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Let a bounded full dimensional polytope be defined by the system Ax >~ b where A is an m x n matrix. 
Let a~ denote the ith row of the matrix A, and define the weighted analytic center of the polytope to be 
the point that minimizes the strictly convex barrier function -Y~_~ w~ ln(a~Xx- b~). The proper selection 
of weights w~ can make any desired point in the interior of the polytope become the weighted analytic 
center. As a result, the weighted analytic center has applications in both linear and general convex 
programming. For simplicity we assume that the weights are positive integers. 

If some of the w~'s are much larger than others, then Newton's method for minimizing the resulting 
barrier function is very unstable and can be very slow. Previous methods for finding the weighted analytic 
center relied upon a rather direct application of Newton's method potentially resulting in very slow 
global convergence. We present a method for finding the weighted analytic center that is based on the 
scaling technique of Edmonds and Karp and is an enhancement of Newton's method. The scaling 
algorithm runs in O(~/~ log W) iterations, where m is the number of constraints defining the polytope 
and W is the largest weight given on any constraint. Each iteration involves taking a step in the Newton 
direction and its complexity is dominated by the time needed to solve a system of linear equations. 

I. Introduction 

I n t e r i o r  p o i n t  a l g o r i t h m s  fo r  l i n e a r  p r o g r a m m i n g  h a v e  b e e n  t h e  f o c u s  o f  m u c h  

r e s e a r c h  in  r e c e n t  yea r s .  I n t e r i o r  p o i n t  m e t h o d s  fo r  g e n e r a l  c o n v e x  o p t i m i z a t i o n  

h a v e  a l so  b e e n  d e v e l o p e d ,  t h o u g h  less  a t t e n t i o n  h a s  b e e n  g i v e n  t h e m  so far .  A 

c o m m o n  f e a t u r e  o f  t h e s e  a l g o r i t h m s  is t h e  u s e  o f  s o m e  a p p r o p r i a t e l y  d e f i n e d  c e n t e r  

o f  a b o u n d e d  c o n s t r a i n t  p o l y t o p e  as a r e f e r e n c e  p o i n t  f o r  i m p r o v i n g  t h e  v a l u e  o f  

t h e  o b j e c t i v e  f u n c t i o n .  T y p i c a l l y ,  t h e  l i n e a r  p r o g r a m m i n g  a l g o r i t h m s  i n v o l v e  a 

s e q u e n c e  o f  i t e r a t i o n s  in  w h i c h  t h e  p o l y t o p e  is a l t e r e d  a n d  t h e  r e s u l t i n g  c e n t e r s  

c o n v e r g e  t o w a r d  a n  o p t i m a l  f a c e t  o f  t h e  p o l y t o p e ,  w h i l e  t h e  g e n e r a l  c o n v e x  o p t i m i z -  

a t i o n  a l g o r i t h m s  i n v o l v e  a s e q u e n c e  o f  o p e r a t i o n s  t h a t  u s e  s o m e  t e s t  a t  t h e  c e n t e r  
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as a way to cut away part  of  the constraint region in which the test indicates the 

optimal solution can not lie. Usually, the center is taken as the minimum of  some 
convex barrier function defined on the interior of  the polytope. 

Let AG[~ mxn, b c R ' ,  and ccRn.  Define P c ~  n to be the polytope given by 

{x: Ax  >~ b}. We will make the assumption that P is bounded and full dimensional. 

Consider now a barrier function over the polytope P of  the form 

F(x )  -- - ~. wi ln(aTx -- bi) 
i=l 

where w; > 0 for all i. We call F the weighted logarithmic barrier function. It is clear 
that F is strictly convex over P. The weighted analytic center is the unique minimizer 

of  F over P. 
The analytic center, namely a weighted analytic center with all weights set to 1, 

has been extensively used in interior point methods for linear programming 
[7, 9, 10, 12]. Clearly, the weighted analytic center is just a generalization of  the 
analytic center. Renegar [9] used the analytic center to develop a linear programming 
algorithm in which the objective plane is advanced in the direction of increasing 

value and the sequence of  resulting analytic centers converges toward an optimum. 
Vaidya [12] developed a similar algorithm for linear programming that also used 

the analytic center. The primary difference between the two algorithms was that 
Renegar used Euclidean distance as a measure of  closeness to the analytic center 
while Vaidya used the barrier function itself as a measure of closeness, as we will 
do in what follows. The measure of  closeness to the analytic center is an important  
factor in the convergence of center-following algorithms. A few other possible 

measures of  closeness are discussed in [11]. 
In this paper,  we consider finding the weighted analytic center for an arbitrary 

vector of  positive integer weights ( w ~ , . . . ,  win). The weighted analytic center has 
numerous applications. One application is a very direct approach to solving linear 
programs. Suppose we wish to maximize an objective function cTx over the polytope 
P. Suppose further that we have a suitable lower bound fl on the objective function 
such that P c {x: cVx >~/3}. In this case, we can give the objective plane an "exponen-  
tially" large we igh t - - s e t t i ng  the weights on the other planes to 1 - - a n d  it can be 

easily shown that the weighted analytic center is sufficiently close to the opt imum 
to allow isolation of an opt imum vertex of the polytope. 

The weighted analytic center, and thus the technique for finding it, also has 
applications in general convex optimization, i.e., minimizing a convex function g 
over a convex set S. Vaidya developed an algorithm for convex optimization in [ 13]. 
One interpretation of his algorithm is that it maintains a polytope known to contain 
S and uses the gradient of  g at a weighted analytic center to allow the cutting away 

of  portions of  the polytope that can not contain the minimizer over S. The process 
repeats with a new weighted analytic center over the resulting polytope. In this 
interpretation of  Vaidya's algorithm, the weights are "implici t"  and depend on the 
current center. If, using some heuristic criteria, the weights can be explicitly altered 
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to lead to reasonable approximations of successive weighted centers, then the method 

we present would fit nicely into the minimization scheme. 

Given a vector (wl, .  • •, win) of weights, by definition, finding the weighted analytic 

center simply involves minimizing the weighted barrier function. In this paper, we 

will do this by taking steps in the Newton direction. In general, the relative sizes 

of the weights can have a profound effect on the ease with which Newton's method 

can be applied. Furthermore, Newton's method must have a reasonably good starting 
point in order to give good convergence. If, for example, one weight is very large 

relative to the others, then the set of acceptable starting points can become prohibi- 

tively small. 

A simple example will illustrate the difficulty. Suppose we want to find the weighted 

analytic center of the polytope [0, 1] c ~ where the facet x/> 0 is given a weight W, 

while the facet 1 - x ~ 0  is given a weight of 1. In this case, we have F(x) -=  
- ln(1 - x )  - WIn  x. Then F ' ( x )  - 1/(1 - x )  - W / x ,  F" (x )  = 1/(1 - x ) 2 +  W / x  2. 

It is clear in this simple case that the weighted analytic center is to = W / ( 1  + W) .  

Consider using Newton's method to find to. The formula is 

F'(Xg) 
X k +  1 ~ X k - - - -  

F"(xk)  

x~(1 - Xk) -- WXg(1 - Xg) 2 
= x k -  x~+ W(1 - -Xk )  2 

2 Wxg(1 - xk) 2 + x 3 - x~(1 - Xk) 2 

W(1 --Xg)2 + X2k 

We consider now the set 

{ x ~ ( O ,  1 ) : 2 W x ( 1 - x ) 2 + x 3 - x 2 ( 1 - x ) 2 > _  } 
W ( 1 - x ) 2 + x  2 ~ 1  . 

This is the set of feasible points such that the next Newton step would lead to a 

point to the right of the feasible region. A little algebraic manipulation shows this 

is the same set as 

{x e (0, 1): W(1 - x)(2x - 1) - 2x 21> 0}. 

Notice now that at x = 0  we have W ( 1 ) ( - 1 ) - 2 ( 0 ) 2 < 0  and at x = l  we have 
W(0)(1) - 2( 1)2 < 0. However, at x = ~( W~ ( W + 1)), we get ( W 2 - 8 W ) / ( 8 ( 1  + W)) > 

0 (so long as W >  8). We can thus omit the condition that x ~ (0, 1) from the above 

set, because we have shown that all possible points must lie in (0, 1) anyway. Now, 
using the quadratic formula, we can say 

{x: W(1 - x)(2x - 1) - 2x 2 t> 0} 

= 3 W 3 W 
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Denote this interval as [a (W),  b( W)]; then 

w~lim length[a(W),  b(W)]  = lwim½ ~ / ( - ~ - ~ - 2 .  

That is, the interval of points such that the next step leads to an infeasible point 
becomes nearly half the entire feasible set as W ~  ~.  This result is not a complete 
analysis of which points could be good starting points for Newton's m e t h o d - - i n  
general a difficult t a s k - - b u t  it illustrates the difficulties that can be encountered 
when the weights differ greatly. The difficulties can be even more acute when working 
in n dimensions. A key issue, then, is to ensure that Newton's method will converge 
from whatever point we consider to be the curren t  point in the algorithm. 

Freund considered the weighted analytic center in [2]. Using projective transfor- 
mations, he showed that beginning from an easily obtainable starting point, a 
sequence of  points found by successive steps in Newton directions will eventually 
converge superlinearly to the weighted analytic center. Freund did not give any 
specific growth bounds on the number of such steps based on the weights or the 
number of constraints. The algorithm to be presented will give such bounds, and 
will benefit within each iteration from the same superlinear convergence as Freund's 
approach. The primary improvement of the algorithm is that it maintains the 
assurance of  good convergence by Newton's method in a novel way: it uses the 
technique of  scaling the weights. 

Introduced by Edmonds and Karp [1], scaling has found wide applicability in 
weighted combinatorial optimization problems (see [4]). Suppose we have a vector 
of  weights w = ( w l ,  • • • ,  win). The basic idea is that we recursively solve the given 

1W problem with all weights wi replaced by weights [3 iJ. The solution with weights 
[½w~J can then be used to find a solution for the problem with the original weights. 
Typically, then, if producing a solution to the problem with full weights w~ using 
the solution with halved weights [½wiJ takes T ( m ,  n )  time, then the final solution 
will be produced in T ( m ,  n ) ( [ l o g 2  WJ + 1) time where W is the largest weight in 
the problem. 

A slightly different point of view that is actually equivalent to the recursive process 
described in the last paragraph is to consider the binary representations of the 
weights in the problem 

wi = bio b q "  • • bip 

where b~, c {0, 1} and p = [log2 WJ where W is the maximum weight in the problem. 
The algorithm begins by solving the given problem, but with each weight set to the 
most significant bit of the original weight. It then moves on to consider successively 
less significant bits in the weights. In particular, during the kth iteration, we double 
all current weight settings, so we have 

W i  k "~- bio b q • " " bik 10. 

If  b~ : O, the current weight setting is correct for the kth iteration. Otherwise, we 
need to add 1 to the ith weight. Adding l 's where necessary and calculating the 
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new solution is the same process as using the solution with weights [½~J to calculate 
the solution with weights a and will be accomplished in T(m, n) time. The algorithm 
halts after [log2 WJ + 1 iterations. This second point of  view is more convenient for 
the algorithm to be presented. 

T(m, n) is the total work done in O(x/-m) inner iterations of our algorithm. The 
remaining factors of  T(m, n), other than x/m, are dominated by the time required 
to calculate Newton directions, which involves solving a linear system. A detailed 
analysis of all such work could be carried out precisely as in [12] to show that 
T(m, n) = O(m~~n + mn2), or O(mn +n/ ran  2) work within each inner iteration. 

We will need one modification of the scaling technique. In finding weighted 
analytic centers, we can not allow any weights to be zero if we want to ensure that 
the barrier function has a unique minimum. In effect, a zero weight could fool the 

barrier function into seeing an unbounded polytope. So, we will always set every 
weight to a value of at least 1. This means that if the first k -  1 significant bits of  a 
weight are all 0, then we will set that weight to 1 and when we double this artificial 
1 at the beginning of the kth iteration, we must decrease that weight by 1 during 
the iteration. Thus, increases of some weights and decreases of others may occur 

during the kth iteration. Of  course, once we are far enough along to encounter 
non-zero bits in all weights, no further decreases will be necessary. We will show 
that the increases and decreases can be done simultaneously without hampering the 
efficiency of the algorithm. 

2. The algorithm 

The algorithm to be presented will work in outer and inner iterations. The outer 

iterations consist merely of doubling the weights on all planes, adding - 1 ,  0, or 1 
to the resulting weights as needed, calculating the new weighted analytic center, 
and checking to see whether all weights have reached their final values. The inner 
iterations are the workhorse of the algorithm. During the inner iterations, the weights 
that need adjustment change gradually while we keep track of the ever-changing 
weighted analytic center. The key is to change the weights as rapidly as possible 
while maintaining certain invariants that ensure Newton steps will be effective in 
maintaining the changing weighted analytic centers. 

In our notation, we use subscripts to denote outer iterations and superscripts to 

denote inner iterations. Thus ~o~ represents the weighted analytic center at the j th  
inner iteration of the kth outer iteration. The algorithm maintains an approximat ion 
x~ to w~. Rather than measuring closeness by a Euclidean distance, we will measure 
it using the weighted logarithmic barrier function F, i.e., x~ will satisfy 

F(XYk) -- F(wJk) < 0.00125. (1) 

We will show that this notion of closeness to to~ will be sufficient. At the end of 
the inner iterations, we will denote the point obtained merely as xk, which serves 
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as an approximat ion  to tOk. The inner  iterations begin with x °, which is obta ined 

f rom Xk-~ at the beginning of  an outer  iteration, and end with the point  Xk = XJk, 

where J denotes  the last inner iteration. 

Here is the algorithm. 

I n i t i a l i z a t i o n :  All weights begin at 1. Also set k = 1. 

Dur ing the kth outer  iteration: 
S t e p  1. Double  all weights. For  all i, we have 

o [10  i f b i o b i ' "  " b i k _ l = O ,  

wik = ].biobil • ' '  bik_,O otherwise. 

S t e p  2. Take O(1) Newton  steps to obtain f rom Xk-1 a point  x ° such that 

F ( x  °)  - F(W°k)  < 0.00125 (note that w ° = tOg-l).  

S t e p  3. Add  l ' s  and - l ' s  to some weights. 
Define the ith g o a l  w e i g h t  G~k by 

1 if bio bi, • • • bik_, = O, 

Gik  = bio bil • • • bi~ if bio bi,  • • • bik_, ~ O. 

(i) Set j -  1. 

( i i )  Partit ion the index set I = {1, . . . ,  m} into sets 11 ,  Ik,2 Ik,3 where 

I~ = {i: b~ob, , • • • b;k_ ~ = 0}, 

12 = {i: biobi, • • • bi~_, ~ 0 and bik = 0}, 

13 = {i: biob;1 • • • b~ , ~ 0 and b,~ = 1}. 

(iii) Define y~, 1 ~< i ~< m, by 

[ 1 - p /  m ~ i ,  i ~ I ~ ,  

~/i : 1, i 612k, 

l + p /  m ~ i ,  i e I 3 k .  

j--1 For  i = 1 , . . . ,  m, set w~ = y~w~ . I f  mult iplying by y; causes over-shooting o f  the 

ith goal weight, then just set w~ = G;k. p is a constant  to be specified later. 
J J (iv) Take O(1) Newton  steps to obtain point  x~ such that F(XJk)  -- F(to~) < 0.00125. 

(v) I f  all goal weights have been met, set Xk = XJk and  stop inner iterations. 
Otherwise set j = j +  1 and return to (iii). 

S t e p  4. I f  G~ = wi for  all i, then halt. Otherwise set k = k + 1 and return to Step 1. 

Note  that the inner  iterations are executed in Steps 3(iii) through 3(v). Further- 

more,  since each weight wi is at least l and p is a constant ,  there can be at most  

O(x/m) inner iterations. It is also clear f rom previous discussion of  the method  that 
there are [log2 wJ  + 1 outer  iterations, where W is the largest o f  the weights on the 

planes. The algori thm starts f rom the u n w e i g h t e d  analytic center in which all wi's 

are equal to 1. This starting point  may  be found  as described in [9] or  [12]. That  
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O(1) Newton steps suffice in Steps 2 and 3(iv) will be proved in Section 5. So 
the algorithm executes a total of  O(45-nlog2 W) steps of  Newton's  method,  and 
as discussed earlier the total number  of  arithmetic operations performed is 
O((rnlS n + mn2)log W). 

3. The functions F and qt 

Crucial to the development of  the proofs will be a way to approximate the values 

F ( x ) - F ( w )  from local information at x. It will also be convenient to use a 
generalized notion of nearness to x, or a ball about x. The next several lemmas will 
develop some useful relationships. 

We should note here that the function F depends both on x and the weights 

(wl, • • •, win). That is, each time a weight is changed, we have a different logarithmic 
barrier function. However, since great care will be taken to specify the weights at 
all stages of  the algorithm, and since within each inner iteration the weights are 
held constant, we will refer to each member  of this large family of  barrier functions 
as F(x). The reader should understand that the precise meaning of F(x) depends 

upon the current weight settings. Furthermore, the results of  this section are results 
on the function F that are independent of  the weight settings (except where specified) 
and so no subscripts or superscripts on the arguments will be needed. 

First, two definitions. 

Definition. 

~ ( z )  := VF(z)T(V2F(z))- 'VF(z).  

Definition. 

1;(z , r ) :=  x: a~z-bi  ~ r f o r a l l i = l , . . . , m  . 

The quantity ~ ( z )  has many useful properties that have been pointed out by 
several authors, including [3], [7] and [13]. Nesterov and Nemirovsky [8] called 
qt(z) "Newton ' s  decrement" of  F(z) at z. The reason for their terminology is that 
qr(z) represents the decrease obtained in the quadratic approximation to F by 
taking a Newton step. It is also clear that ~ ( z )  is the square of  the inverse Hessian 

norm of the gradient of  F. 2:(z, r) is a generalization of  a ball about z. Its shape 
depends both on the planes that make up the polytope and on the distance of  z 
from each facet of  the polytope. 

The following lemma allows us to relate the quadratic form determined by the 

Hessian evaluated at any point in ,~(z, r) to the quadratic form in which the Hessian 
is evaluated at z. Creating a region in which the Hessian doesn' t  change too much 
is a useful idea in proving convergence of barrier minimization algorithms. Similar 
lemmas are proved in [3], [7] and [13]. 
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Lemma 1. I f  x c X ( z ,  r) where r<  1, then for all ( c R  ~, 

~Tv2F(z)~ ~TV2F(z)~ 
~ + - - ~ - ~ T V 2 F ( x ) ~ < ~  ( l _ r ) 2  

Proof. First note  that 

wiaia T 
V2F(x) = 

, = ,  (a~x - b,) 2" 

So, 

~:Tv2F(x)~ = ~, wi(aT~)  2 m w, (a~( )2  ( a [ z _ b , ) 2  
, = ,  ( a [ x  - b , )  2 - ,~=, ( a ~ z  - b i )  2 ( a T x  - -  b , )  2 '  

Since x c X(z,  r), we can say 1 - r <~ [(a[x - bi) / (a[z  - b,) I ~< 1 + r for  all i. As a result, 
we have 

( l + r )  2 , : ,  ( ~ b T ) 2 J  ,=1 ( a T x - b , )  2 

1 r m wi (aT~)  2 ] 
[] 

( 1 -  ~ 

The next  lemma will convert  Lemma 1 into a result on the quadrat ic  form of  
the inverse of  V2F(x) .  For  a positive definite matrix A, define E(A ,  x, r ) :=  
{ y: (y - x )VA(y  - x) <~ r2}. Using the K a r u s h - K u h n - T u c k e r  conditions,  or just  con- 
sidering the propert ies  of  the elliptic norm, we can say 

max  wX(y - x )  = r ~ .  (2) 
yaE(A,x,r) 

See [6] or [13] for  details. Lemmas similar to the fol lowing appear  in several s tandard 
texts on optimizat ion,  as well as in [11] and [13]. 

Lemma 2. Suppose A and B are positive definite n × n matrices such that ~T A~ ~ o~T B~ 
T A 1~_< forsome 0 > 0  a n d f o r a l l ~ i n  ~ .  Then ~ ~ ( 1 / o ) ~ T B - l ~ f o r a l l ~ i n  ~". 

Proof.  I f  ~:TA~:~ 1, then o~TB~ 1 by hypothesis.  Thus E(A,  0, 1 ) c  E(B, 0, 1/~O). 
Thus, for  any ~c c 1t~ n, 

max ~:Ty~> max ~:Tz 
y~E( B,O,I/~-) " z~E( a,o,1) 

or, equivalently,  

So ~VA 1~<~(1/o)~TB-I~. [] 

Corollary.  I f  x 6 X(z,  r), then for all ( c ~  ~, 

(1 + r)2(T(V2F(z))-'~>~ ~T(V2F(x))-'~:~> (1 - r)2~T(V2F(z)) ~. 



D.S. Atkinson, P.M. Vaidya / Weighted analytic center o f  a polytope 171 

Proof. Follows from Lemma 1 and Lemma 2. [] 

In several of  the proofs to follow, we will need to express function values in 
terms of integrals. We will use the implicit function theorem applied to the function 
~ : ~ n + ~ R n  given by qb(x, t ) = V F ( x ) - t w  where w is some fixed vector in R". 

Setting ~(x ,  t)-= 0 implicitly defines x as a function of  t, and differentiating both 
sides with respect to t gives 

V2F(x)Yc( t) - w = 0 

o r  

)~(t) ~ ( V 2 F ( x ) )  1W. (3) 

In most of  the applications that follow, we will set w = VF(z) ,  for some fixed z. It 
is not difficult to prove that x is in fact an analytic function of t, the importance of 
which is that we will have independence of path in the integrals we shall consider. 
Some regularity conditions on F are required in order to use the implicit function 
theorem. A detailed verification of the required properties along with a p roof  of  
the analyticity of  x(t)  can be found in [13]. 

The next two lemmas and following theorem will begin to give us information 

on the behavior of  gr(x) inside (and outside) the set X(z, r). 

Lemma 3. For any x in the polytope P, 

aTi (V2( f ( x )  )-l  ai ~ 1 
(a[x - bi) 2 

for all i. 

Proof. First we show that E(V2F(x) ,  x, 1) c p. By definition, 

E(V2F(x) ,x ,  1 )={y:  ~ wi(aT(y--x))2-<I} (4) 
i=l ( a [ x  -- bi)  2 ~ " 

In our application of the scaling algorithm, we have W l , . . . ,  wm t> 1 throughout.  
Therefore, 

(aT(y--x))2<~ (aTix-- bi) 2 for all i. 

As a result, f rom (4), 

]aT(y--x)l<~aTx--bi fora l l i .  (5) 

I f  y ~  P, then there exists some index j such that a f y -  bj <0 ,  hence a y ( y - x )  < 
--aTx + bj = - ( a y x  - bj), which contradicts (5). Thus E(V2F(x) ,  x, 1) c p, and this 

along with (2) implies 

aT(V2F(x))-lai  = max [ a [ ( y - x ) ] 2 < ~ [ a [ x - b i ]  2. 
y~E(V2F(x),x,l) 

Therefore, 

a[(V2F(x))-la~<~ 1. [] 
( aTi x - bi) 2 
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Lemma 4. Let r < 1. Let w be a fixed vector in ~ .  Consider the trajectory implicitly 
""  A 

defined by VF(x)  = tw and let ~ be such that V F ( ~ ) = tw for some scalar t. Let x = x(  t ) 
be a point on the trajectory such that x c X ( 2, r). Then for 1 <~ i <~ m, 

a~2(t)  
a~x - bi ~ (1 + r)x/wT(V2F(:~))-Xw. 

Proof. Since 2( t )  = (V2F(x ) ) - lw ,  we have 

( (a (vaF(x   2 
= . - -  ' ) "  

Now considering 

(VZF(x)  ) -1/2 ai (VZF(x)  ) -1/2 W 

u -  x/-aaWx--bi and v -  x/aWx--bi 

and using (uTv)2~ Ilull~llvllN, we get 

( aTiyc(t) ,~2 aT(V2F(x)) - la i  

a T~x -- bi] <~ aTi x - -  bi a ~ x -  bi 

a f (V2F(x ) ) - l a i  

(aTx -- bi) 2 

wV(V2F(x ) ) - 'w  

(1 + r)2wT(V2F(:~))-'w. 

The last inequality follows from the hypothesis x ~ 2 (2 ,  r). Now, by Lemma 3, we 
know the first term on the right is less than or equal 1. The result follows. [] 

Theorem 1. Let r < 1 and let w c ~n be fixed. Let ~ be a point in g~n such that V F( ~) = ~w 
for some scalar ~. Let x(~) be a point on the trajectory defined by VF(x)  = tw such 
that x(T) is not contained in the interior of  X(~,  r). Then 

i _tl > r -ar2  
(1 + r)x/wT(VeF(2~))-'w" 

Proof. Define Y = x(?) to be the first point on the trajectory in moving from ~ to 
= x(t-) that lies on the boundary of X(~, r) (see Figure 1). Then there is an index 

k such that (avk:~ -- bk)/(aTk~ -- bk) = 1 + r or 1 - r. In either case, since r < 1, we have 

[ aT~ -- bk\ 
l n ~ a ~ - ~ )  ] >- r - l r  2. 

Now, we also have 

l ['a~.~--bk'~ fV a ~ ( t )  
n~awk:~_bk) I = at Jt  aTkkX( t) -- bk 

By Lemma 4, 

I f f  a~2(t)  a'~)~(t) 

4 1 7 -  t](1 + r)x /wT(V2F(x)) - lw.  
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7~ 

It follows, then, that 

Fig. 1. 

1 2 
r - - ~ r  

(1 + r)x/wT(V2F(x))-lw 
[] 
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Lemma 5. Consider the trajectory x(t) implicitly defined by V F ( x ) =  tVF(z). I f  
/z<~0.16 and ~ ( z ) ~ 2 / z  2, then x(t)c~,(z,x/-~) for all t in [0, 1]. In particular, 

o~ c ,~ ( z, ",/--d ). 

Proof. Suppose not. That is, suppose there exists ~" c [0, 1] such that x(f)  ¢ Z (z, x/'~). 

Then by Theorem 1, with w = VF(z) ,  

, / ~ - ~  
1 >~ I t ' -  11 >f (1 + x/-~'~) ~x/-~-~" 

Thus 
/ ~ - '~  1 , ,2 
/ /x - ~p~] <~ 0.16) .  ~(z)~> ~, 1 - - ~ - ~ ]  > 2~2 (since/z 

Contradiction. Therefore x( t )~(z , v / -~)  for all t c [ 0 , 1 ] ,  and so w = x ( 0 ) c  

~(z, 4~) .  [] 

The next theorem is fundamental. Given only information about ~ (z ) ,  the theorem 
will allow us to draw conclusions about the distance of a point z from the weighted 

analytic center w, measured in terms of values of F. 

Theorem 2. I f~  ~0.16 and qt (z )~2 /z  z, then 

½(l -4 - -d )~ , e (~ )  <~ F ( z )  - F(o~) ~ ~(1 + 4-~)~ ~(~). 
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Proof. Considering the trajectory implicitly defined by VF(x)  -- tVF(z) ,  we get 

I5  f l f ( z ) - F ( t o )  = VF(x)  • d x =  V F ( x ( t ) ) .  2 ( 0  dt 
= ~  t = O  

I01 = tVF(z)T(V2F(x( t ) ) ) - IVF(z)  dt (see equation (3)). 

By Lemma 5, we know the entire trajectory over which we integrate lies within 
X(z, ~-~). Thus, by the corollary to Lemma 2, we can say 

o tVF(z)T(V2F(x( t ) ) ) - IVF(z)  dt 

<~ t ( I+x/~)2VF(z)T(v2F(z))  1VF(z) dt 

= ½(1 +,f#-)2 qt (z). 

The lower bound follows in a completely similar fashion. [] 

Lemma 5 and Theorem 2 give us a bound on F ( z ) - F ( t o )  from a known bound 

on ~ ( z ) .  The next lemma and theorem turn this around and give us a bound on 
~ ( z )  from a known bound on F ( z ) - F ( t o ) .  It is interesting to note that our 
knowledge of a bound on F ( z ) - F ( t o )  derives from information about qt(z). So 
in a sense, this result seems circular. However, the p roof  of  convergence of Newton's  

method will be expressed in terms of the quantity F(XJk) -- F (Jk ) ,  as is typically the 
case in convergence proofs for iterative methods. So, to be able to prove that qt(z) 
also decreases, we will need a bound on qt(z) when F ( x ~ ) -  F(w~) is made small. 

A direct p roof  of  acceptable decrease in ~ ( z )  due to Newton steps would be more 
difficult. 

Lemma 6. Consider the trajectory implicitly defined by VF(x)  = tVF(z)  where z is 
fixed. I f  u~<0.008 and F ( z ) - F ( w ) < ~  v, then x ( t ) c ~ ( z ,  5,fv) for all t c  [0, 1]. In 
particular, then, x(O) = to ~ S(z ,  5x/-u). 

Proof. Suppose not. Let x(f)  be the first point on the trajectory from z to to that 
lies on the boundary  of £(z ,  5x/~). Then by Theorem 1, 

1-7~> 
(1 + 5 x / ~ ) ~ "  

Thus, 

\ 1 + 5 4 ;  ] " 
(6) 
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So now, 

V ( z )  - F ( , o )  --  F ( x ( 1 ) )  - F ( x ( 0 ) )  

/> F ( x ( 1 ) ) -  F(x(t-))  (since w is the minimizer) fl 
= t V F ( z ) T ( V 2 F ( x ( t ) ) )  1VF(z) dt 

>~ (1 - 5 ,~)2gt (z)  t d t  (by the corollary to Lemma 2) 
g 

= ~ ( 1  - ~-:)(1 - 5 , / ~ ) :  ~ ( z )  

I>1(1  - f ) : ( 1  - 5 , / ~ ) : ~ ( ~ )  

5 v : 5 , / 7 - ~ v  : ~>½(1-x/~) [ 1 ~  ] (by equation (6)) 

> v (since v~0.008).  

Contradiction. Thus x ( t )  E ,Y,(z, 5~f~) for all t c [0, 1]. 

Now the promised analog to Theorem 2. 

[] 

Theorem 3. I f  u<~O.O08 and F(z ) -F(w)<~  u, then 

½(1 - 5,fu)2 ~ (z) ~< F ( z )  - F ( w )  <~ ½(1 + 5,f~)2 q t (z). 

Proof. As in the proof  of Theorem 2, 

fo' F ( z )  - F(co) = t V F ( z ) T ( V Z F ( x ( t ) ) ) - ' V F ( z )  dt. 

By Lemma 6, the entire trajectory over which the integral runs lies within Z (z, 5 ~ ) .  
Both inequalities follow by the corollary to Lemma 2. [] 

4. Taking Newton steps 

In this section, we begin to prove the convergence of the Newton iterations in Steps 
2 and 3(iv) of the algorithm. The relationships between F and qt stated in Theorem 
2 and Theorem 3 are used extensively. We develop some rather general bounds on 
the improvement we can expect from taking Newton steps. In the next section, we 
will consider the most advantageous numerical parameters for the algorithm, and 
the general bounds will become specific. 

We will consider the behavior of F along the Newton direction - 7 ,  where 
~7 := (V2F(z ) )  ~VF(z) ,  beginning at a point z. This will, of course, give a function 
from R to R. We will get a guaranteed decrease in this function by upper bounding 
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its first derivat ive by a funct ion gua ran teed  to be "sufficiently negat ive" .  By this we 
mean  a funct ion that  will be sufficiently negat ive over  enough  of  the interval  o f  
integrat ion to yield a negative value for  the integral. The  uppe r  bound  on the first 
derivat ive will be expressed in terms o f  ~ ( z ) ,  the fract ion A of  a full Newton  step 

we choose  to take,  and the quant i ty  6 that  bounds  F ( z ) - F ( w ) .  We will u p p e r  
bound  the first der ivat ive in terms of  these quanti t ies quite s imply by  upper  bound ing  
the second derivat ive in terms of  these quantit ies.  

The fol lowing l e m m a  will p rove  useful  in bound ing  the second derivative. 

Lemma 7. Let y ( t )  = z - t~?, for  t ~ [0, A ] where ~7 is defined above. I f  F(  z ) - F (  to ) < 6, 

where 6 <~ 0.008, then y ( t )  c • ( z ,  Ax/26/(1 - 5x/~)) for  all t c  [0, A]. 

Proof.  By definit ion of  y and ~/, 

( y  - z ) T V 2 F ( z ) ( y  - z) = t2~TvV2F(z)~7 

= t 2 V F ( z ) T ( V 2 F ( z ) ) - 1 V F ( z )  

= t2~It(z) 

<~ A2qt(z) for  all t c [0, A]. 

Now,  since 6 ~< 0.008, Theorem 3 implies  that  

q t ( z ) < 2 ( F ( z ) - F ( w ) )  . i 23 
( 1 - 5 ~ )  2 1 - 5x/6) 2" 

Hence  ( y  - z ) V V 2 F ( z ) ( y  - z) <~ (2A26)/(1 - 5x/~) 2, and so for  all t c [0, A], 

y( t )  ~ E* := ~ ( V 2 F ( z ) ,  z, A , / ~ / ( 1  - 54-~)). 

Thus for  all pairs  (ai, bi), apply ing  equat ion  (2) and  L e m m a  3, we have 

2A26 2A26 
y~E*max ( a ~ ( y -  z)) 2 (1 - 5~/~)2 a~r(V2F(z)) lai <~ (1 - 5 x / g )  2 ( a [ z -  b~) 2. 

Therefore ,  

a ~ ( y - z ) ]  h ~  
y c E *  implies  a~Vz ~ <~ (1 - 5~/~)" 

So, E ( V 2 F ( z ) ,  z, (Ax/26)/(1 - 5x/~)) c ~ ( z ,  h,~--6/(1 - 5x/~)). It follows that  y ( t )  c 
X ( z ,  h x / ~ / ( 1 - 5 x / ~ ) )  for  all t c [ 0 ,  h] .  []  

We will now use this fact to get a b o u n d  on the second derivative,  as p romised .  

Lemma 8. Under the hypotheses o f  L e m m a  7, 

d ~ F ( y ( t ) )  <~ ~ ( z )  

dt  2 (1 - A x/26/(1 - 5 , ,~))  2 

for  all t ~ [0, h ]. 
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Proof .  Since F ( y ( t ) ) =  F(z- t~7) ,  using the chain rule gives 

d F ( y ( t ) )  _ - V F ( y ( t ) ) v ~  
dt  

and 

177 

d2F(y(  t) ) _ ~TvV2F( y( t) )rl. 
dt 2 

According  to L e m m a  7, y( t )~  ~ ( z ,  A x / ~ / ( 1 -  5x/~)). Consequent ly ,  using L e m m a  
1, we have 

d 2 F ( y ( t ) ) _  ~?xV2F(y(t)) ~ 
dt  2 

"r/TV2 F (z) 'r/ 

(1 - A v / ~ / ( 1  - 5 v / ~ ) )  2 

q,(~) 
for  all t e [0, h ]. []  - (1 - a , / ~ / (  1 - 5 , / 3 ) )  2 

N o w  we are ready  to state the general  result  abou t  how much  decrease  we can 
expect  f rom moving  in the Newton  direction. 

Theorem 4. Assume F(z)  - F(w) < 6 where 6 < 0.008. Define 71 = (V2F(z))-mvF(z) ,  
and let y = z -  h~l where h ~ [0, 1]. Then 

1 [ (l  - h ' ~ / ( 1  - 5"~/-~)) 2 h2 1 F ( z ) - F ( y ) > ~ ( l + 5 x / ~ )  2 23. ( F ( z ) - F ( w ) ) .  

Thus, 

( 1 [  
F(y ) -F( to )<~  1 ( l + 5 x / ~ )  2 2A 

× ( F ( z )  - F ( , o ) ) .  

(1 - A x / ~ / ( 1  - 5~/6)) 2 

Proof .  By L e m m a  8, for  t 6 [0, h] ,  

dF(y ( t ) )  d F ( y ( 0 ) )  I j  d2F(y(s))  
- ~- ds 

dt  dt  ds 2 

= - q , ( z ) +  fo 
d2F(y(s))  

ds 
ds 2 

q,(z) [ '  
<~ - ~ ( z ) 4  (1 - A x / ~ / ( 1  - 5x/~)) 2 Jo ds 

= -  l - ( 1 _ a , / ~ / ( l _ s , / g ) )  ~ ~ ( z ) .  
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The last expression bounds the first derivative of  the restriction of F to the Newton 
direction by a function that is 'sufficiently negative'  for t in [0, A]. 

To finish the proof,  we integrate again: 

F ( z )  - F ( y )  = F ( z )  - F ( z -  a n )  

= -  I ~ d F ( y ( t ) )  dt  
J o  dt 

t> ~ ( z )  1 - ( l _ A ~ - ~ / ( l _ 5 x / ~ ) ) 2  dt 

= ~ ( z ) [ A _ ½ A 2  1 ] 
(1 - A x / ~ / ( 1  - 5x/~))  ~ " (7) 

Bringing in the result of  Theorem 3, which says that since F ( z ) - F ( w ) <  6 and 
~< 0.008, we have 

2 
qt(z)/> (1 + 5 ~ / ~ )  2 ( F ( z )  - F((.o)), 

it follows, using equation (7), that 

F ( z )  - F ( y )  >~ (1 + 5,/g)2 2A ( F ( z )  - F(~o)). 

This proves the first statement in the conclusion of the theorem. The second statement 
follows simply by rearrangement. [] 

5. Se lec t ion  o f  n u m e r i c a l  parameters  and a l ine search al ternat ive  for inner i terat ions  

The first goal of  this section is to transform Theorem 4 into a result with a guaranteed 
numerical factor of  decrease rather than an abstract decrease involving a complicated 
formula. Achieving this goal clearly will require us to specify a value for A and to 

show that the condition 3 ~< 0.008 can be maintained, as required by Theorem 4. 
Recall, however, that our knowledge of 6 derives from our knowledge of ~ ( z ) ,  so 
that ultimately the bound a that we place on qP(z) is the crucial factor. We also 
must consider the effect of  the parameter  p that occurs in Step 3(iii) of  the algorithm. 
We will see that both o~ and p must be selected to maintain a small enough bound 
on ~ ( z )  so that the theorems of  Sections 3 and 4 apply. The second goal of  this 
section is to prove that if the common technique of line search is implemented in 
place of  the inner iterations, then we are still assured of polynomial convergence. 
This fact is of  practical significance, although it will not help our complexity bounds. 
In applications, line search often accelerates convergence. 

To get a concrete form of Theorem 4, we will show that if we choose a = 0.03 
and p = 0.03 then the conditions ~ ( z )  ~< 0.01 and F ( z )  - F ( w )  <~ 0.008 are maintained 
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throughout the algorithm. As a result the conditions of  Theorem 4 are satisfied and 
F ( z ) -  F(to)  decreases by a multiplicative factor in every Newton step executed in 

Steps 2 and 3(iv) of the algorithm. Hence the value of F ( z ) -  F(to)  falls below the 
desired bound of 0.00125 in O(1) steps; in other words O(1) Newton steps suffice 
in Steps 2 and 3(iv) of  the algorithm. 

We begin by considering the effects of the steps of  the algorithm that cause 
Newton steps to be necessary, i.e., Steps 1 and 3(iii). All our knowledge of accuracy 
is contained in our bound on gt(z),  so we must consider how the specified changes 
affect gr(z). Note that just as with the function F, changing weights induces a new 
function gt. For the same reasons stated earlier for F, we simply denote each member  

of  this large family as ~. At the end of this section, when we consider line search, 
we will specify which F and which qr by using subscripts corresponding to the 
particular inner iteration. Such additional notation is not particularly useful in the 
proofs concerning the original algorithm, and so will not be employed there. 

Theorem 5. / f  gr(z) ~< 2o~ 2, then after all weights are doubled, g t (z )  <~ 4a 2. 

Proof. Trivial. Doubling all weights is tantamount  to multiplying the function F 

by 2. But then 

( 2 V F ( z ) ) T ( 2 V 2 F ( z ) ) - I ( 2 V F ( z ) )  =- 2 V F ( z ) T ( V 2 F ( z ) ) - I V  F(z).  [] 

The type of adjustment in Step 3(iii) of the algorithm is not so trivial to handle. 
It will help us to develop some new notation for considering VF(x)  and V2F(x). 
We define the m x m matrix D to be the diagonal matrix whose ith diagonal entry 
is x / -~ / (a~x  - bi) for 1 ~< i ~< m. We note first that 

wjaiaT 
v 2 r ( x )  = ,=, ( a T x - b , )  2 ATD2A" (8) 

To avoid confusion with the transposes in (8), we note that the vector a~ is considered 
a column vector, although it is the ith row of the matrix A. Alternatively, we could 
define ai to be the ith column of the matrix A T. 

Define the vector 0 by 

0 T = [ , / ~  . . . .  ,4-~m]. 

Then 

m w i a ~  
VF(x)  = -  X ,=1 aV~x - b, - -ATDO" (9) 

It is interesting to observe that 

gt (x )  = OT(DA)[ATD2A]-~(DA)TO,  

although we will not use this fact. We will use the notion of a projection matrix. 
The projection matrix arises in seeking the solution of the minimization problem 
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minx~,° l lb-Bxn2.  In general, the solution to this problem is x =  B'b, where B* is 

an n × m matrix called the pseudo-inverse o f  the m × n matrix B. In  our application,  

we will set B = DA. When B has full co lumn rank, as it will in the current case 

since the po ly tope  is bounded ,  we have 

B* = [BTB]- IB  T. 

As a result, the closest approximat ion  to b in the co lumn space o f  the matrix B is 
B B * b = B[ B T B ] - ~ B T b. Thus, the matrix B[ B T B ] - I B T is called the projection matrix 

onto the column space of  B. 

Lemma 9. Let yi be defined as in Step 3(iii) of the algorithm. Then 

( l ~ a i )  (VeF(x ) )_ I (  ~, (1-yi)wiai'~ (i~= 1 _ T rn 
a , x - o ,  / ' , i=,  

for any x in the polytope P. 

Proof.  Define the vector O c R m by 

1., qT= [(1 - '~1) '~1,  • • •, (1 - y , , ) v / - ~  ]. 

Straightforward calculation yields 

= OT(DA)[V2F(x)]- ' (DA)TO 

= OT(DA)[ATD2A] I(DA)TO 

= OT(DA)[(DA)T(DA)] ' (DA)TO 

o V o  

= ~ ( 1 -  yi)2wi 
i = l  

~- W i 
i = 1  

i = l m  

~ p2. 

The inequali ty above follows because the inner  p roduc t  o f  a vector with its project ion 

onto a subspace is certainly less than or equal to the inner p roduc t  with itself. [] 

Theorem 6. Suppose ~ ( z ) < - 2 a  2. I f  the weights W l , . . . ,  Wm are all multiplied by the 

factors Yi defined in Step 3(iii) of the algorithm, then the new ~, call it ~v(z) ,  satisfies 

3 
qt~(z) ~ EZa2+p2]. 

1 - p  



Proof.  

multiplications by 7i's. For all £ in R ", 
2 2 

(aTz - b,) i=, i=1 (a Tz -- bi): - 

By Lemma 2, 

1 T 2 1 = ~  (V F ( z ) ) - ~ ) ~ T ( v 2 F T ( z ) ) - - I ~  foral l  ~:eN". 
Y 

Specifically, for all z in P, 

~<1 
VFz, (z )T(VZF~,(z) ) - 'V  F,  (z) ~ -; V F ~ , ( z ) T ( V : F ( z ) ) - ' V  F,  (z). (10) 

Y 

Now, define e. i=1 ((1 - yi)wia~)/(aTz - b~) and h := VF(z) .  A quick calculation 
reveals that VFv(z) = h - e. Using this fact along with equation (10), we get 

gt~,(z) = V F~,(z)T(VZF~,(z))- 'V Fz,(z) 

1 
<~ "-2 7 f f v ( z ) T ( v Z F ( z ) ) - 1 7  f v ( z )  

Y 

1 
=--; [h - e ]T(V2F(z ) ) -q[h  - e] 

Y 

1 
= = { ~[z(Z) -- 2 e W ( V a F ( z ) ) - ' h  + eT(v2F(2) ) - '  e}, (11) 

y 

By hypothesis, ~(z)<~ 2ol 2. We must bound the other two terms in the braces of  
equation (11). By Lemma 9, we know that e T ( V 2 f ( z ) ) - l e ~ p  2. To bound the 

remaining term, we use the fact that 

luTv] ~ ]]u[[2nvllz<~ max{[[ull 2, [[vll 2} 

with u = (TZF(z)) 1/2e, and v = (VZF(z)) 1/2h. It follows readily that 

l eT (V2F(z ) ) - ' h [  <~ m a x { e T ( V Z F ( z ) ) - ' e ,  ~(z )}  

<~ e V ( V 2 F ( z ) ) - l  e+  q t ( z )  

<~ pZq- 20~2. (12) 

Now, returning to equation (11), we can say 

1 
= { ~ ( z )  - 2 e T ( V 2 F ( z ) ) - ' h  + eT(V2F(z ) )  'e}  
3' 

1 ~< ~ {2ol 2 q- 2[ p2 + 2a2] + 02} 
y 

6c~2+3p 2 

.p 

6 a 2 + 3 p  2 

1 - p  
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Let ~=minl~ i~myi .  Temporari ly let F v be the F that results from the 
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N o w  return to the result o f  Theorem 4. When  6 <~ 0.008, F ( z ) - F ( w ) <  8, and 
y = z - A~/ where 7/= ( V 2 F ( z ) ) - I V F ( z ) ,  

F ( y ) - F ( o ~ ) < ~  1 ( l + 5 x / ~ )  2 2A ( l _ A x / ~ / ( l _ 5 x / - ~ ) ) ~  

x (F(z) -F(o~)) 

for  all h in [0, 1]. This result guarantees that Newton  steps give a decrease in the 
funct ion values. According to Theorem 2, we need f i t (z )<0 .01  (actually, about  

0.00998 - -  we use 0.01 for convenience)  in order  to ensure that F ( z )  - F ( w )  <~ 0.008. 

So, we need to know that qt(z)  <0.01 at all times. By Theorem 5 and Theorem 6, 

to ensure that ~ ( z )  < 0.01 at all times, we must  have 

max {4o~2, 6a-2 + 3P2~ <0.01 
1 - 0  ) 

at all times. The second term is clearly the more  restrictive. In choosing a and p, 

we have a trade-off  between the two desirable qualities o f  having large factors o f  

change in the Steps 3(iii), and maintaining less accuracy  in x~. We will split the 

difference and set a = 0.03, p = 0.03. The following theorem summarizes these results. 

Theorem 7. I f  ce =0.03,  p = 0 . 0 3 ,  and qt (z )~2~x2=0.0018 ,  then after the weight 

changes in Step 1 or Step 3(iii) o f  the algorithm, the new ~ ( z )  is' less than 0.01. 
Furthermore, at the start o f  Step 2 or Step 3(iv), F ( z )  - F ( w )  <~ 0.008. 

Proof.  The b o u n d  on the new qt(z)  follows f rom Theorem 5, Theorem 6, and the 

above discussion. The bound  on F ( z ) - F ( w )  in turn follows from the b o u n d  on 

the new ~F(z) and Theorem 3. []  

Having now ensured that the hypotheses  o f  Theorem 4 hold in Steps 2 and 3(iv), 
we note that f rom empirical observation,  for A c [0, 1] and 6 c [0, 0.008], the funct ion 

g ( A , ~ ) : =  1 ( l+5x /~ )  2 2A ( l _ A x / ~ / ( l _ 5 x / ~ ) )  2 

is a convex funct ion in A. When  6 is fixed, g is minimized at a round A = 0.75. 

Assuming A is set at 0.75, we find that g(0.75, 3) is a strictly increasing funct ion o f  

6 for  6 ~ [0, 0.008]. We also see that g(0.75, 0.008) < 0.68. 
From the above discussion, we can now re-state Theorem 4 in the following more  

concrete form. 

Theorem 8. Assume  F (  z ) - F (  w ) < 6 where 3 <~ 0.008. Define 7/= (VZF(z))-IVF(z) 
and let y = z-O.75r/ .  Then 

F ( z )  - F ( y )  >~ 0.32(F(z)  - F(to)) .  

Thus, 

F ( y )  - F ( w )  <- 0.68(F(z)  - F ( w ) ) .  
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Proof .  Fol lows immedia te ly  f rom Theo rem 4 and the above  discussion. [] 
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Observe  that  since we have set a = 0.03, our  app rox ima t ion  x{~ to w~, must  satisfy 

gt (x~) <~ 2(0.03) 2 = 0.0018. 

It follows, by T h e o r e m  2, that  in this case 

F(XJk) -- F( to)  < 0.00125. 

This result explains  the occurrence  of  0.00125 in equat ion  (1). The fol lowing t heo rem 
justifies the s ta tement  that  O(1) Newton  steps suffice in Steps 2 and 3(iv) o f  the 
algori thm. 

Theorem 9. After doubling of the weights in Step 1 of the algorithm, or multiplication 
of the weights by the factors %, at most ten Newton steps produce a point XJk satisfying 
~ ( x { )  ~< 2(0.03) 2. 

P r o o f .  Let us refer  to the general  iterate in moving  f rom x~ to x{ +1 (or f rom Xk_ 1 
to X ° in the doubl ing  case) s imply as y~, where  yo = x ° (resp., Y0 = Xk 1). We have  
shown in the discussion preceding  Theo rem 8 that  we always mainta in  the condi t ion  
~ ( x ~ )  <0.01.  As a result, Theo rem 2 implies 

F ( y o )  - F( ,o~  +') = F ( x ~ )  - F(~o~ +') < 0.008. 

T h e o r e m  8 thus implies  that  

F ( y i )  - F(w{, +~) < 0.68(F(yi_1) - F (w{  +'))  for  all i ~> 1. 

Since the difference in funct ion values only decreases,  it fol lows via T h e o r e m  3, 
using the best  avai lable  v, i.e., u = F(y~)-  F(to~+~), that  

j+ l  2[F(y , ) -F(Wk )] 
gt(yi)<~ 

(1 - 54F(y~)  - F( ,o{+'))  2 

2 [ F ( y , )  - F(w~+~)] 

(1 - 5 0.x/~-0-08) 2 

2 
~< (1 - 5  0.x/-~-~) 2 (0"68)~[F(Y°)-  F(w~+l)]  

2 
( 1  - 5 ~ )  2 (0.68)'(0.008) 

< (0.03)(0.68) ~. 

In  i = 10 steps, we are thus guaran teed  that  ~ ( y ~ ) <  2(0.03) 2. [] 

For  the r emainder  of  this section, we take a different tack. Frequent ly  in appl ica-  
t ions,  one-d imens iona l  minimiza t ion  in the Newton  direct ion is found  to accelerate  

convergence.  Tha t  is, instead of  just  taking Newton  steps, we minimize  the funct ion 
in the Newton  direction. We want  to prove  that  line search can be used in the 
current  a lgor i thm with assured po lynomia l  convergence.  
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Within some of  the following proofs, it is important to identify the weighted 

barrier function in effect during a particular inner iteration. We introduce subscripts 
on the functions F and ~ corresponding to the inner iteration number. Our plan 
is to substitute the line search process for the inner iterations of the algorithm in 
Section 2. Thus, in the kth outer iteration, we shall be adding Ai to the ith weight, 
where Ai ~ {-1,  0, 1}, and minimizing the weighted barrier function 

F j ( x ) : = -  ~ (wOik+Ai ) ln (aTx- -b i ) .  
i = 1  

Of course, the minimizer of Fj is ~Ok, the same minimizer that we would be dealing 
with in the last inner iteration of the technique described in Section 2. Fj is just a 

convenient way of denoting the barrier function that results from the full unit weight 
changes in the inner iterations. To make the distinction obvious, we will denote the 
barrier function we have at the beginning of the inner iterations as Fo. That is, 

Fo(x) := - ~ w ° ln(a/Tx - bi). 
i - -1 

Convergence proofs for algorithms that minimize logarithmic barrier functions 
nearly always fall into the same general pattern. They prove that there is an ellipsoid 
about the minimizer such that if the current point lies within the ellipsoid, then 
Newton steps lead to linear convergence, while if the current point lies outside the 
ellipsoid, then Newton steps give a guaranteed constant decrease in the barrier. We 
will not here prove that this fact holds for logarithmic barrier functions, but will 

refer the reader to [7], [8] and [12]. Note that this same result applies to a weighted 
logarithmic barrier function since the integer weights may be thought of as multiple 
copies of  a constraint plane in an unweighted logarithmic barrier function. From 
this fact about logarithmic barriers, it follows that to prove polynomial convergence 
of  line search in place of the inner iterations, we just need to prove a polynomial  
bound on Fj(X°k) -  Fj (wk) ,  i.e., we want a polynomial  bound on the distance from 
optimality of  the logarithmic barrier function in effect at the end of the inner 
iterations as measured at the current point x ° we have at the beginning of inner 

iterations. 
A clear p roof  of  the polynomial  bound on Fj(X°k) - F j ( w k )  requires a few further 

lemmas about the behavior of  the weighted logarithmic barrier function. The first 
such result gives us a bound on the error in using the second degree Taylor 
approximation of F about z at points known to be in a small ellipsoid centered at 
z. Substantially similar results are found in [5] and [14]. We present a p roof  here 

for completeness. 

Lemma 10. Suppose F is the weighted logarithmic barrier function and y in ~ is a 

point satisfying 

( y  - z ) T v 2 F ( z ) ( y  -- z) <~ r 2 
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for some r < 1. Then 

F ( y )  - F ( z )  = V F ( z ) r ( y  - z) + ~(y - z )XV2F(z ) ( y  - z) + e 

where 
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r 3 

Proof. The expression for F ( y ) -  F ( z )  is just the second degree Taylor approxima- 
tion of F with error. We need only prove the claimed error bound. Since 

- ~ [ a f ( Y - Z ) ' ~ 2  r 2 ( y - z ) T V 2 F ( z ) ( y - z )  - w i l  - - y - - -  I <~ (13) 
,~l \ a i z - b i  / 

and wi ~> 1 for all i, we know 

a ~ ( y - z )  
a-~z~-~i ~ < r < l  fora l l i .  

This fact implies that ln ( (a fy  - bi ) / (a~z  - bi)) = In(1 + (a~(y  - z))/(aV~z - bi)) has 
the power series representation 

(-1_)j+t ( a : ( y - z ) ~  j 

j= l  J ~k a~'Tz ~ /  / " 

Thus 
a T -- 

i=l \ a i z - b i ]  

= -  ~, w, ~ ( - l !S+ '  { a : ( y - z ) ] j  

i=1 j=l  J ~k" a/-a~z ~ b / / J"  

Or, splitting off the first two terms of the expansion, 

F ( y )  - F ( z )  = V F ( z ) V ( y  - z) +½(y - z ) T v 2 F ( z ) ( y  -- z) 

i=1 j=3 J ~ ~ / "  

So it suffices now to bound the absolute value of 

_ ( - 1 ) - '  [ a : ( y - z ) ?  
w , X  - 

i=1 j=3 J 

From equation (13), it follows that for j~>3, 

/ a T ( y _ z ) , 2 ] : / 2  
r j >  ~, w~! ~ !  ! 

i=1 \ a i z - b i  ] J 

>" i=~ ~ w{/: a~Y--~ii) ~ (Jensen's inequality) 

>! ~ w~ a f ( y - z )  J ( r e c a l l w i ~ l f o r a l l i ) .  
i=1 aVi z -  bi 
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l -  ~ wi ~ (-1-)J+' ( a T ( Y - Z ) ' ~ J [  ~ wi I I 
j=3 J ~k a T z - b i  ] ] ~ ~ ~ - -  . ] / ( y - z )  j i=l j = 3  i=l J a T z - b i  

0o r j 

j=3 J 

i. 3 

3 ( l - r ) "  

Lemma 11. Suppose that for i=  1 , . .  m, [xi[ ~ 0 < 1 and that ~ "  • , i~1 [xi[ <~ Ox/-m. Then 

]ln(1 + x,)] ~< 30",/N. 
i = l  

Proof. By a simpler version of the same power series expansion used in Lemma 10, 
we can show that for all i, 

ln(1 + xi) 1 2 = Xi --~Xi + "~i 

where I~,l ~ Ixil3/(3( 1 - Ix i l )  • Thus, 

Iln(l+x,)l= ~ Lx,-lx~+~,l 
i = 1  i ~ l  

x,+l  Ix'13 
,~1 , = ,  , = ,  1 -Ix, r 

[Xil 3 rrt tr~ 
<3 y~ [x,l+~ E ' (sincexZ<[x,i)  

~3 ~ Ix, l+N ~ I1,13 (sincelx,]<½) 
i = 1  i--1 

i = l  

< 3 0,f-~. [] 

We also need to show that a small value of gt(z) ensures that o) is in a certain 
ellipsoid about  z. The next lemma can be viewed as a companion lemma to Lemma 
5. In the theorem to follow, the fact that w is known to be in an ellipsoid about z, 
rather than in a set of  the form I;(z,  r) as implied by Lemma 5, gives us a stronger 
result. 

Lemma 12. Define the ellipsoid E ( V 2 F ( z ) ,  z, 0.35) by E ( V 2 F ( z ) ,  z, 0.35):= 
{ y c ~ " : ( y - z ) T V 2 F ( z ) ( y - z ) < ~ ( 0 . 3 5 )  2} and suppose ~(z)<O.O1.  Then w e  
E ( V 2 F ( z ) ,  z, 0.35). 
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Proof. Suppose not. Then consider the line segment connecting z to to and let x '  
be the point where the segment intersects E(V2F(z ) ,  z, 0.35). Since F is convex and 
is minimized at to, we know 

F ( x ' ) - F ( z ) < O .  (14) 

By Lemma 10 and the fact that x'  is on the boundary of E(V2F(z ) ,  z, 0.35), 

F (x ' )  - F(z )  = VF(z )T(x  ' -  z) + ½(x ' -  z)TvZF(z) (x ' -  z) + e 

>1 V F(z)V(x  ' -  z) +½(0.35) 2 -  (0"35)3 
3(0.65) 

t> -(0.35)TP~-)(z) + ½(0.35) 2 - ( 0.35)3 3(0.65) (see equation (2)) 

- -  1 2 (0"35) 3 
/> -(0.35),/0.01 +~(0.35) - - ~  

> 0, 

contradicting (14). Thus to ~ E(V2F(z) ,  z, 0.35). [] 

We can now prove the desired result. 

Theorem 10. Let x ° be the approximation to tok-1 (=too) in effect at the beginning of  

the inner iterations of  the algorithm, where tok- ~ is the minimizer of  Fo( x ). Let tok (= toJk ) 
be the last minimizer considered in the inner iterations, i.e., tok is the minimizer of  

F j (x ) .  Then 

F j ( x ° ) -  F j ( tok )=O(m) .  

Proof. Consider the sequence of analytic centers to], within the inner iterations 
indexed b y j  = 1, 2, 3 , . . .  (k should be considered held fixed throughout this proof).  
For convenience of notation, for j = - 1  define to{~ := x °. Also, for j I> 0, define a 
sequence of vectors 6 ; = ( 6 u , . . .  , 6m;), where 8 o = ( 0 , . . . , 0 )  and, for j ~  1, 6o= 
wi~-wik. That is, 81j is the increment or decrement put on the original weights 

brought in from the outer iteration during the j th  inner iteration. Now, 

m 

F1(x°)-F~(tok)  = -  E 
i = l  

i=1  

j = O  

/aTx 
+ a~)In [ - ~ -  b~ Wik i k 

\ a~ tok - 

(a:to  
(w,~+A, )  ~. In k ~ k J  

j=O 

{ aTto  
(w~k + a~)ln "r j 

i=, \ a i tog -b i  / 

. . .  [ 'a[toJk-i -- b,'~ 
j = 0  i = l  

(15) 
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With the notations Fj and ~j corresponding to the weight settings wik + 6•, i-- 
1 , . . . ,  m, i.e., the specific definitions of F and qs in effect during the j th  inner 
iteration, the first sum on the right side of (15) can be written 

J 
y~ Fj(,o/, ')-FAo~/,). 

j --0 

But we have seen (see the discussion after Theorem 6) that the weight changes in 
the inner iterations are such that we maintain the condition ~j(to~ -1) < 0.01, and 
thus it follows via Theorem 2 that F~(w~ -1) -Fj(to~)~< 0.008. Continuing the argu- 
ment from the point of equation (15), we can now say 

] (0.o08)+  b:J " 
j=O j = 0  i = l  

The preceding inequality follows because [6o - A~ I ~< 1. Since aFj (to~ -1) < 0.01, Lemma 
12 implies to~c E(V2F(w~-~), w~-~, 0.35). Hence, 

m / T/ j j - - l '~ \  2 

i=1 ~ (Wik+6iJ)Q ai(tOk-('Ok~b/ 1 )  ~< ( 0 " 3 5 ) 2 '  

and since each weight is always at least 1, 

T j j - 1  2 ( a ,  (w~-w~  )~ 
,=, \ aTwJk--b, ] <~(0"35):" (16) 

The relationship between the 2-norm and the 1-norm in ~m thus implies that 

I T j j --I  
)1 T j ~< (0.35)~/-m. (17) 

,=1 a , , o ~ - b ,  1 

The inequalities in (16) and (17) show that we have met the hypotheses of Lemma 
11, and we may conclude that 

" [aTw~k-'--b~'~ I 
lnw---Y777..j--- / ~<3(0.35)~/m. 

i=, \ aiWk--bi ] 

So, we have 

J J J 

F1(x°)-F.,(Wk) <~ E (0,008)+ Y~ (1.05)x/-~= Y. (0.008+ 1.05,,/-~). 
j--O j=O j=O 

Finally, since the number of inner iterations J is O(~-m), we have Fj(X°k) - F j  (Wk) = 
O(m). [] 
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The results through Theorem 9 in this section have codified the results of the 
previous section concerning the algorithm presented in Section 2. We have shown 
that by setting a =0.03 and p=0 .03  the weight changes don't  change gt(z) too 
much. We have also indicated that the restriction ~(x~)  <~ 2(0.03) 2 suffices to keep 
~ ( z )  <0.01 at all times and thus keep F ( z ) - F ( w ) < 0 . 0 0 8  at all times. Then, for 
the estimates used, we have shown that moving Z = 0.75 times a full Newton step 
gives a guaranteed decrease in function value. As a result, we have guaranteed the 
algorithm remains "stable" and converges as claimed. 

In the remainder of the section, following Theorem 9, we have shown that line 
search may be substituted for the inner iterations of our algorithm without giving 
up polynomial convergence. We are assured that the barrier function with full unit 
weight changes evaluated at the previous minimizer is only O(m) from its value at 
the new minimizer. 

6. Applications 

The general procedure for finding a weighted analytic center has many applications 
both as a subroutine and as a complete algorithm. For each application, the weights 
need to be set properly to accomplish the desired goal. 

One application alluded to earlier is linear programming. Suppose we wish to solve 

m a x  cTx 

s.t. Ax >~ b 

where A is m × n ,  b 6 ~  m,c6~n ,x~Rn ,  and we know some value fl such that 
{x: Ax  >1 b } c  {x: cTx >~ fl} and cTx°Pt--/3 = 2 °(L~, where 

L = log2(largest absolute value of the determinant of  any square submatrix of A) 

+ logz (max  c i ) + l o g 2 ( m a x  bi )+log2(m + n). 

As is customary, we assume the polytope P = { x :  Ax>~ b} is bounded and of  full 
dimension. Then the weighted barrier function 

F(x)=- ~ ln(aTx--bi)--A ln(cTx--fl)  
i --I  

has a minimum value that becomes closer to the optimum facet of the polytope as 
A grows larger. It can be shown that for A = 2 °~L~, the weighted analytic center is 
close enough to the optimal facet that we can isolate an optimum vertex of  the 
polytope (see [12]). From this fact, it is clear that the weighted analytic center 
technique can solve such a linear programming problem in O(x/m L) iterations. 
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We can generalize this result a little. Suppose we want to maximize a product  of  
linear functions 

k 

II (c[x- d~) 
i = l  

over a polytope P = { x :  Ax>~b}, where each linear term in the product  is non- 
negative over P. This objective function is a (rather specialized) polynomial.  We 
can use the weighted logarithmic barrier function 

k m 

F(x)  = -A E l n ( c ~ x -  di) - E l n ( a /x  - bi) 
i - - 1  i - - 1  

on the polytope Q = P c ~ { x : c [ x - d i > ~ 0 , 1 < ~ i < ~ k } .  Although the product  

I]~-1 (crix-di)  is in general neither convex nor concave over P, it has a special 
enough form to give a strictly convex logarithmic barrier function. As A increases, 
the weighted analytic center is pushed away from the hyperplanes c~x - di = 0, and 
toward an optimal solution. Less work has been done on this problem than on the 

linear programming problem, but it is to be expected that an exponentially large 
value of A should again lead to a bound of O(~,/m L) on the number of  iterations 
to reach a point sufficiently close to the opt imum to allow isolation of  an exact 
solution. 

We mentioned in the introduction that general convex programming is a potential 
application of our technique. Vaidya's algorithm in [13] actually used a log-deter- 
minant barrier function to locate what was called a volumetric center of the polytope. 
A plane passing through the volumetric center divides the polytope into two pieces 
of  approximately equal volumes (at least in an average sense). Thus, in throwing 

away part of  the polytope that can not contain the optimum, it is possible to throw 
out about half  at each iteration. This fact leads to a better asymptotic time complexity 
than would be true of the older ellipsoid method applied in the same way. 

Although it arises as the minimizer of  the log-determinant function, the volumetric 
center is a weighted analytic center. In fact, we can produce the weights resulting 
in any volumetric center. The difficulty is that these weights are functions of x; the 

weights are easily obtainable, but we don' t  know them until we have the center. I f  
some method can be developed to approximate these weights efficiently, the tech- 

nique of this paper  should greatly facilitate the process of reaching the volumetric 
center. 

7. Conclusions 

We have demonstrated a new technique for locating the weighted analytic center 
o f a  polytope. The scaling technique has allowed us to show a bound of O(x/m log W) 

on the number  of  Newton steps, and a bound of O((mLSn + mn2)log W) on the 
growth of the required work, where m is the number  of  constraints, n is the dimension 
of the space, and W is the largest of  the weights. This work consists of O(x/m log W) 
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N e w t o n  steps with O ( m n  + x / ~  n 2) ar i thmet ic  ope ra t ions  on the average per  step. 

F r e u n d ' s  t echn ique  in [2] requ i red  O ( m W )  steps with the same a m o u n t  o f  work  

pe r  s tep as our  me thod .  A p r o p e r  se lect ion o f  weights  can move  the weigh ted  ana ly t ic  

center  to any po in t  in the po ly tope ,  so this t echn ique  is very general .  Severa l  

app l i ca t i ons  have  been  men t ioned  in the  p reced ing  section.  

I t  is an open  ques t ion  how far  this sca l ing t echn ique  can be ex tended .  We have 

m e n t i o n e d  that  po ten t i a l  app l i ca t ions  exist  for  convex op t imiza t ion  with p o l y h e d r a l  

cons t ra in t  regions .  I f  weights can be changed  d y n a m i c a l l y  so that  the we igh ted  

ana ly t ic  center  is a good  a p p r o x i m a t i o n  to the  vo lumet r i c  center,  then  a g o o d  

a lgor i thm for convex  op t imiza t ion  wou ld  result .  The fact  that  we have a g o o d  

a lgor i thm for  f inding the weighted  ana ly t ic  center  w o u l d  c lear ly  be benef ic ia l .  I t  

m a y  be that  sca l ing  the weights  can lead  to s ignif icant  improvemen t s  in in te r io r  

p o i n t  a lgor i thms  for  op t imiza t ion  p r o b l e m s  with specia l  s t ructure,  such as ne tw ork  

op t imiza t ion  p rob lems .  We can also ex tend  the no t ion  o f  weigh ted  ana ly t ic  cen te r  

to regions  more  genera l  than  po ly topes .  I t  r emains  to be seen i f  the scal ing t echn ique  

will  p rove  as usefu l  in those  cases. 
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