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D e d i c a t e d  to  t he  m e m o r y  o f  R o b e r t  G. J e r o s l o w  

Leontief substitution systems have been studied by economists and operations researchers for many 
years. We show how such linear systems are naturally viewed as Leontiefsubstitution flow problems on 
directed hypergraphs, and that important solution properties follow from structural characteristics of 
the hypergraphs. We give a strongly polynomial, non-simplex algorithm for Leontief substitution flow 
problems that satisfy a gainfree property leading to acyclic extreme solutions, lntegrality conditions 
follow easily from this algorithm. Another structural property, support disjoint reachability, leads to 
necessary and sufficient conditions for extreme solutions to be binary. In a survey of applications, we 
show how the Leontief flow paradigm links polyhedral combinatorics, expert systems, mixed integer 
model formulation, and some problems in graph optimization. 

Key words: Leontief matrices, linear programming, integer programming, network flows, polyhedral 
combinatorics, expert systems. 

Introduction 

Following Veinott (1968) we use the following definitions. The matrix A is pre- 
Leontief if each column contains at most one positive entry. The matrix A is Leontief 
if each column has exactly one positive element and there exists ff >/0 such that 
A~> 0. 
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This interesting class of  matrices was first studied in the context of input-output  
analysis in economics. See Leontief (1951) and Dantzig (1955). Later these matrices 
were important within the context of  dynamic programming and Markov processes 
(see, for example,  Howard,  1960; Kemeny and Snell, 1960; Veinott, 1969b; and the 

more recent work of Erickson, 1978, 1988; and Rothblum and Whittle, 1982; on 
branching Markov decision chains). See also Veinott (1969a) for applications in 
operations management.  

The algebraic properties of  ( pre- ) Leontief  substitution systems Ax  -- b, x >~ 0 with 
(pre-) Leontief matrices A and right-hand side b ~> 0 were thoroughly investigated 

in Veinott (1968) and Koehler, Whinston and Wright (1975). See the latter for an 
extensive set of  references. 

More recently, there has been a renewed interest in Leontief substitution systems 
because of the key role they play in polyhedral combinatorics, logic and expert 
systems. Erickson's (1978) dissertation took a Leontief approach to network flow 
problems with separable concave costs. Martin, Rardin and Campbell  (1990) use 
properties of  Leontief matrices in developing polynomial-size polyhedral descrip- 
tions of  optimization algorithms on recursively defined graphs and facilities in series 
lot sizing problems. In the area of logic and expert systems Jeroslow and Wang 
(1989) characterize extreme solutions to a linear programming formulation of proofs 

over a Horn clause knowledge base. Ullman and Van Gelder (1988) study the 
problem of being able to guarantee when a Prolog-like evaluation of a set of  logical 
rules terminates. 

Our focus is the subclass of  linear programs on Leontief and pre-Leontief con- 
straint matrices satisfying a gainfree property. We begin by interpreting all linear 

programs over pre-Leontief  systems as flow problems in a directed hypergraph. This 
interpretation is a natural extension of generalized networks to problems with more 
than one negative element in a column. In this context there is an equally natural 
notion of gain around a directed cycle. I f  no such gain cycle exists, Section 2 
establishes that extreme point solutions contain no directed cycles. For extreme 
solutions that are acyclic in this sense, Section 3 provides simple algorithms to find 
optimal dual and primal solutions in time O(mp) ,  where m is the number  of  rows 
of A, and p is the number  of nonzero entries in A. In Section 4 we show that this 

same acyclic structure of  extreme solutions leads to total dual integrality and integer 
solutions under suitable hypotheses. Another structural property, support disjoint 
reachability, is seen to lead to a necessary and sufficient characterization of when 
the integer solutions must be binary. The remainder of the paper  surveys results for 
different classes of  applications. Some known properties are shown to follow from 
our theory of Sections 2-4, new results are proved, and some intriguing open 

questions are posed. 
Because Leontief systems have been (re)discovered in so many settings over 

several decades, there is a wide, but not very unified literature. Some of our results, 
including most of  those in Section 3, can be viewed as restatements in a new context 
of  material found in earlier work of  Veinott (1958), Erickson (1978, 1988) and others. 
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The major contribution of this paper  is to introduce a directed hypergraph flow 
paradigm for studying Leontie'f systems that leads to both new structural results 
and an intuitive, unifying way of thinking about applications. 

1. Directed hypergraph setting 

Generalized networks are an extension of network flow problems by allowing the 
negative element in each column of the vertex-arc incidence matrix to be an arbitrary 
negative real number  instead of -1 .  A pre-Leontief  matrix further extends the 
vertex-arc incidence matrix of  generalized networks by allowing more than one 

negative element in a column. 
The corresponding graph structure is what we term a Leontiefdirected hypergraph 

G = (V, H)  on vertices in V and hyperarcs in H. Each hyperarc is an ordered pair 
(J, k), where J c V, k e V\J .  Vertex k is the head of the hyperarc and J is the tail 

set. We allow tailless or source hyperarcs (O, k) directed into k, and headless or sink 

hyperarcs (J, O) directed out of  tail set J. We assume throughout that the coefficient 
associated with the head of a hyperarc is +1. Tail weights {aj[J, k] ]j e J} give the 

magnitudes of  corresponding negative coefficients at tails j c J. Models can have 
several "paral lel"  hyperarcs with different tail weights connecting the same (J, k) 
pair. In the interest of  notational simplicity, we assume each (J, k) pair indentifies 
a unique hyperarc. Parallel hyperarcs are easily made unique through the introduc- 
tion of artificial vertices. 

A flow on Leontief directed hypergraph G = (V, H)  is a set of hyperarc values 
{x[J, k] [(J, k) ~ H} conforming to conservation and nonnegativity constraints: 

Z x [ J , k ] -  ~ ak[J,l]x[J,  1]=bk f o r a l l k e V ,  (1) 
( J , k ) ~ H  (J , l ) cH  

k ~ J  

x[J, k] >! 0 for all (J, k) c H. (2) 

Right hand sides bk denote the net demands at vertices k. 

Lemma 1.1. For every b ~ R m and m x n pre-Leontief  matrix A, there is a Leont ie f  

directed hypergraph G such that A x  = b, x >10 corresponds to the hypergraph f low 

(1)-(2). 

Proof. Construct G by defining a vertex for every row of matrix A. For every column 

of A define the hyperarc (J, k) where the set J indexes the rows in which the column 
has a strictly negative element and k indexes the row in which the column has a 
positive element. I f  the column has no negative elements create the source hyperarc 

(0, k); if the column has no positive elements create the sink hyperarc (J, 0). The 
b of the linear system defines the vector of net demands bk. I f  column j of  A 
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has a posi t ive  entry  in row i, the tail  weights are sca led  absolu te  values  
• 1 d e f  / {ak[J, tl = -ak~/a~jlak ~ < 0}. I f  there  are  no posi t ive  entr ies in co lumn j, tail weights  

d e f  
are s imply  {ak[J, O] = -ak~ l akj < 0}. [] 

Assoc ia t ing  unit  flow costs c[J, k] with hypera rcs  (J, k) c H, we define a Leontief 
flow problem as the  l inear  p rog ram 

rain Y~ c[ J, 1]x[ J, l] 
(.LI)c H 

subject  to (1)- (2) .  

That  is, a Leon t i e f  flow p r o b l e m  is the genera l i za t ion  o f  the classic m in imum cost  

ne twork  flow p r o b l e m  a c c o m m o d a t i n g  arcs with mul t ip le  tails  and  a rb i t ra ry  tai l  

weights.  We use the term Leon t i e f  flow even when the cons t ra in t  matr ix  of  ( l ) - ( 2 )  

is pre-Leont ie f .  

All  o f  our  main  results  for  Leon t i e f  flows address  the Leont ie f  subs t i tu t ion  case 

where  right hand  side vector  b is nonnega t ive .  We term these Leontiefsubstitution 
flow problems to ind ica te  that  b ~ 0 is assumed.  

Veinot t ' s  (1968) classic  work  on Leon t i e f  subs t i tu t ion  systems calls row i o f  a 

p r e -Leon t i e f  matr ix  A trivial i f  for all x /> 0 such that  Ax ~ O, the co r r e spond ing  

c o m p o n e n t  o f  Ax is zero. Rows that  are not  trivial  are  non-trivial, and  a matr ix  with 

exact ly  one posi t ive  entry pe r  co lumn is Leont ie f  prec ise ly  when every row is 

nontr ivia l .  Ex tend ing  to the h y p e r g r a p h  sett ing,  we term a vertex trivial i f  the 

co r r e spond ing  row of  the inc idence  matr ix  A is tr ivial ,  o therwise  it is nontriviaL 
Thus a tr ivial  vertex is one in which it is imposs ib le  to have a net posi t ive demand .  

We also e m p l o y  a re la ted  no t ion  o f  degenerate hyperarcs .  A hypera rc  (J, i) is 

degenera te ,  i f  and  only  if  x[J, i] = 0 in every bas ic  feas ible  so lu t ion  to (1)-(2) .  Af ter  

charac te r iz ing  bas ic  feasible  so lu t ions  to Leon t i e f  subs t i tu t ion  flow p rob lems  in 

Sect ion 2, we show that  if  hype ra rc  (J, i) is nondegene ra t e  in the b/> 0 case then 

every vertex in J is nontr ivial .  

A path in Leon t i e f  d i rec ted  hype rg raph  O from vertex v~ to vertex vk+~ is def ined  

by the non-nul l  sequence  v~ e~ v2e=v3,..., ekvk+~ whose  terms are a l ternat ive ly  vert ices 

and  hyperarcs ,  with no vertex or  hype ra rc  repea ted ,  such that  ei = (Js, vs+~) and  

v~ c Ji ; or, e~ = (Ji, v~) and vi+~ ~ Ji. A pa th  f rom vertex v~ to vertex Vk+~ is a directed 
path i f  e~ = (J~, v~+~) and v ie  J, for i =  1 . . . .  , k. 

A pa th  f rom vertex v~ to ver tex v~+~ is a cycle if  vl = vk+~. A d i rec ted  pa th  f rom 

vertex v~ to vertex vk+~ is a directed cycle i f  vl = vk+~, and  a Leont ie f  d i rec ted  

hype rg raph  with no d i rec ted  cycle is acyclic. A hypertree is a connec ted  Leon t i e f  

d i rec ted  h y p e r g r a p h  which conta ins  no cycles,  and  a hyperarboresence is a hyper t ree  

d i rec ted  so that  at most  one hype ra rc  po in t s  into any vertex. A hyperforest is a 

Leon t i e f  d i rec ted  h y p e r g r a p h  which  conta ins  no cycles. 

The focus o f  this p a p e r  is on Leon t i e f  subs t i tu t ion  flow p rob lems  over  d i rec ted  

hype rg raphs  sa t is fying two newly  i so la ted  s t ructura l  p roper t ies .  One is the absence  
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o f  gain cycles. Let v~elv2e2,..., ekvk+~ be a directed cycle where v~= vj,+~ and 

e~ = (J,, v~+~), i = 1 , . . . ,  k. The gain of  this directed cycle is defined by 

1 / i ~  a~,,[Ji, v;+l]. (3) 

We term a Leont ief  flow problem defined on hypergraph  G gainfree if the gain o f  
every directed cycle in G is <~ 1. 

Our  second property,  disjoint reachability, relates to the absence of  hypergraph  

objects we term paracycles. A paracycle is a subhypergraph  consisting o f  directed 

paths rel vze2, . . . , ekvk+~gt and rf~ u2f2,... ,ful+~gt disjoint except for the c o m m o n  
root  vertex r, final hyperarc  g = (J, t) and final vertex t. That  is, a paracycle  is a 

pair  of  disjoint paths f rom a c o m m o n  source to distinct tail vertices of  the same 

hyperarc,  plus the hyperarc  itself. The structure is a "nea r "  cycle in the sense that  

it would  be a cycle if the last hyperarc  g were replaced by arcs f rom vk+l to t and 
u;+; to t. Also, if vertex i has a directed path to vertex j within a hyperarborescence  

T, either the path is unique or T contains a paracycle.  

Figure 1 illustrates these definitions. It shows a gainfree Leont ief  directed hyper-  

graph on vertices V = { 1 , . . . , 9 }  and the cor responding  pre-Leont ief  matrix A. 

In ( L k )  notat ion hyperarc  e5 is ({5,8},6) with tail weights a5 [{5 ,8} ,6 ]=  

3, as[{5, 8}, 6] = 1. Source hyperarc  e 9 is ((3, 7). The sequence vveTvsesv6e~v7 is a 

directed cycle with gain 1/(0.5)(3)(0.9) < 1. Hyperarcs  es, e~2 and e~3 form a para- 
cycle rooted at vertex 9, with disjoint paths to tail vertices 5 and 8 o f  hyperarc  es. 

Even without  the all negative column corresponding  to arc e~0, the A matrix 

cor responding  to this hypergraph  is pre-Leont ief  and not Leont ief  because vertices 

v2, v3, v4 are trivial. 

2. Characterization of basic feasible solutions 

Associated with every feasible solution to (1)-(2)  is a support hypergraph which is 

the subhypergraph  induced by all hyperarcs  with a positive value in the solution. 

In this section we give a sufficient condi t ion for when the suppor t  hypergraph  of  a 

basic feasible solution to a Leontief  substitution flow problem is acyclic. This is 

obviously the case when hypergraph G defining (1)-(2) is free o f  directed cycles 

to begin with, or when (1)-(2) is a pure network flow problem, in which all cycles 
are linearly dependent .  

For more  general cases, first assume that  the constraint  matrix A, of  (1)-(2)  is 

Leontief. This assumpt ion is easily d ropped  later. Each directed cycle o f  a Leont ief  

directed hypergraph  corresponds to a generalized cycle matrix which is a square 

matrix with a row for each vertex in the directed cycle and a column for  each 

hyperarc  in the directed cycle. In each column corresponding  to hyperarc  (Ji, vi+~) 

there are two non-zero elements; a + 1 in the row corresponding to vertex v~+~ and 
- a ~ [ J ; ,  v~+~] in the row for vertex v~. 
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1 / \ I 1  

e 8 
e 3 

5 ~ e 7  
e2 

e 6 f - - ~ . 5  1 

9 4 

9 

el  

l / e l 0  

A =  

e e e e el  e2 e3 e4 e5 e6 e7 e8 e9 10 11 12 13 

1 -1 -1 -1 

-1 1 

1 -1 

1 -1 -1 

-3 1 1 

1 -.9 -1 -2 

1 -.5 1 -4 

1 1 

1 -1 -1 

Fig. 1. Example hypergraph and constraint matrix. 

Lemma 2.1. Let  C be a general ized o ,  cle matrix.  Then there is a solution to the sys tem 

Cx  > O, x ~ 0 i f  and  only i f  the directed cycle corresponding to C has gain > 1. 

Proof.  I f  the gain is ~ 1 we show there is no solut ion to the system Cx > O, x ~> 0 
by construct ing a nonnegat ive  vector  A ~ 0 such that  AC ~< O. By a variant  o f  Farkas  
only one of  these systems can have a solution. 

Assume without  loss that  the rows and columns of  C have been pe rmuted  so that  

row i cor responds  to vertex v~ and co lumn i cor responds  to hyperarc  el = (Z, v~+~) 
in the directed cycle vle~v2e2v3, • . . ,  ekvk+~ where Vl = G+I .  Assign a nonnegat ive  
set o f  mult ipl iers  to the rows o f  C by 

A ~ = I ,  A ~ = l / ( ~ a L , ~ [ J / , v s + , ]  ) ,  i = 2 , . . . , k .  (4) 
/ 
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Then for i = 2 , . . . ,  k the ith componen t  o f  AC is equal to zero since column i has 

a coefficient o f + l  in row i + 1 with multiplier 1/(I!~ i+1 a~i[~, Vj+l]) and a coefficient 

o f  -a,,,[J~, vi+~] in row i with multiplier 1/(I!~= i a~j[J/, t~i+~] ). Also, by the hypothesis  

that  the gain is <~1, 

-a~,[J1, re] + 1 / ( j l -~  2 avj[Ji ,  IQj÷l]) 

<~0, 

so the first componen t  o f  AC is nonpositive.  

Conversely,  if the cycle associated with generalized cycle C has gain >1 ,  we 

construct  solutions x i ~  > 0 such that C x ~  > 0 and strictly positive in the ith row. 
Summing these x ~ gives C(Y~ x ~) > 0. 

It is sufficient to construct  only x ~ since the other  x i take the same form after 

relabeling o f  the cycle. Assume vertex v~ corresponds to the first row of  C and 

consider  

k 

Nick = 1, xlel = 1~ a~[J/, v~+,], i = 1 , . . . ,  k -  1, (5) 
j = i + l  

again defining vk+~ = v~. 

With this solution there is a balance o f  flow at every vertex except v~. At vertex 

1 and the flow out is the reciprocal of  the cycle 's  v~ the flow in is one unit since xe~ = 

gain. With gain >1 ,  it follows that there is an excess flow into vertex v~ and the 

first componen t  o f  Cx ~ is strictly positive. [] 

Lemma 2.2. I f  a Leontief substitution flow problem is gainfree and the associated 
constraint matrix A is Leontief, then the support hypergraph of  every basic feasible 
solution is acyclic. 

Proof.  Assume there is a basic feasible solution with a suppor t  hypergraph  that  

contains a directed cycle. We show this directed cycle has a gain > 1. Since A is 

Leontief,  the basis matrix associated with the basic feasible solution for b >/0 is 

also Leont ief  (Veinott, 1968). Consider  a Leont ief  basis B containing w.l.o.g, a 
directed cycle a round  vertices and hyperarcs  in its upper  left hand  corner,  and write 

it 

That  is, C is a square matrix with a row for each vertex in the directed cycle and 

a column for each hyperarc  in the directed cycle. Since B is Leont ief  there is a 
nonnegat ive ~ with B~ > 0. Then C)~ c + R)7 R > 0. Since B is a square Leont ief  matrix 
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there is exactly one +1 in every row and in every column. Every column in the 
matrix C contains a +1 (corresponding to each hyperarc directed into each vertex 
in the directed cycle) so R <~ 0 which implies C~ c" > 0. Construct from C a generalized 

cycle matrix (~ by eliminating the negative coefficients not along the cycle (that is, 
for every hyperarc ei = (Ji, vi+~) in the cycle delete all negative coefficients in C 
which do not correspond to vertex vi). It follows that ~ £ c  > 0. Then by Lemma 2.1 

the directed cycle has a gain >1.  [] 

To extend Lemma 2.2 to all Leontief substitution flow problems assume A is 
pre-Leontief. Veinott (1968) shows the following two lemmas (as Theorems 2 and 3). 

Lemma 2.3. I f  A is pre-Leontief then after permuting the rows and columns appropri- 

ately A can be written as 

where A~ is Leontief and all the rows of  A2 are trivial. [] 

Partition x =  (x ~, x 2) to correspond to A~ and A2, respectively. Similarly for 
b = (b ~, b2). Since the rows of A2 are trivial, b 2 = 0 in any feasible Leontief substitu- 

tion flow. 

Lemma 2.4. Suppose A is pre-Leontief, A is partitioned as in Lemma 2.3, and b ~ >~ 

O, b 2= O. Then the following are equivalent: 
(i) x = (x I, x 2) is an extreme point o f  the Leontief flow problem. 

(ii) x 1 is an extreme point o f  the Leontief flow problem defined by constraint matrix 
A1 and right hand side b l, and x 2=0. [] 

Theorem 2.5. I f  a Leontief substitution flow problem is gainfree, then the support 

hypergraph of  every basic feasible solution is acyclic. 

Proof. Let x = (x ~, X 2) be a basic feasible solution to a Leontief ftow problem. Since 

the solution is feasible, b~>0  and b2=0.  Then by Lemma 2.4, x2=0  and x ~ is an 
extreme point a Leontief flow problem with a Leontief constraint matrix (i.e. A~). 
By Lemma 2.2 the support  hypergraph of the Leontief flow problem corresponding 

to A~ and b ~ is acyclic. The result now follows since x2=0.  [] 

The support  hypergraph of a basic feasible solution actually has a much stronger 
property than simply being acyclic. 

Theorem 2.6. I f  a Leontief substitution flow problem is gainfree then the support 

hypergraph of  every basic feasible solution is a hyperforest and each component of  the 

hyperforest is a hyperarboresence. 

Proof. Following Lemma 2.4 and Theorem 2.5, we know that if ff = ( ~ ,  if2) is an 

extreme point of  the Leontief flow problem, then ffl is an extreme point of  the 
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Leontief flow problem defined by A~x = b~ where A~ is Leontief. The hyperarcs with 
positive flow are components of  ff~. Since A~ is Leontief, the basis matrix which 
defines ff~ is also Leontief. This Leontief basis matrix has exactly one +1 in each 
row and each column. Then at most one hyperarc with positive flow is directed into 

a vertex. Since the support  is acyclic by Lemma 2.2 and there is at most one hyperarc  
directed into any vertex, it must be a hyperforest where each component  is a 
hyperarboresence. [] 

Corollary 2.7. Ira Leontief substitution flow problem with a Leontief constraint matrix 
is gainfree, then the basis matrix of every basic feasible solution can be permuted into 
a lower triangular matrix. 

Proof. Any basic feasible solution for a given nonnegative right hand side is a basic 

feasible solution for all nonnegative right hand sides, so we assume without loss 
that bi > 0 for all i. Thus, in the basic solution there is a nonzero hyperarc directed 
into every vertex so the solution is not degenerate. 

By Theorem 2.6 the corresponding support  hypergraph is a hyperforest where 

each component  is a hyperarboresence. Each hyperarboresence (since it is acyclic) 
induces an ordering on the vertices such that the head vertex of every hyperarc  can 
be assigned a unique number which is larger than the unique number assigned to 

all of  the tail vertices. This is true for the entire hyperforest since it is true for every 
component.  

Use this assignment to permute the I VI x IV I constant matrix corresponding to 
hyperarcs with positive flow as follows. Order the rows of the matrix by descending 

vertex number. By definition of hyperarboresence, there is exactly one nonzero basic 
hyperarc directed into each vertex. Thus, the columns can be ordered such that the 

column corresponding to hyperarc (J~, vl) follows the column corresponding to 

hyperarc (J2, v2) if and only if vertex vl is assigned a lower number than vertex v2. 
With this permutation each diagonal element is a plus one and the negative elements 
corresponding to the tail weights lie below the diagonal since the tail vertices were 
assigned lower numbers than the head. [~ 

Lemma 2.8. Given a Leontiefdirected hypergraph G = (V, H) :  

(i) I f  hyperarc (J, i) is nondegenerate in any Leon tiefsubstitution flow problem on 
G, then every vertex in J is nontrivial. 

(ii) I f  every vertex j c J is nontrivial.for hyperarc (J, i) then vertex i is nontrivial. 

Proof. (i) By definition, if hyperarc (J, i) is nondegenerate then there is an extreme 
point solution with x[J, i] > 0. Then, by Lemma 2.4, hyperarc (J, i) corresponds to 

a column in matrix A~. By definition of AI every vertex in J corresponds to a row 
in A1 and therefore is nontrivial. 

(ii) If  all j c J are nontrivial, then for each j there is a feasible solution ffJ >/0 to 
some Leontief flow problem with right hand side b j >~ 0 and bl > o. It follows that 
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Y.j~.I XJ, together with a flow on x[J, i] of q5 = min{bi/aj[J , i]}, is feasible for some 
bi~>0 with b i=  ~b>0. [] 

In terms of  the Leontief flow paradigm, the columns of A1 in Lemma 2.4 
correspond to all of  the hyperarcs (J, i) with the property that vertex i and all j ~ J 
are nontrivial. However, it is possible to construct example Leontief directed hyper- 
graphs which contain degenerate hyperarcs (J, i) with every vertex j c J nontrivial. 
That is, the converse of Lemma 2.8(i) is not true, and there may be columns of A1 
which correspond to degenerate hyperarcs. Part (ii) of Lemma 2.8 says that if there 
is a solution with net positive flow into all j c J, then existence of hyperarc (J, i) 
implies there is a solution with net positive flow into vertex i. 

3. Strongly  po lynomia l  a lgor i thms  

Assign dual variables ui to constraints i of  (1). Then the dual feasibility constraints 
for a Leontief flow problem on Leontief directed hypergraph G = (V, H )  are 

ui<~c[J,i]+ ~ aj[J,i]uj fora l l  (J,i)cH, (6) 
j c .I 

0~<c[J, 0]+ ~ ai[J,O]uj for all (J, 0 ) c H .  (7) 
j c J  

As usual in linear programming theory, a solution u is said to be complementary 
with respect to a primal flow x if (J, i) in the support of x implies the corresponding 
inequality of (6) or (7) holds as an equality. 

Algorithmic research in Leontief systems has centered on finding solutions to 
(6)-(7) by successive approximation schemes based on (6). Finite convergence is 
rare. Numerous procedures and asymptotic convergence results are available. See 
Koehler et al. (1975) and Veinott (1969b). 

Our focus here is on subclasses of Leontief flow problems admitting provable 
finite and polynomially bounded solution times via successive approximation. The 
simplest such successive approximation procedure corresponds to Jacobi iteration 
with an initial starting value of big M and extends the classic Bellman-Ford method 
for the shortest path problem as follows: 

Value  Iteration Algor i thm.  

Step 1. Initialize: u°<--M, nontriv(i)="true" for all (0, i )c  V, otherwise non- 
triv(i) ="fa lse" ;  t[ i]~-0 for all i~ V; t ~ 0 .  

Step 2. Iterative step: while some u~ changed; t~- t+  1 and for all vertices i with 
nonempty {(J, i) ~ H} do: 

c [ .~ i ]+  ~ aj[J,i]u~-l=min{c[J,i]+~ ai[J,i]u~-ll(j , i)6H}, (8) 
. j ~ J  j ~ J  " 

ui<--min{ t 1 c[.~ i ] + ~  aj[J, i]uj -1} t ui , . (9) 
j c.. .l 
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I f  ul -~ > c[.~ i] + ~ j ~ j  ai[], i]u~ l and nontriv(j) = " t rue"  for  all j 6 .~ 

record J[ i ]~J ,  t[ i]~ t, nontriv(i)~-"true". 

I f  {(J, i) e H}  = 0, i c V then ul = u~ -~. 

385 

(lo) 

In  the Value I tera t ion Algori thm, nontriv(i) is a flag which is set to " t rue"  when 
the a lgor i thm discovers that  vertex i is nontrivial.  It is based  on the fact that  (1) all 
vertices which have a tailless hypera rc  (0, i) are nontrivial ,  and  (2) if  all the vertices 
in J are nontrivial ,  then the existence of  hypera rc  (J, i) implies  vertex i is nontr ivial  

by L e m m a  2.8. We can take big M in the initialization step to be any real n u m b e r  
larger than 2 (l+41HI2'6) where  q5 is the size of  the largest inequal i ty  in (6). See Schri jver  

(1986, p. 121). 

Lemma 3.1. l f  O~ <~ M, i ~ V is a feasible solution to the dual constraints ( 6 ) fo r  Leontief 
directed hypergraph G = (V, H) and criterion vector c, then u' ~ ~ for all t where u' 
is calculated by Value Iteration. 

Proof. By induct ion on t. 
I f  t = 0 ,  u° i=M~Oi ,  all i c  V. Assume ui~> ff~, all i c  V. Then  either ul+~ = ul,  or 

ul +l =min{c[J, i]+~ aj[J, i]u~ (J, i) c H }  
.j c .! 

>~min{c[J , i]+2 a i [ J , i ] a i l ( J , i ) c H  } 
j c .! 

/>0, (by (6)). [] 

The key result o f  Section 2, Theorem 2.5, is that  basic  feasible solutions to gainfree  
Leont ief  subst i tut ion flow prob lems  have acyclic support .  Whether  or  not caused  

by the gainfree proper ty ,  an acyclic basic  feasible solut ion with some suppor t  
hypera rc  point ing into every nontrivial  vertex assigns implici t  levels to the nontr ivial  
vertices. Each vertex i serviced by a source hypera rc  (0, i) may  be taken as level 1, 

and  the level o f  o ther  nontr ivial  i in the suppor t  is defined recursively as 1 + 

max{levels o f j  6 J l(J, i) ~ H}. 

Lemma 3.2. Consider an m-vertex Leontief flow problem on Leontief directed hyper- 
graph G = (V, H ). I f  there exists a basic feasible flow ,Y having acyclic support with a 
hyperarc directed into every nontrivial vertex, and a complementary dual solution ui <~ M 
feasible in (6), then for all nontrivial i c V, u~ = ui after at most t = m iterations. 
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Proof.  By hypothes is  the suppor t  hyperg raph  is acyclic and has a hyperarc  directed 
into each nontr ivial  i, which means  that  each nontrivial  i can be assigned a level 
as described above.  Then feasibility of  1,/in (6) and complemen ta ry  slackness imply  

for  nontrivial  i, 

G=minlc[Y,i]+~ ai[J,i]~j ( J , i ) c H  I. (II) 
t j c .! ) 

Proceed by induct ion on the level 1, induced by ~, on the nontrivial  vertices i. 
For  l = 1, the first i teration of  Value I terat ion sets u] = c[0, i] and complemen ta ry  
slackness gives G = c[0, i]. Then by L e m m a  3.1 and the monotonic i ty  of  Value 
I terat ion,  

c[O, i]= u~ >~ ul >~ G= c[O, i] 

so that  ul is unchanged  after  i teration l = 1. 
Induct ive  step. Assume now that  for  every nontrivial  vertex i of  level l ~ or, u l = G 

for  t ~  1. I f  ver tex i is level l =  or+ 1, and (J, i) is a hypera rc  directed into i, then 
for  every j c J the level o f  j is at most  1. Then at i teration l +  1, 

+ I } t]uj (J,i) c H  ui ~<min c[J, i ] +  Y~ aj[J, " ' 
j ~ J 

= m i n { c [ J ,  i]+Y~ ajEJ, i]~i (J, i)c H I 
j cJ  

The first equali ty is by the induct ion hypothesis ,  the second by (11). Again by 
L e m m a  3.1 and  the monotonic i ty  of  Value I terat ion,  G ~< u~i +1, and this implies 
ul = G for  all t ~> l +  1. To comple te  the p roo f  observe that  an acyclic hypergraph  
on m = IV I vertices can have vertices of  level no greater  than  m. [] 

Informal ly ,  L e m m a  3.2 says that  for  any Leont ief  flow p rob lem having a basic  
feasible solut ion with acyclic suppor t  hypergraph  conta ining a hyperarc  directed 

into all nontr ivial  i, then any complemen ta ry  dual solut ion is finitely compu ted  by 
Value I terat ion.  

Value I tera t ion is a purely dual a lgori thm. I f  it stops, however ,  it is easy to retrieve 
a cor responding  pr imal  flow for any  d e m a n d  vector  /~>0  that  is zero at trivial 
vertices. We use the labels J[i] and t[i] saved at Step 2 as follows: 

Primal Retrieval. 

Step I. Init ial ization:  set £[J, i ] ~ 0  for  all (J, i ) ~ / 4 ,  create active vertex list 

V~-{il  i nontrivial}, and establish vertex flows f as f ~-/~i for  all i c V. 
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Step 2. Iterative step: while I ) ~ 0, choose  an i c V with max imum t[i], pick the 
inbound  hyperarc  ( J [ i ] ,  i) f rom (10) and update  

Y[J[ i ] ,  i] <-- f ,  

f j e - £ + a i [ J [ i ] , i ] Y [ J [ i ] , i ]  for all j c J [ i ] ,  

9~-  13\{ i}. 

To establish correctness of  Primal Retrieval we first prove two lemmas. 

Lemma 3.3. I f  Value Iteration terminates finitely, then jbr  all vertices i with nontriv ( i) = 
"t rue" ,  labels J[i] and t[ i] satisfy 

ul [i]= c[J[i], i ] +  ~ aj[J[i], i]U~ [i3-1, (12) 
.j~J[i] 

t [ j ] < ~ t [ i ] - I  f o r a l l j < J [ i ] .  (13) 

Proof.  For each i with nontriv(i) = " t rue" ,  labels J[i] are defined, and (12) follows 

f rom (9). For  (13) assume there is an i and a j ' c  J[i] with t [ j ' ] >  t [ i ] -  1. It follows 

f rom (9)-(10) that u~! il ~> u;f j']. Then, since all aj[J[i], i] are positive, 

u l [ i l > c [ J [ i ] , i ] +  Z aj[J[i], i]u~ Ij'] 
j~J[i] 

and ui will change after its last change t[i]. [] 

Lemma 3.4. Consider an m-vertex Leontief  f low problem on Leontief  directed hyper- 
graph G = ( V, H ). 

(i) I f  vertex i is trivial, then nontriv( i) = "false"  at every step t o f  Value Iteration. 

(ii) Assume there exists a basic feasible f low ~ on G with an acyclic support having 
a hyperarc directed into all nontrivial vertices i. I f  either Value Iteration converges 
after j ~ m + 1 iterations leaving nontriv( i) = "false",  or nontriv( i) remains "fa lse"  

after m + 1 iterations, then vertex i is a trivial vertex. 

Proof.  First prove (i) by contraposit ive and show nontriv( i) =" t rue"  for some t 

implies vertex i is nontrivial. I f  nontriv(i) = " t rue"  there is a first iteration s(i)  such 

that  nontriv(i) = "t rue" .  Proceed by induct ion on s(i).  I f  s(i)  = 1 then there exists 

hyperarc  [0, i] and i cannot  he trivial. 

Induct ive step. Assume that all vertices j with s ( j )  <~ cr are nontrivial. I f  t = s(i)  = 
or+ 1 then by (10) there is a hyperarc  [ J [ i ] ,  i] directed into i such that all j c J[i] 
had nontriv(j)  marked " t rue"  at an earlier iteration. By the induct ion hypothesis ,  
all such j ~ J[i] are nontrivial. Then by Lemma 2.8 vertex i is nontrivial. 

Now prove part  (ii) by contraposit ive and assume vertex i is nontrivial and show 

for  some iteration t <~ m of  Value Iteration that nontr iv( i )= "true".  By hypothesis  

there is a basic feasible flow ~ with an acyclic suppor t  and at least one hypera rc  

directed into every nontrivial vertex. Thus,  every nontrivial vertex can be assigned 
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a level /. By using an inductive argument identical to the one used in Lemma 3.2 it 

follows that if nontrivial vertex has level I then nlntriv(i) = "true".  The result follows 
from the fact that for an m-vertex Leontief flow problem 1<~ m. [] 

Lemma 3.5. Consider an m-vertex Leontief  f low problem on Leontief  directed hyper- 

graph C, ~- ( V, H )  with b~ >~ O for  all i, and b~ =O for  all trivial i. I f  Value Iteration is 
finite and nontriv ( i) = "true " for  all vertices i with b~ > O, then Primal Retrieval computes 
a f low f~ that is feasible for b, complementary with the u' obtained when Value Iteration 
stopped, and having a support which is a hyperforest, each component o f  which is a 
hyperarboresence. 

Proof. Since the cardinality of  V strictly decreases at each Step 2 in Primal Retrieval, 
the algorithm is finite; Step 2 can be executed at most m times. We next show the 
Primal Retrieval algorithm is well defined given the hypotheses. By part (ii) of  

Lemma 3.4, nontr iv( i )= "true" for all nontrivial vertices i, which, by (10), implies 
ui~i] < ulti] 1. Again by (10), this guarantees the existence o fa  J[i] for each nontrivial 
i. Furthermore, when Value Iteration Step 2 assigns J[i], it does so on the basis of  
a computation with nontriv(i) = "t rue"  for every j c J[i]. Then by part (i) of  Lemma 

3.4 every vertex in J[i] is nontrivial. Hence only nontrivial vertices are assigned 
flow in Primal Step 2. For the selected t [ i ] , j c J [ i ]  implies t [ j ] < t [ i ] =  
m a x { t [ k ] l k  c V}. Then all j ~ J[i] are selected at a future execution of Primal Step 
2 and conservation of flow at these vertices is maintained. Thus, when Primal 

Retrieval stops, £ is feasible for /~. Nonnegativity of/~ implies nonnegativity of  ~. 
To see that complementary slackness is maintained, note label J[i] is last changed 

at vertex i at iteration t[i] when ui is last changed. Then by (9)-(10) constraint (6) 

for hyperarc (J[ i ] ,  i) is satisfied as an equality. Since Primal Retrieval assigns flow 
only to such hyperarcs it follows that £ is complementary with the u'. Note that 
Primal Retrieval never constructs a solution with positive flow on sink hyperarcs 
(J, 0) so the solution is always complementary to (7). 

Finally, by construction at most one inbound hyperarc at any vertex is assigned 
positive flow. Again, because the selected i do not repeat, it follows that the support  

hypergraph does not contain any directed cycles, i.e. it is a hyperforest. Since there 
is at most arc directed into each vertex, each component  of  the hyperforest is a 
hyperarboresence. [] 

We have stated Lemmas 3.2-3.4 to encompass all Leontief flow problems having 
a basic flow with acyclic support  with a hyperarc directed into nontrivial vertex. 
Indeed, only Lemma 3.5 requires Leontief substitution assumption b ~> 0 in order 

that Primal Retrieval give a nonnegative solution. We are now ready to apply these 
results to see that Value Iteration and Primal Retrieval resolve every possible b i> 0, 

gainfree input in strongly polynomial  time. 
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Theorem 3.6. I f  Value Iteration is applied to a gainfree Leontief  substitution f low 
problem with m vertices then: 

(i) The Leontief  f low problem has an optimal solution if  and only if  Value Iteration 
terminates after j < m + 1 iterations with u j satisfying (6)-(7),  and nontriv( i ) = " t rue"  

whenever b~ > O. 

(ii) The Leontief  f low problem is infeasible i f  and only i f  after m + 1 iterations 
nontriv( i) = "fa lse"  for  some i with b~ > O, or the Value Iteration algorithm terminates 
after j <~ m + 1 iterations with nontriv( i) = "false"  for  some i with b~ > O. 

(iii) The Leontief  f low problem is unbounded i f  and only i f  u~'+l # u~" for  some l 
and nontriv( i) = " t r u e ' f o r  all i with bi > 0; or, Value Iteration terminates afterj <~ m + 1 

iterations with c[J, 0] + ~tcJ at[J, i]ui < 0 for  some (J, O) c H and nontriv(i) = " t rue"  

for  all i with b~ > O. 

Proof.  (i) Assume for some j ~< m + 1, u j = u j ~, nontriv(i) = " t rue"  if bi > 0, and u j 
satisfies (6)-(7).  Since nontr iv( i )= " t rue"  whenever  bi > 0, it follows f rom part  (i) 

o f  Lemma 3.4 that vertex i is nontrivial. Then by Lemma 3.5 there exists a primal 

feasible flow £ complementa ry  to u j. Since (6) and (7) are satisfied by u j, we have 

dual feasibility which implies • is primal optimal. 

Now assume the Leontief  flow problem for a given 6 ~  > 0 has an optimal solution 

and thus an optimal basic solution ~. Then there exists a cor responding  opt imal  

dual solution t~ with componen ts  less than M. Using the notat ion developed for 
Lemma 2.3, let g~ be the optimal set of  dual variables for the non-trivial constraints,  

i.e. the constraints in the system A~x 1= -b 1. Since AI is Leont ief  every matrix B~ 

conta ined in At corresponding to a basic feasible solution is also Leontief. The 

inverse o f  a square Leontief  matrix is nonnegative.  Then (B~)-1 b 1 ~> 0 for all nonnega-  

tive b ~ and without  loss we a s s u m e / ~ >  0. By hypothesis  the Leont ief  flow problem 

is gainfree so by Theorem 2.5, the support  corresponding to (B~) 16~ with 61 positive 

is acyclic and complementary  to ~1 The support  is also complementa ry  to the full 
since there is no flow into trivial vertices. Since 6~> 0 there is a hyperarc  in the 

support  directed into every nontrivial vertex. Then by Lemma 3.2 after at most  

k <~ m + 1 iterations of  Value Iteration, u~ = ~i when i is nontrivial. I f  i is trivial, 

the ul calculated by Value Iteration are exactly the same as if an artificial hyperarc  

(0, i) with cost M had been added  to the problem. Since there is an optimal solution 

to this problem,  applying Simplex to this problem with the artificial arcs will yield 

a basic feasible solution having acyclic suppor t  (which will now include the artificial 
arcs on the trivial vertices) and an optimal complementa ry  ~. Since these artificial 

hyperarcs  have no effect on the dual variables calculated by Value Iteration, using 

Lemma 3.2 again implies that Value Iteration will terminate after at most  k ~< m + 1 

iterations with u~ = ~ .  

(ii) I f  the Leont ief  flow problem is infeasible then b~ > 0 for some trivial vertex 

i. I f  i is a trivial vertex, then by part  (i) o f  Lemma 3.4 nontriv(i) = "false"  for  every 

iteration t. N o w  assume that b i > 0  for some i and that after m + l  iterations 
nontriv(i) = " f a l s e " ,  or the Value Iteration algori thm terminates after j~< m + l  
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iterations with nontr iv ( i )= "false".  Since the hypergraph is gainfree there exists a 
basic feasible solution with acyclic support  for all bk > 0, k nontrivial. Then it follows 
from part (ii) of  Lemma 3.4 that vertex i is trivial. The problem must be infeasible. 

(iii) If  a Leontief flow problem is unbounded then Value Iteration either termin- 
ates within m + 1 iterations, or it does not. If  Value Iteration does not terminate 
after m + l  iterations, then u~'+l~ u~ n for some 1, yet nontriv( i) = " t r u e "  for all i 

with b i > 0  or the problem would be infeasible by part (ii). If  Value Iteration 
terminates after j ~< m + 1 iterations then by part (ii) of  Lemma 3.4 if nontriv(i)  = 

"false",  vertex i is trivial. If  b i>  0 the problem would be infeasible, thus b ~ - 0  
because the problem is unbounded.  Since Value Iteration has terminated the u j 
satisfy (6). Then by part (i), since the problem is unbounded,  u j cannot satisfy (7). 

Conversely, if U~ n+l ¢ U~ n for some 1 and nontriv(i)  = "t rue"  for all i with bi > 0; 

or, the Value Iteration algorithm terminates after j ~< m + 1 iterations with c[J, 0] + 
~1~J al[J, i ]u~<0 for some (J, 0 ) c H  and n o n t r i v ( l ) = " t r u e "  for all l with b l > 0  
then by (i) and (ii) the problem cannot be infeasible and cannot have an optimal 
solution. Therefore the problem is unbounded.  [] 

Corollary 3.7. I f  a gainfree Leont ie f  substitution f low problem on m vertices has an 

optimal solution, the Value Iteration Algori thm converges to an optimal dual solution 

on O(mp)  time, and Primal Retrieval constructs an optimal primal solution in O(p )  

time. 

Proof. By Theorem 3.6, part (i) the Value Iteration algorithm converges to an 
optimal dual solution in m + 1 or fewer iterations. The work of Step 2 given by 
(8)-(10) requires at most O(p)  computations. 

For the Primal, maintain linked lists of all i c V with t[i] = k, k ~ { 1 , . . . ,  m}. These 

lists can be constructed in O(m)~< O(p)  time and at each Step 2 execution we flag 
the nonempty list with the largest t[i]. Then the m executions of  Step 2 do a total 
of O(m) <~ O(p)  extractions and £ settings, plus ~ updates. Initialization for vertices 
is O(m) and for edges O(n)~<O(p) .  Total effort is O(p) .  [] 

Theorem 3.6 can also be used to give a strongly polynomial  algorithm for testing 
if a Leontief directed hypergraph is gainfree. To test gainfreeness of  a given 

G - - ( V ,  H) ,  construct an associated ordinary directed graph G ' =  (V, H ' )  on the 
same vertex set. Arc set H '  contains an arc (j, i) for each j 6 J of each hyperarc 
(J, i) ~ H that has both tail(s) and a head. The cost on such (j, i) is log(aj[J  , i]), 
and all net demands bi = 0. 

By construction, G' is gainfree, since all tail weights are 1, and the associated 
Leontief substitution flow problem is feasible because b = 0. Thus Theorem 3.6 
applies, and Value Iteration will settle in strongly polynomial  time whether the 
problem for G '  is optimal or unbounded.  Well known theory for ordinary network 

flows establishes that the problem can be unbounded if and only if there is a directed 
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cycle of negative total length. Thus the problem is unbounded if and only if some 
directed cycle in the original G has, in the notation of (3), 0 >  ~_~ log(a~,[J, v H ] )  = 
log(~I~.~ a~[J, v~+~]), which implies gain is >1. 

We have included a full treatment of Value Iteration polynomiality in this section 
to make our directed hypergraph development of Leontief substitution flow problems 
complete. However, much of the work of this section appears elsewhere in other 
forms. Erickson (1978, 1988) proved essentially the same result as Lemma 3.2 for 
the case where A is Leontief. Ullman and Van Gelder (1988) also gave for a finite 
proof  of Value Iteration (their Algorithm 3) when the A matrix is integral, and 
hence gainfree. Readers may also wish to consult the paper by Adler and Cosares 
(1989) where a strongly polynomial algorithm is given for any Leontief substitution 
problem with at most two nonzero elements in each column. Finally, Charnes and 
Raike (1966) give a strongly polynomial algorithm for the generalized network 
problem with nonnegative b. Their algorithm requires either an acyclic graph, or 
nonnegative costs and tail weights ~>1; hence the problem is gainfree. 

4. Integral and binary solutions 

Much of the recent interest in Leontief flow problems has resulted from the fact 
that the Value Iteration and Primal Retrieval algorithms often yield integral, and 
even binary integral solutions. 

Jeroslow and Wang (1989) show, in a logic context, that (in the present ter- 
minology) for Leontief substitution flow problems over integral A and b, basic 
feasible solutions correspond to acyclic support hypergraphs. It follows immediately 
that optimal solutions are integral (see, e.g. Martin, Rardin and Campbell, 1990). 
Noting that a Leontief flow problem with an integral coefficient matrix is gainfree 
under definition (3), we extend these results as consequences of theorems in the 
previous two sections. 

Given integral A and rational b the linear program min{cxlAx = b, x >1 0} is totally 
dual integral (TDI) if the dual problem has an integral optimal solution for every 
integral vector c for which it has an optimal solution. See Edmonds and Giles (1977) 
or Giles and Pulleyblank (1979). Total dual integrality is weaker than the more 
familiar total unimodularity, but is still sufficient to guarantee integral primal optima 
when b is an integral vector. 

Theorem 4.1. Every Leontief substitution flow problem with an integral coefficient 
matrix A and rational right hand side b is TDI. 

Proof. If A is integral then by (3) the Leontief flow problem is gainfree. Then by 
Theorem 3.6 Value Iteration will compute an optimal dual solution in m iterations. 
If A is integral then the aj[J, k] of update (8)-(9) are integral, so given integral 
costs c[J, k] the algorithm only assigns integers to uti. Thus, for any integral c 
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yielding a finite optimum, the optimal dual solution constructed by Value Iteration 

is integral. [] 

The following theorem is an immediate consequence of Theorem 4.1. 

Theorem 4.2. I f  a Leontief substitution flow problem with integral A, b has an optimal 

solution, then it has an integral optimal solution. [] 

Theorem 4.2 for A Leontief is also easily derived from our Corollary 2.7 and 
Theorem 7, of  Veinott (1968). Veinott shows that the condition B ~ integral for all 
Leontief basis matrices is equivalent to the condition that for all feasible, nonnegative 
integral b, all the extreme points of the feasible region are integral. Our Corollary 

2.7 implies basis inverses have the needed property. 

Theorem 4.3. Every feasible basis submatrix B of  a Leontief substitution flow problem 
with integral, Leontief A has an integral inverse B -1 that can be permuted into a lower 

triangular matrix. 

Proof. If  A is integer and Leontief, the corresponding Leontief directed hypergraph 

is gainfree, and Corollary 2.7 applies. The proof  of  that corollary shows that every 
feasible basis submatrix B can be permuted until B is lower triangular with + l ' s  
on the diagonal. Inversion by say Gaussian elimination easily establishes that the 
corresponding basis inverse is integral and lower triangular. 

Although integrality results are important in applications such as Horn clause 

knowledge bases (see Section 5.2), binary integrality results are required for applica- 
tions involving polyhedral combinatorics and mixed 0/1 linear programming. Figure 
2 illustrates that Leontief substitution flow problems need not possess this binary 

integrality property. In fact, given integral data, any basic solution with flow on a 
hyperarc which has at least one tail weight > 1 will not be binary since the support  
of  the basic solution is a hyperforest and each component  is a hyperarboresence. 
Similarly, a bi > 1 gives basic solutions which are not binary. Even when b is binary, 
and all coefficient in A are 0, ± 1, basic solutions are not necessarily binary. This is 

illustrated in Figure 2, where the unique feasible flow is x~ 2 = Xc3 = X¢. 4 = 1 ,  X•l  = 2. 

In Figure 2 the problem is caused by the presence of the paracycle. In this section 
we show that for binary b, and A a matrix with 0, ±1 elements, the absence of 
paracycles in supports corresponding to basic feasible solutions gives a sufficient 
and necessary condition for binary integrality. Before proceeding, we note that there 
is no loss of  generality in assuming Leontief flow problems with binary b have unit 
vector right hand sides. I f  the given problem has a binary b which is not a unit 

vector, we may construct an equivalent Leontief flow model by adding a new vertex 
v and an additional hyperarc (J, v) with J = {ilbi = 1}. The demand vector for the 
revised problem has bi = 1 for vertex i = v only. (Note, however, that this reformula- 
tion can create new paracycles.) We can also establish that subhyperarboresences 
in a support hypergraph will persist if b ~> 0 are restricted to unit vectors. 
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Lemma 4.4. Let F be the support hypergraph of  a basic feasible solution to Leontief 

flow problem on gainfree Leontief directed hypergraph G = ( V, H)  with right hand side 

b >~ O, and vertex k demand bk > O. Then the subhyperarborescence induced by all 

vertices of  V on directed paths leading to k in F is the support hypergraph of  a basic 

feasible solution to the Leontief f low problem on the same G with unit vector right hand 
side e k. 

Proof. The basic feasible solution of which F is the support  must be the unique 
optimal solution for some costs {c[J, i]}. Since G is gainfree and b ~> 0, we know 
by Theorem 3.6 that Value Iteration over such costs will terminate finitely, and by 
Lemma 3.5 that Primal Retrieval will assign optimal flows positive on F. Furthermore,  
since Value Iteration does not depend on b, Primal Retrieval will construct the 
unique optimal solution for any nonnegative right hand side that is 0 on trivial 
vertices. Noting there is a feasible solution with bk > 0, vertex k is nontrivial, and 
Primal Retrieval will construct the support  for unit vector right hand side e k using 

exactly the same labels t[i] and J[i] it employed to generate flows for b. 
Under Theorem 2.6, F is a hyperforest where each component  is a hyperar- 

boresence, so that the component  induced by vertices with a path to k must consist 
of  exactly those (J[ i ] ,  i) encountered as Primal Retrieval proceeds backward from 
k. With the right hand side at k positive in both the b and the e k cases, flows on 
all such hyperarcs will be positive in both solutions. Thus the support for e k will 
be exactly the induced subgraph in F. [] 

Define sets 

Ik[ l]~f{s  Ithere is a source hyperarc (0, s) directed into s, and 
there is a directed path of nondegenerate hyperarcs 
from s to l which does not contain vertex k}. (14) 

A Leontief directed hypergraph is disjointly reachable if  

Ik[jl] c~ Ik[j2] = 0 for every nondegenerate (J, k) ~ H, 

j , , j 2 c J ,  j ,  ¢J2. (15) 
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That is, a Leontief directed hypergraph is disjointly reachable if for every hyperarc 
(J, k) and source vertex v0, the existence of a directed path of nondegenerate 
hyperarcs from vo to j~ c J, which does not contain vertex k, implies every directed 
path ofnondegenera te  hyperarcs from vo to j :  c J must contain vertex k. The Leontief 
directed hypergraph G = ( V, H )  is support disjointly reachable if for all b >/0, the 

support  hypergraph of every basic feasible solution to the corresponding Leontief 
substitution flow problem is disjointly reachable. See Figure 3. 

12[i] 

14[I] 

li[2] 
I412] 

= I3[i] = {I} 
= Is[l] = {1,2} all Ik[5 ] = D 

II~[[33]] = I~}} , ~  
~-~1 ~ ~ I413] = I513] : {1,2} , ,'~.r.J" 

= 13121 = {2} all Ik[4] = 0 

= 1512] = {1,2} 
nondegenerate hyperarc 

. . . . . . . .  degenerate hyperarc 

Fig. 3. Example of a disjointly reachable hypergraph. 

Theorem 4.5. The following are equivalent for Leontief flow problems on Leontief 

directed hypergraph G = (V, H)  with constraint matrix A consisting of  O, ±1: 
(i) The inverse o f  every basis submatrix feasible ,for some b >10 is binary in all 

columns i for  which bi > O. 

(ii) Extreme flows are binary for every unit vector right hand side b = e ~ for which 

there is a feasible flow. 

(iii) No support hypergraph corresponding to a basic feasible solution for some b >10 
contains a paracycle. 

(iv) G is support disjointly reachable. 

Proof. ( i ) ~ ( i i )  Let B be any basis matrix such that B lei~>0. By hypothesis B -1 
is binary in column i. Thus, the extreme point solution B-~e ~, which equals column 
i of  B ~, is also binary. 

( i i )~ ( i i i )  Prove the contrapositive. Assume that a given Leontief directed hyper- 
graph with coefficients of  0, ± 1 in the constraint matrix has a paracycle P contained 
in the support  hypergraph /3 corresponding to a basic feasible solution for b m 0. 
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Let the paths defining the paracycle begin at vertex r, and merge in hyperarc (J, k). 

Now observe that the unique hyperarc (J, k), directed into k has a positive flow, 

so that Lemma 4.4 assures the paracycle will persist in the support for unit vector 

right hand side e k. In this new support, x[J, k] = 1. But then the two hyperarcs 
preceding (J, k) in the paths defining P must also have a flow of one unit since /5 

which contains P is a hyperarboresence. Continuing in this way, we conclude that 

at least 2 units of flow must leave the root vertex r of P. It follows that the unique 
hyperarc of t5 directed into r has flow ~>2 and hence the extreme flow is not binary 

for right hand side e k. 

( i i i )~( iv)  Again, prove the contrapositive. If G is not support disjointly reach- 

able, then there exists a b >~ 0 for which the support hypergraph of the corresponding 

Leontief flow problem contains a hyperarc (J, k), distinct tail vertices jl ,j2 c J, and 

directed paths PI and Pa leading from some source vertex s toj~ andja,  respectively, 

without passing through vertex k and using ly nondegenerate hyperarcs (since all 
hyperarcs in the support are nondegenerate). Paths P~ and /)2 have at least one 

common vertex s. Let r be the last vertex they have in common before they reach 

their respective tails j~ and J2. Portions of P~ and P2 beginning with r, together with 

hyperarc (J, k), form a paracycle in the support. 

(iv) ~ (i) Again prove the contrapositive. Assume there is a basis matrix B such 

that B-Jb>~O but B -1 is not binary in column i even though bi>0.  W.l.o.g. the 

nonbinary element is in column i=  m. Then B-~e " corresponds to a nonnegative 
solution where there is a hyperarc (J, k) with integral flow greater than one. Since 

the hypergraph is gainfree, by Theorem 2.6 the support is a hyperforest where each 

component is a hyperarboresence. With b = e" it follows that the support is actually 

a single hyperarboresence directed into vertex m. Then we may assume that the 

vertices in the support are ordered such that the head vertex always has a higher 

number than the tail vertices. Take k to be the highest numbered vertex such that 

(J, k) is not one. Note that k < m because the unique hyperarc into m must have 
a flow of 1 to balance b = e ~. Outbound hyperarcs at k must have unit flows because 

they lead to higher numbered vertices. Thus, since tail weights are restricted to 1, 

it follows that there are at least two distinct hyperarcs directed out of vertex k in 

the support, and so two distinct paths of nondegenerate hyperarcs leading from 

vertex k to vertex m. Since the support is a hyperarboresence, the two paths must 

merge at vertex 1 <~ m, in a hyperarc ( T, 1) with one of distinct tails h,  t2 c T belonging 

to each path. Finally note that the support must contain a path from a source vertex 
s to vertex k in order for the flow on (J, k) to be positive. This path cannot use 

vertex l since the support is a hyperarboresence. Therefore I~[q] c~ I~[ t j  contains 

s, and the hypergraph is not support disjointly reachable. [] 

Corollary 4.6. I f  the Leont ie f  directed hypergraph G = ( V, H )  with constraint matrix 

A consisting o f  0, ± l  is either free ofparacycles or disjointly reachable, then extreme 
f lows are binary for  every unit vector b = ei ]br which there is a feasible flow. 
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Proof.  A h y p e r g r a p h  with no pa racyc les  can have none  in a suppor t .  Also,  i f  a 

Leont ie f  d i r ec ted  hype rg raph  with A consis t ing o f  0, ± 1 is d is jo in t ly  reachab le ,  it 

is suppor t  d i s jo in t ly  reachable .  Thus the corol la ry  fol lows by (iii) and  (iv) o f  Theo rem 

4.5 respect ively.  []  

Coro l l a ry  4.7. I f  the Leont ie f  directed hypergraph G = ( V, H )  with Leont ie f  constraint 

matrix A consisting o f  O, ±1 is either free  o f  paracycles or di~jointly reachable, then 
every basis submatrix feasible for  some b >~ 0 has an inverse that can be permuted into 
a lower triangular, binary matrix. 

Proof.  When  A is Leon t i e f  and  consists  o f  0, ± 1, Theorem 4.3 shows the inverse  o f  

any  feas ible  basis  is integral  and  pe rmu tab l e  to lower  t r i angu la r  form. As with 

Coro l l a ry  4.6, i f  G is free of  pa racyc les  or  d i s jo in t ly  reachable ,  e i ther  (iii) or  (iv) 

o f  Theorem 4.5 also holds .  No t ing  that  A Leon t i e f  means  every row is nontr iv ia l ,  

and  so any bi can be taken as posi t ive  in a bas ic  feas ible  so lu t ion ,  part  (i) o f  Theo rem 

4.5 than  proves  the inverse is all b inary .  []  

Coro l la r i es  4.6 and 4.7 imply  be ing  d is jo in t ly  r eachab le  is sufficient for  a 0, ±1 

Leon t i e f  subs t i tu t ion  flow p rob l em over a Leon t i e f  mat r ix  A to have b ina ry  feas ible  

basis  inverses  and  b ina ry  vertices for  every unit  vector  right h a n d  side. We summar ize  

this and  o ther  results  in Table  1. 

Table 1 

Summary of properties for Leontief flow problems on G = (V, H) with incidence matrix A Leontief 

Sufficient Value Basis Basis Extreme 
condition iteration matrices inverses solutions 

Leontief substitution asymptotically Leontief nonnegative - -  
(b ~> 0) convergent in 

many cases (see 
Koehler 
et al., 1975) 

Leontief substitution strongly Leontief and nonnegative acyclic support 
(b/> 0) and gainfree polynomial triangular and triangular 

Leontief substitution strongly Leontief, nonnegative, acyclic support 
(b/> 0) and A integer polynomial triangular and triangular and and integer for 
(thus gainfree) integer integer integer b 

Leontief substitution strongly Leontief, triangular and acyclic support 
(b ~> 0), A is 0, ± 1 (thus polynomial triangular and binary and binary for 
gainfree and integer), G 0, ±1 unit vector b 
disjointly reachable or 
free of paracycles 
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Although disjoint teachability (as opposed to support  disjoint teachability) is not 
necessary for binary results, this sufficient condition is significant because the 
property of  being disjointly reachable can be tested in strongly polynomial time on 
gainfree hypergraphs. First, degenerate hyperarcs (J, i) are identified and deleted 

using the algorithms of Section 3. From the G that remains, construct an ordinary 
graph G '  on the same vertex set, with one arc (j, i) for each j c J of each (J, i) in 
G. Standard reachability algorithms applied to variants of G '  with each vertex k 
deleted in turn can now yield the sets Ik[1] of (14). Definition (15) is then easily 
verified. We do not know whether there is a polynomial  algorithms for testing 
support  disjoint reachability. 

Earlier work by Martin, Rardin and Campbell  (1990) established that a sufficient 

condition for the binary property (ii) of  Theorem 4.5 in acyclic Leontief directed 
hypergraphs is that there exist finite sets {R[i]li ~ V} satisfying 

R[j]~R[k]  fora l l  (J,k)~H, j~J,  (16) 
and 

R[j,] c~ R[j2] = ~ for all (J, k) c H, j~ ¢j2 c J. (17) 

Certainly (16) implies R[s] c R[k] for each source vertex s with a path to k. Thus 

(17) requires that the index sets of  source vertices with paths to distinct tails of  
hyperarcs (J, k) should not intersect. In the acyclic case this is exactly disjoint 
reachability in G. 

5. Applications 

Given their very special structure, it is surprising that gainfree, disjointly reachable, 

Leontief substitution flow problems arise in so many different settings. In the 
subsections below we briefly review some of those application areas, show how 
previous results relate to hypergraph results in Sections 2-4, establish some new 
results, and highlight open issues. 

5.1. Generalized network flows 

The most famous class of Leontief flow problems are the network flow problem and 
the generalized network flow problem, which have at most one negative entry per 
column of constraint matrix A as well as at most one +1. Ordinary network flows 

are the case with the negative entries - 1 ;  generalized flows allow arbitrary tail 
weights. Thus, in graph terms, a network flow is a Leontief flow problem on an 
ordinary directed graph, and a generalized flow problem is a Leontief flow on a 
directed generalized graph. 

I f  a Leontief directed hypergraph has a paracycle, it must have a hyperarc with 
at least two tails. Since this cannot occur in either ordinary or generalized network 
flows, these Leontief flow problems are always disjointly reachable. Ordinary flow 
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problems are also gainfree because every directed cycle has a gain = 1. Generalized 
network flows may or may not be gainfree. 

The ordinary and generalized network flow cases of  Leontief substitution flows 
are, of  course, those with b/> 0. To relate them to a more familiar category, recall 
the shortest path problem of finding a directed path from vertex s to vertex t in a 
given graph (or generalized graph) that is shortest in the sense of satisfying a unit 

demand at t. It is well known in the ordinary graph case that if there is no directed 
cycle of  negative total cost, this problem can be resolved by solving a Leontief flow 
problem with a source arc inbound at s and a b - e ' .  Extension to the gainfree 
generalized case leads to a converse characterization of  all b ~> 0 cases on graphs 
or gainfree generalized graphs. 

Lemma 5.1. Every Leontief substitution flow problem on a directed graph or gainfree 

generalized graph that has a finite optimal solution can be solved by a series of  at most 
m shortest path problems, where m is the number of  vertices. 

Proof. Since every ordinary directed graph is gainfree, we need only treat gainfree 
generalized graphs. Consider a Leontief substitution flow problem on a gainfree 
generalized graph. Modify the problem by adding a new vertex s, replacing all 

source arcs (0, k) by arcs (s, k), and creating a new source arc (0, s). One way to 
solve this Leontief flow problem is to solve separate subproblems for each b, > 0. 
Each such problem has a unit demand at vertex t and bi = 0 for i ~  t. If  x '  is the 
resulting optimal flow, x = ~ b,x' solves the full problem. But because the associated 

generalized graphs are gainfree, and the only source vertex is s, the support of  each 
x t will consist of  a shortest path from s to t. Thus, this scheme for the given Leontief 
substitution problem is equivalent to solving up to m shortest path problems and 
summing results. [] 

Cosares and Adler (1987) have recently shown that ordinary network flow prob- 
lems with b/> 0 also have a number  of  elegant properties in the context of  solution 
by the dual Simplex algorithm. Among other things, the dual simplex is polynomial 

using Dantzig's (least b) pivoting rule, and the famous Hirsch conjecture about the 
underlying dual polytope is proved to hold. Cosares and Adler also suggest that 

their results may extend to some generalized network flows. Since the Hirsch 
conjecture is known to hold for arbitrary Leontief substitution flows (Grinold, 1971), 
these results raise the possibility that some form of simplex algorithm is polynomial 
on at least gainfree Leontief substitution flow problems. 

5.2. Expert systems with Horn clause knowledge bases 

A Horn clause in predicate logic is a clause with positive predicates and at most 
one conclusion. Horn clauses are an integral part of  logic programming languages, 
such as Prolog, which are used in many artificial intelligence applications. We show 
how to model as a gainfree Leontief substitution flow, the problem of deciding the 
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truth of a unary predicate bound to a constant in a Horn clause knowledge base 
with only unary predicates. The procedure is motivated with the following example 
taken from Walker, McCord, Sowa and Wilson (1987). 

Washable allergenic things are washed. Nonwashable allergenic things are vacuumed. 

Everything that is gray and juzzy is allergenic. Shirts and dogs are washable. Lamps, 

sofas and cats are nonwashable. Do I vacuum my gray and fuzzy cat Tiger? 

In logic programming terms, this example is described by the following: 

Predicates 

washable(X). 
nonwashable(X). 
shirt(X). 
cat(X). 

allergenic(X), thing(X), washed(X). 
vacuumed(X), gray(X), fuzzy(X). 
dog(X), lamp(X), sofa(X). 

Cla uses: 

washed(X) :- washable(X), 
vacuumed(X) :- nonwashable(X), 
allergenic(X) :- gray(X), 
washable(X) :- short(X). 
washable(X) :- dog(X). 
nonwashable(X) :- lamp(X). 
nonwashable(X) :- sofa(X). 
nonwashable(X) :- cat(X). 

allergenic(X), thing(X). 
allergenic(X), thing(X). 
fuzzy(X), thing(X). 

Facts: 

cat(tiger), gray(tiger), fuzzy(tiger), thing(tiger). 

Constants: 

tiger. 

Goal: 

vacuumed(tiger). 

The following method models this same example as a gainfree Leontief substitu- 
tion flow problem. 

• Define a vertex in the hypergraph for each predicate. 
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• Define a hyperarc for each clause. Do so by directing the head of the hyperarc 
into the vertex which corresponds to the conclusion of the clause. The tails of  the 

hyperarc are connected to the conditions of  the clause. Hyperarcs with multiple 
tails and heads are required in the non-Horn case. 

• Bind the facts to the appropriate predicates. Do so by defining a vertex for 
each fact and create an arc (predicate(constant),  predicate(X)) for each fact-  
predicate pair. This may seem redundant,  however it allows for testing of other 
predicates bound to a constant with little modification of the hypergraph. For 
example, to test washed(tiger) requires changing only the b vector and no changes 
to the A matrix. 

• Create a source vertex Vcons~ant, and hyperarc (9, Voonst,,,) for the constant that 
is bound to the goal predicate. Then add the arcs from the constant vertex to the 
corresponding fact vertices. In this example there is a source vertex Vt~ge,- and 
arcs from vertex vtige, to the fact vertices thing(tiger), cat(tiger), gray(tiger) and 
fuzzy(tiger). 

• The only demand vertex is the goal predicate vertex Vgoa, with a demand of 
one unit. I f  the problem is feasible then the goal predicate is true; if the problem 
is infeasible the goal predicate is false. 

Figure 4 illustrates this process for the example problem. The issue of determining 
which predicates are an implication of the facts in the knowledge base reduces to 
the distinction between Leontief and pre-Leontief matrices made earlier. A predicate 
is provable exactly when its vertex is nontrivial, using the construction given above. 

thing(tiger) thing(X) 
~ ~ b l e ( X )  

~/~ ~ nonwash()< 

Fig. 4. Hypergraph for knowledge base. 
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The Leontief flow problem is gainfree because all the hyperarc multipliers are 
+1. Since the right hand side is the unit vector, by Theorem 4.2 the Leontief flow 
problem for determining which predicates follow from the facts has integral sol- 
utions. See Jeroslow and Wang (1989) for an earlier proof  of this result. However, 
the solutions are not necessarily binary. A positive integer greater than one in a 
solution corresponds to that hyperarc being used more than once in the proof  of  a 
proposition. In Figure 4 the numbers above the hyperarc correspond to the number 
of times the hyperarc is used in the proof  of vacuum(tiger), i.e. its optimal solution 
value. The highlighted hyperarcs indicate the solution. 

If the methods of Section 3 were applied directly to logic tasks like the above 
example, Value Iteration would first perform a forward pass to settle whether the 
goal is provable. (The forward pass algorithm is akin to forward chaining, see for 
example, Dowling and Gallier (1984).) Then, if so, Primal Retrieval is invoked to 
exhibit a proof. This approach has the virtue of precision. Still, for the large 
knowledge bases of expert systems, with their possible exponential numbers of 
bindings (complete assignment of constants to variables), such a scheme is often 
impractical. In the example above each predicate has only one variable. Thus, there 
is a unique assignment of constants (tiger) to variables and a simpler reduction to 
propositional logic. In cases where there is more than one variable per predicate 
(such as in recursion) the assignment of constants becomes a problem. See Chandru 
and Hooker (1988) and Jeroslow (1985) for a discussion of mathematical program- 
ming approaches to first order predicate logic. 

Logic programming languages like Prolog deal heuristically with this difficulty 
by backward chaining, i.e. searching backwards from the goal to look for a proof. 
The idea is analogous to applying Primal Retrieval without first having used Value 
Iteration to fix the labels J[i]. Infinite loops can certainly occur. (For example, in 
some implementations of backward chaining a hypergraph with cycles may result 
in an infinite loop, depending upon the order in which the rules are entered.) In 
fact, the question of whether the search will terminate is undecidable for general 
cases. Still, sufficient conditions based on structural properties of what we have 
viewed as the underlying hypergraph can be obtained. The recent work of Ulman 
and Van Gelder (1988) describes some approaches. 

5.3. Polyhedral characterizations for recursively defined graphs 

Much of the recent interest in Leontief-like models centers on their ability to 
characterize the solution sets of combinatorial problems in terms of the extreme 
solutions of a suitable Leontief substitution flow problem. One family of cases arises 
in the context of operations management. (See Martin, Rardin and Campbell (1990).) 

A much broader  class of examples arises in the context of optimization over 
recursively defined families of graphs. Recent papers by Wimer, Hedetniemi and 
Laskar (1985) and Bern, Lawler and Wong (1985) summarize a large list of recursively 
defined graph forms, and a larger list of optimization problems, each combination 
of which is polynomially solvable by a variety of discrete dynamic programming. 
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Graphs G(V, E)  belonging to one of these classes are viewed as having a fixed 
number  K ~r ]K] distinguished vertices K c V called terminals. Each family o~ begins 

from a set ~-0 c o~ of primit ive starting graphs. Other members are obtained by 
repeated application of a finite list of  composit ion operations defined in terms of 
the terminals. Composit ions combine two members G i =  ( V  i, E i ) ,  G j =  ( W ,  E j)  of 
o~ into a new member,  G k of ~ by V k ~- V ~ u V j, E k ~- E ~ u E .j, and then constructing 
terminal set K k by 

(i) identifying some of the terminal vertices (by identify, we mean treat as the 
same vertex) in K ~ c V ~ with those of K j c V j, 

(ii) adding new edges or deleting edges between terminals in K ~ and ones in K i, 

(iii) adding new edges or deleting edges between two terminals in K ~, or two 
terminals in K j, and 

(iv) selecting K terminals K k from K ~ u  K j. 
One famous class of  recursively defined graphs are series-parallel  graphs with 

K = 2 terminals. Primitives for this family of  graphs are single edges (with their two 
ends defining terminals). Series composition combines two series-parallel graphs 
by identifying a terminal of one with a terminal of  the other; the nonidentified 
terminals define the terminal vertices of  the result. Parallel composition identifies 
both terminals of  the two graphs, the combined terminals being the terminals of  

the result. See Figure 5. 
Optimization algorithms on K-terminal graphs such as series-parallel graphs are 

organized around states of partial solution of subgraphs encountered in composing 

G9 

,.,o., parallel 
/ / , . "  composition 

G 8 0  
/ parallel \ /" / ,, / composition \ G3 / series , c°m °s't'°4V. 

O : terminal vertex G7 % / /  c°Pmp°a~31°n G2 

G1 
Fig. 5. Recursive composition of a series-parallel graph. 
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the one of interest. In some cases states reflect portions of  an optimal solution 
contained in the subgraph; in others they account for forbidden substructures. 
Algorithms proceed in "bot tom up" fashion, first solving all states of  primitives, 
then recursively finding the best way to reach all states of  each intermediate subgraph. 

An easy series-parallel example is the problem of finding the minimum weight 
cycle. For each subgraph in the composition there are two states. A subgraph is in 

the cycle state if it contains the minimum cost cycle. A subgraph is in the pa th  s tate  

if it contains a partial cycle in the form of a path connecting the terminal vertices. 
A subgraph in the cycle state and a subgraph in the path state cannot be combined 
in either a parallel or series composition. A composit ion of two subgraphs, which 
are both in the cycle state, is not allowed. Two subgraphs in the path state joined 

by a series operation yield a subgraph in the path state. Two subgraphs in the path 
state joined by a parallel operation yield a subgraph in the cycle state. 

Figure 6 depicts the optimization through cycle and path states for the graph 
composed in Figure 5. For example, in the parallel composit ion of G 9, the cycle 
state can be reached by inheriting a cycle from either of  the subgraphs G 5 and G 8, 

or by combining the path states of  the two subgraphs. In the series composit ion of 
G 5, path states of G 3 and G 4 combine to produce a path in the composition. 

demand = 1 

Fig. 6. State composition hypergraph for minimum cycle on the graph of Figure 5. 
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If  Z_~ l~ n and CONV(Z)  is a polyhedron, then: 

A x  + D z  = b, x >~ O, 

is an extended polyhedral representation of C O N V ( Z )  if 

C O N V ( Z )  = {z Ithere exists x/> 0 such that A x  + Dz  = b}. 

Such formulations are valuable because use of  the auxiliary' variables x often 
makes it possible to obtain a compact (polynomial in n) characterization of 
CONV(Z)  sufficiently small to be inserted in sharpening the linear programming 
relaxation of a model with more complex constraints (see Martin, 1987; and Eppen 
and Martin, 1987). 

Martin, Rardin and Campbell  (1990) show that Leontief flow problems over state 
composition graphs like the one in Figure 6 lead directly to extended polyhedral 
characterizations of  optimization problems solvable on recursively defined graphs. 
The demand at every vertex is zero except for a +1 at the goal state of  the final 
graph (the cycle state of G ') in Figure 6). Vertices that correspond to a primitive 
edge in a path state are given source hyperarcs (bold hyperarcs in Figure 6) directed 
into the vertex; with a the flow of  one unit on the source hyperarc indicating that 
the corresponding edge is in the cycle (these source hyperarcs correspond to the 

original z variables). The remaining hyperarcs constitute the auxiliary x variables. 
To provide a correct extended polyhedral representation, the extreme flows of 

such Leontief formulations must be binary in x and z. Fortunately, the models 
satisfy virtually all of the desirable properties highlighted in Sections 2 and 4. The 

demand vector is a unit vector, hence it is a Leontief substitution flow problem. It 
is also gainfree since all coefficients are 0 or ± 1. The recursive nature of the algorithms 
they model also assures the Leontief directed hypergraphs are acyclic (although 

this is not necessary or sufficient for binary integrality). 
The more subtle issue is to establish that the hypergraphs are disjointly reachable 

(i.e. they contain no paracycles), so that Corollary 4.6 applies. To see that this is 
true, we focus on the edge sets in composition rules (i)-(iv) above. The fact that 
edge sets of  composed subgraphs are always disjoint means the subgraphs could 

not have a common ancestor vertex in the Leontief hypergraph. Paracycles are thus 
impossible. 

5.4. Polyhedral representation o f  send and split 

Erickson, Monma  and Veinott (1987) present a very elegant algorithm, the send-and- 

split method, for optimizing minimum concave cost network flows. By using auxiliary 
variables, we show how to model the send and split algorithm as a gainfree Leontief 
substitution flow problem. Then, using the binary integrality results of Section 4 we 
show that the Leontief directed hypergraph formulation is a correct polyhedral 

representation of the associated concave network flow problem and allows it to be 
solved as a linear program. 
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For sake of  simplicity, we assume that the network flow problem under  consider-  

ation is a single source, uncapaci ta ted problem. The method  of  Wagner  (1959) can 

be used to reduce problems with capacities and multiple sources into this format.  

The problem under  considerat ion on digraph (N, E)  with vertex set N and arcs E 

is model  (NF):  

(NF)  min ~ cq[zij] 
( i , j ) c E  

s.t. ~ zj, - Z z!i = { d,, 
( j , l )c  E (/,.j)c E l 0  ' 

z q > 0 ,  a l l ( i , j ) c E .  

D d i ,  for 1= io, 

all I c D, 

all l c T, 

(is) 

(19) 

(20) 

In this formulat ion,  i0 indexes the supply vertex, T indexes pure t ransshipment  

vertices and D indexes the demand  vertices where dj is the nonnegat ive d e m a n d  at 
vertex j, zij is the flow on arc ( i , j ) ,  and %[zij ] is the cost of  sending zq units o f  flow 
over arc ( i , j ) .  The % [ * ]  are assumed to be concave on the nonnegat ive real line 

with c0[0] = 0. We assume that there is a min imum cost flow for some demand  
vector (dj)j~), Then from Erickson et al. (Theorem 1) there is a min imum cost flow 

for  which the induced subgraph is a forest. Therefore,  in an extreme flow ~, for 

every arc ( i , j )  there exists an 1 _c D such that 

~ q = 0  or 5 i i = ~  all. (21) 
I c I  

In words,  the flow on arc ( i , j ) ,  in an extreme flow, is equal to zero, or the sum of  

the demands  for some subset o f  demand  vertices. 

The property given in (21) simplifies solution considerably since a flow choice 

for (NF)  consists o f  two types o f  decisions. Given that we are at vertex i with a 

flow of  ~ / ~  d~, one possibility is to send the entire flow on to an adjacent  vertex j 
at cost cq [~c l  dl]. The other opt ion is to split the flow into proper  subsets ~/c~' dl 

and ~/~/\~, d/, both now located at the same vertex i. 

The send-and-spli t  algori thm resolves these decisions in backwards  fashion start- 

ing f rom singleton demand  sets {k}. Shortest path computa t ion  with costs cq[dk] 
establishes the cost of  sending this flow from each possible split point  to destination 

k. We now know the least cost way of  complet ing some demand  sets given that  they 

are at any part icular  vertex. Proceeding recursively, we can determine similar costs 
of  complet ing a larger demand  set I by picking a min imum cost pattern of  the form: 

send the combined  flow to a vertex over a shortest path with costs cij[~l~ / dr], split 
into I '  and I \ I ' ,  and finish in the optimal manner.  The result is a sequence o f  

shortest path problems with different costs. 

The Leont ief  flow model  of  this computa t ion  parallels the backwards  solution. 

Specifically, it is formed as follows: 

• Create vertex set W = N × P ( D )  for the hypergraph  where P ( D )  is the power  

set o f  the demand  vertices. 
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• Create a split hyperarc for each possible split decision. These hyperarcs have 
head vertex (i, I )  and tail vertices {(i, I'), (i, I\I')}. Each split hyperarc always has 

two tails and the tail weights are always +1. A cost of  zero is given to each split 
hyperarc in the objective function. 

• Create a send hyperarc for each possible send decision. For each (i,j) ~ A and 

I c D the send hyperarc has head (i, I )  and tail (j, I ) .  Note the hyperarc points in 
the reverse direction of the network arc (i,j). Tail weights are +1. The cost assigned 
the send hyperarc in the objective function is cij[Y,t,~l dh]. 

• Create a source hyperarc directed into every vertex (i,{i}) all i6D. These 
hyperarcs are also assigned a zero cost in the objective function. 

• Create a unit demand at vertex (io, D). 

This process is illustrated for the network flow problem in Figure 7. Figure 8 contains 
the corresponding Leontief directed hypergraph. Notice that directions of  arcs in 
Figure 8 are counter to the direction of arcs in Figure 7. 

The values of  the flow variables are recovered from the values of the hyperarc 
variables as follows: 

}~ [ ~ dh] x[(j'l) '(i 'l)]~zi'" 
IcY)  h 1 

Combining with the Leontief flow balance constraints gives the reformulated or 

ver tex ver tex  

source 
ver tex  

Fig. 7. Concave network flow example. 
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Fig. 8. Send-and-split representation of network flow problem in Figure 7. 

extended polyhedral representation (RNF): 

(RNF) min ~ ~ c ! j [ ~  dh]x[( j ,  l) ,  (i, I)], 
I ~ D  ( i , ] ) ~ E  I 1 

s.t. E x[(j, I), (i, I ) ]+  E x[{(i, I'), (i, I \ I ' ) } ,  (i, I)] 
( i , . j )c  E I ' ~  1 

- Z x[(i ,  I) ,  (j, I ) ] -  ~ x [ { ( i ,  I) ,  (i, H \ I ) } ,  (i, H ) ]  
( . j , i )~ E I ~ H 

f 
l, (i, I) = (io, D), 

= -x[(i, (i, 1)], (i, I)  =(i,{i}), 
0, all other (i, I),  

all x[(j, 1), (i, I)],  x[{(i, I'), (i, I /1 ')},  (i, I)] ~> 0, 

,~D(~_ h ,dh )X[ (J ' ' ) ' ( i ' I ) ]=-z i J  f o r a l l ( i , j ) 6 E .  

(22) 

(23) 

(24) 

(25) 
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Lemma 5.2. The hypergraph of  the Leontief flow problem defined by (22)-(24) is 
disjointly reachable. 

Proof. The only hyperarcs with multiple tails are ({(i, I ' ) ,  (i, I \ I ' ) } ,  (i, I)) .  It suffices 
to show that if h c I ' ,  then there is no path from the vertex (h, {h}) to vertex (i, 1\I ' ) .  
This is trivial because, by construction of the hypergraph, there is a path from vertex 
(h, {h}) to vertex (i, I ' )  if and only if h c I ' .  [] 

The binary integrality of  (RNF) and a result similar to Theorem 5.3 was first 
proved in Campbell  (1987). However,  that proof  is specific to the structure of  (RNF). 

We are now in a position to establish it much more easily. 

Theorem 5.3. The formulation given by (23)-(25) is an extended polyhedral representa- 
tion of  the formulation given by (19)-(20). 

Proof. Show ~ is a feasible solution to (NF) if and only if there exists .~ such that 
(,~, g) is a feasible solution to (RNF).  First show (L 2~) feasible in (RNF) implies 
is feasible to (19)-(20). To see this, create an aggregate constraint for each lc  N, 
by summing the all constraints in (23) for i = 1 using multipliers of  --(~h~1 dh). With 
this weighting all split variables cancel in the aggregate constraint leaving 

( j , l ) c E  I G D  h 1 ( l , . j )cE  I G D  l 

I --~h~D dh, 1= i0, 

= d,X[O,(l,{1})], l e D ,  (26) 

[0 ,  1~ 12. 

To see that the right hand sides of  (26) are correct observe that the right hand sides 
of  (23) are all 0 except when l = io, or l~ D. The first of  these produces --~h~D dh 
because of the unit demand at vertex (i0, D). For l c / 9 ,  the right hand side in the 
aggregate constraint is dlX[0, (1, {l})]. By Lemma 5.2, the fact that all nonzero 
coefficients in (23)-(24) are ±1 and Corollary 4.6 ecery extreme point of  the 

polyhedron defined by (23)-(24) is binary with support  defining a hyperarboresence. 
In every support  hyperarboresence (extreme point) every source hyperarc (0, (l, {l})) 
has a flow of one unit. In the hypergraph corresponding to (23)-(24) every directed 
cycle contains only send hyperarcs (which have a single tail), hence no source 

hyperarcs are in any directed cycle and x[0, (l, {l})] = 0 in every extreme direction 
of  recession. By the theorem of Minkowski every feasible (~, ~) to (23)-(24) is a 
convex combination of extreme points and nonnegative combination of extreme 
directions of  recession for the pointed polyhedron defined by (23)-(24). The fact 

that the source hyperarcs are zero in the extreme directions of  recession and the 
fact that the flow on every source hyperarc is one in an extreme point solution 
implies that -~[0, (1, {1})] = 1 in every feasible solution. Therefore, dfi[0, (I, {1})] = dr. 
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Then, using the definition of z!i in (25) and recalling that send hyperflows x are 
reverse to z flows, we see that (26) implies (19). 

Assume ~ is feasible in (19)-(20) and show that there exists (~,)7) feasible in 
(23)-(25). Again use the theorem of Minkowski and show that for every extreme 
point and extreme direction of recession for the polyhedron defined by (19)-(20) 
there is a corresponding point in the polyhedron defined by (23)-(25). It is clear 
that for every combination of send and split decisions producing an extreme point 
solution in (NF) there is a corresponding support  hyperarboresence of an extreme 
point of the polyhedron defined by (23)-(25). Also, every extreme direction of 
recession of the polyhedron defined by (19)-(20) corresponds to a circulation with 
support  which is a directed cycle. For all I___ D, each of these directed cycles also 

exist in the hypergraph (in reverse direction). Hence, there is a set of send decisions 
corresponding to any circulation in (NF). [] 

Although both (NF) and (RNF)  have feasible regions which are polyhedrons 
model (NF) is a concave network optimization problem. Model (RNF)  is a linear 

program. In addition to the concavity of  cij[* ], it is crucial that the x variables in 
(23)-(25) be binary in order for the objective function (22) to correctly model (18). 

Also note that formulation (RNF) is not polynomial in the number  of demand 
vertices because all subsets of D have to be considered. However, Erickson et al. 

(1987) show that when the graph of (NF) can be embedded in the plane with vertices 
of  i0 w D on at most a constant number  of fl faces, many subsets can be disregarded. 
In particular, attention can be restricted to O(/31DI 2) demand subsets, and (RNF)  
becomes a polynomial size extended formulation. 

5.5. Leontief flow model of deterministic Turing machines and implications 

Jones and Laaser (1974) give a model of  a deterministic Turing machine in conjunc- 

tive normal form, CNF,  where each disjunctive clause of  literals contains at most 
one positive literal (i.e., is Horn). (See also Dobkin, Lipton and Reiss (1979), who 
use this result to show linear programming is log-space hard for ~ - - a n d  now, 
given Khachian (1979) is log-space complete.) By slightly modifying the Jones and 

Laaser result, and using the material in Section 5.2 on expert systems, we show how 
to model a deterministic Turing machine as a gainfree Leontief substitution flow 
problem. 

Consider a single tape Turing machine with a finite alphabet  A = {0, 1,/¢}, finite 
states Q and next move function 6 : Q x A ~ Q x A x {-1,  0, 1}. To model a Turing 

machine which accepts language L as a satisfiability problem on a Horn clause 
knowledge base, define the atomic propositions: 

• v(t, c, q, a) is true if, before move t, and after move t - 1 ,  the machine is in 
state q c Q with symbol a c A in tape square c and the tape head is over square c. 

• w(t, c, c~) is true if, before move t, and after move t - 1, tape square c contains 
symbol c~ and the tape head is not over square c. 
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The truth of an atomic proposi t ion  involving tape square c at move t is completely  

de termined by the next  move funct ion,  the state and  the contents of tape squares 

c - 1, c, and c +  1 at move t -  1. See Table 2 for a list of the necessary Horn  clauses. 

We assume, without  loss, that the inpu t  language L tested is a b inary string, the 

length of the inpu t  string z, is n, the input  string begins in square 1, the t ime 

complexi ty is 0 ( n ) ,  q0c Q is the state of the machine  at time zero, qA C Q is the 

accepting state where z c L, the total n u m b e r  of tape squares required (both inpu t  

and  workspace)  is v ( n ) ,  and the tape head is ini t ial ly over square 1. 

Atomic proposi t ions  which do not  use tape squares 1 through v ( n )  are not  inc luded  

in the knowledge base. 

Theorem 5.4. Le t  T be a determinis t ic  Turing mach ine  f o r  deciding i f  a s tr ing z is in 

language  L. Then z is accepted by the Turing mach ine  i f  and  only i f  an a tomic  proposi t ion 

Table 2 

Horn clause knowledge base for deterministic Turing machines 

Rules 

w(t,c,c~):- w ( t - l , c - l , c ~  i), w(t- l ,e ,o~) ,  w ( t - l , c+ l ,a , ,+O 
for all t, c, c~, a ~, o~c+ 1 

w(t,c,c~):- v ( t - l , c - l , q ' , c e ,  i), w ( t - l , c ,  cz), w( t - l ,c+l ,c~:+l)  
for all t,c, cx, c~,+t, (q', c~_1)~6 I(Q×A×{-1,0}) 

w(t,c,c~):- w ( t - l , c - l , c ~ _ O ,  v(t 1, c,q',fl),  w( t - l , c+l ,c~ ,+l)  
for all t,c,c~,cx¢_,,c~.+l, (q',/3)~6-~(Q×{c~}×{-1, 1}) 

w(t,c,c~):- w ( t - l , c - l , c ~ _ l )  , w( t - l ,c ,c~) ,  v(t 1, c+l,q',6~,+ 0 
for all t,c,e~,c~._l, (q',c%+O~6 I(QxA×{0,1}) 

v(t ,c ,q,a):-  v ( t - l , c  1, q',a, ~), w ( t - l , c ,  cO, w ( t - l , c + l , c ~ +  0 
for all t,c,q,c~,c~+l, (q',ct'~ i )~6 l({q}×A×{1}) 

v(t,c,q,c~):- w ( t - l , c - l , c ~ _ l )  , v(t 1, c,q',fl), w(t - l ,c+l ,c~¢+ 0 
forall t, c, q, c~, c~ 1,c~,+1, (q', f l)~ 6-~({q}- {o~} × {O}) 

v(t,c,q,c~):- w(t 1, c 1, c~¢_1) , w(t- l ,c ,c~) ,  v( t - l ,c+l ,q ' ,c~¢+l)  
for all t,c,q,a,c~¢ ~, (q',c~.+l)C6 l({q}zA×{-1}) 

Facts 

v(1, 1, q0, 1 )°z l  : 1 
v(1, 1, qo ,0 ) °z l=0  

w(1, c,l)'~-->z~=l, c = 2 , . . . , n  
w(1, c,O)+~z.-O, c - 2  . . . . .  n 

w(1, c, ~) c - n + 1  . . . . .  ~(n) 
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corresponding to the accepting state can be set true in the Horn clause knowledge base 
given by Table 2. 

Proof. It suffices to show for the Horn  clause knowledge  base of  Table 2 that  (i) 

for each move t exactly one v(t, c, q, ~)  is true, and (ii) that  for each tape square 

c and each move t at most  one of  the a tomic proposi t ions  w(t, c, c~), v(t, c, q, c~) is 

true. These two condit ions require that the tape head  be above a unique tape square 
at every move,  the machine be in a unique state at every move,  and each tape square 

contains a unique symbol at each move. 

Proof  by induction.  For  t = 1 the result is obvious since either v( l ,  1, q0, 1) is true 

and v( l ,  1, qo, 0) false when zl -- 1, or v(1, 1, q0, 1) is false and v(1, 1, qo, 0) true 
when zl = 0. Similarly for the w atomic proposit ions.  

Assume (i) and (ii) are true for moves 1 th rough  t. First show part  (i) for  move  

t + l ,  i.e. distinct v ( t + l ,  c, q, a )  and v ( t + l ,  c', q', a ' )  cannot  both be true. There  
are two subcases to consider:  (i)(a) c ¢ c' or q # q', and (i)(b) c = c', q = q', and 

c~¢ c~'. From Table 2 it follows that if v ( t + l , c , q , c ~ )  is true there must  be a 

cor responding  v a tomic proposi t ion true at move t. 
Similarly for v( t  + 1, c', q', ce'). But c ¢ c' or q # q'  and the fact that a deterministic 

Turing machine  only allows unique next move funct ions implies that at least two 

distinct v a tomic proposi t ions must  be true at move t which contradicts the induct ion 

hypothesis  so (i)(a) cannot  happen.  
Next  consider  (i)(b) with c = c', q = q',  but  c~ # c~'. I f  the tape head is to the left 

or right of  c before move t and only one v a tomic proposi t ion  is true, then f rom 

Table 2 both  w(t, c, c~) and w(t, c, e~') are true which contradicts  (ii) o f  the induct ion  

hypothesis.  I f  the tape head is above square c at the start of  move t then due to 

the uniqueness of  the next move function,  at least one o f  the w atomic proposi t ions  

for square c must  also be true in order  to account  for both c~ and c~' occurr ing in 

true a tomic proposi t ions,  again contradict ing part  (ii) o f  the induct ion hypothesis.  
The p roo f  of  part  (ii) for move t + 1 is similar. []  

The hypergraph  flow problem corresponding to the Horn  clause knowledge base 

of  Table 2 is 

z~x[0, v(1, 1, qo, 1)] - ~  flow out variables = 0, (27) 

(1  - z0x [0 ,  v(1, 1, qo, 0)] - ~  flow out variables = 0, (28) 

z,,x[0, w( l ,  c, 1 ) ] - ~  flow out variables = 0, c -- 2 . . . .  , n, (29) 

( 1 - z , ) x [ 0 ,  w( l , c ,  0)] - ~  flow out variables = 0, c - - 2  . . . .  ,n ,  (30) 

x[0, w(1, c, / ~ ) ] - ~  flow out var iab les=  0, c = n + l , . . . , u ( n ) ,  (31) 

hypergraph  flow constraints for t ~ l, (32) 

F. Y~ E x[J, v( fS(n),  c, qA, a ) ] =  1, (33) 
J e - -1  c ~ . ~  

nonnegativity.  (34) 
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Constraint  (34) is merely a unit demand  requirement  at the goal of  accepting z. 

Because we do not know a priori whether  z,. = 0 or z,. = 1, both source hyperarcs  

are provided in (27)-(30). Constraints  (27)-(31) are the conservat ion of  flow con- 

straints for all a tomic proposi t ions  at time t = 1. 

Theorem 5.5. For every language L ~ ~ and every input 2 ~ {0, 1}" there exists a gainfree 

Leont ie f  substitution f low problem with size polynomial in n which is feasible i f  and 

only i f  Y c L. 

Proof.  If  L c ~', then for any input  z o f  size n there is a deterministic Turing machine 

T, with time and space complexi ty bounded  by a polynomial  to decide the member-  

ship of  z in L. For  any fixed n and Turing machine  T, construct  the corresponding 

Leont ief  flow constraints for the clauses o f  Table 2. If  :~1 - 1 then by (27) source 

hyperarc  (0, v(1, 1, qo, 1)) has no restriction o f  flow and v(1, 1, q0, 1) is a fact, while 
hyperarcs  with tail vertices v(1, 1, qo, 0)) must  have zero flow in order to satisfy 

(28) so v(1, 1, qo, 0) cannot  be used as a fact. Conversely,  when 21 -- 0 source hyperarc  

(0, v(1, 1, qo, 0)) has no restriction o f  flow and v(1, 1, qo, 0) is a fact, while hyperarcs  

with tail vertices v( l ,  1, q0, 1) must  have zero flow and v(1, 1, qo, 1) cannot  be used 

as a fact. Similarly for the hyperarcs  with c = 2 , . . . ,  n. Clearly this Leont ief  flow 

problem is gainfree since all nonzeros  are ±1. It is a Leont ief  substitution flow with 

integral right hand  side since the right hand  side is the unit vector. Since L c ~ both 
q~(n) and ~,(n) are polynomial  functions o f  n. The number  o f  atomic proposi t ions  

in the Horn  clause system is then bounde d  b y t h e  polynomial  & ( n ) x  u(n) x ]Q[ x IAI. 

Since every hyperarc  has at most  three tails the resulting formulat ion (27)-(34) is 

polynomial  in size. By Theorem 5.4 it has a feasible solution, and hence integral 

solution, if and only if ffc L. []  

Theorem 5.5 says, that in a certain sense, gainfree Leont ief  substitution flow 
problems are sufficient to provide an extended characterizat ion of  every language 

L 6 P. In contrast  to Sections 5.3-5.4, however,  we have not described a system of  

linear equations in z and x such that (z, x) is feasible if and only if z c CONV(L) .  

It is not  necessarily true that if (~, ~) is feasible to (27)-(34) then ~c  CONV(L) .  In 

Theorem 5.5 we construct  a specific Leont ief  flow problem for  each input z. To 

have a true extended representation,  the zi must  be treated as variables. But then 
representat ion (27)-(34) is bilinear (linear only if z or x is fixed). Thus, we have 
proved every language L 6  P has an extended bilinear representation, but whether  

each has a l inear one remains an open question. 

6. Conclusion 

The objective o f  this paper  is to unify and extend results for Leont ief  substitution 

systems relevant to discrete and combinator ia l  research by viewing them as flows 
on directed hypergraphs.  Sections 2-4  reinterpret some known results, and develop 



R.G. Jeroslow et aL / GainJ?ee Leontief flows 413 

new integer  and  b ina ry  condi t ions ,  by ident i fy ing  and  explo i t ing  ga inf ree  and  

d i s jo in t ly  r eachab le  s tructures o f  under ly ing  hyperg raphs .  A l though  h y p e r g r a p h s  in 

genera l  tend to be ra ther  abst ract ,  we bel ieve  flows in our  Leon t i e f  d i rec ted  hyper -  

g raphs  will p rove  qui te  intui t ive for  the  many  researchers  fami l ia r  with g raphs  and  

networks .  They  thus make  known  app l i ca t i on  results  eas ier  to unders t and .  Still ,  the 

real  meri t  in the Leon t i e f  flow p a r a d i g m  is d e m o n s t r a t e d  only  by p r o d u c i n g  new 

a p p l i c a t i o n  results .  Sect ion 5.5's ex t ended  b i l inear  charac te r i za t ion  o f  l anguages  in 

is one,  but  we bel ieve there  are m a n y  more  to fol low. Thus we advoca te  the  

search  for Leon t i e f  subs t i tu t ion  flow app l i ca t ions  confo rming  to our  ga inf ree  and  

d is jo in t ly  r eachab le  p roper t ies  as a wor thy  d i rec t ion  for  fu ture  o f  research.  
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