

(Here, Vk is as defined in (2.5b)).
If it is a serious step, update

(serious step)

(null step)

j~fiU

Yl'~- (k} .

Step 5. Perform line search.

Using the line search techniques of Lemar6chal [13], find tk > 0 to compute a trial point
uk + 1 = y~ + t~d k, then solve the subproblems (2.1c) [i.e. obtain x~ ÷ ~ ~ Of ~ (A T u k+ l)] to

obtain the dual objective g(u k+l) and a subgradient ~.k+l at u ~÷1 so that

(~r k ~ l, d k) < flv k

D. Medhi /Mathematical Programming 66 (1994) 79-101 85

yk+ l ~ - - -R k+ l ,

eg,k+l <___C~jk +g(yk) _g(y~+l) +(,ha, yk+l_yk} , j~3i5 ,

t~k+ 1,k+ 1 ~ - -0 ,

J V ~ K U { k + I } ,

~ - ~ U {7r k+~ } ,

~ , - - g U { (x ~ +~ x ~ , + ') } .

If it is a null step, update

y k + l <___yk,

O~j,k + 1 ~"'- OLjk , j ~ ffZ" ,

ak+l,k+l ~ a(Y k+l, U k+l, "n "k+l) ,

J ~ , ~ U {k+ 1},

~ - ~ U { ~ "k+l} ,

~ , - - ~ U { (x p 1 x ~ , + ') } .

Set k*-- k + I, and go to step 2.

Comments. (1) The feasible region of the QP (2.4) is an inner approximation of the set
O ~g(yk).

(2) The line search method is due to Lemartchal [13]. He has shown that the line search
finds either a serious or a null step in a finite number of computation of the function and the
subgradient.

(3) It is easy to show that the weights satisfy (f o r i n t ')

Oljk <.__Olj,k_ 1 +g(yk--') __g(yk) + (W , yk__yk--1)

= ajj +g(y]) _g(yk) + (,rd, yk y j) .

The advantage of the first expression is that it is recursive.
(4) At each iteration, the dual bundle ~ and the primal bundle ~ are preserved; while

the dual bundle is used for computing the direction given in (2.5a), the primal bundle is
used for computing the approximate primal optimal solution (2.6). The size of the bundle
is not allowed to exceed b; thus, finite storage is required for the primal and the dual bundle.

2.2, Error estimate

In this section, we will show that by using this method, we can obtain an approximate
primal optimal solution and an a posteriori error estimate on this solution. We also obtain
an estimate of the duality gap for this solution. We need the following lemmas to obtain the
results.

86 D. Medhi / Mathemat&al Programming 66 (1994) 79-101

Lemma 2.1. For i = 1 N and j E ~ ,

" ~ * T k x~ O,~,,fi (A i y) ,

where

Oljk i : = Oljj i "q-f ~(A Ty k) - - f "~(A Ty j) -- (ATyk--a Ty j, X~)

and where
f .

= J O y *(a~ u j) + f *(A Ty i) _ (A?Y j - A T uj, x+i)
Ogjji ~ Ee~,S aejihJ¢

(f is the appropriate set of iteration indices up to iteration j) .

for serious step at j,
for null step at j,
if bundle reduces
to a singleton element

Proof. It suffices to show the result for a particular i andj.
Case I: for a serious step atj.
By definition,

x~ ~ Of *(AT/).

This implies that for each zi ~ ~ %

f i*(Zi) >~f *(ATy j) + (Zi --ATy j, x~)

= f *(ATy~) + (zi - M y ~, x~) - t f *(ATy ~)

_ f . (A T y J) _ T k r+ (Ai y - A i y , x~)}

= f *(ATy k) + (z i --A Ty k, x~) -- ajki,

which, in turn, implies the result.
Case II, for a null step at j.
By definition,

X~ EOf ~(A Tu j) .

This implies that for each z~ ~ ll~ %

f *(Zi) >~f i*(A Tuj) -t- (Zi --ATu/, X~)

= f i*(A Ty j) + (Zi --ATy j, x~)

-- {(- - f *(A Tu j) + f *(A Ty J) -- (A Tyi--A Tu 1, X~) }

= f i*(A T y) + (Zi --A Ty j, X j) -- %/i .

That is,

x~ ~ 0 ~jjlf i* (A T yj) .

D. Medhi /Mathematical Programming 66 (1994) 79-101 87

Continuing,

f i*(Zi) = f i*(Airy k) + (Zi - A ~ Y k, x~)

- {c% + (f ~*(A~y k) - f * (A ~ y i) - (A~yk-A~ry j, xSi)) }

= f * (ATy k) + (z~ - A T'i y x~) - Ctlk i ,

which, in turn, implies the result.
Case III: When each of the bundles, ~ and ~ , is reduced to a singleton element atj.
By cases I and II above, we have (when iteration (is serious or null),

xei ~O~ej~f*(A~yJ), ~ J .

This implies

f ~(zi) >/f i*(A Ti yY) + (zi - -a T- y , Xei) - a e j i, e ~ ~ .

Multiplying by the solution { A~, (~ J } of the QP (2.4) at iteration j, and summing over
e ~ J , we obtain

f i*(zi) >if i*(ATy i) + (Zi--ATiy j, ~ , AYexei) -
e E y

By definition, this implies

f ~'(zi) >~f i*(ATy y) + (Zi - -ATy j, X~> -- %ji

which means

x~ ~ 0 ~jj, f * (A~y J) .

Using a similar argument as in case II above, we get

x~ ~O~ju f*(A~yk) . []

e E J

Following arguments similar to those in Lernma 2.1, we can show the following lemma
(proof not given).

Lemma 2.2. For j ~ • ,

~ ~ 0 ~j,g(yk) ,

where

% k = % + g (S) - - g (y k) +(~r i, yk yj)

and where

I O for serious step at j,
ajj = g(u j) _ g(yk) + (Trj, y k _ u/) for null step at j,

L ~ e ~ j otej.~Je if bundle reduces to a singleton element

88 D. Medhi /Mathemat ica l Programming 66 (1994) 79-101

(J is the appropriate set of iteration indices up to iteration j) .

Lemma 2.3. Let ajki and a~k be as defined in the previous lemmas. Then

N

i = 1

Proof. We will show the result for the case when iterationj is a serious step or a null step
or when the bundle is reduced to a singleton set.

Case I: for a serious step at j, a~j = O, and thus

a2 k =g(y/) _g(yk) + (yk y), 1r i)

N N

= (yJ, a) - ~ f * (A T y j) - (yk, a) + ~ f ~'(ATy ~)
i = l i = 1

N

+ (yk_y j , a - y" Ai xj) (using the definitions o f g and lr/)
i = l

N

= ~ { f* (A~y k) - f * (A ~ y) - (A T y k - A ~ y J, x~)}
i = l

N

= ~ ~j~.
i = 1

Case H: for a null step at j,

a j j - - a (y , u J, 7r i) ,

and thus

ajk = ajj + g (y) _g(yk) + (yk_yj , ~)

=g(#) _g(yk) + (y k _ # , ~)

N N

= (u J, a) - ~ f * (A T u J) - (y~, a) + ~_.f*(ATy k)
i = 1 i = 1

+(yk uJo I
N

= E {f*(A~Yk) - f ~ * (A ~ j)
i= l

- (A~y k - A ~ u ~, x~) }

N

= F , ajk,.
i = l

D. Medhi /Mathemat ical Programming 66 (1994) 79-101 89

Case 111: If the bundle is reduced to a singleton set,

N N

e e J ¢ ~ i = 1 i = 1 e ~ J

Now,

ajk = Otjj + g(yJ) _g(yk) + (yk yj, 7r])

N
= E

i = 1

N

= E
i = 1

N

=E

N

N

otjj i + ~_~ {f *(ATy k) - - f * (A T y) -- (AVlyk--ATy ~, X~)}
i=l

{ OLjj i + f ~'(A~y k) - f *(A~y j) - <A~y k - A ~ y j, x~) }

Ogjk i • []

First we present the result for dual optimality (due to [14]).

Theorem 2.4. If at iteration k, the exact solution {)t k, j ~ 3; I } of the QP (2.4) satisfies

OLjkA j ~ e E
jE3Z

and IId~ll < ~, then yk is e6-optimal as defined in (1.4).

Proof. From Lemma 2.2., we have

which implies that for each y E R ' ,

g(y) <~g(yk) + (va, y_y~} + %k, J ~ J ~ .

Multiplying by the solution h k of the QP (2.4), and summing overj ~ 3¢', we get

g(y) <~g(yk) + (~ k h j # , y - - y k) + E %kh~

<~g(yk) + (d k , y _ y k) + e .

This, by definition, implies that y k is e6-optimal. []

Now we are ready to present the main results. We assume that a dual iterate yk has been
obtained which satisfies the optimality condition as states in (1.4) and we write this
approximate dual optimal solution yk as y.

90 D. Medhi /Mathematical Programming 66 (1994) 79-101

Theorem 2.5. Let Oljk i and %k be as defined before. Let { A j , j ~ • } be the exact solution o f
the quadratic programming problem (2.4), and

Then 2 = (Yl XN) , given by

.~ = ~ .,~jx{, i = 1 N , (2.7)
j ~

is an approximate primal optimal solution so that f o r every (Xl XN) with ~,~= 1A.;c i = a,

N N
f~(x;) >/ ~ f~(~) + (£ y-") - e , (2.8)

i = l i = l

where d = a - ~iN=l A.~i = ~2~-~ AJ 77d with]]d]] < 6.

Proof. By Lemma 2.1, we have

x{ ~ 0 ,~j~f* (A ~y-)

which says that for each z~ ~ R"',

f * (z l) >~f*(A~y-) + (z~ - A l L x~) - aik ~ .

Multiplying by Xj, summing over je3g ~, and using (2.7), we obtain for each z~ ~ N%

f.(zi)>~ . r ~ f ~ (A ~ y -) + (z , - A ~ L ~) y" ajajki.
j e.~

Setting p/= Ej~a- Ajajki, we can rewrite this relation as

~. E 0 ~ f ~ (A Ti y -) ,

which is equivalent to

A ~ y e 0 ~,fi(~)

(see [6]). By definition, this means that for each x~,

f i (x i) ~ f i (x i) + <X i - - ~ , A[y-) - vi.

Summing over i = 1 N, we obtain that for each x = (x~ x~),

N N N
f (x i) >t y] f (£~) + (~ Ai(xi -) ~) , y-) - e ,

i=l i = 1 i = 1

since (using Lemma 2.3),

N N N

E V i = E E A~otJ ki= E X j E O l j k i = E
i = I i= l j~,Y¢" j ~ i= l j~. ,~

hj %k ~< ek < e.

To obtain the final result consider all x = (xl Xu) such that zN= 1 A i x i = a. Then we have

D. Medhi /Mathematical Programming 66 (1994) 79-1 01 9 1

N N

~., f (x i) >~ ~_~ f(Z,.) + (a - a + d , y -) - e
i = 1 i = l

N

= ~ f , (~) + (d, y-2- ~. []
i = l

Note that the error bound given by (2.8) in Theorem 2.5 is computable a posteriori, since
d, 37, and E will all be known. We refer to the approximate primal optimal solution given by
(2.7) satisfying (2.8) as the e6-optimal primal solution. A less stringent inequality than
(2.8), given directly in terms of 8, 37 and e, is

N N

f~(x,) > ~ f~(~) - (~113711 + ~) •
i = l i ~ l

Finally, we give the following result on the duality gap.

Theorem 2.6. Let £= (Xl Yw) and37 be a pair of eS-optimal solutions to the primal and
the dual satisfying the relation

N

a - ~ _ A i Z i = d E O ~ g (y "-) with I ldl l<Sand ~ ajkXj<<.e.
i = l j ~ , Y K

Then,

N

~_, fi(xi) -g(Y-) ~< e - (37, d) < e+ ~llYll.
i = 1

Proof. While proving Theorem 2.5, we obtained the result

A~37~ 0 ~,f~(~) .

This implies that

vi >~f~(~q) + f "~(ATy -) -- (ATff, ~) .

Summing over, i = 1 N, we get

N N N N

~., ~ >I ~., f~(£i) + ~ , f *(a~y-) - (~_, ai£i, y-').
i = l i = 1 i = 1 i = 1

Using the fact that ~ = 1 vl <~ e and that d= a - ~_N 1 Afii, we get

e>~ ~_, fi(xi) - (a, y-) - ~_, f *(A~y-) + (d, y").
i = l i = l

This implies that

92 D. Medhi /Mathematical Programming 66 (1994) 79-101

N

i = 1

[]

Thus, we obtain an a posteriori bound on the duality gap.

3. Implementation of the algorithm

We have implemented the bundle-based decomposition algorithm in Fortran 77. Our
implementation, the code BUNDECOMP, was specifically designed to solve the block-
angular problem (1.3); BUNDECOMP was developed by modifying M1FC1, a code for
unconstrained nonsmooth convex minimization due to Lemar6chal [15]. The line search
in M1FC1 is due to Lemar6chal [13], and the quadratic programming problem (2.4) is
solved by an efficient method due to Mifflin [19]. The objective function and the subgradient
are provided through the subroutine SIMUL.

For block-angular linear programming problems (1.3), the subproblems (2. I c) take the
special form

m a x { (y A i - ci, x i) [B i x i = bi, xi /> 0 } . (3.1)
xi

These subproblems, which are smaller linear programs, must be solved to compute the dual
objective function and subgradient. We solved the subproblems using the revised simplex
routine ZXOLP from IMSL library [12], in which the needed matrices are stored in dense
form. Note that from one value ofy to another, only the objective function of (3. i) changes;
the feasible region remains the same. This means that for the very first iterate y 1, problem
(3.1) is required to be solved from scratch (cold start). After that to move from one dual
iterate y k to next iterate y k ÷ l, the procedure to solve (3. I) can start from the optimal basis
obtained at y k (warm start) and find a new optimal basis for the changed objective function;
this can be accomplished using parametric linear programming [21, chapter 8]. Our para-
metric programming code to solve (3.1) at subsequent y's is also based on ZXOLP. From
our initial computational experience, we have observed that by using parametric program-
ming, the time to solve (3. l) at subsequent y's is reduced by a factor of about seven to ten
compared to the case where (3.1) was solved from scratch at every dual iteration. Thus, in
BUNDECOMP, we use a cold start version of ZXOLP for the very first iterate and the warm
start parametric programming code for subsequent iterates to solve (3.1) (these two cases
are provided within SIMUL).

The user is required to provide the following main parameters for using BUNDECOMP
(as needed for M1FC1) :
DX: Accuracy for successive y's,

D. Medhi /Mathematical Programming 66 (1994) 79-101 93

DFI: A positive number which is used for expected change in the objective function at the
first iteration. It is also used for initializing the step-size and the • of the optimality
condition (1.4),

EPS: the • of the optimality condition (1.4) (accuracy on the objective function).
M1FC1 uses the following rule for the value of 6 appearing in the optimality condition
(1.4):

3= 10- 4(EPS)211 ~.1 II z/(DE1) z,

where ~1 is the subgradient at the starting point y 1
The program can terminate in any one of several ways. The most desirable one is where

the optimality criterion (1.4) is met for preassigned values of EPS, DX and DF1; we shall
call this Normal End. The other termination criteria are:

(a) when the maximum number of iterations is reached (Maxltr),
(b) when the maximum number of calls to SIMUL (to compute dual function and

subgradient) is reached (MaxSim),
(c) when the accuracy DX (i.e., input on required accuracy on successivey's) is reached

without making any more improvement on g (DxEnd).
We have added another termination criterion after observing outputs from sample runs.

Moving from one dual iterate to another requires on average two or three calls to SIMUL,
and only rarely more than nine. Close to convergence, however, SIMUL can be called
repeatedly because of numerical error; see [14] for details. We have thus imposed a limit
of fifteen calls to SIMUL during the line search; this termination test is called Max15.

We have compiled this code on a DEC VAX 11/780 and on a DEC VAXstation II
workstation, both running under the Berkeley UNIX (4.3 bsd) operating system, using the
t77 compiler invoking - O option (optimizer). We have also compiled our code on a DEC
VAX 11/780 running the VMS operating system using the VMS Fortran compiler "FOR".
The version on UNIX-based machines used the single precision ZXOLP due to non-avail-
ability of the double precision version on the machine; however, the rest of the BUNDE-
COMP code is in double precision. On the other hand, the version of BUNDECOMP that
runs on VMS is entirely in double precision.

Our implementation is mainly designed to study the performance of the algorithm and to
compare it with other existing methods. It is an experimental code and does not have all the
sophistication of a commercial code (like storage conservation, numerical stability and
accuracy etc.).

4. Computational experience

To test the BBD algorithm, we have randomly generated test problems to present com-
putational results (more results can be found in [17]). We have also done comparisons
with MINOS version 5.0 [20] and DECOMP [7,11]. MINOS solves linear programming
problems using a reliable implementations of the simplex maintaining a sparse LU factor-
ization. It was developed at the Systems Optimizations Laboratory, Stanford University, by
Murtagh and Saunders [20]. DECOMP is an implementation of the Dantzig-Wolfe decom-
position method to solve block angular linear programming problems, developed by Ho
and Loute. For documentation on DECOMP, see [7,11]. Computational experience with

94 D. Medhi /Mathematical Programming 66 (1994) 79-101

DECOMP can be found in Ho and Loute [8-10] . Due to limitations of the version of

DECOMP available to us, different sets of test problems were used in the comparisons with

MINOS and DECOMP. First, we report computational experience with BUNDECOMP and

its comparison with MINOS.

4.1. Comparison wi th M I N O S

In Table 4.1, we give the specifications of the randomly generated problems tested with

BUNDECOMP and MINOS. In this table, the sizes mi X n i of the subproblem (3.1) are

rough estimates. For instance, consider example a2. The full size of this test problem is
350 X 500. Out of 350 constraints, ten are coupling constraints. Thus, the remaining 340

constraints and 500 variables are used for the block-angular structure. For the size, ml X ni,
of each subproblem, 340 X 500 is almost equally divided into forty subproblems which

means the size of each subproblem is approximately 9 X 13. This approximate size is

reflected in the column "approx. size of subproblems".

We present the solution time obtained using BUNDECOMP in CPU minutes as well as

other pertinent information in Table 4.2. We report the number of dual iterations and the

number of dual objective function (and subgradient) evaluations to reach the final solution,

the final primal and dual objective value, the absolute and the relative accuracy (defined

later in the paragraph) of the final dual subgradient, and the termination criterion. For each

entry in the table, three different numbers are shown in the column "Time in Min.": the
first entry is the total CPU time for solving the whole problem; the second entry is the time

for solving all the subproblems for the first time (from scratch), i.e., first call to SIMUL;

and the last entry is the average computing time for calls to SIMUL at subsequent steps.
This shows that it is considerably faster to use parametric programming at subsequent steps.

The absolute gradient accuracy is the infinity norm, i.e., II ~11~ = max1 ~i~m{ I ~'gl }, where
m is the dimension of the vector 7r. The relative accuracy is the measure ra = max1 ~< ~<~ m{ [~ ' /

ai[}, where a is the right hand side of the coupling constraints. The starting dual point is

randomly chosen. From Table 4.2, observe that whenever the algorithm terminates with

Table 4.1
Problem specifications (A)

Problem name Size of whole Number of coupling Number of Approx. size of Density
problem constraints subproblems subproblems (%)

al 350 x 500 10 100 3 x 5 3.83
a2 350X500 10 40 9X 13 5.29
a3 350 X 500 30 100 3 X 5 9.49
a4 850X 1500 l0 100 8X15 2.16
a5 850 X 1500 l0 40 21X 38 3.65
a6 850 X 1500 30 100 8 X 15 4.49
a7 1250 X 2800 10 100 13 X 28 1.79
a8 1250 X 2800 10 40 31 X70 3.28
a9 1250X2800 30 100 13X28 3.38
al0 4000 X 10000 10 100 40 X 100 3.25

D. Medhi / Mathematical Programming 66 (1994) 79-101

Table 4.2
Output information from BUNDECOMP

95

Problem name EPs Objective value: ITER/NSIM Gradient
primal/dual accuracy,

absolute / relative

Time (Min) Stopping rule

al 0.05 - 1066.0138 35 0.519 X 10-14 1.37 Normal
- 1066.0502 92 0.103 X 10-15 0,07 End

0,01
a2 1.0 - 1260.5870 29 0.104 × 10-13 1.81 Normal

-1261.5869 73 0.113X10 -~5 0.19 End
0.02

a3 1.0 - 1083.2228 102 0.217 X 101 6.14 Maxl5
- 1084.1033 221 0.799 × 10-1 0.06

0.02
a4 0.5 - 6362.6378 30 0.212 X 10 ~ 6.82 Maxl5

-6363.1406 91 0.101 0.70
0.07

a5 * 1.0 - 7067.6398 20 0.151 X 10-13 18.75 Normal
- 7068.6396 51 0.557 x 10- ~6 3.23 End

0.31
a6 1.0 - 6453.8673 60 0.324 X 101 13.85 Maxl5

- 6454.3823 147 0.552 0.60
0.09

a7 1.0 - 17194.2746 14 0.239 X 10-13 11.55 Normal
- 17195.2734 42 0.177X 10-15 2.05 End

0.23
a8 1.0 - 16687.6813 22 0.379 X 101 70.05 Maxl5

- 16688.6406 63 0.206 X 10-1 13.13
0.92

a9 5.0 - 16926.6433 42 0.437 × 101 26.47 Maxl5
- 16931.6289 105 0.675 x 10-1 2.12

0.23
al0 0.5 -68400.6086 22 0.105 401.12 Maxl5

- 6 8 4 0 1 . 1 0 9 4 66 0.801 X 10 -4 80.57
4.93

* DX is set at 10-6; rest are set at 10 -7.
DFI is set at 10 -4.

" N o r m a l E n d " , the accu racy of the " z e r o " e l e m e n t in the bund le , and h e n c e the accuracy

of the p r i m a l op t ima l so lu t ion , is very good. Reca l l the resu l t on the dual i ty gap f r o m

T h e o r e m 2.6. I f d is ve ry c lose to zero, then the gap is on the order of e. W e o b s e rv e f r o m

c o m p u t a t i o n a l e x p e r i e n c e tha t the d i f f e rence b e t w e e n the op t ima l dua l and p r i m a l ob jec t ive

func t ions is on the o rde r o f the p r e a s s i g n e d va lue of EPS. In o the r words , the p r e - a s s i g n ed

va lue of EP S p r o v i d e s a g o o d a p p r o x i m a t i o n to the dua l i ty gap in pract ice . In our work , we

have c h o s e n va lues of E P S f r o m 0.05 to 5 .0 as r epor t ed in T a b l e 4 .2 to p r imar i ly show the

re la t ion of E P S to the dua l i ty gap. A user can dec ide on a va lue of E P S tha t sui ts h i s / h e r

r e q u i r e m e n t on the accep tab l e l eve l o f the dual i ty gap. No te tha t cl is the " z e r o " b e l o n g i n g

to 0~g(37). I f d is no t c lose e n o u g h to " z e r o " , the m e t h o d wil l try to take an ascen t s tep

96 D. Medhi /Mathematical Programming 66 (1994) 79-101

[14] tO find a new iterate for the dual variable y, and then the QP (2.4) will be solved to

obtain d closer to zero. Lemardchal et al. remark in [14] that failing to solve the QP is

rather exceptional and it happens only near the optimal solution to the problem. We have

observed a similar behavior.

In Table 4.3, we present timing comparisons between BUNDECOMP and MINOS. The

column "iterations" for MINOS denotes the total number of simplex iterations required to

reach the optimal solution (the number in parenthesis is the number of iterations to do in
phase I of the simplex method). The column " fac tor" is determined by dividing the MINOS

time by the BUNDECOMP time. It should be noted that BUNDECOMP is a special purpose

code to exploit the structure of problem (1.3) whereas MINOS is a general purpose LP

code. The comparison is done with MINOS due to its wide availability and to obtain some

insight on suitability of a special purpose method for solving (1.3). It may be noted that
using some factorization scheme which exploits the special structure of the problem (1.3),

a general purpose simplex code may possibly obtain better timing than obtained using

MINOS. As suggested by Saunders [28] (reflected in results with MINOS in Table 4.3),

we varied two parameters for MINOS software, PARTIAL PRICE and FACTORIZATION
FREQUENCY, to reduce computing time (all the other parameters are set to the default

values). For example, for test problem a4, changing these two parameters values (from

default values) reduced the number of iterations by about 14% and run time to about a half

of its original run time by using PARTIAL PRICE = 10 and FACTORIZATION FRE-

QUENCY = 100.
Finally, we comment on the accuracy of the solution. BUNDECOMP terminates for user-

prescribed tolerances (see Table 4.2). The tolerances for MINOS are set to the default

values which are more stringent than the tolerances used in BUNDECOMP. Thus, in models

where obtaining a low-accuracy solution is sufficient, BUNDECOMP appears to be a

promising choice, especially due to the result on the duality gap.

Table 4.3
Comparison between BUNDECOMP and MINOS (time in minutes)

Problem n a m e BUNDECOMP MINOS Factor
time

iterations time

al 1.37 630 (425) 8.82 6.44
a2 1.81 926 (625) 16.20 8.95
a3 6.14 1107 (653) 36.11 5.88
a4 6.82 2896 (1606) 130.87 19.19
a5 18.75 4181 (2332) 330.87 17.65
a6 13.85 4298 (2293) 378.37 27.32
a7 11.55 5799 (2713) 790.78 68.47
a8 70.05 8472 (3812) 1336.53 19.08
a9 26.47 10008 (4493) 1785.03" 67.44*
al0 401.12 na na -

* stopped at maximum iterations; na: MINOS could not be run due to the size of the problem.
Both MINOS and BUNDECOMP run on a DEC VAXstation II workstation.

D. Medhi / Mathematical Programming 66 (1994) 79-101

4.2. Comparison with DECOMP

97

DECOMP is an implementation of the Dantz ig-Wolfe decomposit ion method to solve

block-angular linear programs. It was developed by Ho and Loute [7]. In both the Dantz ig-

Wolfe decomposit ions (D W D) method and the bundle-based decomposit ion method, the

subproblems have the same form. We note here that the essential difference between these

two methods is how the "mas t e r " problem is solved. In the DWD method, columns are

generated from the solution of the subproblems and then a master linear program is solved.

On the other hand, as described in Section 2.1 the approach taken in the BBD method is to

solve a nonsmooth concave problem by a modified bundle method.

The problem set we tested both with DECOMP and BUNDECOMP is different than the

set tested with MINOS. This is due to some restrictions in the version of DECOMP available

to us, e.g., the maximum number of subproblems allowed and the number of nonzero

elements in each subproblem. This version of DECOMP allowed at most six subproblems.

We thus generated two sets of problems: the first set has six subproblems and the second

set varies from twelve to sixty subproblems (see Table 4.4). For the test problems generated

with more than six subproblems, we combine two or more into one " b i g g e r " subproblem

so that the "mod i f i ed" total number of subproblems is not more than six. For example,

consider test problem x5 in Table 4.4. Originally twelve subproblems are generated for this

test problem. W e aggregate them into six bigger subproblems by combining two subprob-

lems into one bigger subproblem. This means the first two blocks of the original subprob-

lems, whose feasible regions are

and

S l : = {xl E ~ n i J B l x l = b l , xl >~0}

S 2:= {x2 ~ 1~"2 JBzx2 =b2 , x2 >/0} ,

are combined into one feasible region in R ~1 +n~ and the constraints are considered to be

Table 4.4
Problem Specifications (x)

Problem name Size of whole Number of coupling Number of Approx. size of Density
problem constraints subproblems subproblems (%)

xl 150 × 300 10 6 23 × 50 22.22
x2 150× 300 20 6 23 ×50 27.78
x3 200 × 450 10 6 32 × 75 20.83
x4 200 × 450 20 6 32 × 75 25.00
x5 320 × 550 10 12 25 X46 11.20
x6 320 × 550 20 12 25 × 46 14.06
x7 500 × 900 I0 60 8 X 15 3.63
x8 500 × 900 20 60 8 × 15 5.60
x9 600 × 1200 30 60 10 × 20 3.31

98 D. Medhi /Mathematical Programming 66 (1994) 79-101

B2 2 b2 2

Similarly, we combine three and four together, five and six together and so on. Accordingly,
test problem x5 with 12 subproblems, each of approximate size 25 X 46, is regarded as a
problem with six "bigger" subproblems, each of size 50 × 92 for DECOMP. (See Fig. 1
for a pictorial representation of subproblem blocks where four smaller subproblems are
combined to form a bigger subproblem.)

Theoretically, multiple proposals that pass a candidacy test (see [! 1, pp. 23-29] for
details) can be sent from a subproblem to the DWD master problem. The version of
DECOMP we used takes a proposal from each subproblem. Also this version of DECOMP
does n o t obtain a primal optimal solution whereas BUNDECOMP obtains an approximate
primal optimal solution. (In the DWD method, a primal optimal solution to the original
problem is usually recovered by solving N LP subproblems o n c e m o r e [phase three] - this
time each with (m; + m) constraints (instead of m; constraints) and ni variables ([2,7,11])
- after satisfying the optimality conditions.)

All the test problems listed in Table 4.4 were run on a VAX 11/780 running the VMS
operating system with both BUNDECOMP and DECOMP. The first four test problems
have six subproblems each. The computational results of these four test problems (i.e., xl ,
x2, x3, x4) with both DECOMP and BUNDECOMP are reported in Table 4.5.

The rest of the test problems (x5, x6, x7, x8, x9) from Table 4.4 have more than six
subproblems each. DECOMP solves these test problems assuming each of them to consist
of six "bigger" subproblems, as described above. With BUNDECOMP, we ran the prob-
lems both ways: (a) with the original smaller subproblems, and (b) also with six "bigger"
subproblems. For example, test problem x8 is solved with six subproblems, each of size
80 X 150, and also with sixty subproblems, each of size 8 × 15 (see Fig. 1 to understand the
difference). As noted before, the subproblems to be solved in both methods are linear
programs of similar size and structure. In DECOMP, the subproblems are solved using a
sophisticated implementation of the revised simplex method by Tomlin [7] storing only

I

m i
i i

~ s i z e of subproblems as given originally

~ size of "bigger" subproblems
I I N N

Fig. 1. Two different sites of subproblems as considered by BUNDECOMP for solving LP subproblems (refer to
Section 4.2 and Table 4.6).

D. Medhi /Mathematical Programming 66 (i 994) 79-101

Table 4.5
Comparison of DECOMP and BUNDECOMP (six subproblems to start with)

99

Problem DECOMP BUNDECOMP
name

Time Ta Number of Time Tb Number of
(rain) cycles (min) iterations

Factor
=Ta/Tb

xl 5.75 26 1.90 35 3.023
x2 9.12 32 2.37 52 3.854
x3 14.14 30 4.78 33 2.959
x4 24.55 43 5.22 38 4.703

Table 4.6
Comparison of DECOMP and BUNDECOMP (more than six subproblems to start with)

Problem DECOMP BUNDECOMP
name

Time Number of As given originally As six subproblems
(min) cycles

Time Number of Time Number of
(rain) iterations (min) iterations

x5 12.20 27 3.03 18 10.79 19
x6 26.07 47 4.49 50 13.58 52
x7 9.45 28 1.01 23 28.13 19
x8 25.97 55 1.86 41 34,09 39
x9 19.94 37 1.31 20 na na

na: = not available as ZXOLP failed to solve subproblems of size 95 × 200.

the nonzero entries of the coefficient matrix. Recall that, in BUNDECOMP, the linear

programming subproblems are solved using IMSL routine, ZXOLP, which stores the coef-

ficient matrix in dense form. Thus, in the case when the subproblems are aggregated to form

bigger subproblems, ZXOLP cannot take full advantage of the structure.

We have tested problems x5, x6, xT, x8 and x9 from Table 4.4 with DECOMP and two

versions of BUNDECOMP described above. We report results on computational time in

Table 4.6. The objective function values obtained using BUNDECOMP and DECOMP are

of the same order (match to four significant digits). Note that the number of iterations with

the two versions of B UNDECOMP differ. This difference is due to the fact that the solutions

of the aggregated linear programming subproblems may not be the same as the solutions of

the smaller linear programming subproblems put together. Thus, the two version may take

different trajectories to the dual optimal solution. Finally, recall that DECOMP does not

obtain a primal optimal solution.

5. Discussion

In this paper, we presented a posteriori error estimates on the approximate primal optimal

solution and on the duality gap for the bundle-based decomposition method for solving

100 D. Medhi /Mathematical Programming 66 (1994) 79-101

convex optimization problems of type (i. 1). We discussed development and implementa-
tion of an experimental code BUNDECOMP to solve a special case of this type of problems,
namely, block-angular linear programming problems (1.3). The BBD method appears to

be promising based on our limited experience, especially when a low-accuracy solution is

sufficient, and compares favorably with existing methods. The computational experience

with the code shows that the pre-assigned e provides a good approximation to the duality

gap in practice. We also discussed the essential difference between this method and the

Dantzig-Wolfe decomposition method. Replacing the routine ZXOLP (used as a part of

BUNDECOMP) by a more efficient routine which exploits the structure of the subproblems

may possibly enhance the performance of the code. Similarly, MINOS or DECOMP may

be specifically tailored to solve (1.3) more efficiently. Note also that we have conducted

our study on randomly generated test problems. More studies need to be done to see the
performance of the method on real-life problems. Finally, we note that this decomposition

method leads to developing parallel algorithms ([17,18]) which produce high speedup and

efficiency for large problems.

Acknowledgements

Most of the work was done while the author was at the University of Wisconsin-Madison,

supported by the National Science Foundation under Grant No. CCR-8502202. The author

would like to thank S.M. Robinson for his guidance and encouragement throughout the
course of this work and for careful reading of a draft of this paper. Thanks are due to C.

Lemardchal for providing M1FC1 and J.K. Ho for providing DECOMP and R.P. Sundarraj

for help with DECOMP. The author would also like to thank two anonymous referees and

an anonymous associate editor for many helpful suggestions which improved the content

and the presentation of the paper considerably.

References

[1] G,B. Dantzig and P. Wolfe, "Decomposition principle for linear programs," Operations Research 8 (1960)
101-111.

[2] Y.M.I. Dirickx and L.P. Jennergren, Systems Analysis by Multilevel Methods: With Applications to Econom-
ics and Management (Wiley, Chichester, England, 1979).

[3] P.E. Gill, W. Murray and M.H. Wright, Practical Optimization (Academic Press, New York, 1981).
[4] C.D. Ha, "Decomposition methods for structured convex programming," Ph.D. dissertation, Department

of Industrial Engineering, University of Wisconsin-Madison (Madison, Wl, 1980).
[5] M. Held, P. Wolfe and H. Crowder, ' 'Validation of subgradient optimization," Mathematical Programming

6 (1974) 62-88.
[6] J.-B. Hiriart-Urruty, "e-subdifferential calculus," in: Convex Analysis and Optimization, Research note in

Mathematics, Series 57 (Pitman, London, 1982) pp. 43-92.
[7] J.K: Ho and/~. Loute, "DECOMP User's Guide," unpublished manuscript.
[8] J.K. Ho and l~. Loute, "An advanced implementation of the Dantzig-Wolfe decomposition algorithm for

linear programming," Mathematical Programming 20 (1981) 303-326.

D. Medhi /Mathematical Programming 66 (1994) 79-101 101

[9] J,K. Ho and I~. Loute, "Computational experience with advanced implementation of decomposition algo-
rithms for linear programming," Mathematical Programming 27 (1983) 283-290.

[10] J.K. Ho and t~. Loute, "Computational aspects of dynamico: a model of trade and development in the world
economy," Revue Frangaise d'Automatique, Informatique et Recherche op~rationnelle 18 (1984) 403-
414.

[11] J.K. Ho and R.P. Sundarraj, DECOMP: An Implementation of Dantzig-Wolfe Decomposition for Linear
Programming (Lecture Notes in Economics and Mathematical Systems, Vol. 338) (Springer-Verlag, New
York, 1989).

[12] IMSL User's manual, Edition 9.2, International Mathematical and Statistical Library, Houston, Texas
(1984).

[13] C. Lemar6chal, "A view of line-searches", in: Auslender, Oettli and Stoer, eds., Optimization and Optimal
Control (Lecture Notes in Control and Information Sciences, Vol. 30) (Springer-Verlag, Berlin, 1981) pp.
59-78.

[14] C. Lemar6chal, J.J. Strodiot and A. Bihain, "On a bundle algorithm for nonsmooth optimization," in: O.L.
Mangasarian, R.R. Meyer and S.M. Robinson, eds., Nonlinear Programming 4 (Academic Press, New York,
1981) pp. 245-282.

[15] C. Lemar~chal and M.-C. Bancora Imbert, "Le module MIFCI", preprint: INRIA, B.P. 105, Le Chesnay,
France (France, March 1985).

[16] C. Lemar6chal, Private communication (1986).
] 17] D. Medhi, "Decomposition of structured large-scale optimization problems and parallel optimizations,"

Ph.D. dissertation, Technical Report #718, Computer Sciences Dept., University of Wisconsin-Madison
(September 1987).

[18] D. Medhi, "Parallel bundle-based decomposition algorithm for large-scale structured mathematical pro-
gramming problems," Annals of Operations Research 22 (1990) 101-127.

] 19] R. Mifflin, "A stable method for solving certain constrained least-squares problems," Mathematical Pro-
gramming 16 (1979) 141-158.

[20] B.A. Murtagh and M.A. Saunders, "MINOS 5.0 user's guide", Technical Report #SOL 83-20, Department
of Operations Research, Stanford University (Stanford, CA, December 1983).

[21] K.G. Murty, Linear Programming (John Wiley and Sons, New York, 1983).
[22] B.T. Polyak, "Subgradient method: a survey of Soviet research," in: C. Lemar6chal and R. Mifflin, eds.,

Nonsmooth Optimization (Pergamon Press, Oxford, 1978) pp. 5-28.
[23] S.M. Robinson, "Bundle-based decomposition: Description and preliminary results," in: A. Pr6kopa, J.

Szelezsfin and B. Strazicky, eds., System Modelling and Optimization (Lecture Notes in Control and Infor-
mation Sciences, Vol. 84) (Springer-Verlag, Berlin, 1986) pp. 751-756.

]24] S.M. Robinson, "Bundle-based decomposition: conditions for convergence," Annales de l'lnstitute Henri
Poincarg: Analyse Non Lindaire 6 (1989) 435-447.

[25] R.T. Rockafellar, Convex Analysis (Princeton University Press, 1970).
[26] R.T. Rockafellar, Conjugate Duality and Optimization (SIAM, Philadelphia, 1974).
[27] R.T. Rockafellar, "Monotone operators and the proximal point algorithm," SIAM Journal on Control and

Optimization 14 (1976) 877-898.
[28] M.A. Saunders, Private communication (1987).

