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In Part I of this work we derived a duality theorem for partially finite convex programs, problems for
which the standard Slater condition fails almost invariably. Our result depended on a constraint
qualification involving the notion of quasi relative interior. The derivation of the primal solution from a
dual solution depended on the differentiability of the dual objective function: the differentiability of
various convex functions in lattices was considered at the end of Part 1. In Part IT we shall apply our
results to a number of more concrete problems, including variants of semi-infinite linear programming,
L' approximation, constrained approximation and interpolation, spectral estimation, semi-infinite trans-
portation problems and the generalized market area problem of Lowe and Hurter (1976). As in Part I,
we shall use lattice notation extensively, but, as we illustrated there, in concrete examples lattice-theoretic
ideas can be avoided, if preferred, by direct calculation.
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Introduction to Part 11

The main result of Part T of this work (Quasi Relative Interiors and Duality Theory)
was a duality theorem for a class of problems we have called ‘partially finite convex
programs’. We developed the following notion of ‘quasi relative interior’” which
appears in the constraint qualification for this result. Suppose X is a topological
vector space.

Definition. For convex C < X, the quasi relative interior of C (qri C) is the set of
those x € C for which cl cone(C —x) is a linear subspace.

The main duality result is then the following. For P = R”, the dual cone is denoted
by P":={yeR"|y"A =0, VA € P}. The indicator function of C is denoted by §(-| C).

* Present address: Department of Combinatorics and Optimization, Faculty of Mathematics, University
of Waterloo, Waterloo, Ont., Canada N2L 3G1.
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Theorem {Corollary 4.8 in Part 1). Let X be locally convex, f: X - ]—, 0] convex,
C cdom f convex, A: X = R" continuous and linear, b€ R" and P < R" a polyhedral
cone. Consider the following dual pair of problems:

(CM) inf f(x)
subjectto Axeb+ P,
xeC,
(DCM) max —(f+8(-|CN*(A"A)+bTA
subjectto A€ P,
If the following constraint qualification is satisfied,
(CQ) there exists an X € qri C which is feasible for (CM),

then the values of (CM) and (DCM) are equal (with attainment in (DCM)).

Suppose further that f+8(-|C) is closed. If A is optimal for the dual, and (f+
8(+| C))* is differentiable at A"X with Gateaux derivative X € X, then % is optimal for
(CM), and is furthermore the unique optimal solution.

Numerous properties and examples of quasi relative interior were discussed in
Part T (Sections 2, 3). As may be seen from the above theorem, the derivation of
primal solutions depends on the differentiability of (f+8(:|C))*. In Section 5 of
Part I we therefore studied the differentiability of various convex functions in lattices.

In Part IT of this work we shall concentrate on applying these ideas to more
concrete models. The first special case of the problem (CM) we consider is when
the set C is a cone. If C is the positive cone of a partially ordered vector space,
writing down the dual problem involves computing the monotone conjugate of the
convex function £ As an example we derive duality results for semi-infinite linear
programming. We also consider the semi-infinite linear program with an additional
norm constraint; the dual problem involves one of the standard penalty functions
used in the solution of semi-infinite linear programs. As another example we consider
certain quadratic programs in the Hilbert space of square-integrable functions
LX(T, ).

The next section (7) deals with another important example, constrained approxi-
mation problems. These arise when the function f is a norm; our model includes
the constrained interpolation problems considered in Irvine, Marin and Smith
(1986), and spectral estimation (see Ben-Tal, Borwein and Teboulle, 1988 and 1989).
We consider briefly the numerical treatment of such problems.

The second important special case of the problem (CM) that we consider is when
the set C is of the form

{(xl,...,x,,,)eE'" Y. x;=e, x;=0 for each i},
i=1
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where e=0 is some fixed element of the partially ordered vector space E, and
X = E™ When the function f is linear our theory gives an interesting analogue of
classical linear programming (including a simple characterization of extreme points),
and when E is actually a vector lattice the dual problem has a particularly straightfor-
ward structure. As an example we consider semi-infinite linear programming with
an additional upper-bound constraint; again it is interesting to observe how a
well-known penalty function arises naturally in the dual of this problem. A further
example is furnished by L'-approximation. The final section (9) deals with two
more practical examples: the semi-infinite transportation problem considered in
Kortanek and Yamasaki (1982), and the generalized market area problem (see Lowe
and Hurter, 1976).

As in Part I, we shall frequently use ideas and terminology from the theory of
vector lattices, which provides a unifying framework for much of this work. However,
as we observed in Part I, the reader will find that calculations we perform in lattice
notation may be easily followed through in concrete spaces, with no knowledge of
vector lattices.

6. The conical case

We are now ready to consider more concrete examples of the convex model (CM)
of the introduction. In this section and the next we shall consider the case where
the set C < X is a cone, partially ordering X. In this case the function (f+8(+|C))*
appearing in the dual problem (DCM) is the ‘monotone conjugate’ of the convex
function f. We will therefore begin by identifying some circumstances under which
this is easy to evaluate, and give some examples. We will then apply our results to
certain semi-infinite linear and quadratic programs.

Throughout this section X will be a topological vector space (which we always
understand to be Hausdorff) partially ordered by a convex cone K, the topological
dual X* partially ordered by the dual cone,

K" ={¢eX*|p(x)=0forall xe K},

and f:X ->]-00,©], convex. As always, f* denotes the convex conjugate of
fif* (o) =sup{od(x)—f(x)|xe X}, for ¢ € X*. The domain of f, domf, is the set
on which f is finite, and we denote the set where f is continuous by cont f. We say
S is closed if the epigraph of f,
epi f={(x, r})|xedomf, reR, r=f(x)}

is a closed set. The core of a set C < X is its algebraic interior: x € C lies in the
core if for all y € X there exist 8> 0 with x+ty e C for all 1[0, 5].

The following Fenchel duality result has appeared in various contexts (see for
example Rockafellar, 1974; Borwein, 1981b; and Ekeland and Temam, 1976). For

completeness we provide a direct proof. A locally convex space X is Fréchet if it
is complete metrizable. In particular, Banach spaces are Fréchet.
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Theorem 6.1. Suppose g, h: X - ]oo, 0] are convex, and any of the following three
conditions holds:
(i) cont gndom h#9,
(i1)) dom g ncont h # (),
(iii) X Fréchet, g and h closed and 0¢ core(dom g —dom h).
Then inf{g(x)+h(x)|xe X}=max{-g*(¢)—h*(—d)| ¢ € X*}, (when the left-hand
side is finite).

Proof. Define convex relations F: X XR->R, and H: X XR- X, by
F(x,r)y={seR|s=r},
H(x,r)={yeX|g(x)+h(x+y)<r}.

F is lower semi-continuous (Borwein, 1981a, Lemma 4). We wish to show H is
open at 0. Suppose first that (ii) holds ((i) will follow by symmetry). Let x,€ dom g »
cont h, and set ry= g(x,) + h(xy), so 0€ H(x,, ry). Since H is convex it suffices to
show H is open at ({x,, ro), 0) (Borwein, 1981a, Proposition 2}, in other words, given
any neighbourhood U, of 0 in X and U, of 0 in R there exists a neighbourhood V
of 0 in X with

Ve{ye X|g(x)+h(x+y)srsomexexy+ U, rer+ Uy}

But for any 6 >0, Ocint{yc X|g(xy)+ h(x,+y) < ro+ 6}, by the continuity of h at
Xy, and the desired conclusion follows.

Suppose on the other hand that (iii) holds. Since g and & are closed, H has a
closed graph, and also range H =dom hA—dom g, so 0¢core(range H). It then
follows from the closed graph theorem (Borwein, 1981a, Theorem 8) that H is open
at 0.

Now consider the problem

w=inf{g(x)+ h(x)|xec X}
=inf{r|g(x)+h(x)=rxe X, reR}
=inf{F(x,r)|0c H(x, r),(x, r)e X XR}.

Applying the Lagrange multiplier theorem in Borwein (1981b, 3.1), we deduce the
existence of a # € X* for which

F(x,r)+6(H(x,r))=pu forall(x,r)ec X XR.

We can rewrite this as s+ 6(y)=u, for all x, ye X, r, s€R, for which s=r, and
g(x)+h(x+y)=r so

w—0(y)sg(x)+h(x+y) forallx,yeX.
Thus we have

p=gx)—0(x)+h(x+y)+0(x+y) forallx,yeX.
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Taking infs over x and y we deduce u< —g*(8)—h*(—0). Butforall xe X, ¢ € X*,
g(x)+g*(¢)+h(x)+h*(—¢)=0,

s0 w=—g*(0)—h*(—6) as required. []

We say f is (K-) monotonically regular if, for all 8 € X*,
(f+8(-[K)*(8)=min{f*(y)| =0, y e X*}.

Corollary 6.2. Under any of the following three conditions, fis K-monotonically regular:
(i) dom fnint K #¢,
(i) cont fn K #0,
(iii) X Fréchet, f and K closed, and 0 € core(dom f — K) (which holds in particular
when K is generating and K < dom f). In particular, if (X, K) is a Banach lattice
and f is closed with K = dom f, then f is K-monotonically regular.

Proof. In Theorem 6.1, set g:=f—80 and h:=8(-| K). Then g*(¢)=f*(¢+6) and
h*(—¢)=6(¢h|K ™), so the result follows immediately. [

When f is monotonically regular we can use the above result to rewrite the dual
pair of problems (CM) and (DCM) in the following way. The primal conical convex
model becomes

(CCM) inf f(x)
subjectto Axeb+ P,
xeK, xelX,
and the dual is
(DCCM) max b A —f*(y)
subjectto y—~A"AcK",

AeP', AeR", YeX*

Theorem 6.3. Let X be locally convex, partially ordered by a convex cone K, X*
partially ordered by K™, f: X - ]~00, 0] a convex, K-monotonically regular function
with K = dom f, A: X ->R" continuous, linear, beR" and P<R" a polyhedral cone.

Suppose there exists X qri K with AX—be P. Then the values of (CCM) and
(DCCM) are equal, with attainment in (DCCM). Furthermore, a primal feasible X is
optimal if and only if there exist X € P*, j € 3f (X), withyy —A"A e K, ( — ATA)(X) =0
and X"(Ax—b)=0.
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Proof. The duality result follows immediately from Corollary 4.8 and Corollary 6.2.
It follows that a primal feasible X is optimal if and only if there exists dual feasible
(X, ¥) with "X — f*() = f(%). But
b'A—f*(§) <= bA—¢(X)+f(%)
<bA—(AN)(F)+f(%)
=f(%) - (AX—b)")
=< f(x).
Thus X is optimal if and only if we have equality throughout, which gives the result,

since f(X)+f*(¢) = (%) if and only if Y eaf(x). O

In some instances the monotone conjugate of f can be computed with no extra
effort than the conjugate:

Special cases 6.4. Suppose f is K-monotonically regular.

(i) If f*is K -isotone (6,2 0, implies £*(0,) = f*(0,)) then (f+6(-| K))*(¢) =
fH ().

(i) If (X, K) is a normed lattice and f™* is absolute (f*(|0])=1*(8), for all
6 e X*), and isotone on K, then (f+8(-|K))*(¢p)=f*(¢").

Examples 6.5.
(i) X normed, f(x)=(1/p)[x|*, 1<p<co.

70 =supf o0~ i
x P

=sup sup {G(X) . “x((p}
p

t=0 |x|i=¢

1
=su 0 t——t”}.
up 10}
Differentiating implies the maximum occurs at t=|0[|}‘"™", giving f*(0)=

/@) ol%.

If X is a normed lattice then 6.4(ii) applies so
1
(f+5('|X+))*(9)=5 6" II%.

(ii) X normed, f(x)= M| x|, for some M >0. As above,

F*(0)=sup{(|6],~ M)} = 5(6| MBy.),

where By~ is the unit ball in X*.
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Again, if X is a normed lattice then (6.4)(ii) applies:

(f+8(-|X.))*(6)=5(6"| MBx-).
(iii) X normed, f(x)=8(x{MBy), M > 0.

f*(0)=sup{0(x)|xe MBx}=M|6|,.
Again, if X is a normed lattice then 6.4(ii) applies:

(f+8(-[ X)) (0)=M|6"|,.
(iv) X = LT, ), f(x) =3llx = 3.

FE(y) = sup {(x, yy—3flx = x|}

Differentiating implies the maximum occurs at x = x,+ y, giving

FEY =ty 1) =20, ») =3[y + ol =3 [ xol.

By Corollary 6.2,

(f+8(|X))*(y)=min{f*(z)|z= y}
=min{3||z+x0|*| 2=y} —3 || x0l®
=min{3 [Ju|*}u= y+xo} = 3] x0]°
=3[1(y+ x0) "II° =2 |01

(v) X=L"(T, p), l<p<oo,

IT—log x(t)du(t), x(t)>0a.e.,
0, otherwise.

f(X)={

The integrand above is a normal convex integrand in the sense of Rockafellar
(1968), and so f*: LY(T, u)~>]—00, 0] is given by

§r (=1=log(=y(1))) du(r), y(1)<Oae.,
0 otherwise.

f*(y)={
In this case 6.4(i) holds, so (f+8(-| X, ))*=f*.
(vi) X=L(T,u), 1sp<x,

I x(Dlog x(1)~1) du(t), x(1)>0ae.,
S = {oo otherwise.

b

Again we have a normal convex integrand, so f*: LY(T, u)-> ]~00, ] is given by
F¥(») =1, du(t). Again 6.4(i) holds so (f+6(-| X, ))*=f*.

More generally than (v) and (vi), we can consider entropic objectives (see Ben-Tal,
Borwein and Teboulle, 1992; and Borwein and Lewis, 1991).
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Semi-infinite linear programming
The first special case of (CCM) we shall consider will be the case when f is just a
continuous linear functional. In this case (CCM) becomes a semi-infinite linear
program:
(SILP) inf 0(x)
subjectto Axeb+ P,
x=0, xelX,
(DSILP) max bTA
subjectto  ATA =<4,
AeP", reR"

Corollary 6.6. Let X be locally convex, partially ordered by a convex cone K, X*
partially ordered by K*, e X*, A: X >R" continuous, linear, bcR" and P<R" a
polyhedral cone.

Suppose there exists X qri K with AX—be P. Then the values of (SILP) and
(DSILP) are equal, with attainment in (DSILP). Furthermore, a primal feasible
% is optimal if and only if there exists Xe P with A'A<6, (§—A"A)(%¥)=0 and
AT(Ax—b)=0.

Proof. This follows directly from Theorem 6.3, using the fact that 8*(¢) = (¢ |{6}))
and @ is clearly monotonically regular. [

The cone AK =R" is known as the “moment cone” in the semi-infinite linear
programming literature (see for example Glashoff and Gustafson, 1983). When
gri K # @, by Proposition 2.10, A qri K =ri AK. If K is generating and A is onto it
follows that our constraint qualification is equivalent to (b + P) nint(AK) # @, which
is the classical ‘superconsistency’ constraint qualification (see Karlin and Studden,
1966).

Norm constrained semi-infinite linear programming

The next program we consider does not strictly speaking fit the model (CCM), but
behaves in a very similar fashion. We consider the previous problem (SILP), but
with an additional norm constraint, ||x|| < M for some M > 0.

(NLP) inf 0(x)
subjectto Axeb+ P,
x=0, [x|sM, xeX
We shall now assume X is a normed lattice. The dual problem then becomes
(DNLP) max b'A~M[(A™A—0),
subjectto AeP’, AecR"
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Notice that (DNLP) is a penalty-function version of the problem (DSILP). The
larger the constant M, the more we penalize violations of the constraint ATA < 6.

Theorem 6.7. Let X be a normed lattice, 6 € X*, A: X - R" continuous, linear, b cR"
and P<R" a polyhedral cone. Suppose there exists Xeqri X, with ||| <M and
AX e b+ P. Then the values of (NLP) and (DNLP) are equal, with attainment in
(DNLP). Furthermore, a primal feasible % is optimal if and only if there exists A € P*
satisfying the following four conditions:
(i) AT(Ax—b)=0,

(i) (ATA—6)"(2)=0,

(iii) [(A"A=8)"||[I%] = (A"A-8)" (),

(iv) |%|=Mif ATA—0%0.

If in fact X = Y* for a normed lattice Y, 6 Y, and A is o(X, Y)-R" continuous,
then the value of (NLP) will also be attained.

Proof. Apply Corollary 4.8 with f:= 6, C:= X, n MBx. Then
(f+8(-|C))*(¢) =sup{p(x) - 0(x)|x=0, ||x| < M}
=sup{(¢ — 0)(x) — (x| MBx)|x =0}

=M|(¢—0)"l,

by 6.5(iii). The form of the dual problem then follows.

The form of the constraint qualification follows from the fact that qri C =qri X, n
int(MBy ), by Theorem 2.13. A primal feasible X is optimal if and only if there
exists A€ P* with

b'X~M[(ATA —8)" ] = 6(%).
But
0(%)=0(%) —A"(Ax—b)
=bh"X—(A"A—6)(X)
=b"X—(A"X—0)"(%)
=b'A— (A" - 60)" ||, 1%
=b"A—M|(A"X~0)"| 4,

so we must have equality throughout; in other words X is optimal if and only if
conditions (i), (ii), (iii) and (iv) hold.

The final set of conditions is sufficient to ensure that the feasible region of (NLP)
is a o(X, Y)-closed subset of MBy, and so is o(X, Y)-compact by the Alaoglu-
Bourbaki Theorem. Since 0 is o( X, Y)-continuous, the infimum will be attained. O
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The question of when the dual objective function is differentiable can now be
addressed, using the results of Section 5. In particular, if A"A %6 and ||, is
differentiable at (A"A —8)" (with V|[(A"A — 8)"||,€ X), then the derivative of the
dual objective function at A is b— MAV|(A™A —8)"|., by Proposition 5.6.

Suppose A is dual optimal with A"A % 6, and |- ||,, differentiable at (A"A—9)",
with V|[(A™A — 6)7 ||, € X. Set == MV|[[(A"A— 8)"||. By Corollary 4.8, X is the unique
optimal solution of the primal problem (NLP).

Example 6.8. X =L"(T, u), 1<p<co. Suppose A is optimal for (DNLP) with
ATA % 6. Then by the above and Examples 5.7(i), the optimal solution of (NLP) is
given by

I=M[(ATX-6)" | “(ATA—0)")"".

Semi-infinite quadratic programming in L*
The last example in this section will be the following quadratic program.
(QP) inf 3% = xll3
subjectto Axeb+ P,
x=0, xel*(T,p).

Here, (T, u) is a o-finite measure space, x, € L’, and as usual A: L>>R" is continuous
and linear, beR" and P<R" is a polyhedral cone.
Using Examples 6.5(iv) we obtain the dual problem (from Corollary 4.8):

(DQP) max BTA —3[[(ATA +x0) |2 +4Ix0))2
subjectto AeP’, AeR"

More general constraints of the form x=0 on T,= T, x<0 on T,< T, can be

>

easily handled using the remarks on separable problems at the end of Section 4.

Theorem 6.9. If there exists a feasible % for (QP) with X(t)> 0 u-a.e., then the values
of (QP) and (DQP) are equal and both are attained.

The dual objective function is everywhere differentiable, with derivative b—
A(ATA +x,)". Furthermore, if X is optimal for the dual problem (DQP), then the
unique optimal solution of (QP) is given by ¥ =(a'A+x,)".

Proof. By Examples 3.11(i), qri(L*(T, x).)={x>0a.e.}, and the duality result
follows from Corollary 4.8. By Examples 5.7(i), V(3||x™|3) = x*, for x%0, and is
clearly 0 for x < 0. The expression for the derivative follows, and the derivation of
the unique primal solution follows from Corollary 4.8. [
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7. Constrained approximation

Throughout this section we shall concentrate on one particular example of the
conical case of the convex model (the problem (CCM) of the previous section).
This problem requires the minimization of the norm of the variable, subject to
positivity constraints and a finite number of linear inequalities. Such problems arise
in particular in questions concerning ‘best’ convex interpolants to given data (see
Micchelli, Smith, Swetits and Ward, 1985 and Irvine, Marin and Smith, 1986), and
in spectral estimation (Ben Tal, Borwein and Teboulle, 1988 and 1992). We shall
see that many of the above authors’ results are special cases of our general duality
theorems.

Throughout this section we shall adopt the following notation (see Schaefer, 1971
and 1974, for definitions):

(X, Y) a dual pair,
with (X, ||+ ||) @ normed lattice, and
Y a sublattice of X* (norm || - ||, positive cone (X,)"), (7.1)
A: X ->R" o(X, Y)-R" continuous, linear,
beR", Pc<R"apolyhedral cone.
For 1= p <<o0 we consider the problem

(CA,) inf a/p)llx|”

subjectto Axeb+ P,
x=0, xeX

For 1<p<, and 1/p+1/qg=1, by Examples 6.5(i) and Corollary 4.8, the dual
becomes

(DCA,) max bTA—(1/g)|(ATA) |4
subjectto AeP", AeR”,
while for p =1, using Examples 6.5(ii), we obtain
(DCA,) max b™A
subjectto  [[(ATA)" [, =1,
AeP", AeR™

The two most significant cases of the pair (X, Y) in (7.1) are when Y = X* (the
norm case), and when Y is a normed lattice with X = Y* (the weak™ case, cf.
Theorem 3.5).
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Theorem 7.1. If ||-|| is strictly convex then any optimal solution of (CA,) is unique.
If there exists an X € o(X, Y)~qri X, feasible for (CA,), then the values of (CA,)
and (DCA,) are equal, with attainment in (DCA,). Suppose further that —b ¢ P.
If |||l is differentiable at (A™X)" (with derivative in X) for some X, optimal for
(DCA,), some 1<p<o, then the unique optimal solution of (CA,) is X=
ICATO™ [Vl AT 7.

Proof. The uniqueness follows by a standard argument and the duality result is a
direct application of Corollary 4.8.

Notice that if —b € P then X = 0 is the unique optimal solution of (CA,). Suppose
on the other hand that —b g P. Since P= P*7 it follows that there exists A € P* with
b X >0. Thus the value of (DCA,) is strictly positive, since 8A € P* with bT(81) —
(/I (AT(8A)T||% >0, for >0 sufficiently small.

Suppose now that A is optimal for (DCA,). If ATA<0, then b"A>0, and we
obtain a contradiction since kA is feasible for arbitrarily large k > 0, with arbitrarily
large objective value. Thus A"A %0, and we can apply Proposition 5.6 to obtain the
result. [J

It is clear that the problems (CA,), 1= p=o0 are all equivalent: ¥ € X is optimal
for one problem if and only if it is optimal for all the problems. By contrast, the
relationship between the dual problems (DCA,), 1< p <0, is not so immediately
evident. Our next result illuminates this relationship. First we need some preliminary
results.

Definition 7.2 (Rockafellar, 1970). A convex function g:R" - [0, ] is called a gauge
if g is positively homogeneous with g(0)=0.

Definition 7.3 (Rockafellar, 1970). Let g be a gauge. The polar of g, g°, is defined by
g(y) =inf{u = 0]y"x < ug(x) VxeR"}.

Theorem 7.4. Suppose g is a closed gauge and C ={xeR"|g(x)<1}. Then g°(-)=
8*(-1C).
Proof. Rockafellar (1970, 15.1.2). O

Theorem 7.5. Suppose g is a closed gauge and 1< q<co. Suppose f is defined by
f(x)=(1/q)g(x)*. Then f*(y)=(1/p)g*(y)’, where 1/p+1/q=1.

Proof. Rockafellar (1970, 15.3.1). [J

Theorem 7.6. Suppose g is a closed gauge and 1< q<co. Consider the following
problems:

(PHP,) sup{b'A —(1/q)g(A)*|A eR"},

(PHP..) sup{b'A|g(A)=<1,reR"}.
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These problems are equivalent in the following sense. The value of (PHP,) is
(1/p)g°(b)?, and the set of optimal solutions is g°(b)"'3(g°)(b). On the other hand,
the value of (PHP,,) is g°(b) and the set of optimal solutions is 3(g")(b).

Proof. V(PHP,)=((1/9)g?)*(b), by definition, and this is (1/p)g°(b)” by Theorem
7.6. Now A attains the value if and only if A €3((1/p)(g°)?)(b) by Rockafellar (1970,
23.5), so by the chain rule (Clarke, 1983, 2.3.10), the solution set is g°(b)"'3(g°)(b).

On the other hand, V(PHP.)=38*(h|C)=g"(b), where C={reR"|[g(A)=1},
by Theorem 7.4. Thus A is optimal for (PHP,,) if and only if A €3(8*(-|C))(b) =
3(g%)(b), as required. [J

We can now apply this result to (DCA,) by setting

g(A) = l(ATA) [+ (A | P).

We now turn to examples of the application of Theorem 7.1. The case we shall
consider is that of constrained L” approximation (cf. Micchelli, Smith, Swetits and
Ward, 1985).

Constrained L? approximation
Example 7.7. (T, &) a o-finite measure space, 1< p <0,
(L,A) inf a/p)lx|5
subjectto Axeb+ P,
x=0, xeL’(T,u).

Here, A:L”->R" is defined by (Ax), :IT axdp, i=1,...,n, for some a;’se L9
(1/g+1/q=1). The dual problem becomes

q

(DL,A) max bTA ~$ ”(i )\,—a,-)+

q

subjectto AeP', AeR"

Applying Theorem 7.1, Examples 3.11(i) and Examples 5.7(i), we obtain that if
there exists a feasible X for (L,A) with X(f)>0 u-a.e., then the values of (L,A)
and (DL,A) are equal, with attainment in (DL,A). If —b & P, then X =0 is optimal
for (L,A). If —b g P then the unique optimal solution of (L,A) is given by

) 1) lere) 1 -(Gre) )" o

Definition 7.8. Suppose a set of functions a;:{a, B]>R,i=1,..., n, are continuous
and linearly independent on every non-null subset of [a, 8]. Then we say the a;’s
are pseudo-Haar on [a, B].

q-—1

\Y

q
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As an example, if the a;’s are analytic and linearly independent on [, B8], then
it is easy to see that they are pseudo-Haar (see Borwein and Lewis, 1991).

Now consider the case where T =[a, 8] and w is Lebesgue measure, and the a;’s
are pseudo-Haar. Assuming —b € P, if A and 6 are any two optimal solutions of
(DL,A), then from (7.2) we must have (Y, Aa;)" = (Y, 6,a;)", a.e., and so by con-
tinuity there will exist a non-null subset 2 <[a, 8] such that . (A;—6,)a,=0 on
0. The pseudo-Haar condition now implies that A = 6. Thus the optimal dual solution
is unique.

The case p=2, and P = {0} (equality-constrained L? approximation, see Borwein
and Wolkowicz, 1986) is particularly simple. The primal problem is then just

(EL,A) inf 3llx|l2
subjectto (x,a;)=b;, i=1,...,n
x=0, xel?

and the dual problem is max{b"A —3|/(¥, A,a;)¥]|3/ A € R"}. Solving this problem
reduces to solving the equation A((A"A)™) =b and the Newton iteration reduces to

new _ .
Z[J e a,a,:lA, —bj, ]—1,...,".
4 {tltA A7) (1)>0}

In particular, if 1 =[«, B], u = Lebesgue measure, and a,(1) =1
if we denote the Hessian Matrix

i—1
,i=1,...,n, and

(H(/\)),-,» = I tH’FZ,
(St =0}
then the Newton step is simply H(A°)A™" = b, The following observations are
easy to check.
(i) No numerical integration is necessary (only root-finding).

(ii) H(A) takes only O(n) steps to evaluate.

(iii) H(A) is positive definite if ¥, A, 1'% 0.

(iv) H(X) is locally Lipschitz if ¥, A,z has no repeated roots.

The Newton method is therefore superlinear and generally quadratic, locally.

Let us return to the question of when the constraint qualification will be satisfied.
For simplicity, suppose P ={0}, and let us also suppose that the a;,’s are linearly
independent on T. it follows that ri(A(LY))=int(A(L%)), since otherwise there is
ay#0with ¥,y [; ax du =0, for all x=0, which implies ¥, y.a,=0 a.e. on T. But
by Proposition 2.10, ri(A(L?))=Aqri(L}). We thus see that the constraint
qualification is satisfied if and only if beint(A(L%)). The cone A(LY) is called the
‘moment cone’.

In certain cases we can be more explicit.

Theorem 7.9. Suppose T =[0,1], u is Lebesgue measure, beR" "' P={0}, and
a(t)=1,i=0,...,n"
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(a) Suppose n’'=2m. Consider the two quadratic forms

m m-—1
Z bi+jyiyj7 Z (bi+j+1 —bi+j+2)yiyj'
i,j=0 Lj=0
Then (L,A) is consistent if and only if these forms are positive definite, and in this
case the constraint qualification is satisfied.
(b) Suppose n’=2m+1. Consider the two quadratic forms
m m
Y b iy Y (b= by )yiy;.
i,j=0 ij=0
Then (L,A) is consistent if and only if these forms are positive definite, and in this
case the constraint qualification is satisfied only if they are positive definite.
In both cases there is a non-negative measure satisfying the constraints of (L,A) if
and only if the relevant forms are positive semi-definite.

Proof. Karlin and Studden (1966, p. 106). O

For example, for [a, B]=[0, 1], ' =2 and b,=1 we obtain 1> b, > b,> b7, and
by a similar technique, for [a, B]=[—1, 1] and n’' =2, the constraint qualification
becomes by> b,>0 and byb,> b3.

The following trigonometric case, which occurs in the context of spectral estima-
tion (Ben-Tal, Borwein and Teboulle, 1988), may also be treated explicitly to find
the form of the constraint qualification.

(SEP) inf (1/p)lx|}

subject to J x(t)cos(jtydt=b;, j=0,...,m,

J x(t)sin(jt)de=¢, j=1,...,m,

x=0, xelL’[-mw, ]
Theorem 7.10. Set c¢y:=0 and r,=b;+c¢v-1, r_;==7, j=0,..., m. Then (SEP) is

consistent if and only if the Toeplitz matrix (r;_y)7 ko is positive definite, and in this
case there is a feasible £(t)>0 a.e. on [—, 7).

Proof. Ben-Tal, Borwein and Teboulle (1988). See also Karlin and Studden (1966,
p.184). O

Constrained L™ approximation

Let us now consider the problem (CA,) in the case where (X, Y)=(L™(T, ),
L'(T,r)) for a o-finite measure space (7T, w). The primal problem is thus (for
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1<p<o)

(L.A) inf (1/p)llx|I%

subject to (J a; d,u—b,> €P,
T

1
x=0, xeLl™(T,pn),

where a;e L'(T, ), i=1, ..., n, and the dual is

q

n +
(DL.,A) max bTA —% “( y )\,ﬂ,-)
i=1

1

subjectto A€ P’, AeR"

Applying Theorem 7.1, Examples 3.11(ii) and Examples 5.7(ii), we obtain that if
there exists a feasible £(#) > 0 w-a.e. for (L,A) then the values of (L, A) and (DL, A)
are equal, with attainment in (DL,A). Furthermore, if A is optimal for (DL, A)
and ¥, X,a;]> 0 w-a.e. then the unique optimal solution of (L.A) is given by

el

The case of ( L,A) with P = {0} (i.e. equality constrained) and without the positivity
constraint x =0 was considered in Favard (1940), using a duality argument. The
dual problem in this case becomes simply

/\eR”},

sl,)\el}%”}.
1

q-—1

Xtt|Eikia;(1)>0} -
1

q

1
max{bT)\ ——
q

'Z Aia;

1

or, in the case p=1,

max{bT)\

e

Favard also considers the case when we do not have [}, A,a;/> 0 at the optimum,
and show how to construct solutions in this case. A straight-forward adaptation of
his ideas applies to our case too (see also De Boor, 1976). We defer discussion of
this and other numerical questions to a later paper.

Constrained interpolation

We have already seen two interesting concrete examples of the constrained approxi-
mation problem (CA,) in Theorems 7.9 and 7.10, where the function a; were either
t"! or ¢™ " respectively. A third interesting example arises from problems of
constrained interpolation. Typically we might be interested in interpolating some
given set of data points with a convex function of minimum norm in some Sobolev
space (see Irvine, Marin and Smith, 1986). In this case the a;’s become normalized
B-splines.
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Definition 7.11. The Sobolev space Lj[0, 1] is defined as the set of fe C**7"[0, 1]
with f*~" absolutely continuous and '€ L,[0, 1] (for 1<p=oc0 and keN).

Let us suppose that 0=, <t,<.--<{,<1.

Definition 7.12 (Schumaker, 1981, p.45). For any function f:[0,1]>R we define
the kth divided difference of f by, fori=1,..., n—k,

i+k { i+k -1
[tlaatl+k]f: ;{ I:[(tp_tq)} f(tp)
T
Definition 7.13 (De Boor, 1976, p. 29). The normalized B-spline is defined by

M () =k[ty ..., i (=)D, i=1,...,(n—k).

Examples 7.14.
(i) Mi,l(t):(ti—H_ti)‘IX[t,‘,t,-H](t)'

0, t=t,and t=1t;,,,
(ii) M,(t)= 2ta— )1, t=1t,
linear, on[t, i) and [fiyy, tis).

Since all the Sobolev norms are equivalent we restrict attention to the problem
(1=p=00):

(Cly)  inf I,
subjectto  f(t,)=b, i=1,...,n
=0, felLio,1].
Fori=1,...,(n—k), define
i+k (i+k -1
di= ). {Ei(tp—tq)} by,

p=i
q#p

so d;=[t,..., t.,]f, for any feasible f. Consider the following problem (which is
of the form (CA))).

(Cli)  inf lel,
1

subject to JVM,-,,((t)g(t)dt=d,», i=1,...,(n—k),
0

g=0, gelL,[0,1).

We then have the following result showing that the problems (Cl,) and (Cl}) are
essentially equivalent.
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Theorem 7.15. If f is feasible for (Cl,) then f'* is feasible for (Cly), with the same
value. On the other hand, if g is feasible for (Cl},) then there exists feasible f for (Cl,)
with the same value and with f'*' = g.

Proof. See De Boor (1976) and Micchelli, Smith, Swetits and Ward (1985). [J

Examples 7.16.

(i) The monotone case: k=1.
In this case d;=b,,,—b;, i=1,...,(n—1). (CI') is consistent if d; =0, each i, and
the constraint qualification is satisfied if d;> 0, each i It is an easy and pleasant
exercise to check from both the primal and dual problems that the optimal f for
(Cl,) is simply the piecewise linear interpolant through the data points.

(i) The convex case: k=2. In this case

bi bi+l bi+2

d = + + R 73
(=t )i = tio) (i —6)(t — tia) (G — ) (L — tiy) (7:3)

eachi=1,...,n~2.
The relevant moment cone in (Cl5) is simply the positive orthant:
Lemma 7.17.

1
{(J' M,-,zg> ‘g(t)> 0,ae,ge L]0, 1]} ={yeR"?|y,>0, each i}.
(o]

Proof. Denote the left-hand side by C. Clearly C < int R’ . We claim ¢l C =R’} .
Suppose not, so there exists 0= y ¢ cl C. Therefore by separation there exists A € R" >
for which ATy<O<Z:';2 A; _[(1) M,,g, for all g(¢+)>0, ae. Then Z,":_]Z MM, =0.
However, by Examples 7.14(ii), M;,(4;) =0, j#i+1and >0 for j=i+1, 50 A, =0,
each i=1,..., n—2. But this contradicts A 'y <0. Thus ¢l C =R} . It follows that
C >int C =int R?™? (Rockafellar, 1970, 6.3.1), and the result follows. [J

This result shows that the constraint qualification for (Cl}) is satisfied if and only
if each d;>0. This has a simple geometric interpretation, which may be checked
from formula (7.3). Consider the lines L; joining the data points (7, b;) and
(t;+2, bi2). Then the constraint qualification for (Cl}) is satisfied if and only if L;
passes strictly above (¢, b;+,), for each i.

If, as is natural, we choose p =2 and use the objective function 4| g||3 in (Cl}),
then we obtain a problem of the form (EL,A). As we have already seen, Newton’s
method is well-suited to solving the corresponding dual problem, and in this case
the Hessian will be tridiagonal and easy to compute exactly. It is worth noting that
the proof of Lemma 7.17 breaks down for k=3.
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8. The bounded linear case

In the previous two sections we were concerned with the convex model (CM) of
Section 4 in the case where the underlying constraint set was a cone. In the remaining
two sections we shall concentrate on our other main example, the case when the
underlying constraint set has the form (cf. (3.1))

Fz{(x,,...,x,,,)eX"' Y xi=e,xi>0,i=1,...,m}. (8.1)
i=1

As we shall see, these sets arise frequently in connection with transportation-type
problems. In an analogous fashion to the development of Section 6, we shall begin
by identifying circumstances under which the function (f+8(-| C))* appearing in
the dual problem (DCM) is easy to evaluate. We shall primarily be concerned with
the case where f is linear. In what follows, 7(-,-) denotes the Mackey topology
(Schaefer, 1971).

Theorem 8.1. Suppose X and Y are vector spaces partially ordered by convex cones
Sx and Sy respectively, and with (-, -): X X Y - R a bilinear form. Suppose e € Sx and
Yis--.»Vm € Y, and consider the problems

(PR) inf (e, y)

subjectto y=y, i=1,...,m,

yey,
(DPR) sup él (X, yi)
subject to gjl X =e,
x,=0, ;e X, i=1,...,m

If any of the following three conditions are met then the values of (PR) and (DPR)
are equal. (In each case (-, ) is simply evaluation.)
(i) (X, Sx) a vector lattice, Sy = S%, (Y, Sy) a sublattice of X°.
(ii) Y complete metrizable, Sy closed, generating, X = Y* and Sx =S+.
(iii) (X, Y) a dual pair, Sy generating, Sx = S and
either (a) 7(Y, X)—int Sy #0,
or (b) Sy is o(Y, X)-closed and ec 7(X, Y)—int Sy.

Proof. (i) y=y;, i=1,...,m, if and only if y=V/, y,. It follows that 3=V, y, is
optimal for (PR), with value (\/, y;)(e). But the value of (DPR) is also (V, y:)(e),
by Proposition 3.1.
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(ii) Defineafunctionf: Y= Y™ by f(y):=(y;—J,...,ym—y). Then fis certainly

ST¥-convex. Furthermore, givenany z,, ..., z,, € Y, there exist u;, v;€ Sy, i=1,..., m
with y, — z; = u; — v, since Sy is generating. It follows that y, -2, 4 <s, z;, €ach i,
$0 (21,...,Zm) €f(2,; )+ ST. Since (z,, ..., z,) was arbitrary, f(Y)+ STV =Y", s0

certainly Oe core (f(Y)+SY).

Now define a convex relation H: Y- Y™ by H(y)=(y,—y+Sy, ..., Vm— V+
Sy). The same argument shows H is surjective, so certainly H '(0,...,0)n
core(dom(e)) # @. Consider the problem (PR), which we can write

w=infle(y)|f(y)=<0,yec Y}

Since e=0, u > —00, so we apply Borwein (1987, 2.7) to deduce the existence of
Xy,..., %, =0 such that

W :inf{e(y)+2 X(yi—y)

ye Y}.
It follows that
Yx,=e and u=3 %(y).

But certainly for any feasible y for (PR) and feasible (x,, ..., x,,) for (DPR) we
have ), x(y,) <3, x(y)=e(y), so V(DPR) = V(PR). The result follows.

(iii) (a) We can apply Theorem 3.13 in Anderson and Nash (1987). The problem
(DPR) is the dual of (PR) in the linear programming sense. Since S, is generating,
there exist u;, v;€Sy with u;,—v, =y, each i Thus Y| u, is feasible for (PR).
Furthermore, since e = 0, the value of (PR) is finite.

If fer(Y, X)—int Sy, then

2 “f+ﬁ—yj=<2 ui>+vj+ﬁET(Y,X)—intsy,
i=1

i#j

so the Slater condition is satisfied, and the result follows.
(b) We can rewrite (DPR) in the following way:

m—1
(DPR’) sup Y X, Yi— Ym)t{e ym)
i=1

subjectto Y x;<e,

-x,=0, x;¢X, i=1,...,(m—1).

We shall apply Theorem 3.13 in Anderson and Nash (1987) to this problem. Since
Sy is closed, the dual of (DPR’) in the linear programming sense is

(PRI) inf <ey J’>+<e, ym>
subjectto y—z;=y,—y,, i=1,...,m—1,

Ogy’ Zl,"'aszle)/’
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which is clearly equivalent to (PR). Now as in part (a), Y.\, u; = y;, each j, so for
any feasible x;’s for (DPR’),

m—1 m—1 m m
Z <xiayi_.Ym>+<esym>‘S Z <xia Z uj—‘ym>+<esym>$<e, Z uj>s
i=1 j=1

i=1 i=1

so the value of (DPR’) is less than +co. Furthermore, by assumption, £;=(1/m)e,
each i, satisfies the Slater condition, so the result follows. [

Definition 8.2. For X, Y, Sy, Sy and (-, ) as in Theorem 8.1, we say (X, Sx),
(Y, Sy), (-, )) (or more simply just (X, Y)) is a pseudo-Riesz pair if the values of
(PR} and (DPR) are equal for all ee Sy and y,,...,y.€ Y.

Examples 8.3. In each of the following cases Theorem 8.1 shows that (X, Y) is a
pseudo-Riesz pair (with (-, -) evaluation):
(i) X a normed lattice, Y = X* Sy =X,, X, =(X*), (by Proposition 3.2).
(ii) Y a normed lattice, X = Y*, with the lattice cones (cf. Examples 3.7).
(iii) Y a Banach space, Sy closed, generating, X = Y*, Sy = S. More generally
than (i) and (ii), (X, Y) a dual lattice pair (Definition 3.6).
We shall now work in the following setting:

(X, Y) a dual pair,

Svx< X, Sy Y, convex cones partially ordering X and Y,
Yi,oes ¥m€ Y, beR" ecSy, (8.2)
P = R" a polyhedral cone,

A X->R", o(X, Y)-R” continuous and linear, i=1,...,m.

We consider the following primal problem:

(BLP) inf § (Xi, ¥i)

subjectto Y Ax;eb+P,

The dual problem becomes:
(DBLP,) sup b'A —(e,y)
subjectto AfA—y=<y, i=1,...,m,

AeP, yeY.
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Theorem 8.4. With the notation of (8.2), suppose that ({X, Sx), (Y, Sy),{(+,*)) isa
pseudo-Riesz pair. Suppose further that for some (X,, ..., %,), feasible for (BLP), we
have:

a(X,Y)—cP[0,%]=0(X, Y)—clP[0, e], eachi. (8.3)

Then the values of (BLP) and (DBLP,) are equal. If [0, e] is o(X, Y)-compact and
(BLP) is consistent then its value is attained at an extreme point of the feasible region.
If (8.3) holds and (%,,...,%,) and (X, 7) are feasible for (BLP) and (DBLP,)
respectively, then they are optimal if and only if the following complementary slackness
conditions hold :

}-\T<Z A,‘f,- - b) = O,

_ (8.4)
(%, y;i+7—ATX)=0, eachi.

Proof. Apply Corollary 4.8 with underlying constraint set F as in (8.1). The con-
straint qualification becomes (8.3) by Theorem 3.12. In this case, f(x;,..., X,) =

Zi <X,-, ,V.'>, S0

(f+8(',F))*(¢1"’-a(fbm):sup{z:(xi’ b —yi) (x19"',xm)€F}

=inf{(e, y)|y= ¢ —y; Vi},

by Definition 8.2. The duality result now follows.

If (BLP) is consistent, and [0, e] is o{ X, Y)-compact, then the feasible region of
(BLP) is clearly nonempty and o(X™, Y™)-compact, so its value is attained at an
extreme point by Holmes (1975, p. 74).

Finally, if X and (}; ) are primal and dual feasible respectively, with equal value,
then we have

B (e, <67 ~(3 %, 7)
<b"X '“Z_ (%, ATA =)
=2 (%, J’i>+XT<b ) Ap?i)
SZ (X, yoy = b'A— (e, .
Thus equality holds throughout, and (8.4) follows. O

Suppose now that (X, Y) is a dual lattice pair (Definition 3.6). If e e qri X, then
the constraint qualification reduces to finding a feasible (£,, ..., £,,) with £, € gri X,
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for each i=1,..., m, by Corollary 3.14. The dual problem simplifies to the finite-
dimensional problem

(DBLP,)maximize b"A — <e, V (ATA ~y,-)>

i=1

subjectto A e P', AeR"

Define g:R” > Y and N,< X, each i=1,...,m, by g{(A)=AA—y,, and N;(A) =
NV, g(r)—g(r)), where N(-) denotes absolute kernel (cf. Section 5). For a
specific X, set g; = g,(1) and N, = N;(}), each i. As before, X, is the principal ideal
generated by e.

The following result shows how we can compute the solution of the original
problem (BLP) by first solving (DBLP,).

Theorem 8.5. With the notation of (8.2), suppose (X, Y) is a dual lattice pair. If (8.3)
holds for some (%,, . .., X,,) feasible for (BLP), then the values of (BLP) and (DBLP,)
are equal (with attainment in (DBLP,)).

Suppose further that (X, Y) is a countably regular lattice pair (Definition 5.18).
For AeR", consider the following condition:

(s

If (8.5) holds then X, is an order direct sum

vV g‘k~g'i'>>0, forall 0#xe[0,e], eachi=1,..., m. (8.5)

ki

X.=® (X.n N, (8.6)
i=1
and the dual objective function is differentiable at X with derivative
b— 2% APx,~n(e)
i=1

If furthermore X is optimal for (DBLP,) then the unique optimal solution of (BLP)
is given by X; = Px_x,(e), each i=1,..., m.

Proof. The duality result follows directly from Corollary 4.8. The criterion for the
differentiability of the dual objective function follows from Corollary 5.15, since

v, <e, v gi(A>> = <VAg(A>>T(V¢ <e’ v ¢">)

The remainder of the result follows again from Corollary 4.8. Since (X, Y) is a
countably regular lattice pair, X is an ideal in Y, so X,=(Y.)" and is thus
o(X, Y)-closed. It follows that the function f+ 8(-{C) in Corollary 4.8 is closed,
and the result now follows. ([

b=g(r)
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The interpretation of the various expressions in Theorem 8.5 for concrete spaces
(X, Y) was discussed at the end of Section 5.

In Theorem 8.4 it was proved that if [0, e] is (X, Y)-compact and (BLP) is
consistent then its value is attained at an extreme point of the feasible region. If Y
is a normed lattice with X = Y™ then [0, ¢] is o(X, Y)-compact by the Alaoglu-
Bourbaki Theorem. On the other hand, if X is a normed lattice with Y = X* then
Examples 5.19 gives various conditions for X to have o(X, Y)-compact order
intervals. Our next result characterizes the extreme points of the feasible region of
(BLP). We first need some definitions and lemmas.

Definition 8.6. Suppose X is an Archimedean vector lattice (i.e. nx, < x, forall neN
implies x, <0). For 0= x € X, xis an atom if the principal ideal X, is one-dimensional
(Schaefer, 1974, p. 143).

In what follows we shall assume X is Archimedean. Notice in particular that any
normed lattice is Archimedean.

Lemma 8.7. 0< x ¢ X is an atom if and only if X, is a minimal ideal (i.e. {0} is the
only ideal properly contained in X, ).

Proof. Schaefer (1974, p. 143). O

Lemma 8.8. If X has no atoms then every nonzero ideal of X is infinite-dimensional.

Proof. Suppose {0} # I = X is a minimal ideal. Take 0=<xe I, with x #0so X, < L
Since I is minimal, X, = I, so X, is minimal, and thus x is an atom by Lemma 8.7.
This is a contradiction, so X has no minimal ideals. Now suppose {0} #J, < X is
a finite-dimensional ideal. Since J; is not minimal, there exists a nonzero ideal
J,< J, strictly, so dim J,<<dim J;. We can proceed indefinitely in this fashion to
obtain a sequence of strict inclusions, J, > J,>J; - - -, which contradicts dim J, <
o, [J

Examples 8.9.
(i) If Tis a normal topological space with no isolated points then C(T) has no atoms.

(ii) If u is a nonatomic measure on T (i.e. for measurable T, T, with u(T,) >0,
there exists measurable T, = T, with u(T,) #0 or w(T>)), then L (T, u) has no atoms,
Jor 1sp=oo,

(iii) In particular if T<R" with u absolutely continuous with respect to Lebesgue
measure, then LP(T, u) has no atoms, for 1 < p=<o0,

(iv) If X = M(T) and 0=< e< X is nonatomic on T, then the principal ideal X, has
no atoms.



J.M. Borwein, A.S. Lewis / Partially finite convex programming I1 73

Proof. (i) Suppose 0==xec C(T)=X is an atom. Since T has no isolated points,
To={t|x(¢t) >0} is not a singleton, so pick distinct t,, t, € T,. By Urysohn’s lemma,
there exists 0<ye C(T) with y(t,)=1 and y(t,)=0. Now set z=x A y. Clearly
{0} # X, < X, strictly, so x is not an atom, which is a contradiction.

(ii) Suppose 0==xe L”(T, u)=X is an atom. Set Ty= (¢|{x(t)>0}. T, is not an
atom in (T, ), so there exists T, Ty with 0<u(T,) <u(T,). Now set y(t)=
x(t)xr,(1), for each te T. Then {0} # X, < X, strictly, so x is not an atom, which is
a contradiction.

(iii) The fact that any measure which is absolutely continuous with respect to
Lebesgue measure is nonatomic follows from the definition of Lebesgue measure.

(iv) By the Radon-Nikodym theorem, X, is isomorphic with L*(T, ¢) and the
result follows by (ii). O

Definition 8.10. An element x€[0, e] is a characteristic element of [0, e] if x A
(e—x)=0.

If X is C(T), M(T) or LP(T, ), 1< p=<o00, then x is a characteristic element of
[0, e] if and only if x is of the form x=e on T,, and 0 on T, for some T, T.

Lemma 8.11. An element x is an extreme point of [0, e if and only if it is a characteristic
element.

Proof. Schaefer (1974, p.65). O
We are now ready to prove the main result.

Theorem 8.12. With the notation of (8.2), suppose that (X, Sx) is an Archimedean
vector lattice, and that the principal ideal X, has no atoms. Then a feasible (X,, ..., X,,)
for (BLP) is an extreme point of the feasible region if and only if each X; is a characteristic
element of [0,¢e],i=1,...,m.

Proof. If each X, is a characteristic element of [0, €] then (X,, ..., X,,) is an extreme
point of [0, e]™ (by Lemma 8.11), and therefore of the feasible region.

On the other hand, suppose without loss of generality that u:= %, A (e —%,) # 0.
Certainly u=0.

Suppose that X, Au =0, each i=2,..., m. Then we would have u=una(e—Xx,)=
uAY 7, % =0, which is a contradiction. Without loss of generality therefore, suppose
that v:=%,Au#0. We then have 0sv=u<x%,, (e—X%,) and v <X,. Furthermore,
e —X,= X, = v. Thus we have constructed a nonzero v =0 with X,, x,€[v, e —v).

Now the principal ideal X, is infinite-dimensional by Lemma 8.8 so there exists
nonzero we X, with (A;—A,)w=0. Since X, =U;’;1j[—u, v], we can assume (by
scaling if necessary) that we[—uv,v]. It then follows that (X,,%,,...,%,)*
(w, —w, 0, ...,0) are both feasible, so (X, X,, ..., X, ) is not extreme. [
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Notice that if the hypotheses of Theorem 8.5 are satisfied then from (8.6) we
know that X, =@, (X.n N,) is a direct sum of ideals and so the solution X; =
Py 5 (e) satisfies X; A %; =0 for all i#j. Thus X, A(e—%;)=0, for each i, so this
solution is an extreme point.

Notice also that under the conditions of the theorem, if (%, ..., X,,) is an extreme
point of the feasible region then 0=x;A(e—%) =X A2, ., % =2, (X AX), s0 X; A
x;=0fori#j If X is C(T), M(T) or L”(T, ), 1<p=oo then this says that the
supports of x; and x; are disjoint. It follows that the extreme points correspond
exactly with solutions of the form %;=¢ on T, and 0 on T{, each i=1,..., m,
where T=|J;., T; is a partition of T. Thus by restricting attention to the extreme
points of the problem we have reduced it to a set-partitioning problem.

Upper bound constrained semi-infinite linear programming

To conclude this section we shall illustrate Theorem 8.5 by applying it to the problem
of semi-infinite linear programming with an upper-bound constraint, and to the
problem of best L'-approximation. Suppose first that (X, Y) is a dual lattice pair,
with ce Y, A: X >R" a o(X, Y)-R" continuous linear mapping, beR", PcR" a
polyhedral cone and 0=t e € X. The problem we wish to consider is

(ULP,) inf {x, ¢)
subjectto Axeb+ P,
O0sx<e xeX
We can write this in the form (BLP) by adding a slack variable:
(ULP,) inf {xy, )+{x5,0)
subjectto Ax,+0x,eb+ P,
X, tx,=e,
0=x,,x,€X
The dual problem becomes
(DULP) maximize b"A—{(e, (ATA~¢c)")
subjectto Ae P, AeR"

Notice again how this dual problem is reminiscent of penalty function approaches
to the solution of the dual semi-infinite linear program (DSILP) (see Section 6).
The larger the element e becomes, the more we penalize violations of the constraint
A"r=c

The constraint qualification requires the existence of a feasible £ for (ULP,) with
cl P[0, £]=cl P[0, e —£]=cl P[0, ¢] (in the (X, Y) topology), and if ecqri X,
then this is equivalent to %, (e ~ £) € gri X, . If this holds then we know from Theorem
8.5 that the values of (ULP;) and (DULP) are equal, with attainment in (DULP).
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If ¥ and X are feasible for (ULP;) and (DULP) respectively in this case, then
necessary and sufficient conditions for optimality are the complementary slackness
conditions

A (AX—b)=0,

(% (ATA=¢))=0,

((e=%), (ATA~c)") =0,
by Theorem 8.4. By Theorem 8.12, if the principal ideal X, has no atoms then the
extreme points of (ULP,) are just the feasible characteristic elements of [0, e].

Finally, suppose that (X, Y) is a countably regular lattice pair. Suppose the
constraint qualification holds and that X is optimal for (DULP). Suppose further that

(x,]ATA—c[)>0, forall0=xel0,e]. (8.7)

It then follows by Theorem 8.5 that if we define N., N_< X by N.= N((A"x ~¢)")
then X,=(X,~N,)®(X.n N_) and the unique optimal solution of (ULP;) is
X =Py, n_(e). We defer a discussion of numerical techniques for the solution of
(DULP) to a later paper, except to observe that the objective function is differentiable
at any A for which (8.7) holds, with derivative b — APy 5 _(e). In particular, suppose
that X = L*([e, B), ), Y=LY[a, B, 1), 1 < p =0, with u Lebesgue measure, and
that A: X - R" is defined by (Ax); =(x, a;), forsome q;€ Y, i=1,..., n. Then if the
set {a;,..., a,, c} is pseudo-Haar on [«a, 8] (Definition 7.8), condition (8.7) will
always hold, so the dual objective function will be everywhere differentiable.

Best L'-approximation

Finally, let us turn to the problem of best L'-approximation. Suppose that (X, Y)
is a dual lattice pair (we shall primarily be concerned with the case X = L™(T, ),
Y = L'(T, w) with (T, u) a o-finite measure space). Suppose that a,,...,a,, ce Y
and e€ X, , and consider the problem below, which is in the form of (BLP):

(DL'P) inf (x;, Y+ {x,, —C)
subjectto  {x;, @) +{x,, —a;)=0, i=1,...,n,
x,+x,=e,
X1,%=0, x;,x€X.

The dual problem is, from Theorem 8.5,

)

(L'P)  maximize -~ <e,

n
Z A,'a,'—c
i=1

subjectto A eR"
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When X =L%, Y=L' and e=1 this is exactly the problem of finding the best
approximation in the L' norm to ¢ from the subspace spanned by {qa,, ..., a,}, and
for more general e we obtain weighted best L'-approximation.

The constraint qualification for (DL'P) is always met by %, = £, =3 ¢, by Corollary
3.13, so by Theorem 8.5 the values of (L'P) and (DL'P) are equal, with attainment
in (L'P) (implying in the (L™, L") case the existence of a best L'-approximation).
Furthermore, if [0, e] is o(X, Y)-compact (as in the case when (X, Y)= (L, L")),
then the value of (DL'P) will also be attained. In this case it follows by complemen-
tary slackness (Theorem 8.4) that A is optimal for (L'P) if and only if there exist
feasible %,, X, for (DL'P) satisfying (X,, (¥, b, —¢) ) =0=(%,, (¥, h.a;—¢)"). This
is one version of the characterisation theorem for best L'-approximation (see for
example Singer, 1970). In the case where (X, Y)=(L*, L") and e=1, let us denote
theset{te T|Y, A,a,(t)> c(f)} by Z..,and similarly for Z_and Z_. Thenif u(Z.)=0
the complementary slackness conditions define X,, X, essentially uniquely to be x_
and y,_ respectively, so the optimality condition simplifies to |z, ai=|;_a; each
i=1,...,n (see Singer, 1970). An alternative approach to this result is to observe
that 4 (Z_) = 0 is the condition for the objective function in (L'P) to be differentiable
at A, and apply Theorem 8.5. Notice in particular that if T=[ea, B]<R, with u
Lebesgue measure and ay, ..., a,, ¢ pseudo-Haar on [a, 8], then we will always
have u(Z.)=0.

If [0, e] is (X, Y)-compact then there exists an extreme point optimal solution
of (DL'P). If furthermore the principal ideal X, has no atoms then this extreme
point will satisfy x, A x, =0, by Theorem 8.12. When (X, Y)=(L>, L") with (T, u)
nonatomic and e=1 it follows that there is an optimal solution of (DL'P) of the
form X, = xr,, %> = xr¢, for some Ty T.

9. Semi-infinite transportation problems

In this final section we shall examine how our previous results can be applied to
problems generalizing the classical transportation problem. In these examples the
set F defined in (8.1) arises naturally from the constraints: the nonnegative x;’s
represent the supply strategies associated with each of m supply points, and the
constraint Y., x;=e reflects the requirement that a total demand distribution
represented by e has to be supplied from the m supply points. When the distribution
strategy is subject to linear transportation costs and the total supply at each of the
m supply points is given, the resulting problem is a semi-infinite transportation
problem (see Kortanek and Yamasaki, 1982), which is a special case of the bounded
linear problem considered in the previous section. When the underlying space X is
finite-dimensional the problem reduces to the classical transportation problem. If,
more generally, the supply distributions are subject to certain convex production
costs, we obtain a ‘generalized market area problem’ (see Lowe and Hurter, 1976,
and Todd 1978). We shall see how the results of the above authors can be rederived
in a more general setting using our duality theorems.
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Let us first consider the linear case, the semi-infinite transportation problem. We
shall adopt the following notation:

(X, Y) a dual pair,

Sx <X, SycY convex cones partially ordering X and Y,
(9.1)
yla"'ayna al""aaney;

beR", eeSy.

The primal semi-infinite transportation problem (cf. Kortanek and Yamasaki, 1982)
is then

(STP) inf i (xi, yi)

subjectto  {x;, a;)=b;, i=1,...,n,
n
z xi:ea
i=1

x,=0, x;eX, i=1,...,n

This is a special case of (BLP) with m = n, P ={0} and (Ax); = (x;, a;) for i = j, and
0 for i # j. The dual problem becomes

(DSTP,) sup b'A — (e, y)
subjectto Aa,—y=y, i=1,...,n,
AeR", yeY.

This is exactly the primal-dual pair considered in Kortanek and Yamasaki (1982).

Following Theorem 8.4, the constraint qualification requires a feasible (£, ..., X,,,)
for (STP), satisfying (8.3) (or, if (X, Y) is a dual lattice pair with eeqri X, with
each X; € qri X,). Either of the following assumptions (cf. Kortanek and Yamasaki,
1982), is sufficient to ensure this.

Assumption 9.1. (e, a;)>0, b;>0, each i=1,...,n,and ¥|_, (b;/(e, a))=1.
Assumption 9.2. a,=a, b;>0,each i=1,...,n,and Y.,_, b, =(e, a).

Clearly Assumption 9.2 implies Assumption 9.1, which in turn implies that the
point defined by X, = (b,/{e, a;))e, each i=1, ..., m, is feasible, and this satisfies the
constraint qualification by Corollary 3.13. The most usual version of the semi-infinite
transportation problem has X = M(T), Y=C(T), with T a compact Hausdorff
space, and a;,=1, each i=1,..., n. Assumption 9.2 is then simply the requirement
that each supply point has a strictly positive supply and that the total supply is
equal to the total demand.
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Theorem 9.3. With the notation of (9.1), suppose either of Assumptions 9.1 and 9.2
holds, and that ((X, Sx), (Y, Sy),{+, ")) is a pseudo-Riesz pair. Then the values of
(STP) and (DSTP,) are equal, and if (X,,...,%,) and (X; ¥) are feasible for (STP)
and (DSTP,) respectively then they are optimal if and only if

X, 7tyi—Aa)=0, eachi=1,..., n (9.2)
Proof. Theorem 8.4. []

This duality theorem is proved in Kortanek and Yamasaki (1982) in particular
for the special case where X is a reflexive Banach lattice with Y = X™*, with the
lattice orderings (cf. Theorem 4 in the above paper). This case follows from Theorem
9.3 by Examples 8.3. They also consider the case when 7-(Y, X)—int Sy #0 (cf.
Theorem 2 in the above paper); since Sy must then be generating this case also
follows from Theorem 9.3 by Theorem 8.1.

Theorem 9.4. With the notation of (9.1), if [0, e] is o(X, Y)-compact and (STP) is
consistent then there exists an optimal extreme point for (STP).

Proof. Apply Theorem 84. [J

Theorem 9.5. With the notation of (9.1), if (X, Sx) is an Archimedean vector lattice
and the principal ideal X, has no atoms then a feasible (X,,...,x,) for (STP) is an
extreme point of the feasible region if and only if each X; is a characteristic element of
[0, e] (with x; Ax; =0 for i #j).

Proof. Apply Theorem 8.12 and the remarks thereafter. [

Following our discussion after Theorem 8.12, we see that when (X, Y) = (L(T, n),
LT, u)), 1=sp=<oo, with u nonatomic, we can restrict attention to feasible
(x1,...,x,) where the x;’s have disjoint support, i.e. of the form (exr,,..., exr,),
where T=|_J,_, T, is a partition of T. A similar argument holds for (X, Y)=
(M(T), C(T)) when e is nonatomic on T, by Examples 8.9(iv). Thus in these cases
(STP) reduces to a problem of set-partitioning, reflecting the fact that optimal
distribution strategies arise from assigning to each supply point a distinct area in
the underlying demand set, for which it has to supply the whole demand. This
observation was made in Corley and Roberts (1972). These authors also discuss the
relationship between (STP) and the Neyman-Pearson lemma of statistics. The duality
approach to the Neyman-Pearson problem was discussed in Francis and Wright
(1969).
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Suppose now that (X, Y) is a dual lattice pair. In this case the dual problem
becomes

(DSTP,) maximize b"A — <e, V (e —y,-)>

subjectto A eR".

Define g;(A) = da; — y;, and N;(A) = N(V, ge(A)—gi(r)), fori=1,..., n. Consider
the following condition:

(s

As we observed at the end of Section 5, (9.3) can be interpreted in the cases
(X, Y)=(L"(T, u), LYT, p)), 1<p=o00, and (M(T), C(T)) as requiring the set
{na; (1) =y (t)|i=1,..., n} to have a unique largest element w-a.e. on support(e),
and e-a.e., respectively.

In Todd (1978) the case considered is (X, Y)=(M(T), C(T)), and a;=1,
i=1,...,n Assumption 1 in his paper requires

V gk()\)—g,-()\)}>>0, forall0#xel0,e], i=1,...,n (9.3)

k#i

e{lte TIA—yi(1)=A;—y;()} =0,

for all i#j, A;, A; #R. This is clearly sufficient to ensure (9.3) holds for all A.

Theorem 9.6. With the notation of (9.1), suppose that either of Assumptions 9.1 and
9.2 holds. Suppose also that (X, Y) is a dual lattice pair. then the values of (STP)
and (DSTP,) are equal, with attainment in (DSTP,).

Suppose further that (X, Y) is a countably regular lattice pair. Then the dual objective
function is differentiable at any X for which (9.3) holds; at such points we have

X,=& (X.A NV, (9.4)

and the gradient is given by (b, ~(Px ~~n)(€), a))i=:, where Px n): Xe=> X, N
N;(A), i=1,..., n, are the natural projections associated with (9.4).

If furthermore X is optimal for (DSTP,) and (9.3) holds at X then the unique optimal
solution of the problem (STP) is given by %, = Px n.y(€), i=1,...,n

Proof. Apply Theorem 8.5. [

In Theorem 5 of Kortanek and Yamasaki (1982) the existence of an optimal
solution to (DSTP,) is proved under Assumption 9.2. However, the duality results
they give require interiority or local compactness conditions on the cones involved,
or X to be a reflexive Banach lattice with Y = X*.



80 J.M. Borwein, A.S. Lewis / Partially finite convex programming Il
The generalized market area problem

We now turn to a generalization of the semi-infinite transportation problem known
as the generalized market area problem (see Lowe and Hurter, 1976). In this problem,
instead of constraining the total production at each supply point by (x;, a;) = b; for
each i, we impose a convex production cost of the form k(({x;, @;)}7-,). The semi-
infinite transportation problem is the special case where k(-)=8(-|{b}).

The problem we are interested is thus

(GMP) inf T G )+ (05, 8)10)

n
subjectto Y x;=e,
i=1

x;=0, x;,¢X, i=1,...,n

c s

If (X, Sx), (Y, Sy), (-, -)) is a pseudo-Riesz pair then by applying Corollary 4.8 we
obtain the dual problem

(DGMP,) sup —{e, y)—k*(-1)

subjectto Mg, —y=y, i=1,...,n

s fhy

AeR”, yeY.

Theorem 9.7. With the notation of (9.1), and k:R" - ]—0, ©©], convex, suppose that
((X, 8x),(Y,Sy), (-, )) is a pseudo-Riesz pair. Suppose further that for some feasible
(%,,...,%,) for (GMP) we have

({X;, a;y)  eri(dom k)  (or simply dom k if k polyhedral),
(9.5)
o(X, Y)-cl P[0, £]=0o(X, Y)—clP[0,e], i=1,...,n.

"

Then the values of (GMP) and (DGMP,) are equal. In this case feasible (X,, ..., X,)
for (GMP) and (X; 7) for (DGMP,) are optimal if and only if

(%, yi+7—Aa)=0, i=1,...,n,
(9.6)
_)_‘eak((<xi’ a)ri).

If (GMP) is consistent, k is closed and [0, e] is a(X, Y)-compact then the value
of (GMP) is attained.

Proof. Apply Corollary 4.6 and Theorem 3.12. If the values of (GMP) and (DGMP,)
are equal and (X, ..., %,,) and (A; 7) are respectively feasible for the two problems,
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then they are optimal if and only if we have

—(e, )Y —k*(=X) = =L (%, P+ K%, a) )+ L A%, @)
= ‘Z (%, ;\iai =y +k((%, a)) +Z Xi<xi> a;)
= Z (X, yo + k(((%;, any)

=—(e, )~ k*(—=)),
and (9.6) follows by Rockafellar (1970, 23.5).
To see the last assertion, write (GMP) as

inf {u +k(v)
uelR
veR"

where F is given by (8.1). If [0, e] is (X, Y)-compact then so is F. Thus (GMP)
is equivalent to minimizing a closed, proper convex function over a compact subset
of R"*! (since the continuous image of a compact set is compact). Attainment in
(GMP) now follows by Rockafellar (1970,27.3). O

u :Z <xi, yi>’ U; :<xia ai>Via fOr some (xla L] xn) € F}’

Now suppose that (X, Y) is a dual lattice pair. In this case the dual problem
becomes

(DGMP,) maximize -— <e, V (Aa; —y,—)> —k*(=A)
i=1
subjectto A eR"

Theorem 9.8. With the notation of (9.1), and k:R" » |-, 0], convex, suppose that
(X, Y) is a dual lattice pair and that for some feasible (X, ..., %,) for (GMP), (9.5)
holds. Then the values of (GMP) and (DGMP,) are equal, with attainment in
(DGMP,).

Suppose further that (X, Y) is a countably regular lattice pair. Suppose that k is
closed, that X is optimal for (DGMP,), and that (9.3) holds at X. Then (9.4) holds
and the unique optimal solution of (GMP) is given by X, = Px_~n,)(€), i=1,...,n

Proof. The duality result follows from Corollary 4.8. Under the further conditions
we know that (9.4) holds at X, as in Theorem 9.6, and that the function (e, \/|_, (Aa; —
y;)) is differentiable at A with gradient ((X;, a;)){ . Since A is optimal it follows that
0e —((X,, a)) 7 +ak*(=)). Since k is closed, this is equivalent to —A € ok(({%;, a;))}),
by Rockafellar (1970, 23.5). If we now set 3=\ _, (Ad,a;—y;), it follows that
(%,,...,%,) and (X; 7) are feasible for (GMP) and (DGMP,) respectively, and
satisfy the complementary slackness conditions (9.6). By Theorem 9.7 they are
therefore optimal. The uniqueness of (%X, ..., %,) follows from the fact that for any
optimal (x,,...,x,) we have x;€ X, n N;(1), by (9.6), but ¥, x;=e and ¥, (X, N
N:(})) is a direct sum by (9.4). O
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We can now rederive the results in Todd (1978) by specializing to the case
X=M(K), Y=C(K), K<R™ compact, e absolutely continuous with respect to
Lebesgue measure, and a; =1,eachi=1,..., n. As we already observed, Assumption
1 in Todd’s paper is made to ensure that (9.3) holds for any A. Many of the results
on the semi-infinite transportation problem in the first half of this section could
now be rederived from the special case k(-)=8(-|{b}). It is worth observing that
we could generalize much of the theory of Section 8 on the bounded linear problem
(BLP) in much the same way as we have extended the semi-infinite transportation
problem to the generalized market area problem.
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