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We consider e-approximation schemes for indefinite quadratic programming. We argue that such an 
approximation can be found in polynomial time for fixed e and t, where t denotes the number of negative 
eigenvalues of the quadratic term, Our algorithm is polynomial in 1/e for fixed t, and exponential in t 
for fixed e. 

We next look at the special case of knapsack problems, showing that a more efficient (polynomial 
in t) approximation algorithm exists. 

1. Nonconvex quadratic programming 

Quadra t ic  p rog ramming  is a non l i nea r  opt imiza t ion  p rob lem of the fol lowing form: 

min imize  ½x T H x  + h T x 
(1) 

subject  to W x  >~ b. 

In  this formula t ion ,  x is the n-vector  of unknowns .  The remain ing  variables s tand  

for data in the p rob lem instance:  H is an n x n symmetr ic  matrix,  h is an n-vector ,  

W is an m x n matrix,  and  b is an m-vector.  The re la t ion "~>" in the cons t ra in t  

W x  >1 b is the usua l  componentwise  inequal i ty .  

Quadra t ic  p rogramming ,  a general iza t ion of l inear  p rogramming ,  has appl ica t ions  

in economics ,  p lann ing ,  and  many  kinds of  engineer ing  design. In  addi t ion ,  more  

complicated k inds  of non l inea r  p rog ramming  problems are often simplified into 

quadra t ic  p rog ramming  problems.  

No efficient a lgori thm is known  to solve the general  case of (1). The lack of  an 

efficient a lgor i thm is not  surprising, since quadra t ic  p rog ramming  is k n o w n  to be 

NP-hard ,  a result  due to Sahni  (1974). More recently,  Vavasis (1990) showed that  

the decision vers ion of the p rob lem lies in NP,  and  hence is NP-complete .  
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Many avenues for addressing (1) have been pursued in the literature. For example, 
efficient algorithms are known for the special case in which H is positive semidefinite, 
known as the convex case. See Kozlov, Tarasov and Ha~ijan (1979) for the first 
polynomial-time algorithm for the convex case. See Kapoor  and Vaidya (1986) or 
Ye and Tse (1989) for efficient interior point algorithms for this problem. Active 
set methods (see Gill, Murray and Wright, 1981), a commonly-used class of methods 
for (1), are a combination of local search and heuristics. 

A very successful way to address NP-hard combinatorial optimization problems 
has been approximation algorithms. In this report, we investigate e-approximation 
algorithms for quadratic programming. In previous work (Vavasis, 1992a) we con- 
sidered the concave case, that is, the case that H is negative semidefinite. The 
concave case, like the general case, is NP-hard. 

First it is necessary to give a definition of  e-approximation: 

Definition 1. Consider an instance of quadratic programming written in the form 
(1). Let f ( x )  denote the objective function ½xTHx+ hTx. Let x* be an optimum point 
of  the problem. We say that x ° is an e-approximate solution if there exists another 
feasible point x # such that 

f (  x <>) - f ( x * )  <~ e [ f ( x  #) - f ( x * )  ]. 

Notice that we may as well take x # in Definition 1 to be the point where the 
objective function is maximized. Thus, another way to interpret this definition is as 
follows. Let P denote the feasible region, and let interval [a, b] be f ( P ) .  Then f ( x  ~) 
should lie in the interval [a, a + e(b - a)]. 

Observe that any feasible point is a 1-approximation by this definition, and only 
the optimum is a 0-approximation. Thus, the definition makes sense only for e in 
the interval (0, 1). Our definition of  approximation has been used in our earlier 
work, and also appears in other places such as Nemirovsky and Yudin (1983). 

This definition has some useful properties. First, it is insensitive to translations 
or dilations of the objective function. In other words, if the objective function f ( x )  

is replaced by a new function g ( x ) =  a f ( x ) +  b where a > 0, a vector x * that was 
previously an e-approximation will continue to have that property. A second useful 
property is that e-approximation is preserved under affine linear transformations 
of  the feasible region. 

We now state the first main theorem of this paper. 

Theorem 2. Consider the indefinite case o f  (1). Assume that the feasible region 

{x: Wx >~ b} is compact. Let t be the number o f  negative eigenvalues o f  H. There is an 

algorithm to f ind an e-approximate solution to (1) in 

o( [n(n + ~)/,/ZI'I) 
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steps. In this formula, l denotes the time to solve a convex quadratic programming 

problem of  the same size as (1). 

We remark that 1 grows polynomially with the size of  the input, as mentioned 

above. The best asymptotic bound known for I in the special case of linear program- 
ming is due to Vaidya (1989). The assumption that the feasible region is compact  
is discussed further in the next section. 

The algorithm we propose is based on covering the feasible region with small 
sets, and then enumerating those sets. Many covering algorithms have appeared  in 
the literature. In particular, we refer the reader to Pardalos and Rosen (1987). 

In Section 2 we provide the algorithm and prove Theorem 2. In Section 3 and 
Section 4 we describe a more efficient approximation algorithm for concave knapsack 
problems. This is extended to indefinite knapsack problems in Section 5. The 
knapsack problem has received attention in the literature because it is a simple 
special case of  quadratic programming that exhibits many  features of  the general 
case. In Section 6 we indicate why polynomial  dependence on 1/e and exponential  
dependence on t in Theorem 2 is expected. In Section 7 we discuss open questions 
raised by this work. 

The definition of approximation used for combinatorial  optimization differs from 
out definition and is usually stated as follows. A feasible point x • is an e-approxima-  
tion if 

]f(x ~') - f ( x * ) ]  ~< e" f ( x* ) .  

See, for example,  Papadimitriou and Steiglitz (1982) for an extensive discussion of 
approximation for combinatorial  optimization. This definition does not work for 

nonlinear optimization because it is not preserved when a constant is added to the 
objective function. In particular, the definition because useless in the case that 

f ( x * )  <~ O. 

2. Proof of Theorem 2 

The first part of  the proof  is a sequence of basis changes. First, we test whether the 
constraint set {x: Wx >>- b} is full dimensional. This can be done by solving a single 
linear programming problem as shown by Freund, Roundy and Todd (1985). I f  
not, a linear change of basis lowers the dimension of the problem and ensures 

without loss of  generality that the feasible set is full dimensional. Note that this 
change of basis does not increase t, the number  of  negative eigenvalues of  H (but 
it may cause t to decrease). 

Let P denote the constraint set P = {x: Wx >~ b}. For the rest of  this section, we 

assume that set P is compact.  The difficulty if P is not compact  is that we are not 
able to easily determine whether the original problem is unbounded.  Indeed, Murty 
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and Kabadi  (1987) showed that it is NP-hard to determine whether an indefinite 
quadratic problem is unbounded.  Let us state that as an assumption: 

Assumption. We assume P is compact.  

The next step is to compute a weak L6wner-John pair  for set P. Recall that a 
L6wner-John pair for a convex body P c R n is a pair of  concentric ellipsoids El ,  E2 
such that E1 c p c E2 and El is obtained from E2 by shrinking each dimension by 
1/n. Such a pair  always exists. A weak L6wner-John pair is defined analogously, 
except that the shrinking factor is 1 / ( ( n + l ) ~ ) .  Lovfisz (1986) shows how to 
compute a weak Lfwner - John  pair for a convex body in polynomial time. 

Let us assume that the interior and exterior ellipsoids are defined by 

E l = { x C ~ n :  ( x - - c )TM(x - - c )<~ l } ,  

E2 = {x c 0~": (x - c )TM(x -- C) <~ (n + 1)2n}, 

where M is a symmetric positive definite matrix, and e is some n-vector. 
The next change of basis is to translate x by c, thereby centering the L6wner-John 

pair at the origin. This does not affect the quadratic term of the objective function. 
Next, find a nonsingular n x n matrix X such that X T M X  = I (where I denotes the 

identity) and such that X T H X  is diagonal. Such a matrix exists because M is 
positive definite, and it can be computed using standard eigenvalue methods. (See 
Golub and Van Loan (1989).) 

Then change the basis again, replacing x by X ix. After this transformation, we 

can now make the following assumptions: 

Assumption. The objective function has the form 

½xT Dx + h Tx 

where D is diagonal. 

Assumption. The constraint set, which we will continue to write as P = {x: Wx >- b}, 
satisfies the containments S1 c p c $2 where 

S l={x :xTx<~l}  and S2={x:xXx<~n(n+l )2} .  

The basis t ransformation by X does not change the signature of  H, so we can 
assume that D has t negative diagonal entries. Let us split the vector x into two 
subvectors, y ~ ~ '  and z 6 Nn t, such that y corresponds to the negative entries of  

D. Then we can rewrite the problem as 

minimize 1 T ~y Ky + kTy +½zTLz + ITz 
(2) 

subject to Ay + Bz >~ b 
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where K is negative definite diagonal and L is positive semidefinite, and (A, B) 
represents a partitioning of the columns of W. Now, let /3 be the projection of  P 
onto y-space, that is 

/3={y:  Ay+Bz>>-b for some zc•" - ' } .  

Let $1, $2 be the projections of $1, $2 in y-space, that is 

S ,={y :yTy~<l}  and S 2 = { y : y T y < ~ n ( n + l ) 2 } .  

Clearly S~ c / 3  c $2 since projection preserves containment. 
Now we define the "projection" of the convex part of the objective function for 

y~/3 :  

¢b(y) = min{½zT Lz + ITz: Z ~ ~"- ' ,  A y  + BZ >1 b }. 

With this definition of ¢, the original problem can now be expressed simply as 

minimize q(y )  + ¢ ( y )  

subject to y c / 3  (3) 

where 

q(y )  = ½yT Ky  + kT y. 

This is equivalent to (2). In particular, for any y~ feasible for (2), q(y l )  + qS(y~) will 
be the value of the minimum possible objective function value among all feasible 
vectors of the form (y~, z). 

We let R c W be the smallest rectangle containing $2, that is, 

R = [ - ( n  + 1 )x /n ,  ( n  + 1 ) x / n ]  × .  • • × [ - ( n  + 1) , , /n ,  ( n  + 1 )x /n ]  

t times 

The next step of the algorithm is to divide R into m'  subcubes. The integer rn 
will be a number on the order of n2/v~;  the exact formula is given below. Note 
that each subcube has side length 2(n + 1),f-n/m. 

Let the subcubes be denoted R1,.  • •, Rp, where p = mt. An example of the sets 
/3, $1, $2, R and R I , . . . ,  Rp in the case t = 2, m = 10 is illustrated in Figure 1. 

We next compute a linear approximation to the function q(y)  on each subcube. 
Let those linear approximations be denoted by hi ,  • . . ,  hp. These linear approxima- 
tions are interpolated from the vertices. In particular, focusing on a particular 
subcube Rj, which may be written as (say) 

[al,  bl] x .  • • x [at, b,], 

we define 

A , ( y l , . . . ,  Yt) = ~ [1Kz( aj + bj)yj + cjyj - ½kjjajb~] 
j = l  

where Kjj,kj, yj denote the components of K, k, y respectively. 
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Fig. 1. Sets used by the approximation algorithm. 

Next, we minimize Ai(y)+ 4~(Y) on Ri for each i = 1 , . . . ,  p. This is equivalent to 
the following convex quadratic programming problem: 

minimize A~(y) +~zXLz + lVz 

subject to Ay + Bz >1 b, 

y c  R~. 

Let (y~, z ~) be the pair with the minimum objective function value taken over all 
p convex quadratic programs of this form. 

Let 0 be the maximum absolute difference between A~ and q in R~. One easily 
checks (see, for example, Vavasis, 1992a) that 

0 = (j~l 'Kj~,)" (n+l)2n2m 2 (4) 

Note that the factor on the right is one eighth of the square of the width of a 
subcube. We claim that q(y•) + ~b(y ~) is at most 0 greater than optimal. This follows 
because y~ is a minimizer of the function A (y) + 4~ (Y)- Here, A is defined piecewise 
to agree with Ai on R~. The pointwise difference between q + ~b and A + ~b is at most 
0. Therefore, the difference between their minima is also at most 0. 

Now, the next step is to show the existence of two points whose objective function 
values differ by at least 0/e. 

We first prove the following lemma about quadratic functions of one variable 
before addressing the general case. This lemma is also used later on in the discussion 
of knapsack problems. 
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Lemma 3. Let  qo( x ) = ax 2 + bx + c be a quadratic function defined on interval [zl,  z2] c 
~. Let  I and u be the minimum and max imum values attained by qo on this interval. Then 

u - l~ l la]  • ( z : -  z,):.  

Proof. We assume without loss of generality that a t> O, since the claim made in the 
= ~(Z1 .qL Z2). lemma is preserved if -qo  is substituted for qo. Consider the point z' 1 

Then some algebra shows that 

qo(z,) + qo(z2) -2qo(Z') = ½a ( z : -  zl):. 

Next, suppose that qo(ZO >I qo(z2) (the opposite case is similar). Then the previous 
inequality implies that 

2qo(z0 - 2qo(Z') I> )a (z2 - zl) 2. 

Now the lemma follows, since u >i qo(zl) and l<~ qo(z'). [] 

Now we return to the problem at hand. Let /z be the index such that [K~,[ is 
maximized. Thus, we can estimate from (4) that 

0<~ t [ g ~ [ .  ( n +  1)2n (5) 
2m 2 

Consider the vector parameterized by a, 

y ( a ) = ( 0  . . . .  ,0, a, 0 , . . . , 0 ) ,  

where a occurs as the /x th  entry. 
Note that (y(a) ,  0) lies in S~ for all a c [ -1 ,  1], and hence in P. If we define f ( a )  

to be the objective function in (2) evaluated at (y (a ) ,  0), then we see that f is a 
quadratic function of one variable whose leading coefficient is ½K~.. Therefore, by 
Lemma 3, f varies by at least ½1K.. I. This quantity is therefore a lower bound on 
the range of values of the objective function. 

Thus, if we want to be assured that (y<>, z ~) is an e-approximate minimum, then 
it suffices to show that 

From (5), it suffices to establish the inequality 

t I K ~ [ "  ( n + l )  , 

The preceding inequality is solved by taking 

m = [(n + 1)x/-nT/x/-~]. 

This proves Theorem 2. [] 
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In practice, a more efficient version of the algorithm proposed in this section 
would construct a hierarchy of subdivisions of R. For example, suppose that m is 
divisible by 2. Then we could partition R into a mesh with lm grid cells in each 
dimension and carry out the algorithm of  this section. The point returned by the 
algorithm from the coarse grid would not necessarily be an e-approximate optimum, 
but the results would give good upper and lower bounds on the value of the objective 
function in each cube. We could then use these bounds to determine which grid 
cells need to be further subdivided. Applying these ideas in a hierarchical fashion 
would lead to a branch-and-bound style algorithm. See Pardalos and Rosen (1987) 
for algorithms for this style; see Papadimitriou and Steiglitz (1982) for a general 
description of branch and bound. 

There are also possible improvements to the analysis of the algorithm. For example, 
instead of enumerating every rectangle Ri in R, we could limit attention to the 
rectangles that are contained or partly contained in ,~2. This would yield a better 
running time estimate, but still exponential in t. 

3. The quadratic knapsack problem: Exact solution 

In this section and the next two sections we show that a more efficient algorithm is 
possible for the quadratic knapsack problem. "More efficient" means polynomial 
in t and 1/e. The algorithm we propose has the disadvantage that it is only weakly 
polynomial in the problem size (i.e., the number of arithmetic operations depends 
on the number of bits in the problem). This is in contrast to other algorithms for 
knapsack problems mentioned below. 

The quadratic knapsack problem has the following form: 

minimize x V D x  + c T x  

subject to a T x = 31, (6) 

li <~ x i  <~ u i ,  i = l ,  . . . , n .  

Here, D is a diagonal matrix. Thus, the objective function is s e p a r a b l e ,  that is, it 
can be written in the form 

ql(Xl)+"" "+qn(xn) 

where each qi is a quadratic function of one variable. It will be necessary below to 
make an explicit reference to the coefficients of qi. Accordingly, we write those 
coefficients as 

q , ( x )  = clix 2 + c~x. 

In other words, d~ is the ith diagonal entry of  matrix D, and e~ is the ith component 
of  vector c. 

The quadratic knapsack problem arises in resource allocation applications. It also 
arises as a subproblem in algorithms for more general optimization problems. See 
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Cottle, Duvall and Zikan (1986) for an application and further references. The 
convex case of  this problem, that is, the case in which all the diagonal entries of  D 
are nonnegative, can be solved in O(n log n) as shown by Helgason, Kennington 

and Lall (1980). This bound was improved to O(n) by Brucker (1984). The nonconvex 
case is NP-hard,  as proved by Sahni (1974). Polynomial-t ime algorithms for finding 
local minima for nonconvex cases have been given by Mor6 and Vavasis (1991) 
and Vavasis (1992b). 

In this section we propose an approximation algorithm for solving (6) based on 
d y n a m i c  p r o g r a m m i n g  (see Bellman, 1957). The observation that knapsack-type 
problems are amenable to approximation is not novel: see Papadimitriou and 
Steiglitz (1982) for a dynamic programming approach to a combinatorial knapsack 
problem. Our contribution is to show that a particular dynamic programming 
approach is an efficient approximation algorithm for the sense of approximat ion 
proposed in Definition 1. 

We start by focusing on the concave case of  (6), that is, the case that all the 
diagonal entries of  D are nonpositive. In Section 5 we show how to extend the 
algorithm to the fully indefinite case. 

Before describing the approximation algorithm, we first give an exact dynamic 
programming algorithm for the concave case of (6). This algorithm is exponential  
time, but will serve as the basis for a polynomial-t ime approximation algorithm. 

First, we start with an assumption to simplify the notation: we assume that the 
vector a in (6) is actually the vector of all l 's ,  so that (6) may be rewritten: 

minimize q l ( X 1 )  + "  • • + q, (x,)  

subject to xl +" • • + x ,  = 7, (7) 

li <~ xi <~ ui,  i = l ,  . . . , n. 

This assumption is made without loss of  generality because we can always scale 
variable xi by 1 / a i  to put the problem in this form. (Note that if a~ =0,  then xi is 
decoupled from the rest of  the problem and may be deleted and optimized separately. 
Note also that scaling x~ by 1/a~ does not affect the sign of  the corresponding 
diagonal entry in D regardless of  the sign of a~, so that this transformation does 
not change the concavity or convexity of  the problem.) 

We also assume that l~ < u~ for i = 1 , . . . ,  n, since if li = u~ for some i, then x~ is 
uniquely determined and may be deleted. I f  l~ > u~, then (7) is infeasible. 

The exact algorithm is based on constructing a sequence of  real-valued functions 
/x (k) of one variable. The domain of /x ~k~ is the interval I g = [ l l + ' "  "+Ik, 

Ul +"  • • + Uk]. Let the endpoints of  Ik be denoted as Ak and o)k. The actual definition 
of/z~k~(~ ") for ff c Ik is as follows: 

/z~k~(ff) = minimum of 

subject to 

q , ( x ~ )  + ' ' '  + q k ( x k )  

XI-~-.  • .-~- Xk = ~, 

l i < ~ x i ~ u i ,  i = l , . . . , k .  

(8) 
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Notice  that  the opt imal  solut ion to (7) is exactly/x~n)(3,). Thus,  if  we had  an exact  
representa t ion  o f  f unc t i on / z  ~n~ available,  (7) would  be solved. 

The a lgor i thm constructs an exact  representa t ion  o f /x  ~k+l) inductively f r o m / x  ~k). 
Clear ly it is easy to compute /~1~:  funct ion tz~l)(~ ") is a concave  quadrat ic  funct ion 

of  one var iable  (equal  to funct ion ql)- The  next  theorem shows how it is possible  
to o b t a i n / z  ~k+l~. 

Theorem 4. Each function [~ (k) is a continuous piecewise quadratic function with a 

finite number o f  breakpoints; the pieces are always concave. Moreover, for  k >  1, 
/z (k~(~) is equal to either: 

(i) /z~k-1)(b) + qk(~-- b), where b is some breakpoint o f  tx ~k-r~, or 

(ii) I~(k-l~(~ - t ) + q k ( t ) ,  where t is either lk or Uk. 

Remarks .  1. We consider  the endpoin ts  o f  Ik-1 (namely,  /~k 1 = 11 +" " " + lk-1 and 
tOk-1 = Ul +" " " + Uk-1) as b reakpoin t s  o f  ~(k-l~ for  case (i) in the theorem.  

2. An example  of  a func t ion /z  ~n) is p lot ted in Figure 2. This example  was genera ted  
f rom a r a n d o m  instance of  (8) with n = 6. 

P roof  of  Theorem 4 (Sketch).  First, notice t h a t / . £ ( k )  can be entirely de te rmined  f rom 
/.z (k-l) because  of  the "pr inc ipa l  o f  op t imal i ty"  c o m m o n  to m a n y  dynamic  p rogram-  
ming approaches .  We omit  the argument ,  but  provide  the recursive fo rmula  

I z~k) (~)=min{ tx (k - l~(~- - t )+qk( t ) :  t~ [ l k ,  Uk] ,~-- t~[Ak-- l , tOk 1]}. (9) 
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Fig. 2. An example of/x ('°. 
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Once this equation is established, everything stated in the theorem follows from the 
well-known fact that the minimizer of a concave function defined on an interval is 
always achieved at one of the endpoints of the interval. The full proof  of this theorem 
appears in Vavasis (1991). [] 

The preceding theorem suggests an algorithm for finding an explicit representation 
for Ix(k) from Ix(k-l). Specifically, write down the finite list of piecewise quadratic 
functions of ff defined either by the formula in case (i) or in case (ii). These are 
functions of ff defined on subintervals of Ik. Then compute their pointwise minimum 
by scanning the pieces from left to right and computing intersections. We call the 
algorithm for constructing /x (k) from Ix(k 1) Scan-Breakpoint. We call the entire 
minimization algorithm Exact DP (here, DP stands for dynamic programming). We 
discuss efficient implementations of Scan-Breakpoint in the next section. 

Exact DP is exponential-time in the worst case because the number of breakpoints 
in Ix(k) can grow exponentially with k. (It should not be a surprise that the algorithm 
is not polynomial- t ime--minimizing (7) in the concave case is NP-hard.) 

Below we propose an approximation algorithm called Approx DP based on Exact 
DP. The basic idea of Approx DP is straightforward: instead of computing the 
sequence of functions IX(l), I X ( Z ) ,  . . . , we compute approximations: ~(1), 7r(2), . . . .  

The main idea underlying the approximation scheme is that tx (k) on a sufficiently 
small interval may be replaced by a linear interpolation without introducing too 
much error. The reason for the interpolation is to bound the number of breakpoints 
that occur in ~r (k). Because of the way "approximation" is defined by Definition 1, 
the bound on the error from linear interpolation must have the form that the 
difference between Ix(k)(ff) and a linear approximation to it is bounded above by a 
(small) constant multiplied by the range of  the objective function in (8). 

Providing such a bound is the purpose of the upcoming theorem, the main result 
of  this section. In order to state the theorem, we need a function to describe the 
objective function range in (8). Let 

p(k)(~) = maximum of 

subject to 

ql(xl) + ' ' "  + qk(xk) 

X l - ~  ° " * "~- X k  = ~, 

li<~xi<~ui, i = l , . . . , k .  

(10) 

Thus, the definition of p(k) is identical to the definition of Ix(k) except we take a 
maximum instead of a minimum. We remark that p(k) has considerably more structure 
than Ix(k); it is globally concave, has a linear number of breakpoints, and can be 
computed in polynomial time. We return to this subject later. 

The main theorem about approximation with linear interpolation requires two 
more lemmas about quadratic functions of one variable. The first lemma says that 
if q is an initially increasing concave quadratic function that stays positive, then it 
must have a certain range. 
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Lemma 5. Let  q (x )  be a concave quadratic function such that q(O) = O, q'(O) = b with 

b >! O. Suppose r >i 0 and suppose that q is nonnegative on [0, r]. Then the max imum 

value o f  q on [0, r] is at least ]br. 

Proof .  We can write q ( x ) =  ax2+ bx, where  a is some nonpos i t ive  real n u m b e r  and  

b is as in the  lemma.  I f  a = O, then  the result  is obv ious  s ince q(r)  = br. Simi lar ly ,  

i f  r = 0 or  b = 0 then  the resul t  is immedia te .  Thus,  a s sume that  a < O, r > O, b > O. 

The  fact  that  q is nonzero  on [0, r] means  that  ar2+ br >~ O. Since q is concave ,  its 

m a x i m u m  value  overa l l  is a t t a ined  at  - b / ( 2 a ) .  

On interval  [0, r] the  m a x i m u m  is a t ta ined  e i ther  at - b / ( 2 a )  or at r, wh icheve r  

is smaller .  Suppose  the  m a x i m u m  is a t t a ined  at r so that  r ~ - b / ( 2 a ) ,  i.e., a ~  > 

- b / ( 2 r ) .  Then we compu te  tha t  

q(r)  = ar 2 + br >I - b / ( 2 r )  • r2+ br >I ½br. 

Thus,  the l e m m a  is p roved  in this  case. 

I f  the m a x i m u m  is a t ta ined  at  - b / ( 2 a ) ,  then  we c ompu te  that  

q ( - b / ( Z a ) )  = a .  ( - b / ( 2 a ) ) 2  + b .  ( - b / ( 2 a ) ) = - b 2 / ( 4 a ) .  

N o w  we use the  fact  tha t  ar2+ b r ~  O, i.e., a >i - b / r  to ob ta in  q ( - b / ( 2 a ) )  >~br. [] 

The next  l e m m a  gives a lower  b o u n d  on the l ead ing  coefficient o f  a concave  

quad ra t i c  func t ion  in the  case tha t  its rate  o f  increase  d rops  by  a fac tor  o f  ½ or  more .  

Lemma 6. Let  q ( x )  be a concave quadratic function o f  one variable, and v, w two real 

numbers such that 0 < v < w. Let  p denote q (v )  - q(O), and suppose that p > O, and 

suppose also that 

q (w)  - q(O) <~ ~v " p. 

Then the leading coefficient o f  q is at least p / [ 2 v ( w -  v)] in absolute value. 

Proof .  Let  q ( x )  = ax2+ bx + c, with a ~< 0 by  assumpt ion .  Then the inequa l i ty  in the  

l e m m a  becomes  

i.e., 

aw2 + bw <~ w ( av 2 + by) 
2v 

awe + ½bw - ½avw <- O. 

Now,  p = av~+ by, so b = p / v -  av, thus we have 

aw2 + ½( p / v - av ) w -½avw <~ O. 

Simpl i fy ing  and  solving for  a gives the  result .  [~ 
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Now we state the key theorem about approximating/z (k). Inequality (13) below 
bounds the difference between iz (g) and a linear approximation to this function in 
terms of the range of the objective function. 

Theorem 7. Let b~ , b2 be two points in Ik such that bl < b2. Suppose ~ c [ b l ,  b2]; in 
particular, write 

~= (1 - th)ba + ~bb2 

for  ch ~ [0, 1]. Let us also make the following assumptions. 

min(tok - b l ,  b 2 - A g )  

(i) b 2 - b l  ~ 24k ' (11) 

and 
(ii) For each j =  1 , . . . ,  k, 

k 

uj-lj<~½ ~ ( u , - l , )  (12) 
i ~ l  

(in particular, k > 1). 

Let h denote the value of  l ~ (~) interpolated linearly f rom bl,  b2 evaluated at ~, i.e., 

h = (1 - 4 ~ ) ~ ( b ~ )  + 4 ~ ( b 2 ) .  

Then 

where 

I/Z(k)(~) -- hi <~ y" (p(k)(~) _/z(k)(~)) (13) 

b 2 - b 1 

y = 72k" min(tok -- bl, b2-  Ak)" (14) 

Remarks. Before proving the theorem, we make a few remarks about its contents. 
Observe that the parenthesized expression on the right-hand side of (13) is the range 
of the objective function in (8). Notice also, that in order for (11) to hold, and for 
y to remain small in (14), the size of the interval [bl ,  b2] must shrink as the interval 
approaches either endpoint of [Ak, tOk]. In other words, the linear approximation 
must become finer near the endpoints of Ik. This is because range of the objective 
function shrinks at these points, so we would expect that the approximation must 
be more accurate in an absolute sense. In the extreme case, tx~k~(Ak) = p(k)(Ak) and 
similarly for tOk. 

The final remark concerns the condition that uj - / j  be no more than half OJk -- Ak. 
This condition makes the approximation process (described below) more compli- 
cated. Unfortunately, this condition is necessary because the theorem becomes false 
if it is dropped. (See Vavasis (1991) for a counterexample.) 

Proof  of Theorem 7. We introduce more notation. We assume k is fixed, and let f 
denote the objective function in (8) (i.e., f ( x )  = ql(xl)  +" • • + qk(Xk)). Let v denote 
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the opt imizer  when ~" is taken to be b~ in (8). In  other  words,  f ( v ) = / x ( k ~ ( b a ) ,  

v~ +" • • + Vk = b~, and li ~< v~ <~ u~ for  i = 1 , . . . ,  k. Let z be the optimal vector in (8) 
for  ~', and let w be the vector cor responding  to tx(k)(b2). 

The theorem defines h to be the linear interpolat ion o f f ( v )  and f ( w ) :  

h = (1 - q~) f (v )  + O f ( w ) .  

Thus, the goal is to bound  I f ( z ) -  hi. 

We consider  several cases. In  each case, we find two feasible points for  (8) whose 

difference in objective funct ion values is a multiple o f  I f ( z )  - hi. The proofs  in each 

o f  the cases seem to be fairly technical;  we have not  identified a principle under lying 

this theorem. 

Case  1,f(z)<<- h. We claim that  there is at least one component ,  say z~, o f  z such 

that  u ~ - z ~  >>-(OOk- ~ ) / k .  This follows immediately when we notice that the sum of  

u~ - z~ for  i = 1 , . . . ,  k is exactly Wk -- ~. Similarly, there is at least one component ,  
say z~, such that z ~ - l ~ > ~ ( ~ - h k ) / k .  

I f  we relax the condit ions for  o- and ~-, and require only that 

(.O k - - ~  
u ~ - z ~  (15) 

3k 

and 

~--hk 
z , - l , ~  , (16) 

3k 

then we can assume without  loss o f  generali ty that o- ¢ z. The reason for  this is as 

follows. Suppose  that only one index o- satisfies (15). Then by summing up the 

values o f  ui - zi for  i ¢ ~r, we can deduce  that u~ - z~ >~(Wk -- ~). Similarly, supposing 

that  only one index r satisfies (16) leads to the conclusion that  z , - - l , > ~ ( ~ - - A k ) .  

Finally, assuming that o- = T, we add  the two preceding inequalities to obtain 

U o  - - -  lo  " 2 I> ~(wk - ,~k ). 

But this contradicts  (12). 

Thus, we assume c r¢  z. Next,  we introduce the fol lowing real-valued quadrat ic  

funct ion:  

g ( r )  = f ( z  + re~ - re,)  - f ( z ) .  (17) 

Here, e~ is the vector  in ~k whose  entry in posi t ion ~r is 1, and whose other  entries 

are zeros. Vector e, is defined similarly. 

Note  that the vector z + re~ - re,  is feasible for  (8) for  r between 0 and r~, where 

rl = min(u~ - z~, z, - 1~). 

In  particular, the components  o f  z + re~ + re, add up to ~', and each componen t  is 

between li and  u~. 
Thus, g ( r )  >~ 0 for  all r ~ [0, rl] because f ( z )  is the minimizer  in (8). 
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Next, observe that we can come up with an explicit formula for g(r )  using the 
notation introduced earlier for the coefficients of  the q/s,  

g(r )  = (c~ + 2d~z~ - c, - 2 d , z ~ ) r +  (d~ + d , )r  2. (18) 

We now obtain a lower bound on the linear coefficient in g(r) .  Observe that 

f ( z  + (b2 - ()e,~) - f ( w )  >! 0 (19) 

because w is the minimizer in (8) for feasible vectors whose components add to b2, 

and the components  of  z + ( b 2 - ~ ) e ~  add to b2. Moreover,  each component  of  

z + (b2 - ~')e~ lies between l~ and u~. Clearly the only component  that needs attention 
in this regard is the o- component,  whose value is z~ + b2-~'. First, notice from (1) 

that 

W k - - ~ =  o k - - b l  ~ - b l  

3k 3k 3k 

Ok--b1 b 2 - b~ 
3k  3k  

~ m  
O )  k - -  b I COs -- b I 

3k (3k) .  (24k) 

Wk-- bl w~ - -  b I 

3k 72k 

23(Wk -- bl) 
t> (20) 

72k 

Now we analyze the o- component  of  z + (b2 -  ~')eo- Once again we use (11) as well 
as (15) and (20). 

z,~+ b 2 - ~  <~ z~+ b 2 - b l  

~ U o . - ( u o . - g o . ) + b 2 - b  1 

to k - 
~< u ~  - - - +  b2 - bl 

3k 

23(Wk-- ~) tOk-- 
U,~ 

72k 24k 

~<u~. (21) 

This proves (19). We can rewrite (19) as 

(c,~ + 2d,~z,~)(b2 - ~) + d,~(b2 - ~.)2 >~ f ( w )  - f ( z ) .  

By comparing f ( z -  ( ~ -  bl)e,) to f ( v )  we obtain in a similar fashion the inequality 

- (c~ + 2d, z~)(~"- b l )+  d , ( ( -  b,) 2 >~f(v) - f ( z ) .  
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I f  we divide the first inequality by b 2 -  ~" and the second by ~ ' -  bl and add them 
together, we obtain 

c~ + 2d~z~ - G - 2d~z~ + d~(b2-  ~) + d~(~ - bl) > f ( w )  - f ( z )  4 f(v) ~ f ( z ) 

b2 -  ~ ~ -  bi 

Now we observe that the last two terms on the left-hand side are both negative, so 
dropping them does not change the truthfulness of  the inequality. On the right-hand 
side, we can take a c o m m o n  denominator,  plug in the definition of  qS, and rearrange 
to obtain 

(b2 - b,)[cbf(w) + (1 - oh)f (v) - f ( z ) ]  
c~ + 2d~z~ - G - 2d,z~ >~ 

( b 2 -  ff)(ff-  bl) 

Notice that the expression in square brackets is exactly h - f ( z ) ,  where h was defined 
above as the interpolation o f f ( v )  and f (w) .  Thus, we have 

(b2-  b,)(h - f ( z ) )  
c~+ 2d~z~ - c~ -2d~z~ >~ 

(b2 -  ff)(ff - bl) 

Notice that the expression on the left-hand side of  this inequality is the linear 
coefficient of  g(r). 

Thus, we have a lower bound on the linear coefficient of g (r) (nonnegative because 
the hypothesis for this case is that h>~f(z)),  and we also know that g(r) is 
nonnegative on [0, rl] and zero at the origin. Therefore, we can apply Lemma 5 to 
conclude that g attains a value of at least 

r i (b2-  bl)(h - f ( z ) )  

4 ( b 2 -  ff)(ff - b,) 

Recall that g ( r ) + f ( z )  corresponds to a feasible value for (8) on [0, rl]. Thus, 

p(k)(~) _/x(k)(ff) ~> r l (b2 -  bl)" Ih - ~ (k ) ( f f ) l  
4 (b2 -  ~) ( f f -  bl) 

Now we notice that 

b 2 -  bl 

( b 2 -  ff)(ff-  bl) 

is at least 4 / ( b 2 - b l ) .  Also, r~ (defined above) is at least min(w k -if ,  ~ - A k ) / ( 3 k )  by 
choice of or and ~-. Thus, 

p(k)(~) _ #(k)(~.)/> min(wk -- ~, ~ -- Ak). ih _/x(k)(~)l. 
3 k ( b 2 - b l )  

Now we apply (20) and its analog for if-}k k to conclude that 

p(k)(~) _/.~ (k)(ff) ~> 23 min(wk - bl, b2 - A k ) .  ih _/x(k~(~.)l" 
72k (b2 -  bl) 

This proves the theorem. 
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Case 2, f ( z )  >1 h. (This case will be subdivided into Cases 3, 4, 5 and 6.) Again,  

we start this case by identifying part icular  subscripts o" and ~'. Define two index sets 

J and K as follows: 

- b2  - Ak'~ 

Note  that an averaging argument  similar to the a rgument  o f  Case 1 shows that  J, K 
are both  nonempty .  

Case 3, f (  z ) >- h, and there exists either a o- ~ J such that  w~ - v~ >~ ½( u~ - v~), or a 

cr c K such that  w ~ -  v~ >~½(v~-l~).  Note  that  in either choice for  this subcase, we 

can conclude that  

min(wk - bl, b2 - ;tk) 
w~ - v~/> (22) 

9k 

by definition o f  J and K. 

In  this case, let 

g, = (1 - 6 ) f ( v  + (~ - b~)e,~) + 6 f ( w  - (b2 - ~)e,~). 

Notice that  g~ is the weighted average o f  f evaluated at two points (namely,  

v + ( ~ - b l ) e , ,  and w - ( b 2 - ~ ) e , , )  feasible for (8). The fact that  w - ( b 2 - ~ ) e , ~  is 

feasible for (8) is proved as follows (the p r o o f  for v + ( ~ - b l ) e , ~  is similar). Clearly 
the componen ts  sum to if, and all componen ts  are between li and ui except possibly 

the cr component .  N o w  we have a calculat ion for this componen t  analogous  to (21) 

using (11) and (22): 

w ~ +  ~ - b 2 ~  l ~ + ( w ~ - l ~ ) + b l - b 2  

>~ l ~ + ( w ~ - v ~ ) +  b l - b 2  

min(o)k - b~, b 2 -  Ak) min(~ok -- bl,  b 2 -  Ak) 
~>I~-+ 

9k 24k 

~>l~. 

Therefore,  gl ~f(z). We can come up with an explicit expression for gl in terms 

o f  the objective funct ion coefficients: 

gl = h + 2 d ~ ( b e -  bl) (v~ - w~) q5 (1 - ~b) + d~b (1 - 4~)(b2 - bl) 2 

~< h + 2d~(b2-  bl)(v,~ - w~)th (1 - tb). 

Note  that  the last term of  the r ight-hand side o f  the first line is negative and hence 

was dropped.  

Now we define 

g2 = f ( ( 1  - ~b)v + 6w). 
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Once again, observe that  the a rgument  t o f  is feasible for  (8). Therefore,  g2 <- p(k)(~). 

We can write an explicit expression for  g2 as follows: 

k 

g 2 = h - ~ b ( 1 - ~ b )  ~ ( v , - w , ) 2 d , > ~ h - f b ( 1 - ( b ) ( v ~ - w ~ ) 2 d ~ .  
i--1 

Notice that all terms of  the summat ion  are negative. 

Compar ing  the inequalities for  gl and g2, we conclude that  

Wo- --/9,~ 

g2 - h ~> 2 ~ - - b l )  ( g l -  h). 

Plugging in other  inequalities so far including (22) gives 

p(k)(~.) _ h/> min(wk -- b~, b2 - Ak) (/~(k)(ff) _ h). 
( 1 8 k ) ( b z - b l )  

Subtract  /~(k)(~.)_ h f rom both  sides to obtain 

p(k)(~) _ tz(k)(~) >I min(tok -- bl,  b e -  Ak) -- ( 1 8 k ) ( b e -  bl) (/x(k)(ff) _ h). 

( 1 8 k ) ( b e -  b0  

Using (11), the numera tor  can be simplified to obtain 

min(cok -- bl,  b2 -- Ak) (k" 
p(k)(sr) _/~(k)(~.) I> ~ ' ) ' ( b 2  --~'1) (# '(~') - h). 

Case 4, f ( z )>~h ,  and for  all i t  J, Wi--vi~l(ui--Vi) and fo r  all i c K ,  wi -v i<~ 
½(vi - li). We select a o- ~ J and a ~" c K. We claim that  wi thout  loss o f  generality, 
we may  assume o- ~ ~-. Suppose  to the contrary that J = K = {or}; we will argue that 

this leads to a contradict ion.  

We note by definition o f  J that  the sum of  u i -  vi for i~  J is at most  ~(Wk-  ba). 

On the other  hand,  the sum o f  u; - v~ overall is equal to Wk -- b~. Therefore,  if  J = {o-} 

we conclude  that  

u , .  - v ~  ~ > ~ ( W k  - -  b , ) .  

Similar reasoning f rom the premise that  K = {~r} shows that  

w. - t,~ ~> 32(b2 - ak). 

Adding  the two preceding inequalities shows that  

2 u~ - l~ + w~ - v~ ~ g(Wk --hk). (23) 

N o w  we obtain an upper  b o u n d  on w~-v,~. Note  that  since tr~ J c~ K, by the 
hypothesis  for  this case, 

w~-v~<~(u~-v~) 

and 

w.-v.<~k(w~-l~). 
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Adding  these two inequalities and simplifying yields 

w~-v~ ~'~(u~-l~). 

N o w  we combine  this inequali ty with (23) to obtain 

6(u~ - 1~) ~>~(w~ -'~k)- 

But this contradicts  (12). Thus, wi thout  loss o f  generality, o-~ r. 

Now,  define two concave quadrat ic  funct ions o f  one variable r as follows: 

g l ( r ) = ( 1 - - ~ ) f  ~-I-1_~ eo- +q~f 

and 

g2(r) = f ( ( 1  - qS )v + 49w + r(e~ - e,)). 
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r, = ~b(1- ch )( b2-  b,). 

Note  that 0 ~< rl ~< 2( b2 - bl). The third observat ion is that  g~ (ra) >-f(z). This is because  

g l ( r l )  corresponds  to a weighted average o f f  evaluated at two points feasible for  

(8), namely,  v + r l e ~ / ( 1 - ¢ )  and w-r le~ /¢ .  In particular,  the sums of  the com- 

ponents  at each of  these points is equal to ~'. Also, each componen t  o f  these two 

vectors is between li and u~. For  example,  we can check on componen t  o- o f  

v+r~e~/(1-c~) which is / ~ q - ( ~ - b l ) :  

v ~ + ( ~ - b , ) < - u ~ - ( u ~ - v ~ ) + ( b 2 - b , )  

wk - bl k -- bl 
u~ 3 k ~- W24k 

I,/o-. 

Thus,  the weighted average g~(r~) must  be greater than or  equal to f ( z ) ,  which 

is the min imum for (8). 

Next,  define 

r2 = min(u~ - ((1 - ~b)v~ + ~bw~), (1 - ~b)v, + q~w~ - l~). 

Observe that ( 1 - ~ b ) v + c ~ w + r ( e ~ - e , )  is feasible for  (8) for  all r between 0 and 1"2 

(i.e., the componen ts  add to ~" and are between li and ui). Thus, g2(r) ~ f ( z )  for  all 

We make several observations about  these functions.  First, observe that g2(r) >i gl(r) 
for  all values o f  r because f is a concave funct ion (gl corresponds  to a weighted 

average o f  f at two points,  g2 corresponds  to f evaluated at the weighted average 

o f  the points).  

Second,  note that  gl(0) = h; this follows f rom the definition o f  h. Define 
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r c [0, r2]. Not ice  also that 

u ~ - ( ( 1 - c h  )v~+ 6w~)= u ~ -  v~ + 4~(v~- w,~) 

1 
>1 u ~ -  v~ -~(u~ - v~) 

2 > ~ ( u ~ - v ~ )  

> 2(tOk - b, ) / (9k) .  

This puts a lower b o u n d  on the first term in the definition of  r2. A lower b o u n d  in 

terms of  b2-Ak is similarly obta ined for the second term. Note  that in the above 

chain o f  inequalities, we used the hypothesis  for  Case 4, the definition o f  J, and 

the fact that  th <~ 1. 

Thus, we conclude that  

1"2>/2 min(wk - b l ,  b 2 - ak ) / (9k) .  

Let p = g l ( r l ) -  h; by the observat ions above, p >~f ( z ) -  h. We now take two 

subcases. 

Case 5, same assumption as Case 4, and 

g l ( r 2 ) - h >  r2 p. 
2rl 

Then we also know that 

g2(r2) - h > - ~  ( f (  z) - h); 

this follows f rom plugging in the inequali ty for p and also the fact that  g2 ~> gl- But 

recall that  g2(r2) corresponds to a feasible point  in (8), and therefore p(k)(~) >! g2(r2)- 

Thus, we have the b o u n d  

p (k ) (~ )  _ h >i r2 ( f ( z )  - h). 
2rl 

Subtract  f ( z ) -  h f rom both sides to obtain 

r 2 - -  2 r 1 
p(k)(~) - f ( z )  >~ ( f ( z )  - h). 

2rl 

Plugging in the upper  bound  for  r~ and lower b o u n d  for  r2 yields 

p(k~(() - - f ( z )  ~> 4 min(tok -- ba, b2 - Ak) -- ( 9 k ) ( b 2 -  b~) ( f ( z )  - h). 
(9k)(b2 - bl) 

Using (11) yields 

29 min(wk - bl b 2 -  Ak) ( f ( z )  - h). p(k)(~) - - f ( z )  >~ 
( 7 2 k )  ( b  2 - b l )  

This proves the theorem. 
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Case 6, same assumption as Case 4, and 

g~(r2)-h<~ r2 p. 
2rl 

In this case, we can apply Lemma 6 to conclude that the leading coefficient of  gl 

is at least p / ( r l  • ( r 2 -  r~)) in magnitude: We can write an explicit formula for this 
coefficient; it is equal to 

d~ dr 

1 -4 ,  4, 

Thus we have the inequality 

d,, d , >  p 

1 - 4 ,  4, r l " ( r 2 - r l ) "  

Multiply both sides by 4,(1 -05) and substitute the definition of rl to obtain 

P 
- 4 ,d~-  (1 - 4,)d~ ~ > 

( b 2 -  b l )  • r2" 

Next, observe that the leading coefficient of  g2 is equal to d~ + d~. Clearly we have 

- d ~ - d ~  -4,d~ - (1 - 4,)d~ 

since d~, dr are nonpositive. Thus, 

P - d ~ - d ~  
( b e -  bl) • r2" 

Now we apply Lemma 3 to conclude that the range of g2 on interval [0, r2] is at least 

pr2 

4 ( b 2 -  bl)" 

The range of g2 is a lower bound on p(k>(~,)_f(z), so 

pr2 
O ( ~ ) ( ~ )  - -  ~ (k)(~) >I 

4(b2 -  bl)" 

Now we use the fact that p >~f(z) - h and the lower bound on r2 to obtain 

p(k)(~.) _/x(k~(ff)/> min(~ok - bl,  b 2 -  Ak) ( f ( z )  - h). 

18k (b2 -b1 )  

This concludes the proof  of  the theorem; all cases have been covered• [] 

4. The quadratic knapsack problem: Approximation 

We now turn to the approximation algorithm Approx DP. The construction of  the 
functions ~.(k) is fairly complicated; the various conditions in the theorem of  the 
last section suggest that a simple-minded approximation scheme for tx (k) might fail. 
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Recall that function ~(k) is an approximation to /x (k). The construction of  7r (k) is 
inductive: ~(1) is set to ~(1), and ~(k) is constructed from ~.(k-l). 

We assume that the variables are sorted so that 

Ul  - -  11 ~< u2- /2  < ~"  " " <~ U .  - -  I,. (24) 

(Note that no such assumption was necessary for Exact DP.) Function ~r (k) will be 

piecewise quadratic and continuous, with each piece concave. Most pieces will be 
linear (which is a special case of  concave). To construct ~(k), we first construct an 
intermediate function ~.(k) using Algorithm Scan-Breakpoint described in the last 
section. Scan-Breakpoint is applied to ¢r (k-~) and qk; thus, 

~ r ( k ) ( ~ ) = m i n { ~ ( k - 1 ) ( ~ - - t ) q - q k ( t ) :  t C [ l k ,  U k ] , ~ - - t E [ A k _ l , t O k _ l ]  }. (25) 

Algorithm Scan-Breakpoint is applicable because, by the induction hypothesis, 
function ,/./.(k--I) is piecewise concave quadratic and continuous. Note that if we 
establish an upper  bound on the number  of  breakpoints of  ~.(k-~), then we can also 
bound the running time of Scan-Breakpoint. Running times will be discussed below. 

From ~. (k)  w e  construct 7r (k) by making linear approximations.  There are two 
cases: the first case is that (12) is satisfied when we take j = k. 

In this case, we divide Ik with breakpoints.  Specifically, we place a breakpoint  

at the center of  Ik" , call this bo. Thus, bo = 1(Ak + tOk). Note that for an interval [ b l ,  b 2 ]  

to the left of  bo, (Ok-bl will exceed b2--Ak in (11). The opposite holds to the right 
of  bo. Thus, the two halves are treated separately. First we place a series of  
breakpoints b~, b 2 , . . . ,  bt between bo and tog geometrically spaced. Let 3 > 0 be a 
small parameter  proport ional  to e / n  2 (the exact formula for 6 is given below). 
Define p = 1 - 6, and let 

b~ = bo+~(Wk --Xk) • (1 _p i ) .  

Notice that as i tends to infinity, p~ goes to zero and hence b, tends to tOk. Notice 
also that 

bi-bi l = l ( ¢ - O k - - A k )  ° 6" p i-1 

whereas 

Thus, 

= ~(o~k - A k )  • p ~ - l .  (Ok __ bi_ l 1 

bi - bi- 1 
= 6. (26) 

min(tok - bi-1, bi - Ak) 

We continue the sequence until we reach bt such that 

bt i> COg - Ul + 11. (27) 

How large does t have to be to satisfy this inequality? A calculation shows that if 
we pick 

1 . [ Wk--Ak ] 
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then we have bt large enough. Using the facts that p = 1 - 8  and ] ln(1-  8)[/> 8 we 
can have the following upper bound on the right-hand side of the previous inequality: 

• j • 

Once b ~ , . . . ,  b, are constructed, we change the value of b, so that (27) holds as an 
equation. Note that this adjustment cannot increase the distance from bt_ 1 to b t. 

Thus, for this interval, (26) holds if " = "  is replace by "~< ". We will need only the 
inequality form of (26). 

We construct a second sequence of breakpoints, /~1, .- . , /~ defined by 

b~ = b o - - l ( t o k  -- Ak)" (1 _pl) .  

Similar inequalities as in the last paragraph hold for /~1 . . . . .  /~,. Notice that with 
the same choice of t as above, 

~ ~ A k d -  b / l - -  / 1 . 

Again, we adjust /~ so that this inequality holds as an equation. 
Once the breakpoints are selected, we define ~r(k)(~) to be the piecewise linear 

function interpolated from ~.(k)(~) at the breakpoints {/~ . . . .  ,/~1, b0, b l , . . . ,  bt}. In 
the interval [hk, /~t] and the interval [bt, tOk] w e  set 7/" (k) exactly equal to ~(k) (no 
interpolation). See Figure 3 for an example of this construction. The algorithm to 
obtain 7r (k) f r o m  7~ "(k) by introducing breakpoints in this manner is called L i n e a r i z e .  

Note that the function ¢r (k) is continuous and piecewise concave quadratic. 

-0.2 

-0.3 ̧ 

-0.4 

-0.5 

-0.6 

-0.7 2.5 
I I 

0 o5 1 1:5 

-0.1 

Fig. 3. Construction of "/T (k) (dotted) from ~.(k) (solid). 
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The second case is that (12) is not satisfied for variable Xk. (Note that if (12) fails 
to be satisfied for a variable xj; then we must have j = k because of  assumption 
(24).) In this case we construct 7r (k) in three pieces. 

In the first piece, we artificially constrain Xk to lie between lk and u~, where 

k - 1  

U'k=lk + • (ui--li) .  
i --I  

Note that (12) is satisfied with this bound on Xk. Notice also that if ~" lies between 

Ak and m, where 

m = u l  + " " " -l- u k l q- lk 

then no value of Xk larger than u~ is feasible in (8). Thus, for ~" in the interval 
[Ak, m], this artificial upper  bound on xk is not actually a restriction (in particular, 
tx(k), p(k), and ~.(k) are unchanged). 

This interval [Ak, m] is the first piece. We use Linearize to construct a piecewise- 
linear 7r (k) from ~.(k) in the interval [;tk, W~], where 

O~'k = ul +" • "+ Uk-l + U'k. 

A calculation shows that bo chosen by the Linearize algorithm turns out to be exactly 
m in the previous paragraph. Once Linearize is finished, we discard the breakpoints 
to the right of  bo, and define 7r (k) on [Ak, m] as the resulting piecewise-linear function. 

The second piece is the interval Ira, m'] where 

m ' = l ~ + ' ' ' + l k  l+ug.  

(Note that m '  ~> m: this follows from the assumption that (12) fails.) In this interval, 
we define ¢r (k) to be equal to ~.(k). 

The third piece is the interval [m',  ~Ok]. In this piece we artificially constrain x~ 
to lie between l~, and Uk, where 

k 1 

l'k = Uk -- ~ (Ui -  li). 
i = 1  

Once again, with this definition (12) is satisfied. Notice moreover  that if ~" E [m',  Wk] 
then no value of Xk smaller than l~ could actually be feasible for (8). Thus, as 
before, the restriction Of Xk to [l~,, Uk] does not affect tz (k), p(k) or ~(k) for ff c [ m ' ,  Wk]. 
We apply algorithm Linearize to come up with ~.(k) on the interval [A ~,, Wk], where 

A~,= 1 , + . .  "+lk-a+l'k.  

Notice that b0 constructed by Linearize is coincident with m'. On the interval [m',  Wk] 
we define 7r (k) to be the linear function constructed by Linearize on the restricted 
problem. 

The algorithm for constructing 7r (k) from ~.(k) in the case that (12) fails is called 

Linearize-3. Thus, Linearize-3 is the algorithm described in the last few paragraphs 
that works in three pieces. An example of  Linearize-3 is illustrated in Figure 4. 
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Fig. 4. Construction of zr (g~ (dotted) from 7~ (k) (solid) when (12) fails. 
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The goal o f  this construct ion is to show that  77" (k) approx ima tes  /z (k) in some 

sense. Before proving  the main  theorem,  we first consider  wha t  happens  to rat ios 
when  their  numera to r s  and denomina to r s  are interpolated• The  p roo f  of  the fol lowing 

l e m m a  is s t ra ight forward and appears  in Vavasis (1991). 

Lemma 8. Let nl, n2, dx, d2 be real numbers such that d~, d2 are positive. Suppose 

t h 6 [0, 1]. Then 

• { h i  / " / 2 ~ ( 1 - - t ~ ) n 1 - ~ - t ~ / 1 2 ~  { n l  
m m ~ , ~ ] ~ ( l _ c h ) d l + c h d z ~ m a x ~ , ~ )  • [] 

Theorem 9. We have the following bound for ~(k~, k = 1 , . . . ,  n, and ~ ~ Ik: 

[ ~ k ~ ( ~ )  _ ~,,~(~.)[ <~ s~• (p<~(,~)  - ~ " ~ ( , ~ ) )  (28)  

where 

S k = 144kn~, 

provided k, n, 6 are such that 144kn6 <~ 1. 

Proof .  This will be  p roved  by induct ion  on k. The  base  case k = 1 is trivial,  since 
~r(l~, p(l), a n d  ~(.~(1) are identical  functions.  We now address  the case k ~  > 2, where  
(28) is a s sumed  to hold in the k -  1 case. First, we examine  the difference be tween  
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~.(k) a n d / x  (k). Fix a part icular  ~'e Ik. Referring to (9), suppose the minimum for  ~" 
is achieved at a part icular  tl ,  i.e., 

~(k-1)( f f  _ / 1 )  -k- qk( q )  = tz (k)(~). 

Since ~.(k) is defined by (25), there is a t2 such that 

7r(k-1)(~ " -- tm) + qk(tm) = ~.(k)(~.). 

NOW we do a calculation, taking into account  the inductive hypothesis  and also 
the fact that t I is chosen to be a minimizer: 

i~ (k)(~) = i~ (k a)(~_ tl ) + qk( tl) 

<~ ~ (k-1)(~_ tm) + qk( tm) 

~< ~.(k-1)(~. t2)+ Sk_l[p(k 1)(~_ tm)--/~(k-1)((-- tm)]+ qk( tm) 

7~'(k)(~) -~- Sk- l [p(k-1) (~  -- tm) --/~ (k-1)(~ -- tm)]" 

Next,  we bound  the bracketed expression above: 

o(~- ' (~-  tm) - ~ ( k - , ( ~ _  t=) = (o ~ " (~ -  t~) + qk( t~) ) 

-- (l~ ( k - ' ) ( (  -- tm)+ qk( t2) ) 

<_ p ( k ) ( ~ ) - t , ( ~ ) ( ~  ) . 

Combining the two previous chains o f  inequalities shows that 

A similar bound  is proved symmetrical ly for  ~.(k)(~) _ tt(k)(~.). Thus, we conclude 
that 

Thus, we have a bound  on the difference between/~(k) and ~.(k). If  ~" does not  lie 
in the l inear pieces constructed by Linearize or Linearize-3, then the two values 
~.(k)(~.) and ,k(k)(~ ") are identical.  Thus, if ~(k)(~)= ~.(k)(~-) then (29) proves the 

theorem,  since Sk-, <~ Sk. 
The more  compl ica ted  situation is that ~ happens  to lie be tween two consecutive 

breakpoints ,  say bl and bm. Choose  ~b ~ [0, 1] so that 

~" = (1 - ¢9)b, + ~bbm. 

Let h denote  the interpolated value o f / z  (~), that is, h = ( 1 -  ~b)/z(~)(b~)+ ~b/z(k)(bm). 
Note  that  by definition of  ~-(~) we have the relation 

~r(k)(~ ") = (1 - 4))~'(k)(bl) + ~b~(~)(b2). 
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We first take the case when (12) holds and Linearize was used. By construction 
of  the breakpoints,  we know that 

b 2 -  bl 

min(tok - bl , b2 - Zk) 

Therefore by Theorem 7 we conclude that 

I/z(k)(~) -- h l~  72k" t~- (p(k)(~.) _/~(k)(ff)). (30) 

Notice that in (29) we showed that 

p (k)( bi) -- ~(k)( bi) 

p (k)( bi ) _ ix (k)( bi) <~ Sk-1 

for i = 1, 2. The same bound holds if the two terms in the numerator  are interchanged, 
also for i = 1, 2. We can interpolate the numerator  and denominator  of  the left-hand 
side of  the preceding inequality between bl and b2, applying Lemma 8, to conclude 
that 

Sk- 1 
p l - h  

where pl = ( 1 -  qS)p(k)(bl)+ 4)p(k)(b2). Rewriting this, we have 

[h--~r(k)(C)l<~Sk 1" ( p , - h ) .  

NOW we add Sk-l(h _ p ( k ) ( ~ ) )  on the right-hand side, using (30). We also note that 
since p(k) is globally concave, pl ~< p(k)(~). Thus, we obtain 

]h - ~r(k~(~)l ~ S k - l ( p ( k ) ( ~ )  - -  h) 

<~ Sk_l(p(k)(~) -- h) + Sk_l( h -- /z(k)(~)) 

+ Sk-l" (72k)8(P(k) (~)  -- p(k)(~))  

<~ Sk-l(1 + 72k6)(p(k) (~)  --/.~(k)(~-)). (31) 

Since the assumption stated in the theorem is that Sk-1 ~ 1, we have 

Sk 1(1 + 72k~) ~ Sk-i + 72k& 

Now we add (30) and (31), applying the triangle inequality on the left, to obtain 

[~(k)(~)  -- ,/].(k)(~)] ~ (S k 1-t- 144kt~) • (p(k)(~) _/.~(k)(~)), 

which proves the theorem, by definition of Sk. 
The last case is ¢ lies between two breakpoints,  b~, b2, linearized by Linearize-3, 

say for example,  in the first piece computed by Linearize-3 (the third piece is handled 
analogously, and the second piece needs no further analysis since zr (k)= ~.(k) on 

the second piece). In this case, all the calculations of  the previous case hold, except 
the derivation of (30) is more complicated. Specifically, we can obtain (30) by 
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applying Theorem 7 to the problem in which Xk is restricted to [lk, U'k] where u~, 
was defined above in the description of Linearize-3. For the restricted problem, (12) 
holds. Moreover, the breakpoint distances are defined in terms of the restricted 
problem, so we get (30) for the restricted problem. Finally, we observe (as noted 
above) that jt~(k) and p(k) are unchanged when Xk is restricted. [] 

Recall that the goal of this whole procedure was to show that 7r(')(y) is within 
e . (p ( ' ) ( ' y ) - / z ( ' ) (y ) )  o f /x( ' ) (y) .  This bound will hold, according to the preceding 
theorem, provided that 3 is chosen so that 

e 1> 144n26, 

i.e., a <~ e/ (144n2) .  
This completes the description of algorithm Approx DP for the concave case of 

(6). In the next section we discuss the extension to the indefinite case. We cover 
two additional topics in this section for the concave case: identification of the vector 
x ° and running time. 

First, we discuss the construction of x ~. Note that algorithm Approx DP returns 
only an approximate value of the optimum solution, not an approximation vector. 
There is a standard technique in dynamic programming to obtain the optimizing 
vector from the optimal solution. Specifically, the DP algorithm is augmented so 
that it tags the data items computed at each step with their source from the previous 
step. In the particular case of Approx DP, the tags take the form of a vector x(k)(bi), 
such that the optimal objective function of (8) is approximately attained at this 
vector when ~ = bi. Here, b/is a breakpoint of zr (k). Thus, by saving one vector per 
breakpoint, an approximately optimal solution may be constructed. 

Some technical difficulties are encountered in the analysis of how far f(x(k)(b~)) 
lies from ~r(k)(b~). These difficulties stem from the fact that no bound has been 
derived on ] ~.(k)(~.) _ ~.(k)(~.)l in the preceding analysis. This requires the construction 
of  x(k)(b~) to be more complicated than might be expected. The details are in Vavasis 
(1991). 

The last topic before turning to the indefinite case is the running time. The main 
work of Approx DP is n calls to Scan-Breakpoint. A straightforward implementation 
of  Scan-Breakpoint would require time proportional to r 2 log r, where r is the number 
of  breakpoints of  ~.(k-1). In this implementation, the various concave quadratic 
functions on [hk, ~Ok] would be written out expl ic i t ly - - the i r  number would be 
proportional to the number of breakpoints of 7r (k 1). Then the pairwise intersection 
between every pair would be computed (at most O(r 2) intersections) to determine 
new breakpoints. The new list of  breakpoints would be sorted (requiring r 2 log r 
steps), and then ~(k) would be written down. 

It turns out that Scan-Breakpoint can be implemented much more efficiently using 
an algorithm by Hershberger (1989), which finds the lower envelope of parabolic 
segments. The running time obtained by Hershberger is O(n .  a ( n )  • log n), where 
a ( n )  denotes the "inverse Ackerman function". This function grows extremely 
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slowly; for any problem size that might ever be computed, it is safe to assume 
a(n)<~6. Hershberger also gives more detail about a straightforward divide-and- 
conquer approach, including running time estimates. 

Thus, to bound the running time it suffices to bound the number of breakpoints 
in ~.(k~. There are three kinds of breakpoints in ~.(k~; we will bound each kind 
separately. 

The Type I breakpoints are those introduced by Linearize or Linearize-3. An 
upper bound on the number of these breakpoints was derived above; the bound is 

2 / tOn--An \ 
6 ln~2~u~--~) )" 

The Type II breakpoints are those occurring in the intervals [hk,  /~] and [bt, tog]. 
We claim that there are at most O(k) of these breakpoints. We skip the details of  
this argument (see Vavasis, 1991). 

Type III breakpoints are the breakpoints of zr (k) occurring between m and m' in 
Linearize-3. It can be shown using an argument analogous to Theorem 4 that zr(k)(~) 
for ~c (m, m') will have the form 

~r(k-1)( b ) + qk( C -- b ), (32) 

where b is a breakpoint of 7r (k 1). It cannot have the form ~ r ( k - ~ ) ( ~ - - b ) +  q k ( b ) ,  

where b = lk or b = Uk, because ~ ' -b  ~ [hk_l, Wk_l] in this case. For example, we 
can compute that 

~- -  lk > m -- lk >~ Ul + " • " -~ Uk_ 1 

by definition of m. Thus, ~.(k)(~.) is one of I possible concave quadratic functions, 
where 1 is the number of breakpoints of ¢r (k-~). A more careful analysis shows that 
each quadratic function can occur in only one piece, so that the total number of 
Type III breakpoints is bounded by 1, and, moreover, that b in (32) cannot be a 
Type II or Type III breakpoint of zr (k-~) (only a Type I breakpoint). The details 
are in Vavasis (1991). 

Thus, the total number of breakpoints is asymptotically dominated by r, the 
number of Type I breakpoints. The running time of Scan-Breakpoints is proportional 
to ra ( r ) l o g  r, and the total running time is dominated by n calls to Scan-Breakpoints. 
This gives a total running time estimate of 

where 

O ( n r a ( r )  log r) 

288n 2 / to . - -h .  \ 
r -  e 'ln~2~ul~--~[)-)" 

If  we also want to compute the vector x(")(y), another term of  the form n2r is added 
to the running time. 
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We remark that  this running time is b o u n d e d  by a polynomial  in n / e  and in the 

size o f  the problem.  In  particular,  the logari thmic factor  is bounded  by the number  

o f  bits to write the problem assuming that  all the input  data for  the problem is 

integral. This is known  as a "weakly  po lynomia l "  algorithm, meaning that  the 

number  o f  ari thmetic operat ions  depends  on the n u m b e r  o f  bits in the problem. 

5. The quadratic knapsack problem: Indefinite problems 

Our  next task is to extend Approx  D P  to handle  general  indefinite problems. Given 

an indefinite instance o f  (6), we split the variables into two vectors y and z, convex 

and concave,  as follows: 

minimize y V C y  + c r y  + z V D z  + dV z 

subject to Yl +" " • + Y,1 + Zl+" • • + zn2 = 3/, 
(33) 

l i < ~ y i ~ u i ,  i = l , . . . , n l ,  

l ~ < ~ z i ~ u l ,  i = l , . . . , n 2 .  

Here, C is a positive semidefinite matrix and D is a negative semidefinite matrix. 

Note  that the linear variables (those whose quadrat ic  coefficients are zero) may  be 

assigned to either y or  z. 

The next step is to compute  an approximat ion  for  the concave part. This is done 

using the algori thm in the last section. In particular,  we obtain a funct ion ~-(~') 

defined on the interval 

[ I ~ + . . . + 1 "  2, u', + . . .  + u'2] 

such that 

1~(~')- ~(,;')1 ~< ~ .  (p(~')- 
where 

/x(~') = min imum of  

subject to 

and 

~(~)) 

z T D z  + d T Z  

z l  +"  • • + zn 2 = ~, 

l~ ~ zi ~ u~ , i = l ,  . . . , n2 ,  

p(~') = max imum of  z T D z + d T z  

subject to Zl +"  • • + zn2 = if, 

l~ <~ zi <~ u~ , i = l ,  . . . , n2.  

Once we have ~r, then we also compute  a funct ion tp for  the convex part  defined 
by 

41(0) = min imum o f  y V C y + c V y  

subject to Y l  q- " " " q- Ynl  = O, 

l i < - y i < ~ u i ,  i = l , . . . , n l .  
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We remark that ~0 can be exactly computed in O(nl log n~) time. Function qJ has 
the following properties: it is piecewise quadratic and (globally) convex, with O(n0  
breakpoints. The algorithm to compute ~ is described in detail in Vavasis (1992b). 
Briefly, the idea is as follows. For a fixed 0, this problem is a convex minimization 
problem and hence is solved when the KKT conditions are satisfied. There is only 
on KKT multiplier of  importance, namely, the multiplier A for the equation con- 
straint. It is possible to deduce values for all of  the variables, and hence also for 
the objective function, given A. Moreover, it is possible to explicitly solve this 
problem (first observed by Helgason, Kennington and Lall, 1980) by solving for A. 
If  0 is indeterminate, then one can write down an explicit monotonic dependence 
of A upon 0, and hence of the optimal objective function upon 0 - -  this dependence 
is the function ~0. 

From ~r and ~0 we now can approximately solve the indefinite problem (33). 
Specifically, we have to minimize the sum 

~-(~) + q,(~,- ~) 

for all choices of ~" feasible for ~r such that y -  ~" is feasible for ~0. This is done by 
looping over the breakpoints of ~-. 

When the minimizer ~.o is identified in the preceding formula, we can claim that 
we have an e-approximate minimum for the whole problem. Write the approximate 
minimum as qO: 

qO= 7r(~o) + ~O(y_ ~.o). 

This is an overall e-approximate minimum. See Vavasis (1991) for the details of  
this claim. Thus, we have proved the following theorem: 

Theorem 10. Consider an indefinite quadratic knapsack problem of the form (33). 
Then an e-approximate minimum can be computed in time proportional to 

O(nl log nl + nera(r) log r) 

where 

2SSn , [ o .2-a°2 
r -  7 ' nk2~- - -~ ) , ] "  

[] 

6. Dependence of the running time on the parameters 

In this section we discuss our two main theorems (Theorem 2 and Theorem 10). 
We give some indication why the dependence on e and t or n that we obtained in 
the main theorems might be expected. 
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First, we address the dependence of Theorem 2 on e. To simplify this discussion, 
let us restrict attention to the case t = 1, for example,  a quadratic objective function 

of the form cy 2 +fTz ,  where y is a scalar unknown and c < 0. Suppose that we were 
able to obtain an approximation algorithm with running time dependence on e 

better than 1/e. Suppose, for example,  that we had an approximation algorithm 
whose running time were polynomial  in Ilog el. It is known that if a point is sufficiently 
close to optimal for an instance of quadratic p r o g r a m m i n g - -  in particular, within 
2 -°(L) of  optimal I then an exact opt imum may be found in polynomial time. Here, 
L denotes the number  of  bits needed to write the problem. I f  there were an 

approximation algorithm whose running time were polynomial in Ilog el, then we 
set e = 2 -°(L) and in polynomial  time come up with an exact solution to the concave 
problem with objective function cy 2 +fTz.  

This would seem to contradict recent results by Pardalos and Vavasis (1991), who 
proved that problems of this form are NP-hard. Thus, assuming P ~ NP, polynomial  
dependence on Ilog e[ is not expected, and therefore polynomial dependence on 
1/e seems like it might be the best possible. 

The same remarks apply to Theorem 10. I f  it were possible to obtain polynomial  

time dependence on Ilog e[ and polynomial  in the rest of the problem size, then 
concave quadratic knapsack problems could be solved in polynomial  time, 

apparently contradicting Sahni's result that these problems are NP-hard. 
Next, we investigate the exponential dependence on t in Theorem 2. We would 

prefer to have polynomial  dependence on n (and therefore t also), as in Theorem 
10. Suppose there were an approximation algorithm for the general indefinite 

problem whose running time were polynomial  in t and 1/e. The existence of such 
an algorithm would imply that P =  NP; the p roof  of this was given by Vavasis 
(1992a). This suggests that polynomial  dependence on t is not possible for the 
general case. 

7. Open questions 

Probably the most interesting question is whether the results on the knapsack problem 
extend to more general optimization problems. One promising area is nonconvex 

discrete-time optimal control, in which the problem can be decomposed into steps 
in the same way we decomposed the knapsack problem. 

Another open question is whether the running-time bound in Section 5 can be 
improved to a strongly polynomial  bound. 
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