
Mathematical Programming 57 (1992) 375-414 375
North-Holland

Gainfree Leontief substitution flow problems

Robert G. Jeroslow~
College of Management, Georgia Institute ~ff' Technology, Atlanta, GA, USA

Kipp Mart in
Graduate School of Business, University QJ' Chicago, IL, USA, and Center Jbr Operations Research and
Econometrics, Universite Catholique de Louvain, Louvain-la-Neuve, Belgium

Ronald L. Rardin*
School of Industrial Engineering, Purdue University, West LaJayette, IN, USA

J inchang Wang
College of Management, Georgia Institute ~?f Technology, Atlanta, GA, USA

Received 31 May 1989
Revised manuscript received 8 January 1992

D e d i c a t e d to t he m e m o r y o f R o b e r t G. J e r o s l o w

Leontief substitution systems have been studied by economists and operations researchers for many
years. We show how such linear systems are naturally viewed as Leontiefsubstitution flow problems on
directed hypergraphs, and that important solution properties follow from structural characteristics of
the hypergraphs. We give a strongly polynomial, non-simplex algorithm for Leontief substitution flow
problems that satisfy a gainfree property leading to acyclic extreme solutions, lntegrality conditions
follow easily from this algorithm. Another structural property, support disjoint reachability, leads to
necessary and sufficient conditions for extreme solutions to be binary. In a survey of applications, we
show how the Leontief flow paradigm links polyhedral combinatorics, expert systems, mixed integer
model formulation, and some problems in graph optimization.

Key words: Leontief matrices, linear programming, integer programming, network flows, polyhedral
combinatorics, expert systems.

Introduction

Following Veinott (1968) we use the following definitions. The matrix A is pre-
Leontief if each column contains at most one positive entry. The matrix A is Leontief
if each column has exactly one positive element and there exists ff >/0 such that
A~> 0.

Correspondence to: Prof. Ronald L. Rardin, School of Industrial Engineering, Purdue University, West
Lafayette, IN 47907, USA.

t See Acknowledgement section.
* Research supported in part by the ONR (Office of Naval Research) under URI Grant number

N00014-86-K-0689, and Center for Operations Research and Econometrics, Universite Catholique de
Louvain.

376 R.G. Jeroslow et al. / GainJ~ee Leontief flows

This interesting class of matrices was first studied in the context of input-output
analysis in economics. See Leontief (1951) and Dantzig (1955). Later these matrices
were important within the context of dynamic programming and Markov processes
(see, for example, Howard, 1960; Kemeny and Snell, 1960; Veinott, 1969b; and the

more recent work of Erickson, 1978, 1988; and Rothblum and Whittle, 1982; on
branching Markov decision chains). See also Veinott (1969a) for applications in
operations management.

The algebraic properties of (pre-) Leontief substitution systems Ax -- b, x >~ 0 with
(pre-) Leontief matrices A and right-hand side b ~> 0 were thoroughly investigated

in Veinott (1968) and Koehler, Whinston and Wright (1975). See the latter for an
extensive set of references.

More recently, there has been a renewed interest in Leontief substitution systems
because of the key role they play in polyhedral combinatorics, logic and expert
systems. Erickson's (1978) dissertation took a Leontief approach to network flow
problems with separable concave costs. Martin, Rardin and Campbell (1990) use
properties of Leontief matrices in developing polynomial-size polyhedral descrip-
tions of optimization algorithms on recursively defined graphs and facilities in series
lot sizing problems. In the area of logic and expert systems Jeroslow and Wang
(1989) characterize extreme solutions to a linear programming formulation of proofs

over a Horn clause knowledge base. Ullman and Van Gelder (1988) study the
problem of being able to guarantee when a Prolog-like evaluation of a set of logical
rules terminates.

Our focus is the subclass of linear programs on Leontief and pre-Leontief con-
straint matrices satisfying a gainfree property. We begin by interpreting all linear

programs over pre-Leontief systems as flow problems in a directed hypergraph. This
interpretation is a natural extension of generalized networks to problems with more
than one negative element in a column. In this context there is an equally natural
notion of gain around a directed cycle. I f no such gain cycle exists, Section 2
establishes that extreme point solutions contain no directed cycles. For extreme
solutions that are acyclic in this sense, Section 3 provides simple algorithms to find
optimal dual and primal solutions in time O(mp) , where m is the number of rows
of A, and p is the number of nonzero entries in A. In Section 4 we show that this

same acyclic structure of extreme solutions leads to total dual integrality and integer
solutions under suitable hypotheses. Another structural property, support disjoint
reachability, is seen to lead to a necessary and sufficient characterization of when
the integer solutions must be binary. The remainder of the paper surveys results for
different classes of applications. Some known properties are shown to follow from
our theory of Sections 2-4, new results are proved, and some intriguing open

questions are posed.
Because Leontief systems have been (re)discovered in so many settings over

several decades, there is a wide, but not very unified literature. Some of our results,
including most of those in Section 3, can be viewed as restatements in a new context
of material found in earlier work of Veinott (1958), Erickson (1978, 1988) and others.

R.G. Jeroslow et al. / Gainfree Leontief flows 377

The major contribution of this paper is to introduce a directed hypergraph flow
paradigm for studying Leontie'f systems that leads to both new structural results
and an intuitive, unifying way of thinking about applications.

1. Directed hypergraph setting

Generalized networks are an extension of network flow problems by allowing the
negative element in each column of the vertex-arc incidence matrix to be an arbitrary
negative real number instead of -1 . A pre-Leontief matrix further extends the
vertex-arc incidence matrix of generalized networks by allowing more than one

negative element in a column.
The corresponding graph structure is what we term a Leontiefdirected hypergraph

G = (V, H) on vertices in V and hyperarcs in H. Each hyperarc is an ordered pair
(J, k), where J c V, k e V\J . Vertex k is the head of the hyperarc and J is the tail

set. We allow tailless or source hyperarcs (O, k) directed into k, and headless or sink

hyperarcs (J, O) directed out of tail set J. We assume throughout that the coefficient
associated with the head of a hyperarc is +1. Tail weights {aj[J, k]]j e J} give the

magnitudes of corresponding negative coefficients at tails j c J. Models can have
several "paral lel" hyperarcs with different tail weights connecting the same (J, k)
pair. In the interest of notational simplicity, we assume each (J, k) pair indentifies
a unique hyperarc. Parallel hyperarcs are easily made unique through the introduc-
tion of artificial vertices.

A flow on Leontief directed hypergraph G = (V, H) is a set of hyperarc values
{x[J, k] [(J, k) ~ H} conforming to conservation and nonnegativity constraints:

Z x [J , k] - ~ ak[J,l]x[J, 1]=bk f o r a l l k e V , (1)
(J , k) ~ H (J , l) cH

k ~ J

x[J, k] >! 0 for all (J, k) c H. (2)

Right hand sides bk denote the net demands at vertices k.

Lemma 1.1. For every b ~ R m and m x n pre-Leontief matrix A, there is a Leont ie f

directed hypergraph G such that A x = b, x >10 corresponds to the hypergraph f low

(1)-(2).

Proof. Construct G by defining a vertex for every row of matrix A. For every column

of A define the hyperarc (J, k) where the set J indexes the rows in which the column
has a strictly negative element and k indexes the row in which the column has a
positive element. I f the column has no negative elements create the source hyperarc

(0, k); if the column has no positive elements create the sink hyperarc (J, 0). The
b of the linear system defines the vector of net demands bk. I f column j of A

3 7 8 R.G. Jeroslow et al. / Gain/?ee Leontief flows

has a posi t ive entry in row i, the tail weights are sca led absolu te values
• 1 d e f / {ak[J, tl = -ak~/a~jlak ~ < 0}. I f there are no posi t ive entr ies in co lumn j, tail weights

d e f
are s imply {ak[J, O] = -ak~ l akj < 0}. []

Assoc ia t ing unit flow costs c[J, k] with hypera rcs (J, k) c H, we define a Leontief
flow problem as the l inear p rog ram

rain Y~ c[J, 1]x[J, l]
(.LI)c H

subject to (1)- (2) .

That is, a Leon t i e f flow p r o b l e m is the genera l i za t ion o f the classic m in imum cost

ne twork flow p r o b l e m a c c o m m o d a t i n g arcs with mul t ip le tails and a rb i t ra ry tai l

weights. We use the term Leon t i e f flow even when the cons t ra in t matr ix of (l) - (2)

is pre-Leont ie f .

All o f our main results for Leon t i e f flows address the Leont ie f subs t i tu t ion case

where right hand side vector b is nonnega t ive . We term these Leontiefsubstitution
flow problems to ind ica te that b ~ 0 is assumed.

Veinot t ' s (1968) classic work on Leon t i e f subs t i tu t ion systems calls row i o f a

p r e -Leon t i e f matr ix A trivial i f for all x /> 0 such that Ax ~ O, the co r r e spond ing

c o m p o n e n t o f Ax is zero. Rows that are not trivial are non-trivial, and a matr ix with

exact ly one posi t ive entry pe r co lumn is Leont ie f prec ise ly when every row is

nontr ivia l . Ex tend ing to the h y p e r g r a p h sett ing, we term a vertex trivial i f the

co r r e spond ing row of the inc idence matr ix A is tr ivial , o therwise it is nontriviaL
Thus a tr ivial vertex is one in which it is imposs ib le to have a net posi t ive demand .

We also e m p l o y a re la ted no t ion o f degenerate hyperarcs . A hypera rc (J, i) is

degenera te , i f and only if x[J, i] = 0 in every bas ic feas ible so lu t ion to (1)-(2) . Af ter

charac te r iz ing bas ic feasible so lu t ions to Leon t i e f subs t i tu t ion flow p rob lems in

Sect ion 2, we show that if hype ra rc (J, i) is nondegene ra t e in the b/> 0 case then

every vertex in J is nontr ivial .

A path in Leon t i e f d i rec ted hype rg raph O from vertex v~ to vertex vk+~ is def ined

by the non-nul l sequence v~ e~ v2e=v3,..., ekvk+~ whose terms are a l ternat ive ly vert ices

and hyperarcs , with no vertex or hype ra rc repea ted , such that ei = (Js, vs+~) and

v~ c Ji ; or, e~ = (Ji, v~) and vi+~ ~ Ji. A pa th f rom vertex v~ to vertex Vk+~ is a directed
path i f e~ = (J~, v~+~) and v ie J, for i = 1 , k.

A pa th f rom vertex v~ to ver tex v~+~ is a cycle if vl = vk+~. A d i rec ted pa th f rom

vertex v~ to vertex vk+~ is a directed cycle i f vl = vk+~, and a Leont ie f d i rec ted

hype rg raph with no d i rec ted cycle is acyclic. A hypertree is a connec ted Leon t i e f

d i rec ted h y p e r g r a p h which conta ins no cycles, and a hyperarboresence is a hyper t ree

d i rec ted so that at most one hype ra rc po in t s into any vertex. A hyperforest is a

Leon t i e f d i rec ted h y p e r g r a p h which conta ins no cycles.

The focus o f this p a p e r is on Leon t i e f subs t i tu t ion flow p rob lems over d i rec ted

hype rg raphs sa t is fying two newly i so la ted s t ructura l p roper t ies . One is the absence

R.G. Jeroslow et al. / Gainfree Leontief flows 379

o f gain cycles. Let v~elv2e2,..., ekvk+~ be a directed cycle where v~= vj,+~ and

e~ = (J,, v~+~), i = 1 , . . . , k. The gain of this directed cycle is defined by

1 / i ~ a~,,[Ji, v;+l]. (3)

We term a Leont ief flow problem defined on hypergraph G gainfree if the gain o f
every directed cycle in G is <~ 1.

Our second property, disjoint reachability, relates to the absence of hypergraph

objects we term paracycles. A paracycle is a subhypergraph consisting o f directed

paths rel vze2, . . . , ekvk+~gt and rf~ u2f2,... ,ful+~gt disjoint except for the c o m m o n
root vertex r, final hyperarc g = (J, t) and final vertex t. That is, a paracycle is a

pair of disjoint paths f rom a c o m m o n source to distinct tail vertices of the same

hyperarc, plus the hyperarc itself. The structure is a "nea r " cycle in the sense that

it would be a cycle if the last hyperarc g were replaced by arcs f rom vk+l to t and
u;+; to t. Also, if vertex i has a directed path to vertex j within a hyperarborescence

T, either the path is unique or T contains a paracycle.

Figure 1 illustrates these definitions. It shows a gainfree Leont ief directed hyper-

graph on vertices V = { 1 , . . . , 9 } and the cor responding pre-Leont ief matrix A.

In (L k) notat ion hyperarc e5 is ({5,8},6) with tail weights a5 [{5 ,8} ,6]=

3, as[{5, 8}, 6] = 1. Source hyperarc e 9 is ((3, 7). The sequence vveTvsesv6e~v7 is a

directed cycle with gain 1/(0.5)(3)(0.9) < 1. Hyperarcs es, e~2 and e~3 form a para-
cycle rooted at vertex 9, with disjoint paths to tail vertices 5 and 8 o f hyperarc es.

Even without the all negative column corresponding to arc e~0, the A matrix

cor responding to this hypergraph is pre-Leont ief and not Leont ief because vertices

v2, v3, v4 are trivial.

2. Characterization of basic feasible solutions

Associated with every feasible solution to (1)-(2) is a support hypergraph which is

the subhypergraph induced by all hyperarcs with a positive value in the solution.

In this section we give a sufficient condi t ion for when the suppor t hypergraph of a

basic feasible solution to a Leontief substitution flow problem is acyclic. This is

obviously the case when hypergraph G defining (1)-(2) is free o f directed cycles

to begin with, or when (1)-(2) is a pure network flow problem, in which all cycles
are linearly dependent .

For more general cases, first assume that the constraint matrix A, of (1)-(2) is

Leontief. This assumpt ion is easily d ropped later. Each directed cycle o f a Leont ief

directed hypergraph corresponds to a generalized cycle matrix which is a square

matrix with a row for each vertex in the directed cycle and a column for each

hyperarc in the directed cycle. In each column corresponding to hyperarc (Ji, vi+~)

there are two non-zero elements; a + 1 in the row corresponding to vertex v~+~ and
- a ~ [J ; , v~+~] in the row for vertex v~.

380

e l l

e
12

R.G. Jeroslow et al. / Gainfree Leontief flows

1 / \ I 1

e 8
e 3

5 ~ e 7
e2

e 6 f - - ~ . 5 1

9 4

9

el

l / e l 0

A =

e e e e el e2 e3 e4 e5 e6 e7 e8 e9 10 11 12 13

1 -1 -1 -1

-1 1

1 -1

1 -1 -1

-3 1 1

1 -.9 -1 -2

1 -.5 1 -4

1 1

1 -1 -1

Fig. 1. Example hypergraph and constraint matrix.

Lemma 2.1. Let C be a general ized o , cle matrix. Then there is a solution to the sys tem

Cx > O, x ~ 0 i f and only i f the directed cycle corresponding to C has gain > 1.

Proof. I f the gain is ~ 1 we show there is no solut ion to the system Cx > O, x ~> 0
by construct ing a nonnegat ive vector A ~ 0 such that AC ~< O. By a variant o f Farkas
only one of these systems can have a solution.

Assume without loss that the rows and columns of C have been pe rmuted so that

row i cor responds to vertex v~ and co lumn i cor responds to hyperarc el = (Z, v~+~)
in the directed cycle vle~v2e2v3, • . . , ekvk+~ where Vl = G+I . Assign a nonnegat ive
set o f mult ipl iers to the rows o f C by

A ~ = I , A ~ = l / (~ a L , ~ [J / , v s + ,]) , i = 2 , . . . , k . (4)
/

R.G. Jeroslow et al. / Gainfree Leontief flows 381

Then for i = 2 , . . . , k the ith componen t o f AC is equal to zero since column i has

a coefficient o f + l in row i + 1 with multiplier 1/(I!~ i+1 a~i[~, Vj+l]) and a coefficient

o f -a,,,[J~, vi+~] in row i with multiplier 1/(I!~= i a~j[J/, t~i+~]). Also, by the hypothesis

that the gain is <~1,

-a~,[J1, re] + 1 / (j l -~ 2 avj[Ji , IQj÷l])

<~0,

so the first componen t o f AC is nonpositive.

Conversely, if the cycle associated with generalized cycle C has gain >1 , we

construct solutions x i ~ > 0 such that C x ~ > 0 and strictly positive in the ith row.
Summing these x ~ gives C(Y~ x ~) > 0.

It is sufficient to construct only x ~ since the other x i take the same form after

relabeling o f the cycle. Assume vertex v~ corresponds to the first row of C and

consider

k

Nick = 1, xlel = 1~ a~[J/, v~+,], i = 1 , . . . , k - 1, (5)
j = i + l

again defining vk+~ = v~.

With this solution there is a balance o f flow at every vertex except v~. At vertex

1 and the flow out is the reciprocal of the cycle 's v~ the flow in is one unit since xe~ =

gain. With gain >1 , it follows that there is an excess flow into vertex v~ and the

first componen t o f Cx ~ is strictly positive. []

Lemma 2.2. I f a Leontief substitution flow problem is gainfree and the associated
constraint matrix A is Leontief, then the support hypergraph of every basic feasible
solution is acyclic.

Proof. Assume there is a basic feasible solution with a suppor t hypergraph that

contains a directed cycle. We show this directed cycle has a gain > 1. Since A is

Leontief, the basis matrix associated with the basic feasible solution for b >/0 is

also Leont ief (Veinott, 1968). Consider a Leont ief basis B containing w.l.o.g, a
directed cycle a round vertices and hyperarcs in its upper left hand corner, and write

it

That is, C is a square matrix with a row for each vertex in the directed cycle and

a column for each hyperarc in the directed cycle. Since B is Leont ief there is a
nonnegat ive ~ with B~ > 0. Then C)~ c + R)7 R > 0. Since B is a square Leont ief matrix

382 R.G. Jeroslow et al. / GainJJ'ee Leontief flows

there is exactly one +1 in every row and in every column. Every column in the
matrix C contains a +1 (corresponding to each hyperarc directed into each vertex
in the directed cycle) so R <~ 0 which implies C~ c" > 0. Construct from C a generalized

cycle matrix (~ by eliminating the negative coefficients not along the cycle (that is,
for every hyperarc ei = (Ji, vi+~) in the cycle delete all negative coefficients in C
which do not correspond to vertex vi). It follows that ~ £ c > 0. Then by Lemma 2.1

the directed cycle has a gain >1. []

To extend Lemma 2.2 to all Leontief substitution flow problems assume A is
pre-Leontief. Veinott (1968) shows the following two lemmas (as Theorems 2 and 3).

Lemma 2.3. I f A is pre-Leontief then after permuting the rows and columns appropri-

ately A can be written as

where A~ is Leontief and all the rows of A2 are trivial. []

Partition x = (x ~, x 2) to correspond to A~ and A2, respectively. Similarly for
b = (b ~, b2). Since the rows of A2 are trivial, b 2 = 0 in any feasible Leontief substitu-

tion flow.

Lemma 2.4. Suppose A is pre-Leontief, A is partitioned as in Lemma 2.3, and b ~ >~

O, b 2= O. Then the following are equivalent:
(i) x = (x I, x 2) is an extreme point o f the Leontief flow problem.

(ii) x 1 is an extreme point o f the Leontief flow problem defined by constraint matrix
A1 and right hand side b l, and x 2=0. []

Theorem 2.5. I f a Leontief substitution flow problem is gainfree, then the support

hypergraph of every basic feasible solution is acyclic.

Proof. Let x = (x ~, X 2) be a basic feasible solution to a Leontief ftow problem. Since

the solution is feasible, b~>0 and b2=0. Then by Lemma 2.4, x2=0 and x ~ is an
extreme point a Leontief flow problem with a Leontief constraint matrix (i.e. A~).
By Lemma 2.2 the support hypergraph of the Leontief flow problem corresponding

to A~ and b ~ is acyclic. The result now follows since x2=0. []

The support hypergraph of a basic feasible solution actually has a much stronger
property than simply being acyclic.

Theorem 2.6. I f a Leontief substitution flow problem is gainfree then the support

hypergraph of every basic feasible solution is a hyperforest and each component of the

hyperforest is a hyperarboresence.

Proof. Following Lemma 2.4 and Theorem 2.5, we know that if ff = (~ , if2) is an

extreme point of the Leontief flow problem, then ffl is an extreme point of the

R.G. Jeroslow et aL / Gainfree Leontief flows 383

Leontief flow problem defined by A~x = b~ where A~ is Leontief. The hyperarcs with
positive flow are components of ff~. Since A~ is Leontief, the basis matrix which
defines ff~ is also Leontief. This Leontief basis matrix has exactly one +1 in each
row and each column. Then at most one hyperarc with positive flow is directed into

a vertex. Since the support is acyclic by Lemma 2.2 and there is at most one hyperarc
directed into any vertex, it must be a hyperforest where each component is a
hyperarboresence. []

Corollary 2.7. Ira Leontief substitution flow problem with a Leontief constraint matrix
is gainfree, then the basis matrix of every basic feasible solution can be permuted into
a lower triangular matrix.

Proof. Any basic feasible solution for a given nonnegative right hand side is a basic

feasible solution for all nonnegative right hand sides, so we assume without loss
that bi > 0 for all i. Thus, in the basic solution there is a nonzero hyperarc directed
into every vertex so the solution is not degenerate.

By Theorem 2.6 the corresponding support hypergraph is a hyperforest where

each component is a hyperarboresence. Each hyperarboresence (since it is acyclic)
induces an ordering on the vertices such that the head vertex of every hyperarc can
be assigned a unique number which is larger than the unique number assigned to

all of the tail vertices. This is true for the entire hyperforest since it is true for every
component.

Use this assignment to permute the I VI x IV I constant matrix corresponding to
hyperarcs with positive flow as follows. Order the rows of the matrix by descending

vertex number. By definition of hyperarboresence, there is exactly one nonzero basic
hyperarc directed into each vertex. Thus, the columns can be ordered such that the

column corresponding to hyperarc (J~, vl) follows the column corresponding to

hyperarc (J2, v2) if and only if vertex vl is assigned a lower number than vertex v2.
With this permutation each diagonal element is a plus one and the negative elements
corresponding to the tail weights lie below the diagonal since the tail vertices were
assigned lower numbers than the head. [~

Lemma 2.8. Given a Leontiefdirected hypergraph G = (V, H) :

(i) I f hyperarc (J, i) is nondegenerate in any Leon tiefsubstitution flow problem on
G, then every vertex in J is nontrivial.

(ii) I f every vertex j c J is nontrivial.for hyperarc (J, i) then vertex i is nontrivial.

Proof. (i) By definition, if hyperarc (J, i) is nondegenerate then there is an extreme
point solution with x[J, i] > 0. Then, by Lemma 2.4, hyperarc (J, i) corresponds to

a column in matrix A~. By definition of AI every vertex in J corresponds to a row
in A1 and therefore is nontrivial.

(ii) If all j c J are nontrivial, then for each j there is a feasible solution ffJ >/0 to
some Leontief flow problem with right hand side b j >~ 0 and bl > o. It follows that

384 R.G. Jeroslow et al. / Gainfree Leontief flows

Y.j~.I XJ, together with a flow on x[J, i] of q5 = min{bi/aj[J , i]}, is feasible for some
bi~>0 with b i= ~b>0. []

In terms of the Leontief flow paradigm, the columns of A1 in Lemma 2.4
correspond to all of the hyperarcs (J, i) with the property that vertex i and all j ~ J
are nontrivial. However, it is possible to construct example Leontief directed hyper-
graphs which contain degenerate hyperarcs (J, i) with every vertex j c J nontrivial.
That is, the converse of Lemma 2.8(i) is not true, and there may be columns of A1
which correspond to degenerate hyperarcs. Part (ii) of Lemma 2.8 says that if there
is a solution with net positive flow into all j c J, then existence of hyperarc (J, i)
implies there is a solution with net positive flow into vertex i.

3. Strongly po lynomia l a lgor i thms

Assign dual variables ui to constraints i of (1). Then the dual feasibility constraints
for a Leontief flow problem on Leontief directed hypergraph G = (V, H) are

ui<~c[J,i]+ ~ aj[J,i]uj fora l l (J,i)cH, (6)
j c .I

0~<c[J, 0]+ ~ ai[J,O]uj for all (J, 0) c H . (7)
j c J

As usual in linear programming theory, a solution u is said to be complementary
with respect to a primal flow x if (J, i) in the support of x implies the corresponding
inequality of (6) or (7) holds as an equality.

Algorithmic research in Leontief systems has centered on finding solutions to
(6)-(7) by successive approximation schemes based on (6). Finite convergence is
rare. Numerous procedures and asymptotic convergence results are available. See
Koehler et al. (1975) and Veinott (1969b).

Our focus here is on subclasses of Leontief flow problems admitting provable
finite and polynomially bounded solution times via successive approximation. The
simplest such successive approximation procedure corresponds to Jacobi iteration
with an initial starting value of big M and extends the classic Bellman-Ford method
for the shortest path problem as follows:

Value Iteration Algor i thm.

Step 1. Initialize: u°<--M, nontriv(i)="true" for all (0, i)c V, otherwise non-
triv(i) ="fa lse" ; t[i]~-0 for all i~ V; t ~ 0 .

Step 2. Iterative step: while some u~ changed; t~- t+ 1 and for all vertices i with
nonempty {(J, i) ~ H} do:

c [.~ i]+ ~ aj[J,i]u~-l=min{c[J,i]+~ ai[J,i]u~-ll(j , i)6H}, (8)
. j ~ J j ~ J "

ui<--min{ t 1 c[.~ i] + ~ aj[J, i]uj -1} t ui , . (9)
j c.. .l

R.G. Jeroslow et aL / Gainfree Leontief f lows

I f ul -~ > c[.~ i] + ~ j ~ j ai[], i]u~ l and nontriv(j) = " t rue" for all j 6 .~

record J[i]~J , t[i]~ t, nontriv(i)~-"true".

I f {(J, i) e H} = 0, i c V then ul = u~ -~.

385

(lo)

In the Value I tera t ion Algori thm, nontriv(i) is a flag which is set to " t rue" when
the a lgor i thm discovers that vertex i is nontrivial. It is based on the fact that (1) all
vertices which have a tailless hypera rc (0, i) are nontrivial , and (2) if all the vertices
in J are nontrivial , then the existence of hypera rc (J, i) implies vertex i is nontr ivial

by L e m m a 2.8. We can take big M in the initialization step to be any real n u m b e r
larger than 2 (l+41HI2'6) where q5 is the size of the largest inequal i ty in (6). See Schri jver

(1986, p. 121).

Lemma 3.1. l f O~ <~ M, i ~ V is a feasible solution to the dual constraints (6) fo r Leontief
directed hypergraph G = (V, H) and criterion vector c, then u' ~ ~ for all t where u'
is calculated by Value Iteration.

Proof. By induct ion on t.
I f t = 0 , u° i=M~Oi , all i c V. Assume ui~> ff~, all i c V. Then either ul+~ = ul, or

ul +l =min{c[J, i]+~ aj[J, i]u~ (J, i) c H }
.j c .!

>~min{c[J , i]+2 a i [J , i] a i l (J , i) c H }
j c .!

/>0, (by (6)). []

The key result o f Section 2, Theorem 2.5, is that basic feasible solutions to gainfree
Leont ief subst i tut ion flow prob lems have acyclic support . Whether or not caused

by the gainfree proper ty , an acyclic basic feasible solut ion with some suppor t
hypera rc point ing into every nontrivial vertex assigns implici t levels to the nontr ivial
vertices. Each vertex i serviced by a source hypera rc (0, i) may be taken as level 1,

and the level o f o ther nontr ivial i in the suppor t is defined recursively as 1 +

max{levels o f j 6 J l(J, i) ~ H}.

Lemma 3.2. Consider an m-vertex Leontief flow problem on Leontief directed hyper-
graph G = (V, H). I f there exists a basic feasible flow ,Y having acyclic support with a
hyperarc directed into every nontrivial vertex, and a complementary dual solution ui <~ M
feasible in (6), then for all nontrivial i c V, u~ = ui after at most t = m iterations.

3 8 6 R.G. Jeroslow et al. / Gainfree Leont iq f f lows

Proof. By hypothes is the suppor t hyperg raph is acyclic and has a hyperarc directed
into each nontr ivial i, which means that each nontrivial i can be assigned a level
as described above. Then feasibility of 1,/in (6) and complemen ta ry slackness imply

for nontrivial i,

G=minlc[Y,i]+~ ai[J,i]~j (J , i) c H I. (II)
t j c .!)

Proceed by induct ion on the level 1, induced by ~, on the nontrivial vertices i.
For l = 1, the first i teration of Value I terat ion sets u] = c[0, i] and complemen ta ry
slackness gives G = c[0, i]. Then by L e m m a 3.1 and the monotonic i ty of Value
I terat ion,

c[O, i]= u~ >~ ul >~ G= c[O, i]

so that ul is unchanged after i teration l = 1.
Induct ive step. Assume now that for every nontrivial vertex i of level l ~ or, u l = G

for t ~ 1. I f ver tex i is level l = or+ 1, and (J, i) is a hypera rc directed into i, then
for every j c J the level o f j is at most 1. Then at i teration l + 1,

+ I } t]uj (J,i) c H ui ~<min c[J, i] + Y~ aj[J, " '
j ~ J

= m i n { c [J , i]+Y~ ajEJ, i]~i (J, i)c H I
j cJ

The first equali ty is by the induct ion hypothesis , the second by (11). Again by
L e m m a 3.1 and the monotonic i ty of Value I terat ion, G ~< u~i +1, and this implies
ul = G for all t ~> l + 1. To comple te the p roo f observe that an acyclic hypergraph
on m = IV I vertices can have vertices of level no greater than m. []

Informal ly , L e m m a 3.2 says that for any Leont ief flow p rob lem having a basic
feasible solut ion with acyclic suppor t hypergraph conta ining a hyperarc directed

into all nontr ivial i, then any complemen ta ry dual solut ion is finitely compu ted by
Value I terat ion.

Value I tera t ion is a purely dual a lgori thm. I f it stops, however , it is easy to retrieve
a cor responding pr imal flow for any d e m a n d vector /~>0 that is zero at trivial
vertices. We use the labels J[i] and t[i] saved at Step 2 as follows:

Primal Retrieval.

Step I. Init ial ization: set £[J, i] ~ 0 for all (J, i) ~ / 4 , create active vertex list

V~-{il i nontrivial}, and establish vertex flows f as f ~-/~i for all i c V.

R.G. Jeroslow et al. / Gainfree Leontief flows 387

Step 2. Iterative step: while I) ~ 0, choose an i c V with max imum t[i], pick the
inbound hyperarc (J [i] , i) f rom (10) and update

Y[J[i] , i] <-- f ,

f j e - £ + a i [J [i] , i] Y [J [i] , i] for all j c J [i] ,

9~- 13\{ i}.

To establish correctness of Primal Retrieval we first prove two lemmas.

Lemma 3.3. I f Value Iteration terminates finitely, then jbr all vertices i with nontriv (i) =
"t rue" , labels J[i] and t[i] satisfy

ul [i]= c[J[i], i] + ~ aj[J[i], i]U~ [i3-1, (12)
.j~J[i]

t [j] < ~ t [i] - I f o r a l l j < J [i] . (13)

Proof. For each i with nontriv(i) = " t rue" , labels J[i] are defined, and (12) follows

f rom (9). For (13) assume there is an i and a j ' c J[i] with t [j '] > t [i] - 1. It follows

f rom (9)-(10) that u~! il ~> u;f j']. Then, since all aj[J[i], i] are positive,

u l [i l > c [J [i] , i] + Z aj[J[i], i]u~ Ij']
j~J[i]

and ui will change after its last change t[i]. []

Lemma 3.4. Consider an m-vertex Leontief f low problem on Leontief directed hyper-
graph G = (V, H).

(i) I f vertex i is trivial, then nontriv(i) = "false" at every step t o f Value Iteration.

(ii) Assume there exists a basic feasible f low ~ on G with an acyclic support having
a hyperarc directed into all nontrivial vertices i. I f either Value Iteration converges
after j ~ m + 1 iterations leaving nontriv(i) = "false", or nontriv(i) remains "fa lse"

after m + 1 iterations, then vertex i is a trivial vertex.

Proof. First prove (i) by contraposit ive and show nontriv(i) =" t rue" for some t

implies vertex i is nontrivial. I f nontriv(i) = " t rue" there is a first iteration s(i) such

that nontriv(i) = "t rue" . Proceed by induct ion on s(i). I f s(i) = 1 then there exists

hyperarc [0, i] and i cannot he trivial.

Induct ive step. Assume that all vertices j with s (j) <~ cr are nontrivial. I f t = s(i) =
or+ 1 then by (10) there is a hyperarc [J [i] , i] directed into i such that all j c J[i]
had nontriv(j) marked " t rue" at an earlier iteration. By the induct ion hypothesis ,
all such j ~ J[i] are nontrivial. Then by Lemma 2.8 vertex i is nontrivial.

Now prove part (ii) by contraposit ive and assume vertex i is nontrivial and show

for some iteration t <~ m of Value Iteration that nontr iv(i)= "true". By hypothesis

there is a basic feasible flow ~ with an acyclic suppor t and at least one hypera rc

directed into every nontrivial vertex. Thus, every nontrivial vertex can be assigned

388 R. G. Jeroslow et al. / Gainfree Leontief flows

a level /. By using an inductive argument identical to the one used in Lemma 3.2 it

follows that if nontrivial vertex has level I then nlntriv(i) = "true". The result follows
from the fact that for an m-vertex Leontief flow problem 1<~ m. []

Lemma 3.5. Consider an m-vertex Leontief f low problem on Leontief directed hyper-

graph C, ~- (V, H) with b~ >~ O for all i, and b~ =O for all trivial i. I f Value Iteration is
finite and nontriv (i) = "true " for all vertices i with b~ > O, then Primal Retrieval computes
a f low f~ that is feasible for b, complementary with the u' obtained when Value Iteration
stopped, and having a support which is a hyperforest, each component o f which is a
hyperarboresence.

Proof. Since the cardinality of V strictly decreases at each Step 2 in Primal Retrieval,
the algorithm is finite; Step 2 can be executed at most m times. We next show the
Primal Retrieval algorithm is well defined given the hypotheses. By part (ii) of

Lemma 3.4, nontr iv(i)= "true" for all nontrivial vertices i, which, by (10), implies
ui~i] < ulti] 1. Again by (10), this guarantees the existence o fa J[i] for each nontrivial
i. Furthermore, when Value Iteration Step 2 assigns J[i], it does so on the basis of
a computation with nontriv(i) = "t rue" for every j c J[i]. Then by part (i) of Lemma

3.4 every vertex in J[i] is nontrivial. Hence only nontrivial vertices are assigned
flow in Primal Step 2. For the selected t [i] , j c J [i] implies t [j] < t [i] =
m a x { t [k] l k c V}. Then all j ~ J[i] are selected at a future execution of Primal Step
2 and conservation of flow at these vertices is maintained. Thus, when Primal

Retrieval stops, £ is feasible for /~. Nonnegativity of/~ implies nonnegativity of ~.
To see that complementary slackness is maintained, note label J[i] is last changed

at vertex i at iteration t[i] when ui is last changed. Then by (9)-(10) constraint (6)

for hyperarc (J[i] , i) is satisfied as an equality. Since Primal Retrieval assigns flow
only to such hyperarcs it follows that £ is complementary with the u'. Note that
Primal Retrieval never constructs a solution with positive flow on sink hyperarcs
(J, 0) so the solution is always complementary to (7).

Finally, by construction at most one inbound hyperarc at any vertex is assigned
positive flow. Again, because the selected i do not repeat, it follows that the support

hypergraph does not contain any directed cycles, i.e. it is a hyperforest. Since there
is at most arc directed into each vertex, each component of the hyperforest is a
hyperarboresence. []

We have stated Lemmas 3.2-3.4 to encompass all Leontief flow problems having
a basic flow with acyclic support with a hyperarc directed into nontrivial vertex.
Indeed, only Lemma 3.5 requires Leontief substitution assumption b ~> 0 in order

that Primal Retrieval give a nonnegative solution. We are now ready to apply these
results to see that Value Iteration and Primal Retrieval resolve every possible b i> 0,

gainfree input in strongly polynomial time.

R.G. Jeroslow et al. / Gain free Leontief fiows 389

Theorem 3.6. I f Value Iteration is applied to a gainfree Leontief substitution f low
problem with m vertices then:

(i) The Leontief f low problem has an optimal solution if and only if Value Iteration
terminates after j < m + 1 iterations with u j satisfying (6)-(7), and nontriv(i) = " t rue"

whenever b~ > O.

(ii) The Leontief f low problem is infeasible i f and only i f after m + 1 iterations
nontriv(i) = "fa lse" for some i with b~ > O, or the Value Iteration algorithm terminates
after j <~ m + 1 iterations with nontriv(i) = "false" for some i with b~ > O.

(iii) The Leontief f low problem is unbounded i f and only i f u~'+l # u~" for some l
and nontriv(i) = " t r u e ' f o r all i with bi > 0; or, Value Iteration terminates afterj <~ m + 1

iterations with c[J, 0] + ~tcJ at[J, i]ui < 0 for some (J, O) c H and nontriv(i) = " t rue"

for all i with b~ > O.

Proof. (i) Assume for some j ~< m + 1, u j = u j ~, nontriv(i) = " t rue" if bi > 0, and u j
satisfies (6)-(7). Since nontr iv(i)= " t rue" whenever bi > 0, it follows f rom part (i)

o f Lemma 3.4 that vertex i is nontrivial. Then by Lemma 3.5 there exists a primal

feasible flow £ complementa ry to u j. Since (6) and (7) are satisfied by u j, we have

dual feasibility which implies • is primal optimal.

Now assume the Leontief flow problem for a given 6 ~ > 0 has an optimal solution

and thus an optimal basic solution ~. Then there exists a cor responding opt imal

dual solution t~ with componen ts less than M. Using the notat ion developed for
Lemma 2.3, let g~ be the optimal set of dual variables for the non-trivial constraints,

i.e. the constraints in the system A~x 1= -b 1. Since AI is Leont ief every matrix B~

conta ined in At corresponding to a basic feasible solution is also Leontief. The

inverse o f a square Leontief matrix is nonnegative. Then (B~)-1 b 1 ~> 0 for all nonnega-

tive b ~ and without loss we a s s u m e / ~ > 0. By hypothesis the Leont ief flow problem

is gainfree so by Theorem 2.5, the support corresponding to (B~) 16~ with 61 positive

is acyclic and complementary to ~1 The support is also complementa ry to the full
since there is no flow into trivial vertices. Since 6~> 0 there is a hyperarc in the

support directed into every nontrivial vertex. Then by Lemma 3.2 after at most

k <~ m + 1 iterations of Value Iteration, u~ = ~i when i is nontrivial. I f i is trivial,

the ul calculated by Value Iteration are exactly the same as if an artificial hyperarc

(0, i) with cost M had been added to the problem. Since there is an optimal solution

to this problem, applying Simplex to this problem with the artificial arcs will yield

a basic feasible solution having acyclic suppor t (which will now include the artificial
arcs on the trivial vertices) and an optimal complementa ry ~. Since these artificial

hyperarcs have no effect on the dual variables calculated by Value Iteration, using

Lemma 3.2 again implies that Value Iteration will terminate after at most k ~< m + 1

iterations with u~ = ~ .

(ii) I f the Leont ief flow problem is infeasible then b~ > 0 for some trivial vertex

i. I f i is a trivial vertex, then by part (i) o f Lemma 3.4 nontriv(i) = "false" for every

iteration t. N o w assume that b i > 0 for some i and that after m + l iterations
nontriv(i) = " f a l s e " , or the Value Iteration algori thm terminates after j~< m + l

390 R.G. Jeroslow et al./ Gainfree Leontief flows

iterations with nontr iv (i)= "false". Since the hypergraph is gainfree there exists a
basic feasible solution with acyclic support for all bk > 0, k nontrivial. Then it follows
from part (ii) of Lemma 3.4 that vertex i is trivial. The problem must be infeasible.

(iii) If a Leontief flow problem is unbounded then Value Iteration either termin-
ates within m + 1 iterations, or it does not. If Value Iteration does not terminate
after m + l iterations, then u~'+l~ u~ n for some 1, yet nontriv(i) = " t r u e " for all i

with b i > 0 or the problem would be infeasible by part (ii). If Value Iteration
terminates after j ~< m + 1 iterations then by part (ii) of Lemma 3.4 if nontriv(i) =

"false", vertex i is trivial. If b i> 0 the problem would be infeasible, thus b ~ - 0
because the problem is unbounded. Since Value Iteration has terminated the u j
satisfy (6). Then by part (i), since the problem is unbounded, u j cannot satisfy (7).

Conversely, if U~ n+l ¢ U~ n for some 1 and nontriv(i) = "t rue" for all i with bi > 0;

or, the Value Iteration algorithm terminates after j ~< m + 1 iterations with c[J, 0] +
~1~J al[J, i]u~<0 for some (J, 0) c H and n o n t r i v (l) = " t r u e " for all l with b l > 0
then by (i) and (ii) the problem cannot be infeasible and cannot have an optimal
solution. Therefore the problem is unbounded. []

Corollary 3.7. I f a gainfree Leont ie f substitution f low problem on m vertices has an

optimal solution, the Value Iteration Algori thm converges to an optimal dual solution

on O(mp) time, and Primal Retrieval constructs an optimal primal solution in O(p)

time.

Proof. By Theorem 3.6, part (i) the Value Iteration algorithm converges to an
optimal dual solution in m + 1 or fewer iterations. The work of Step 2 given by
(8)-(10) requires at most O(p) computations.

For the Primal, maintain linked lists of all i c V with t[i] = k, k ~ { 1 , . . . , m}. These

lists can be constructed in O(m)~< O(p) time and at each Step 2 execution we flag
the nonempty list with the largest t[i]. Then the m executions of Step 2 do a total
of O(m) <~ O(p) extractions and £ settings, plus ~ updates. Initialization for vertices
is O(m) and for edges O(n)~<O(p) . Total effort is O(p) . []

Theorem 3.6 can also be used to give a strongly polynomial algorithm for testing
if a Leontief directed hypergraph is gainfree. To test gainfreeness of a given

G - - (V , H) , construct an associated ordinary directed graph G ' = (V, H ') on the
same vertex set. Arc set H ' contains an arc (j, i) for each j 6 J of each hyperarc
(J, i) ~ H that has both tail(s) and a head. The cost on such (j, i) is log(aj[J , i]),
and all net demands bi = 0.

By construction, G' is gainfree, since all tail weights are 1, and the associated
Leontief substitution flow problem is feasible because b = 0. Thus Theorem 3.6
applies, and Value Iteration will settle in strongly polynomial time whether the
problem for G ' is optimal or unbounded. Well known theory for ordinary network

flows establishes that the problem can be unbounded if and only if there is a directed

R.G. Jeroslow et al. / Gainfi'ee Leontief flows 391

cycle of negative total length. Thus the problem is unbounded if and only if some
directed cycle in the original G has, in the notation of (3), 0 > ~_~ log(a~,[J, v H]) =
log(~I~.~ a~[J, v~+~]), which implies gain is >1.

We have included a full treatment of Value Iteration polynomiality in this section
to make our directed hypergraph development of Leontief substitution flow problems
complete. However, much of the work of this section appears elsewhere in other
forms. Erickson (1978, 1988) proved essentially the same result as Lemma 3.2 for
the case where A is Leontief. Ullman and Van Gelder (1988) also gave for a finite
proof of Value Iteration (their Algorithm 3) when the A matrix is integral, and
hence gainfree. Readers may also wish to consult the paper by Adler and Cosares
(1989) where a strongly polynomial algorithm is given for any Leontief substitution
problem with at most two nonzero elements in each column. Finally, Charnes and
Raike (1966) give a strongly polynomial algorithm for the generalized network
problem with nonnegative b. Their algorithm requires either an acyclic graph, or
nonnegative costs and tail weights ~>1; hence the problem is gainfree.

4. Integral and binary solutions

Much of the recent interest in Leontief flow problems has resulted from the fact
that the Value Iteration and Primal Retrieval algorithms often yield integral, and
even binary integral solutions.

Jeroslow and Wang (1989) show, in a logic context, that (in the present ter-
minology) for Leontief substitution flow problems over integral A and b, basic
feasible solutions correspond to acyclic support hypergraphs. It follows immediately
that optimal solutions are integral (see, e.g. Martin, Rardin and Campbell, 1990).
Noting that a Leontief flow problem with an integral coefficient matrix is gainfree
under definition (3), we extend these results as consequences of theorems in the
previous two sections.

Given integral A and rational b the linear program min{cxlAx = b, x >1 0} is totally
dual integral (TDI) if the dual problem has an integral optimal solution for every
integral vector c for which it has an optimal solution. See Edmonds and Giles (1977)
or Giles and Pulleyblank (1979). Total dual integrality is weaker than the more
familiar total unimodularity, but is still sufficient to guarantee integral primal optima
when b is an integral vector.

Theorem 4.1. Every Leontief substitution flow problem with an integral coefficient
matrix A and rational right hand side b is TDI.

Proof. If A is integral then by (3) the Leontief flow problem is gainfree. Then by
Theorem 3.6 Value Iteration will compute an optimal dual solution in m iterations.
If A is integral then the aj[J, k] of update (8)-(9) are integral, so given integral
costs c[J, k] the algorithm only assigns integers to uti. Thus, for any integral c

392 R.G. Jeroslow et al. / Gain free Leontief flows

yielding a finite optimum, the optimal dual solution constructed by Value Iteration

is integral. []

The following theorem is an immediate consequence of Theorem 4.1.

Theorem 4.2. I f a Leontief substitution flow problem with integral A, b has an optimal

solution, then it has an integral optimal solution. []

Theorem 4.2 for A Leontief is also easily derived from our Corollary 2.7 and
Theorem 7, of Veinott (1968). Veinott shows that the condition B ~ integral for all
Leontief basis matrices is equivalent to the condition that for all feasible, nonnegative
integral b, all the extreme points of the feasible region are integral. Our Corollary

2.7 implies basis inverses have the needed property.

Theorem 4.3. Every feasible basis submatrix B of a Leontief substitution flow problem
with integral, Leontief A has an integral inverse B -1 that can be permuted into a lower

triangular matrix.

Proof. If A is integer and Leontief, the corresponding Leontief directed hypergraph

is gainfree, and Corollary 2.7 applies. The proof of that corollary shows that every
feasible basis submatrix B can be permuted until B is lower triangular with + l ' s
on the diagonal. Inversion by say Gaussian elimination easily establishes that the
corresponding basis inverse is integral and lower triangular.

Although integrality results are important in applications such as Horn clause

knowledge bases (see Section 5.2), binary integrality results are required for applica-
tions involving polyhedral combinatorics and mixed 0/1 linear programming. Figure
2 illustrates that Leontief substitution flow problems need not possess this binary

integrality property. In fact, given integral data, any basic solution with flow on a
hyperarc which has at least one tail weight > 1 will not be binary since the support
of the basic solution is a hyperforest and each component is a hyperarboresence.
Similarly, a bi > 1 gives basic solutions which are not binary. Even when b is binary,
and all coefficient in A are 0, ± 1, basic solutions are not necessarily binary. This is

illustrated in Figure 2, where the unique feasible flow is x~ 2 = Xc3 = X¢. 4 = 1 , X•l = 2.

In Figure 2 the problem is caused by the presence of the paracycle. In this section
we show that for binary b, and A a matrix with 0, ±1 elements, the absence of
paracycles in supports corresponding to basic feasible solutions gives a sufficient
and necessary condition for binary integrality. Before proceeding, we note that there
is no loss of generality in assuming Leontief flow problems with binary b have unit
vector right hand sides. I f the given problem has a binary b which is not a unit

vector, we may construct an equivalent Leontief flow model by adding a new vertex
v and an additional hyperarc (J, v) with J = {ilbi = 1}. The demand vector for the
revised problem has bi = 1 for vertex i = v only. (Note, however, that this reformula-
tion can create new paracycles.) We can also establish that subhyperarboresences
in a support hypergraph will persist if b ~> 0 are restricted to unit vectors.

R.G. Jeroslow et al. / Gainfree Leontief flows

v 1 e

Fig. 2. Leontief flow problems with nonbinary optima.

demand., 1

393

Lemma 4.4. Let F be the support hypergraph of a basic feasible solution to Leontief

flow problem on gainfree Leontief directed hypergraph G = (V, H) with right hand side

b >~ O, and vertex k demand bk > O. Then the subhyperarborescence induced by all

vertices of V on directed paths leading to k in F is the support hypergraph of a basic

feasible solution to the Leontief f low problem on the same G with unit vector right hand
side e k.

Proof. The basic feasible solution of which F is the support must be the unique
optimal solution for some costs {c[J, i]}. Since G is gainfree and b ~> 0, we know
by Theorem 3.6 that Value Iteration over such costs will terminate finitely, and by
Lemma 3.5 that Primal Retrieval will assign optimal flows positive on F. Furthermore,
since Value Iteration does not depend on b, Primal Retrieval will construct the
unique optimal solution for any nonnegative right hand side that is 0 on trivial
vertices. Noting there is a feasible solution with bk > 0, vertex k is nontrivial, and
Primal Retrieval will construct the support for unit vector right hand side e k using

exactly the same labels t[i] and J[i] it employed to generate flows for b.
Under Theorem 2.6, F is a hyperforest where each component is a hyperar-

boresence, so that the component induced by vertices with a path to k must consist
of exactly those (J[i] , i) encountered as Primal Retrieval proceeds backward from
k. With the right hand side at k positive in both the b and the e k cases, flows on
all such hyperarcs will be positive in both solutions. Thus the support for e k will
be exactly the induced subgraph in F. []

Define sets

Ik[l]~f{s Ithere is a source hyperarc (0, s) directed into s, and
there is a directed path of nondegenerate hyperarcs
from s to l which does not contain vertex k}. (14)

A Leontief directed hypergraph is disjointly reachable if

Ik[jl] c~ Ik[j2] = 0 for every nondegenerate (J, k) ~ H,

j , , j 2 c J , j , ¢J2. (15)

394 R.G. Jeroslow et aL / Gain free Leontie)C fiows

That is, a Leontief directed hypergraph is disjointly reachable if for every hyperarc
(J, k) and source vertex v0, the existence of a directed path of nondegenerate
hyperarcs from vo to j~ c J, which does not contain vertex k, implies every directed
path ofnondegenera te hyperarcs from vo to j : c J must contain vertex k. The Leontief
directed hypergraph G = (V, H) is support disjointly reachable if for all b >/0, the

support hypergraph of every basic feasible solution to the corresponding Leontief
substitution flow problem is disjointly reachable. See Figure 3.

12[i]

14[I]

li[2]
I412]

= I3[i] = {I}
= Is[l] = {1,2} all Ik[5] = D

II~[[33]] = I~}} , ~
~-~1 ~ ~ I413] = I513] : {1,2} , ,'~.r.J"

= 13121 = {2} all Ik[4] = 0

= 1512] = {1,2}
nondegenerate hyperarc

. degenerate hyperarc

Fig. 3. Example of a disjointly reachable hypergraph.

Theorem 4.5. The following are equivalent for Leontief flow problems on Leontief

directed hypergraph G = (V, H) with constraint matrix A consisting of O, ±1:
(i) The inverse o f every basis submatrix feasible ,for some b >10 is binary in all

columns i for which bi > O.

(ii) Extreme flows are binary for every unit vector right hand side b = e ~ for which

there is a feasible flow.

(iii) No support hypergraph corresponding to a basic feasible solution for some b >10
contains a paracycle.

(iv) G is support disjointly reachable.

Proof. (i) ~ (i i) Let B be any basis matrix such that B lei~>0. By hypothesis B -1
is binary in column i. Thus, the extreme point solution B-~e ~, which equals column
i of B ~, is also binary.

(i i)~ (i i i) Prove the contrapositive. Assume that a given Leontief directed hyper-
graph with coefficients of 0, ± 1 in the constraint matrix has a paracycle P contained
in the support hypergraph /3 corresponding to a basic feasible solution for b m 0.

R.G. Jeroslow et al. / Oainfree Leontief flows 395

Let the paths defining the paracycle begin at vertex r, and merge in hyperarc (J, k).

Now observe that the unique hyperarc (J, k), directed into k has a positive flow,

so that Lemma 4.4 assures the paracycle will persist in the support for unit vector

right hand side e k. In this new support, x[J, k] = 1. But then the two hyperarcs
preceding (J, k) in the paths defining P must also have a flow of one unit since /5

which contains P is a hyperarboresence. Continuing in this way, we conclude that

at least 2 units of flow must leave the root vertex r of P. It follows that the unique
hyperarc of t5 directed into r has flow ~>2 and hence the extreme flow is not binary

for right hand side e k.

(i i i)~(iv) Again, prove the contrapositive. If G is not support disjointly reach-

able, then there exists a b >~ 0 for which the support hypergraph of the corresponding

Leontief flow problem contains a hyperarc (J, k), distinct tail vertices jl ,j2 c J, and

directed paths PI and Pa leading from some source vertex s toj~ andja, respectively,

without passing through vertex k and using ly nondegenerate hyperarcs (since all
hyperarcs in the support are nondegenerate). Paths P~ and /)2 have at least one

common vertex s. Let r be the last vertex they have in common before they reach

their respective tails j~ and J2. Portions of P~ and P2 beginning with r, together with

hyperarc (J, k), form a paracycle in the support.

(iv) ~ (i) Again prove the contrapositive. Assume there is a basis matrix B such

that B-Jb>~O but B -1 is not binary in column i even though bi>0. W.l.o.g. the

nonbinary element is in column i= m. Then B-~e " corresponds to a nonnegative
solution where there is a hyperarc (J, k) with integral flow greater than one. Since

the hypergraph is gainfree, by Theorem 2.6 the support is a hyperforest where each

component is a hyperarboresence. With b = e" it follows that the support is actually

a single hyperarboresence directed into vertex m. Then we may assume that the

vertices in the support are ordered such that the head vertex always has a higher

number than the tail vertices. Take k to be the highest numbered vertex such that

(J, k) is not one. Note that k < m because the unique hyperarc into m must have
a flow of 1 to balance b = e ~. Outbound hyperarcs at k must have unit flows because

they lead to higher numbered vertices. Thus, since tail weights are restricted to 1,

it follows that there are at least two distinct hyperarcs directed out of vertex k in

the support, and so two distinct paths of nondegenerate hyperarcs leading from

vertex k to vertex m. Since the support is a hyperarboresence, the two paths must

merge at vertex 1 <~ m, in a hyperarc (T, 1) with one of distinct tails h, t2 c T belonging

to each path. Finally note that the support must contain a path from a source vertex
s to vertex k in order for the flow on (J, k) to be positive. This path cannot use

vertex l since the support is a hyperarboresence. Therefore I~[q] c~ I~[t j contains

s, and the hypergraph is not support disjointly reachable. []

Corollary 4.6. I f the Leont ie f directed hypergraph G = (V, H) with constraint matrix

A consisting o f 0, ± l is either free ofparacycles or disjointly reachable, then extreme
f lows are binary for every unit vector b = ei]br which there is a feasible flow.

396 R. G. Jeroslow et al. / Gainfree Leontie[" fiows

Proof. A h y p e r g r a p h with no pa racyc les can have none in a suppor t . Also, i f a

Leont ie f d i r ec ted hype rg raph with A consis t ing o f 0, ± 1 is d is jo in t ly reachab le , it

is suppor t d i s jo in t ly reachable . Thus the corol la ry fol lows by (iii) and (iv) o f Theo rem

4.5 respect ively. []

Coro l l a ry 4.7. I f the Leont ie f directed hypergraph G = (V, H) with Leont ie f constraint

matrix A consisting o f O, ±1 is either free o f paracycles or di~jointly reachable, then
every basis submatrix feasible for some b >~ 0 has an inverse that can be permuted into
a lower triangular, binary matrix.

Proof. When A is Leon t i e f and consists o f 0, ± 1, Theorem 4.3 shows the inverse o f

any feas ible basis is integral and pe rmu tab l e to lower t r i angu la r form. As with

Coro l l a ry 4.6, i f G is free of pa racyc les or d i s jo in t ly reachable , e i ther (iii) or (iv)

o f Theorem 4.5 also holds . No t ing that A Leon t i e f means every row is nontr iv ia l ,

and so any bi can be taken as posi t ive in a bas ic feas ible so lu t ion , part (i) o f Theo rem

4.5 than proves the inverse is all b inary . []

Coro l la r i es 4.6 and 4.7 imply be ing d is jo in t ly r eachab le is sufficient for a 0, ±1

Leon t i e f subs t i tu t ion flow p rob l em over a Leon t i e f mat r ix A to have b ina ry feas ible

basis inverses and b ina ry vertices for every unit vector right h a n d side. We summar ize

this and o ther results in Table 1.

Table 1

Summary of properties for Leontief flow problems on G = (V, H) with incidence matrix A Leontief

Sufficient Value Basis Basis Extreme
condition iteration matrices inverses solutions

Leontief substitution asymptotically Leontief nonnegative - -
(b ~> 0) convergent in

many cases (see
Koehler
et al., 1975)

Leontief substitution strongly Leontief and nonnegative acyclic support
(b/> 0) and gainfree polynomial triangular and triangular

Leontief substitution strongly Leontief, nonnegative, acyclic support
(b/> 0) and A integer polynomial triangular and triangular and and integer for
(thus gainfree) integer integer integer b

Leontief substitution strongly Leontief, triangular and acyclic support
(b ~> 0), A is 0, ± 1 (thus polynomial triangular and binary and binary for
gainfree and integer), G 0, ±1 unit vector b
disjointly reachable or
free of paracycles

R.G. Jeroslow et al. / Gainjkee Leontief flows 397

Although disjoint teachability (as opposed to support disjoint teachability) is not
necessary for binary results, this sufficient condition is significant because the
property of being disjointly reachable can be tested in strongly polynomial time on
gainfree hypergraphs. First, degenerate hyperarcs (J, i) are identified and deleted

using the algorithms of Section 3. From the G that remains, construct an ordinary
graph G ' on the same vertex set, with one arc (j, i) for each j c J of each (J, i) in
G. Standard reachability algorithms applied to variants of G ' with each vertex k
deleted in turn can now yield the sets Ik[1] of (14). Definition (15) is then easily
verified. We do not know whether there is a polynomial algorithms for testing
support disjoint reachability.

Earlier work by Martin, Rardin and Campbell (1990) established that a sufficient

condition for the binary property (ii) of Theorem 4.5 in acyclic Leontief directed
hypergraphs is that there exist finite sets {R[i]li ~ V} satisfying

R[j]~R[k] fora l l (J,k)~H, j~J, (16)
and

R[j,] c~ R[j2] = ~ for all (J, k) c H, j~ ¢j2 c J. (17)

Certainly (16) implies R[s] c R[k] for each source vertex s with a path to k. Thus

(17) requires that the index sets of source vertices with paths to distinct tails of
hyperarcs (J, k) should not intersect. In the acyclic case this is exactly disjoint
reachability in G.

5. Applications

Given their very special structure, it is surprising that gainfree, disjointly reachable,

Leontief substitution flow problems arise in so many different settings. In the
subsections below we briefly review some of those application areas, show how
previous results relate to hypergraph results in Sections 2-4, establish some new
results, and highlight open issues.

5.1. Generalized network flows

The most famous class of Leontief flow problems are the network flow problem and
the generalized network flow problem, which have at most one negative entry per
column of constraint matrix A as well as at most one +1. Ordinary network flows

are the case with the negative entries - 1 ; generalized flows allow arbitrary tail
weights. Thus, in graph terms, a network flow is a Leontief flow problem on an
ordinary directed graph, and a generalized flow problem is a Leontief flow on a
directed generalized graph.

I f a Leontief directed hypergraph has a paracycle, it must have a hyperarc with
at least two tails. Since this cannot occur in either ordinary or generalized network
flows, these Leontief flow problems are always disjointly reachable. Ordinary flow

398 R.G. Jeroslow et aL / Gainfree Leontief flows

problems are also gainfree because every directed cycle has a gain = 1. Generalized
network flows may or may not be gainfree.

The ordinary and generalized network flow cases of Leontief substitution flows
are, of course, those with b/> 0. To relate them to a more familiar category, recall
the shortest path problem of finding a directed path from vertex s to vertex t in a
given graph (or generalized graph) that is shortest in the sense of satisfying a unit

demand at t. It is well known in the ordinary graph case that if there is no directed
cycle of negative total cost, this problem can be resolved by solving a Leontief flow
problem with a source arc inbound at s and a b - e ' . Extension to the gainfree
generalized case leads to a converse characterization of all b ~> 0 cases on graphs
or gainfree generalized graphs.

Lemma 5.1. Every Leontief substitution flow problem on a directed graph or gainfree

generalized graph that has a finite optimal solution can be solved by a series of at most
m shortest path problems, where m is the number of vertices.

Proof. Since every ordinary directed graph is gainfree, we need only treat gainfree
generalized graphs. Consider a Leontief substitution flow problem on a gainfree
generalized graph. Modify the problem by adding a new vertex s, replacing all

source arcs (0, k) by arcs (s, k), and creating a new source arc (0, s). One way to
solve this Leontief flow problem is to solve separate subproblems for each b, > 0.
Each such problem has a unit demand at vertex t and bi = 0 for i ~ t. If x ' is the
resulting optimal flow, x = ~ b,x' solves the full problem. But because the associated

generalized graphs are gainfree, and the only source vertex is s, the support of each
x t will consist of a shortest path from s to t. Thus, this scheme for the given Leontief
substitution problem is equivalent to solving up to m shortest path problems and
summing results. []

Cosares and Adler (1987) have recently shown that ordinary network flow prob-
lems with b/> 0 also have a number of elegant properties in the context of solution
by the dual Simplex algorithm. Among other things, the dual simplex is polynomial

using Dantzig's (least b) pivoting rule, and the famous Hirsch conjecture about the
underlying dual polytope is proved to hold. Cosares and Adler also suggest that

their results may extend to some generalized network flows. Since the Hirsch
conjecture is known to hold for arbitrary Leontief substitution flows (Grinold, 1971),
these results raise the possibility that some form of simplex algorithm is polynomial
on at least gainfree Leontief substitution flow problems.

5.2. Expert systems with Horn clause knowledge bases

A Horn clause in predicate logic is a clause with positive predicates and at most
one conclusion. Horn clauses are an integral part of logic programming languages,
such as Prolog, which are used in many artificial intelligence applications. We show
how to model as a gainfree Leontief substitution flow, the problem of deciding the

R.G. Jeroslow et al. / Gainfree Leontie[flows 399

truth of a unary predicate bound to a constant in a Horn clause knowledge base
with only unary predicates. The procedure is motivated with the following example
taken from Walker, McCord, Sowa and Wilson (1987).

Washable allergenic things are washed. Nonwashable allergenic things are vacuumed.

Everything that is gray and juzzy is allergenic. Shirts and dogs are washable. Lamps,

sofas and cats are nonwashable. Do I vacuum my gray and fuzzy cat Tiger?

In logic programming terms, this example is described by the following:

Predicates

washable(X).
nonwashable(X).
shirt(X).
cat(X).

allergenic(X), thing(X), washed(X).
vacuumed(X), gray(X), fuzzy(X).
dog(X), lamp(X), sofa(X).

Cla uses:

washed(X) :- washable(X),
vacuumed(X) :- nonwashable(X),
allergenic(X) :- gray(X),
washable(X) :- short(X).
washable(X) :- dog(X).
nonwashable(X) :- lamp(X).
nonwashable(X) :- sofa(X).
nonwashable(X) :- cat(X).

allergenic(X), thing(X).
allergenic(X), thing(X).
fuzzy(X), thing(X).

Facts:

cat(tiger), gray(tiger), fuzzy(tiger), thing(tiger).

Constants:

tiger.

Goal:

vacuumed(tiger).

The following method models this same example as a gainfree Leontief substitu-
tion flow problem.

• Define a vertex in the hypergraph for each predicate.

400 R.G. Jeroslow et aL / Gainfree Leontief flows

• Define a hyperarc for each clause. Do so by directing the head of the hyperarc
into the vertex which corresponds to the conclusion of the clause. The tails of the

hyperarc are connected to the conditions of the clause. Hyperarcs with multiple
tails and heads are required in the non-Horn case.

• Bind the facts to the appropriate predicates. Do so by defining a vertex for
each fact and create an arc (predicate(constant), predicate(X)) for each fact-
predicate pair. This may seem redundant, however it allows for testing of other
predicates bound to a constant with little modification of the hypergraph. For
example, to test washed(tiger) requires changing only the b vector and no changes
to the A matrix.

• Create a source vertex Vcons~ant, and hyperarc (9, Voonst,,,) for the constant that
is bound to the goal predicate. Then add the arcs from the constant vertex to the
corresponding fact vertices. In this example there is a source vertex Vt~ge,- and
arcs from vertex vtige, to the fact vertices thing(tiger), cat(tiger), gray(tiger) and
fuzzy(tiger).

• The only demand vertex is the goal predicate vertex Vgoa, with a demand of
one unit. I f the problem is feasible then the goal predicate is true; if the problem
is infeasible the goal predicate is false.

Figure 4 illustrates this process for the example problem. The issue of determining
which predicates are an implication of the facts in the knowledge base reduces to
the distinction between Leontief and pre-Leontief matrices made earlier. A predicate
is provable exactly when its vertex is nontrivial, using the construction given above.

thing(tiger) thing(X)
~ ~ b l e (X)

~/~ ~ nonwash()<

Fig. 4. Hypergraph for knowledge base.

R.G. Jeroslow et aL / Gainfree Leontief flows 401

The Leontief flow problem is gainfree because all the hyperarc multipliers are
+1. Since the right hand side is the unit vector, by Theorem 4.2 the Leontief flow
problem for determining which predicates follow from the facts has integral sol-
utions. See Jeroslow and Wang (1989) for an earlier proof of this result. However,
the solutions are not necessarily binary. A positive integer greater than one in a
solution corresponds to that hyperarc being used more than once in the proof of a
proposition. In Figure 4 the numbers above the hyperarc correspond to the number
of times the hyperarc is used in the proof of vacuum(tiger), i.e. its optimal solution
value. The highlighted hyperarcs indicate the solution.

If the methods of Section 3 were applied directly to logic tasks like the above
example, Value Iteration would first perform a forward pass to settle whether the
goal is provable. (The forward pass algorithm is akin to forward chaining, see for
example, Dowling and Gallier (1984).) Then, if so, Primal Retrieval is invoked to
exhibit a proof. This approach has the virtue of precision. Still, for the large
knowledge bases of expert systems, with their possible exponential numbers of
bindings (complete assignment of constants to variables), such a scheme is often
impractical. In the example above each predicate has only one variable. Thus, there
is a unique assignment of constants (tiger) to variables and a simpler reduction to
propositional logic. In cases where there is more than one variable per predicate
(such as in recursion) the assignment of constants becomes a problem. See Chandru
and Hooker (1988) and Jeroslow (1985) for a discussion of mathematical program-
ming approaches to first order predicate logic.

Logic programming languages like Prolog deal heuristically with this difficulty
by backward chaining, i.e. searching backwards from the goal to look for a proof.
The idea is analogous to applying Primal Retrieval without first having used Value
Iteration to fix the labels J[i]. Infinite loops can certainly occur. (For example, in
some implementations of backward chaining a hypergraph with cycles may result
in an infinite loop, depending upon the order in which the rules are entered.) In
fact, the question of whether the search will terminate is undecidable for general
cases. Still, sufficient conditions based on structural properties of what we have
viewed as the underlying hypergraph can be obtained. The recent work of Ulman
and Van Gelder (1988) describes some approaches.

5.3. Polyhedral characterizations for recursively defined graphs

Much of the recent interest in Leontief-like models centers on their ability to
characterize the solution sets of combinatorial problems in terms of the extreme
solutions of a suitable Leontief substitution flow problem. One family of cases arises
in the context of operations management. (See Martin, Rardin and Campbell (1990).)

A much broader class of examples arises in the context of optimization over
recursively defined families of graphs. Recent papers by Wimer, Hedetniemi and
Laskar (1985) and Bern, Lawler and Wong (1985) summarize a large list of recursively
defined graph forms, and a larger list of optimization problems, each combination
of which is polynomially solvable by a variety of discrete dynamic programming.

402 R. G. Jeroslow et al. / Gainfree Leontief flows

Graphs G(V, E) belonging to one of these classes are viewed as having a fixed
number K ~r]K] distinguished vertices K c V called terminals. Each family o~ begins

from a set ~-0 c o~ of primit ive starting graphs. Other members are obtained by
repeated application of a finite list of composit ion operations defined in terms of
the terminals. Composit ions combine two members G i = (V i, E i) , G j = (W , E j) of
o~ into a new member, G k of ~ by V k ~- V ~ u V j, E k ~- E ~ u E .j, and then constructing
terminal set K k by

(i) identifying some of the terminal vertices (by identify, we mean treat as the
same vertex) in K ~ c V ~ with those of K j c V j,

(ii) adding new edges or deleting edges between terminals in K ~ and ones in K i,

(iii) adding new edges or deleting edges between two terminals in K ~, or two
terminals in K j, and

(iv) selecting K terminals K k from K ~ u K j.
One famous class of recursively defined graphs are series-parallel graphs with

K = 2 terminals. Primitives for this family of graphs are single edges (with their two
ends defining terminals). Series composition combines two series-parallel graphs
by identifying a terminal of one with a terminal of the other; the nonidentified
terminals define the terminal vertices of the result. Parallel composition identifies
both terminals of the two graphs, the combined terminals being the terminals of

the result. See Figure 5.
Optimization algorithms on K-terminal graphs such as series-parallel graphs are

organized around states of partial solution of subgraphs encountered in composing

G9

,.,o., parallel
/ / , . " composition

G 8 0
/ parallel \ /" / ,, / composition \ G3 / series , c°m °s't'°4V.

O : terminal vertex G7 % / / c°Pmp°a~31°n G2

G1
Fig. 5. Recursive composition of a series-parallel graph.

R.G. Jeroslow et al. / Gainfree Leontief flows 403

the one of interest. In some cases states reflect portions of an optimal solution
contained in the subgraph; in others they account for forbidden substructures.
Algorithms proceed in "bot tom up" fashion, first solving all states of primitives,
then recursively finding the best way to reach all states of each intermediate subgraph.

An easy series-parallel example is the problem of finding the minimum weight
cycle. For each subgraph in the composition there are two states. A subgraph is in

the cycle state if it contains the minimum cost cycle. A subgraph is in the pa th s tate

if it contains a partial cycle in the form of a path connecting the terminal vertices.
A subgraph in the cycle state and a subgraph in the path state cannot be combined
in either a parallel or series composition. A composit ion of two subgraphs, which
are both in the cycle state, is not allowed. Two subgraphs in the path state joined

by a series operation yield a subgraph in the path state. Two subgraphs in the path
state joined by a parallel operation yield a subgraph in the cycle state.

Figure 6 depicts the optimization through cycle and path states for the graph
composed in Figure 5. For example, in the parallel composit ion of G 9, the cycle
state can be reached by inheriting a cycle from either of the subgraphs G 5 and G 8,

or by combining the path states of the two subgraphs. In the series composit ion of
G 5, path states of G 3 and G 4 combine to produce a path in the composition.

demand = 1

Fig. 6. State composition hypergraph for minimum cycle on the graph of Figure 5.

404 R.G. Jeroslow et al. / Gainfree Leontief flows

If Z_~ l~ n and CONV(Z) is a polyhedron, then:

A x + D z = b, x >~ O,

is an extended polyhedral representation of C O N V (Z) if

C O N V (Z) = {z Ithere exists x/> 0 such that A x + Dz = b}.

Such formulations are valuable because use of the auxiliary' variables x often
makes it possible to obtain a compact (polynomial in n) characterization of
CONV(Z) sufficiently small to be inserted in sharpening the linear programming
relaxation of a model with more complex constraints (see Martin, 1987; and Eppen
and Martin, 1987).

Martin, Rardin and Campbell (1990) show that Leontief flow problems over state
composition graphs like the one in Figure 6 lead directly to extended polyhedral
characterizations of optimization problems solvable on recursively defined graphs.
The demand at every vertex is zero except for a +1 at the goal state of the final
graph (the cycle state of G ') in Figure 6). Vertices that correspond to a primitive
edge in a path state are given source hyperarcs (bold hyperarcs in Figure 6) directed
into the vertex; with a the flow of one unit on the source hyperarc indicating that
the corresponding edge is in the cycle (these source hyperarcs correspond to the

original z variables). The remaining hyperarcs constitute the auxiliary x variables.
To provide a correct extended polyhedral representation, the extreme flows of

such Leontief formulations must be binary in x and z. Fortunately, the models
satisfy virtually all of the desirable properties highlighted in Sections 2 and 4. The

demand vector is a unit vector, hence it is a Leontief substitution flow problem. It
is also gainfree since all coefficients are 0 or ± 1. The recursive nature of the algorithms
they model also assures the Leontief directed hypergraphs are acyclic (although

this is not necessary or sufficient for binary integrality).
The more subtle issue is to establish that the hypergraphs are disjointly reachable

(i.e. they contain no paracycles), so that Corollary 4.6 applies. To see that this is
true, we focus on the edge sets in composition rules (i)-(iv) above. The fact that
edge sets of composed subgraphs are always disjoint means the subgraphs could

not have a common ancestor vertex in the Leontief hypergraph. Paracycles are thus
impossible.

5.4. Polyhedral representation o f send and split

Erickson, Monma and Veinott (1987) present a very elegant algorithm, the send-and-

split method, for optimizing minimum concave cost network flows. By using auxiliary
variables, we show how to model the send and split algorithm as a gainfree Leontief
substitution flow problem. Then, using the binary integrality results of Section 4 we
show that the Leontief directed hypergraph formulation is a correct polyhedral

representation of the associated concave network flow problem and allows it to be
solved as a linear program.

R. G. Jeroslow et al. / Gainfree Leontief flows 405

For sake of simplicity, we assume that the network flow problem under consider-

ation is a single source, uncapaci ta ted problem. The method of Wagner (1959) can

be used to reduce problems with capacities and multiple sources into this format.

The problem under considerat ion on digraph (N, E) with vertex set N and arcs E

is model (NF):

(NF) min ~ cq[zij]
(i , j) c E

s.t. ~ zj, - Z z!i = { d,,
(j , l)c E (/,.j)c E l 0 '

z q > 0 , a l l (i , j) c E .

D d i , for 1= io,

all I c D,

all l c T,

(is)

(19)

(20)

In this formulat ion, i0 indexes the supply vertex, T indexes pure t ransshipment

vertices and D indexes the demand vertices where dj is the nonnegat ive d e m a n d at
vertex j, zij is the flow on arc (i , j) , and %[zij] is the cost of sending zq units o f flow
over arc (i , j) . The % [*] are assumed to be concave on the nonnegat ive real line

with c0[0] = 0. We assume that there is a min imum cost flow for some demand
vector (dj)j~), Then from Erickson et al. (Theorem 1) there is a min imum cost flow

for which the induced subgraph is a forest. Therefore, in an extreme flow ~, for

every arc (i , j) there exists an 1 _c D such that

~ q = 0 or 5 i i = ~ all. (21)
I c I

In words, the flow on arc (i , j) , in an extreme flow, is equal to zero, or the sum of

the demands for some subset o f demand vertices.

The property given in (21) simplifies solution considerably since a flow choice

for (NF) consists o f two types o f decisions. Given that we are at vertex i with a

flow of ~ / ~ d~, one possibility is to send the entire flow on to an adjacent vertex j
at cost cq [~c l dl]. The other opt ion is to split the flow into proper subsets ~/c~' dl

and ~/~/\~, d/, both now located at the same vertex i.

The send-and-spli t algori thm resolves these decisions in backwards fashion start-

ing f rom singleton demand sets {k}. Shortest path computa t ion with costs cq[dk]
establishes the cost of sending this flow from each possible split point to destination

k. We now know the least cost way of complet ing some demand sets given that they

are at any part icular vertex. Proceeding recursively, we can determine similar costs
of complet ing a larger demand set I by picking a min imum cost pattern of the form:

send the combined flow to a vertex over a shortest path with costs cij[~l~ / dr], split
into I ' and I \ I ' , and finish in the optimal manner. The result is a sequence o f

shortest path problems with different costs.

The Leont ief flow model of this computa t ion parallels the backwards solution.

Specifically, it is formed as follows:

• Create vertex set W = N × P (D) for the hypergraph where P (D) is the power

set o f the demand vertices.

406 R.G. Jeroslow et al. / Gainfree Leontief f lows

• Create a split hyperarc for each possible split decision. These hyperarcs have
head vertex (i, I) and tail vertices {(i, I'), (i, I\I')}. Each split hyperarc always has

two tails and the tail weights are always +1. A cost of zero is given to each split
hyperarc in the objective function.

• Create a send hyperarc for each possible send decision. For each (i,j) ~ A and

I c D the send hyperarc has head (i, I) and tail (j, I) . Note the hyperarc points in
the reverse direction of the network arc (i,j). Tail weights are +1. The cost assigned
the send hyperarc in the objective function is cij[Y,t,~l dh].

• Create a source hyperarc directed into every vertex (i,{i}) all i6D. These
hyperarcs are also assigned a zero cost in the objective function.

• Create a unit demand at vertex (io, D).

This process is illustrated for the network flow problem in Figure 7. Figure 8 contains
the corresponding Leontief directed hypergraph. Notice that directions of arcs in
Figure 8 are counter to the direction of arcs in Figure 7.

The values of the flow variables are recovered from the values of the hyperarc
variables as follows:

}~ [~ dh] x[(j'l) '(i 'l)]~zi'"
IcY) h 1

Combining with the Leontief flow balance constraints gives the reformulated or

ver tex ver tex

source
ver tex

Fig. 7. Concave network flow example.

c

c57

R. G. Jeroslow et al. / Gain.free Leontief flows

I = N} t = {S} t = {4,6}

407

Fig. 8. Send-and-split representation of network flow problem in Figure 7.

extended polyhedral representation (RNF):

(RNF) min ~ ~ c ! j [~ dh]x[(j , l) , (i, I)],
I ~ D (i ,]) ~ E I 1

s.t. E x[(j, I), (i, I)]+ E x[{(i, I'), (i, I \ I ') } , (i, I)]
(i , . j)c E I ' ~ 1

- Z x[(i , I) , (j, I)] - ~ x [{ (i , I) , (i, H \ I) } , (i, H)]
(. j , i)~ E I ~ H

f
l, (i, I) = (io, D),

= -x[(i, (i, 1)], (i, I) =(i,{i}),
0, all other (i, I),

all x[(j, 1), (i, I)], x[{(i, I'), (i, I /1 ')}, (i, I)] ~> 0,

,~D(~_ h ,dh)X[(J ' ') ' (i ' I)]=-z i J f o r a l l (i , j) 6 E .

(22)

(23)

(24)

(25)

408 R.G. Jeroslow et al. / Gain free Leontief flows

Lemma 5.2. The hypergraph of the Leontief flow problem defined by (22)-(24) is
disjointly reachable.

Proof. The only hyperarcs with multiple tails are ({(i, I ') , (i, I \ I ') } , (i, I)) . It suffices
to show that if h c I ' , then there is no path from the vertex (h, {h}) to vertex (i, 1\I ') .
This is trivial because, by construction of the hypergraph, there is a path from vertex
(h, {h}) to vertex (i, I ') if and only if h c I ' . []

The binary integrality of (RNF) and a result similar to Theorem 5.3 was first
proved in Campbell (1987). However, that proof is specific to the structure of (RNF).

We are now in a position to establish it much more easily.

Theorem 5.3. The formulation given by (23)-(25) is an extended polyhedral representa-
tion of the formulation given by (19)-(20).

Proof. Show ~ is a feasible solution to (NF) if and only if there exists .~ such that
(,~, g) is a feasible solution to (RNF). First show (L 2~) feasible in (RNF) implies
is feasible to (19)-(20). To see this, create an aggregate constraint for each lc N,
by summing the all constraints in (23) for i = 1 using multipliers of --(~h~1 dh). With
this weighting all split variables cancel in the aggregate constraint leaving

(j , l) c E I G D h 1 (l , . j)cE I G D l

I --~h~D dh, 1= i0,

= d,X[O,(l,{1})], l e D , (26)

[0 , 1~ 12.

To see that the right hand sides of (26) are correct observe that the right hand sides
of (23) are all 0 except when l = io, or l~ D. The first of these produces --~h~D dh
because of the unit demand at vertex (i0, D). For l c / 9 , the right hand side in the
aggregate constraint is dlX[0, (1, {l})]. By Lemma 5.2, the fact that all nonzero
coefficients in (23)-(24) are ±1 and Corollary 4.6 ecery extreme point of the

polyhedron defined by (23)-(24) is binary with support defining a hyperarboresence.
In every support hyperarboresence (extreme point) every source hyperarc (0, (l, {l}))
has a flow of one unit. In the hypergraph corresponding to (23)-(24) every directed
cycle contains only send hyperarcs (which have a single tail), hence no source

hyperarcs are in any directed cycle and x[0, (l, {l})] = 0 in every extreme direction
of recession. By the theorem of Minkowski every feasible (~, ~) to (23)-(24) is a
convex combination of extreme points and nonnegative combination of extreme
directions of recession for the pointed polyhedron defined by (23)-(24). The fact

that the source hyperarcs are zero in the extreme directions of recession and the
fact that the flow on every source hyperarc is one in an extreme point solution
implies that -~[0, (1, {1})] = 1 in every feasible solution. Therefore, dfi[0, (I, {1})] = dr.

R.G. Jeroslow et al. / Gainfree Leontief flows 409

Then, using the definition of z!i in (25) and recalling that send hyperflows x are
reverse to z flows, we see that (26) implies (19).

Assume ~ is feasible in (19)-(20) and show that there exists (~,)7) feasible in
(23)-(25). Again use the theorem of Minkowski and show that for every extreme
point and extreme direction of recession for the polyhedron defined by (19)-(20)
there is a corresponding point in the polyhedron defined by (23)-(25). It is clear
that for every combination of send and split decisions producing an extreme point
solution in (NF) there is a corresponding support hyperarboresence of an extreme
point of the polyhedron defined by (23)-(25). Also, every extreme direction of
recession of the polyhedron defined by (19)-(20) corresponds to a circulation with
support which is a directed cycle. For all I___ D, each of these directed cycles also

exist in the hypergraph (in reverse direction). Hence, there is a set of send decisions
corresponding to any circulation in (NF). []

Although both (NF) and (RNF) have feasible regions which are polyhedrons
model (NF) is a concave network optimization problem. Model (RNF) is a linear

program. In addition to the concavity of cij[*], it is crucial that the x variables in
(23)-(25) be binary in order for the objective function (22) to correctly model (18).

Also note that formulation (RNF) is not polynomial in the number of demand
vertices because all subsets of D have to be considered. However, Erickson et al.

(1987) show that when the graph of (NF) can be embedded in the plane with vertices
of i0 w D on at most a constant number of fl faces, many subsets can be disregarded.
In particular, attention can be restricted to O(/31DI 2) demand subsets, and (RNF)
becomes a polynomial size extended formulation.

5.5. Leontief flow model of deterministic Turing machines and implications

Jones and Laaser (1974) give a model of a deterministic Turing machine in conjunc-

tive normal form, CNF, where each disjunctive clause of literals contains at most
one positive literal (i.e., is Horn). (See also Dobkin, Lipton and Reiss (1979), who
use this result to show linear programming is log-space hard for ~ - - a n d now,
given Khachian (1979) is log-space complete.) By slightly modifying the Jones and

Laaser result, and using the material in Section 5.2 on expert systems, we show how
to model a deterministic Turing machine as a gainfree Leontief substitution flow
problem.

Consider a single tape Turing machine with a finite alphabet A = {0, 1,/¢}, finite
states Q and next move function 6 : Q x A ~ Q x A x {-1, 0, 1}. To model a Turing

machine which accepts language L as a satisfiability problem on a Horn clause
knowledge base, define the atomic propositions:

• v(t, c, q, a) is true if, before move t, and after move t - 1 , the machine is in
state q c Q with symbol a c A in tape square c and the tape head is over square c.

• w(t, c, c~) is true if, before move t, and after move t - 1, tape square c contains
symbol c~ and the tape head is not over square c.

410 R.G. Jeroslow et aL / Gainfree Leontief flows

The truth of an atomic proposi t ion involving tape square c at move t is completely

de termined by the next move funct ion, the state and the contents of tape squares

c - 1, c, and c + 1 at move t - 1. See Table 2 for a list of the necessary Horn clauses.

We assume, without loss, that the inpu t language L tested is a b inary string, the

length of the inpu t string z, is n, the input string begins in square 1, the t ime

complexi ty is 0 (n) , q0c Q is the state of the machine at time zero, qA C Q is the

accepting state where z c L, the total n u m b e r of tape squares required (both inpu t

and workspace) is v (n) , and the tape head is ini t ial ly over square 1.

Atomic proposi t ions which do not use tape squares 1 through v (n) are not inc luded

in the knowledge base.

Theorem 5.4. Le t T be a determinis t ic Turing mach ine f o r deciding i f a s tr ing z is in

language L. Then z is accepted by the Turing mach ine i f and only i f an a tomic proposi t ion

Table 2

Horn clause knowledge base for deterministic Turing machines

Rules

w(t,c,c~):- w (t - l , c - l , c ~ i), w(t- l ,e ,o~) , w (t - l , c+ l ,a , ,+O
for all t, c, c~, a ~, o~c+ 1

w(t,c,c~):- v (t - l , c - l , q ' , c e , i), w (t - l , c , cz), w(t - l ,c+l ,c~:+l)
for all t,c, cx, c~,+t, (q', c~_1)~6 I(Q×A×{-1,0})

w(t,c,c~):- w (t - l , c - l , c ~ _ O , v(t 1, c,q',fl), w(t - l , c+l ,c~ ,+l)
for all t,c,c~,cx¢_,,c~.+l, (q',/3)~6-~(Q×{c~}×{-1, 1})

w(t,c,c~):- w (t - l , c - l , c ~ _ l) , w(t - l ,c ,c~) , v(t 1, c+l,q',6~,+ 0
for all t,c,e~,c~._l, (q',c%+O~6 I(QxA×{0,1})

v(t ,c ,q,a):- v (t - l , c 1, q',a, ~), w (t - l , c , cO, w (t - l , c + l , c ~ + 0
for all t,c,q,c~,c~+l, (q',ct'~ i)~6 l({q}×A×{1})

v(t,c,q,c~):- w (t - l , c - l , c ~ _ l) , v(t 1, c,q',fl), w(t - l ,c+l ,c~¢+ 0
forall t, c, q, c~, c~ 1,c~,+1, (q', f l)~ 6-~({q}- {o~} × {O})

v(t,c,q,c~):- w(t 1, c 1, c~¢_1) , w(t- l ,c ,c~) , v(t - l ,c+l ,q ' ,c~¢+l)
for all t,c,q,a,c~¢ ~, (q',c~.+l)C6 l({q}zA×{-1})

Facts

v(1, 1, q0, 1)°z l : 1
v(1, 1, qo ,0) °z l=0

w(1, c,l)'~-->z~=l, c = 2 , . . . , n
w(1, c,O)+~z.-O, c - 2 n

w(1, c, ~) c - n + 1 ~(n)

R.G. Jeroslow et al. / Gainfree Leontief flows 411

corresponding to the accepting state can be set true in the Horn clause knowledge base
given by Table 2.

Proof. It suffices to show for the Horn clause knowledge base of Table 2 that (i)

for each move t exactly one v(t, c, q, ~) is true, and (ii) that for each tape square

c and each move t at most one of the a tomic proposi t ions w(t, c, c~), v(t, c, q, c~) is

true. These two condit ions require that the tape head be above a unique tape square
at every move, the machine be in a unique state at every move, and each tape square

contains a unique symbol at each move.

Proof by induction. For t = 1 the result is obvious since either v(l , 1, q0, 1) is true

and v(l , 1, qo, 0) false when zl -- 1, or v(1, 1, q0, 1) is false and v(1, 1, qo, 0) true
when zl = 0. Similarly for the w atomic proposit ions.

Assume (i) and (ii) are true for moves 1 th rough t. First show part (i) for move

t + l , i.e. distinct v (t + l , c, q, a) and v (t + l , c', q', a ') cannot both be true. There
are two subcases to consider: (i)(a) c ¢ c' or q # q', and (i)(b) c = c', q = q', and

c~¢ c~'. From Table 2 it follows that if v (t + l , c , q , c ~) is true there must be a

cor responding v a tomic proposi t ion true at move t.
Similarly for v(t + 1, c', q', ce'). But c ¢ c' or q # q' and the fact that a deterministic

Turing machine only allows unique next move funct ions implies that at least two

distinct v a tomic proposi t ions must be true at move t which contradicts the induct ion

hypothesis so (i)(a) cannot happen.
Next consider (i)(b) with c = c', q = q', but c~ # c~'. I f the tape head is to the left

or right of c before move t and only one v a tomic proposi t ion is true, then f rom

Table 2 both w(t, c, c~) and w(t, c, e~') are true which contradicts (ii) o f the induct ion

hypothesis. I f the tape head is above square c at the start of move t then due to

the uniqueness of the next move function, at least one o f the w atomic proposi t ions

for square c must also be true in order to account for both c~ and c~' occurr ing in

true a tomic proposi t ions, again contradict ing part (ii) o f the induct ion hypothesis.
The p roo f of part (ii) for move t + 1 is similar. []

The hypergraph flow problem corresponding to the Horn clause knowledge base

of Table 2 is

z~x[0, v(1, 1, qo, 1)] - ~ flow out variables = 0, (27)

(1 - z0x [0 , v(1, 1, qo, 0)] - ~ flow out variables = 0, (28)

z,,x[0, w(l , c, 1)] - ~ flow out variables = 0, c -- 2 , n, (29)

(1 - z ,) x [0 , w(l , c , 0)] - ~ flow out variables = 0, c - - 2 ,n , (30)

x[0, w(1, c, / ~)] - ~ flow out var iab les= 0, c = n + l , . . . , u (n) , (31)

hypergraph flow constraints for t ~ l, (32)

F. Y~ E x[J, v(fS(n), c, qA, a)] = 1, (33)
J e - -1 c ~ . ~

nonnegativity. (34)

412 R.G. Jeroslow et al. / Gainfree Leontief flows

Constraint (34) is merely a unit demand requirement at the goal of accepting z.

Because we do not know a priori whether z,. = 0 or z,. = 1, both source hyperarcs

are provided in (27)-(30). Constraints (27)-(31) are the conservat ion of flow con-

straints for all a tomic proposi t ions at time t = 1.

Theorem 5.5. For every language L ~ ~ and every input 2 ~ {0, 1}" there exists a gainfree

Leont ie f substitution f low problem with size polynomial in n which is feasible i f and

only i f Y c L.

Proof. If L c ~', then for any input z o f size n there is a deterministic Turing machine

T, with time and space complexi ty bounded by a polynomial to decide the member-

ship of z in L. For any fixed n and Turing machine T, construct the corresponding

Leont ief flow constraints for the clauses o f Table 2. If :~1 - 1 then by (27) source

hyperarc (0, v(1, 1, qo, 1)) has no restriction o f flow and v(1, 1, q0, 1) is a fact, while
hyperarcs with tail vertices v(1, 1, qo, 0)) must have zero flow in order to satisfy

(28) so v(1, 1, qo, 0) cannot be used as a fact. Conversely, when 21 -- 0 source hyperarc

(0, v(1, 1, qo, 0)) has no restriction o f flow and v(1, 1, qo, 0) is a fact, while hyperarcs

with tail vertices v(l , 1, q0, 1) must have zero flow and v(1, 1, qo, 1) cannot be used

as a fact. Similarly for the hyperarcs with c = 2 , . . . , n. Clearly this Leont ief flow

problem is gainfree since all nonzeros are ±1. It is a Leont ief substitution flow with

integral right hand side since the right hand side is the unit vector. Since L c ~ both
q~(n) and ~,(n) are polynomial functions o f n. The number o f atomic proposi t ions

in the Horn clause system is then bounde d b y t h e polynomial & (n) x u(n) x]Q[x IAI.

Since every hyperarc has at most three tails the resulting formulat ion (27)-(34) is

polynomial in size. By Theorem 5.4 it has a feasible solution, and hence integral

solution, if and only if ffc L. []

Theorem 5.5 says, that in a certain sense, gainfree Leont ief substitution flow
problems are sufficient to provide an extended characterizat ion of every language

L 6 P. In contrast to Sections 5.3-5.4, however, we have not described a system of

linear equations in z and x such that (z, x) is feasible if and only if z c CONV(L) .

It is not necessarily true that if (~, ~) is feasible to (27)-(34) then ~c CONV(L) . In

Theorem 5.5 we construct a specific Leont ief flow problem for each input z. To

have a true extended representation, the zi must be treated as variables. But then
representat ion (27)-(34) is bilinear (linear only if z or x is fixed). Thus, we have
proved every language L 6 P has an extended bilinear representation, but whether

each has a l inear one remains an open question.

6. Conclusion

The objective o f this paper is to unify and extend results for Leont ief substitution

systems relevant to discrete and combinator ia l research by viewing them as flows
on directed hypergraphs. Sections 2-4 reinterpret some known results, and develop

R.G. Jeroslow et aL / GainJ?ee Leontief flows 413

new integer and b ina ry condi t ions , by ident i fy ing and explo i t ing ga inf ree and

d i s jo in t ly r eachab le s tructures o f under ly ing hyperg raphs . A l though h y p e r g r a p h s in

genera l tend to be ra ther abst ract , we bel ieve flows in our Leon t i e f d i rec ted hyper -

g raphs will p rove qui te intui t ive for the many researchers fami l ia r with g raphs and

networks . They thus make known app l i ca t i on results eas ier to unders t and . Still , the

real meri t in the Leon t i e f flow p a r a d i g m is d e m o n s t r a t e d only by p r o d u c i n g new

a p p l i c a t i o n results . Sect ion 5.5's ex t ended b i l inear charac te r i za t ion o f l anguages in

is one, but we bel ieve there are m a n y more to fol low. Thus we advoca te the

search for Leon t i e f subs t i tu t ion flow app l i ca t ions confo rming to our ga inf ree and

d is jo in t ly r eachab le p roper t ies as a wor thy d i rec t ion for fu ture o f research.

Acknowledgement

The first au thor o f this paper , Professor Rober t (Bob) G. Jeros low, d ied u n e x p e c t e d l y

in Augus t 1988 while a t tending the Ma thema t i ca l P r o g r a m m i n g Sympos ium. At the

t ime o f his dea th this p a p e r was only pa r t i a l ly comple te , so the o ther three au thors

are r e spons ib le for its present form. However , l ike all researchers for tuna te enough

to have worked with Bob we have benef i ted eno rmous ly f rom his insights and

genu ine w a r m t h - may his m e m o r y be blessed.

We also t hank the referees for po in t ing out several errors in an or iginal draf t o f

the paper , and for making many he lpfu l suggest ions.

References

I. Adler and S. Cosares, "Strongly polynomial algorithms for linear programming problems with special
structure," Working Paper, Department of IEOR, University of California (Berkeley, CA) and Bell
Communications Research (Piscataway, N J, 1989).

M.W. Bern, E.L. Lawler and A.L Wong, "Linear time computation of optimal subgraphs of decomposable
graphs," Working Paper, Computer Science Division, University of California (Berkeley, CA, 1985).

B.A. Campbell, "Steiner tree problems on special planar graphs," Ph.D. dissertation, Department of
Industrial Engineering, Purdue University (West Lafayette, IN, 1987).

V. Chandru and J.N. Hooker, "Logical inference: A mathematical programming perspective," Working
Paper, CC-88-24, Purdue University (West Lafayette, IN, 1988).

A. Charnes and W.M. Raike, "One-pass algorithms for some generalized network problems," Operations
Research 14 (1966) 914-924.

S. Cosares and I. Adler, "Advantageous properties of dual transshipment polyhedra," Working Paper,
Department of Industrial Engineering and Operations Research, University of California (Berkeley,
CA, 1987).

G.B. Dantzig, "Optimal solution of a dynamic Leontief model with substitution," Econometrica 23 (1955)
295-302.

D. Dobkin, R.J. Lipton and S. Reiss, "Linear programming is log-space hard for ~," Information
Processing Letters 8 (1979) 96-97.

W.F. Dowling and J.H. Gallier, "Linear time algorithms for testing the satisfiability of Horn formulae,"
Journal of Logic Programming 1 (1984) 267-284.

J. Edmonds and R. Giles, "A min-max relation of submodular functions on graphs," in: P.L. Hammer,
et al., eds. Studies in Integer Programming, Annals of Discrete Mathematics 1 (1977) 185-204.

414 R.G. Jeroslow et al. / Gainfree Leontief flows

G.D. Eppen and R.K. Martin, "Solving multi-item capacitated lot-sizing problems using variable redefini-
tion," Operations Research 35 (1987) 832-848.

R.E. Erickson, "Minimum-concave-cost single-source network flows," Ph.D. dissertation, Department
of Operations Research, Stanford University (Stanford, CA, 1978).

R.E. Erickson, "Optimality of stationary halting policies and finite termination of successive approxima-
tions," Mathematics of Operations Research 13 (1988) 90-98.

R.E. Erickson, C.L. Monma and A.F. Veinott, Jr., "Send-and-split method for minimum-concave-cost
network flows", Mathematics qf Operations Research 12 (1987) 634-664.

F.R. Giles and W.R. Pulleyblank, "Total dual integrality and integer polyhedra," Linear Algebra and its
Applications 25 (1975) 191-196.

R.C. Grinold, "The Hirsch conjecture in Leontief substitution systems," S lAM Journal on Applied
Mathematics 21 (1971) 483-485.

R.A. Howard, Dynamic Programming and Markov Processes (MIT Press, Cambridge, MA, 1960).
R.G. Jeroslow, "Computation-oriented reductions of predicate to propositional logic," Decision Support

Systems 4 (1988) 183-197.
R.G. Jeroslow and J. Wang, "Dynamic programming, integral polyhedra, and Horn clause knowledge

bases," ORSA Journal on Computing 1 (1989) 7-19.
N.D. Jones and W.T. Laaser, "Complete problems for deterministic polynomial time," Proceedings of

Sixth Annual ACM Symposium on Theory of Computing, Seattle, WA, April 30-May 2, 1974, pp. 40-46.
J.G. Kemeny and J.L. Snell, Finite Markov Chains (Van Nostrand, Princeton, N J, 1960).
L.G. Khachian, "A polynomial algorithm in linear programming," Soviet Mathematics Doklady 20 (1979)

191-194.
G.J. Koehler, A.B. Whinston and G.P. Wright, Optimization O~:er LeontiefSubstitution Systems (North-

Holland and American Elsevier, Amsterdam, New York, 1975).
W.W. Leontief, Structure of the American Economy, 1919-1939 (Oxford University Press, New York,

1951, 2nd ed.).
R.K. Martin, "Generating alternative mixed-integer programming models using variable redefinition,"

Operations Research 35 (1987) 820-831.
R.K. Martin, R.L. Rardin and B.A. Campbell, "Polyhedral characterization of discrete dynamic program-

ruing," Operations Research 38 (1990) 127 138.
U.G. Rothblum and P. Whittle, "Growth optimality for branching Markov decision chains," Mathematics

of Operations Research 7 (1982) 582-601.
A. Schrijver, Theory of Linear and Integer Programming (Wiley, New York, 1986).
J.D. Ullman and A. Van Gelder, "Efficient test for top-down termination of logical rules," Journal of

the Association for Computing Machinery 35 (1988) 345-373.
A.F. Veinott, Jr., "Extreme points of Leontief substitution systems," Linear Algebra and its Applications

1 (1968) 181-194.
A.F. Veinott, Jr., "Minimum concave-cost solution of Leontief substitution models of multi-facility

inventory systems," Operations Research 17 (1969a) 262-291.
A.F. Veinott, Jr., "Discrete dynamic programming with sensitive discount optimality criteria," Annals

of Mathematical Statistics 40 (1969b) 1635-1660.
H.M. Wagner, "On a class capacitated transportation problems," Management Science 5 (1959) 304-318.
A. Walker, ed., M. McCord, J.F. Sowa and W.G. Wilson, Knowledge, Systems and Prolog (Addison-Wesley,

Reading, MA, 1987).
T.V. Wimer, S.T. Hedetniemi and R. Laskar, "A methodology for constructing linear graph algorithms,"

Congressus Numerantium 50 (1985) 43-60.

