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This paper considers mixed-integer quadratic programs in which the objective function is 
quadratic in the integer and in the continuous variables, and the constraints are linear in the 
variables of both types. The generalized Benders' decomposition is a suitable approach for 
solving such programs. However, the program does not become more tractable if this method 
is used, since Benders' cuts are quadratic in the integer variables. A new equivalent 
formulation that renders the program tractable is developed, under which the dual objective 
function is linear in the integer variables and the dual constraint set is independent of these 
variables. Benders' cuts that are derived from the new formulation are linear in the integer 
variables, and the original problem is decomposed into a series of integer linear master 
problems and standard quadratic subproblems. The new formulation does not introduce new 
primary variables or new constraints into the computational steps of the decomposition 
algorithm. 
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1. Introduction 

This  p a p e r  c o n s i d e r s  gene ra l  m i x e d - i n t e g e r  q u a d r a t i c  p r o g r a m s ,  in which  the 

o b j e c t i v e  f u n c t i o n  is quad ra t i c  in the  i n t e g e r - c o n s t r a i n e d  va r i ab le s ,  as well  as in 

the  c o n t i n u o u s  ones ,  the  c o n s t r a i n t s  a re  l inear  in the  va r i ab l e s  of  bo th  types ,  and  

the d i s c r e t e  va r i ab l e s  can  a s s u m e  non -nega t i ve  in teger  va lues  (not  on ly  0 or  1). 

An  equ iva l en t  f o r m u l a t i o n  tha t  r e n d e r s  the  or ig inal  p r o g r a m  m o r e  t r ac t ab l e  is 

d e v e l o p e d ,  and  B e n d e r s '  d e c o m p o s i t i o n  m e t h o d  [6] wh ich  has  been  gene ra l i z ed  

b y  Geof f r ion  [12] is e m p l o y e d  to so lve  it. As  it is shown  by  L a s d o n  [22], 

B e n d e r s '  d e c o m p o s i t i o n  m e t h o d  and the  w e l l - k n o w n  D a n t z i g - W o l f e  d e c o m -  

pos i t i on  m e t h o d  are  dua l  pairs .  The  d e c o m p o s i t i o n  m e t h o d  is b a s e d  on dua l i ty  

t h e o r y  of  quad ra t i c  p r o g r a m m i n g ,  as d e v e l o p e d  b y  Co t t l e  [7], Denn i s  [8] and  

Dorn  [9]. 

A seve re  diff icul ty is e n c o u n t e r e d  if the  g e n e r a l i z e d  B e n d e r s '  m e t h o d  is u sed  

to so lve  the  m i x e d - i n t e g e r  q u a d r a t i c  p r o b l e m  in the original x y - s p a c e ,  tha t  is, 

w i thou t  first  t r a n s f o r m i n g  it into a s imple r  equ iva l en t  p rog ram.  (x and y, 

r e s p e c t i v e l y ,  are  the  v e c t o r  of  in teger  va r i ab l e s  and  the  v e c t o r  of  c o n t i n u o u s  

* The author wishes to thank two anonymous referees for their helpful comments and suggestions 
for revising the paper. 
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variables.) Since the dual objective function is quadratic in x, Benders' cuts are 
also quadratic in x, and the resulting master problem has constraints that are 
quadratic in the integer variables x. This is a difficult and untractable discrete 
optimization program. 

The method suggested in this paper to overcome this difficulty is based on the 
development of a new equivalent formulation of the original program, under 
which the integer variables are absent from the objective function, and the 
constraint set is linear in the integer variables. Thus, the dual objective function 
is linear--rather than quadratic--in the integer variables, and the dual constraint 
set is independent of the integer variables. As a result, Benders' cuts that are 
derived from the new formulation upon implementing the generalized Benders' 
method are linear in the integer variables x. The original mixed-integer quadratic 
problem is decomposed into a series of relaxed master problems which are 
integer linear programs, and subproblems which are standard quadratic pro- 
grams. The concept of generalized inverse is employed for developing the new 
formulation. Furthermore, the equivalence between the original and the new 
formulation holds in the almost general case. 

Balas [2] developed a partitioning algorithm for solving all-integer and mixed- 
integer quadratic programs, based on his generalization of the dual symmetric 
quadratic programs studied by Cottle [7]; his algorithm introduces a vector of 
new variables. All-integer quadratic programs (especially 0-1 quadratic pro- 
grams) have received a considerable amount of attention in the literature. 
Linearization is a widely used approach for solving problems of thi, s type: by 
adding new variables and constraints, the original problem is transformed into an 
equivalent integer linear program. Watters' [27] algorithm for 0-1 quadratic 
programs replaces the cross-product terms in the objective function by intro- 
ducing n ( n -  1)[2 additional 0-1 variables and n ( n -  1) additional auxiliary con- 
straints (n is the number of original 0-1 variables). Other linearization schemes 
that yield substantially more compact formulations have been suggested; for 
instance, Glover's [18] formulation of 0-1 quadratic programs requires the 
addition of n new continuous variables and 4n new constraints (see also [16, 
17]). Bazaraa and Sherali [3] have recently suggested a new formulation of the 
quadratic assignment problem, which is a 0-1 quadratic program with a highly 
specialized constraint set. By introducing new continuous variables and linear 
constraints, they replace the cross-product terms in the objective function, and 
transform the original problem into a mixed-integer linear program; they then 
employ Benders' method to solve this program. The linearization process of 
all-integer quadratic programs in which the discrete variables can assume non- 
negative integer values (not only 0 or 1) requires the addition of a much larger 
number of new variables and constraints, since each integer variable is first 
expressed as a linear combination of several new 0-1 variables. Glover [18] 
demonstrated that the same approach can be used to reformulate mixed-integer 
quadratic programs. The transformation of a program with the objective func- 
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tion f(x,  y )=  x'Qy (x E R n is a vector of integer variables, and y ~ R  m is a 
vector of continuous variables) into a mixed-integer linear program requires a 
total of nr new continuous variables and 4nr new constraints, after the initial 
replacement of each xi by a linear combination involving r new 0-1 variables. 

The major shortcoming of linearization methods is that the linear relaxation is 
achieved at the expense of a substantial increase in problem size. Also, McBride 
and Yormark [25] report that computational experience with such formulations 
indicates slow convergence. Another approach used to solve 0-1 quadratic 
programs is implicit enumeration (e.g., [24, 20, 25]). Kunzi and Oettli [21] 
developed an interesting new procedure for solving all-integer quadratic pro- 
grams. 

The new equivalent formulation of the mixed-integer quadratic program that is 
developed in this paper departs entirely from previous formulations: it is not 
based on replacing cross-product terms with new variables and constraints. One 
of the characteristics of this formulation is that it does not introduce new 
primary variables or new constraints into the computational steps of the 
decomposition algorithm: new variables or constraints are not added to the 
subproblems and relaxed master problems that must be solved in each iteration. 
Therefore, the objective of rendering tractable the original problem is not 
achieved at the expense of increased programs size. However,  the new for- 
mulation requires the solution of an additional standard linear program in each 
iteration. (Further research into the nature of the formulation may eliminate the 
need to solve this program.) 

2. Preliminaries 

Denote by P the following mixed-integer quadratic program 

(P) 

m a x  f(x,  y) = qlx + q~y + ½x'Qlx + x'Qey + ½y'Qay, 

s.t. A~x+A2y<-b;  x E X ;  y_>0, 

where q~, q~, x, and y are vectors of order 1 × nm, 1 × n2, ni X 1 and n2× 1, 
respectively; Qi and Q3 are symmetric matrices of order n~× nl and n2× n2, 
respectively, and Q2 is an n~ x n2-matrix, such that the (n~ + n2) × (na + n2)-matrix 

is symmetric negative semi-definite; A1 and A2 are matrices of order m x nl and 
m x n2, respectively; b is an m × 1-vector; and X is the set of all non-negative 
nl-vectors with integer components. (More generally, xl . . . . .  xnl can be any vector 
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of compl icat ing variables,  in the sense that  P is a difficult optimization program 

in x and y jointly, but for  a fixed 2 E X it becomes  much easier to solve [12].) I t  

will also be assumed that the matrix [Q2, ½Q1] has full row rank. Note  that the 

object ive function f (x ,  y) is quadratric  in the 'complicat ing '  variables xt . . . . .  x,~. 

The difficulties that  arise if the generalized Benders '  decomposi t ion method 
[12] is implemented to solve program P in the original xy - space  will be pointed 
out. By fixing x = ~ E X in the program P, subproblem P(~) is obtained: 

max f(X, y ) =  q i + ½ x ' Q l X + ( q ~ + X ' Q 2 ) y  +½y'Q3Y, 

(P(x)) 

s.t. Azy  <- b - A1~; y >- O. 

The dua l /3 (~)  to subproblem P(~)  is [9]: 

min (qJ(~, u, v) = q~Y, +~,2'QIy~ - l u ' Q 3 u  + (b - Al$) 'v ,  

(D(~)) 

s.t. A~v - Q3u >_ q2 + Q~x; v >_ O, 

where u and v are vectors  of dual variables of order n2 x 1 and m x 1, respec-  
tively. 

Le t  u ~ and v ~ be fixed points, and x a vector  of variables. Clearly, q,(x, u ~, v ~) is 
quadrat ic  in the integer variables x. Since qJ(x, u ~, v~), i =  1, 2 . . . . .  are used to 

form Benders '  cuts, the implementat ion of the generalized Benders '  method 

yields relaxed mas ter  problems that have constraints  that are quadratic in x, as 
will be seen. 

Let  Sx be the set of all admissible  solutions x to P(x): for every  x @ Sx, there 

exists at least  one feasible solution y to P(x). Le t  r i, j = 1 . . . . .  nr (nr is finite), be 
the generators  of the convex polyhedron 

R = { r E R  m I A~r >- O; r >- O}. (1) 

Using Farkas '  Lemma ,  one can show that x ~ X is admissible (i.e., x E Sx) if and 

only if it satisfies the finite system{(rJ)'(b -Aix) - ->  0, i = 1 . . . . .  nr}. Therefore ,  

Sx = {X E R nl I (rJ)'( b - A l x )  -> 0, j = 1 . . . . .  n~; x E X}. (2) 

Using (2), program P can be written as: 

• . I-maximize f (x ,  y) = q]x + q~x + ½x'Qlx + x 'Qzy  + ½y'Q3y] 
maximize I J xcsx L s.t. A2y <-- b - A t x ;  y >- 0 " 

(3) 

The decomposi t ion strategy is clearly seen f rom (3)• For  a fixed x E Sx, the 
quadratic subproblem P(x) in the brackets  of (3) is solved, and a new and 
'be t te r '  x E Sx is generated,  and so forth. 
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Let {U, V} = {(u, v) I A~v + Q3u >- q2+ Q~x; v >- 0} be the feasible set of the 
dual D(x).  The generators fl, j = 1 . . . . .  nr of the convex polyhedron R (see (1)) 
are the extreme rays of {v 1 A~v >- q2 + Q~x; v >_ 0}. 

Using duality theory of quadratic programming [9], the primal P(x) in the 
brackets of (3) can be replaced by its dual D(x), to yield the following equivalent 
program: 

maximize{minimize[t~(x, u, v) I (u, v) E {U, V}]}. (4) 
x~$~ (u, v) 

By using definition (2) of Sx and writing ~(x, u, v) explicitly, program (4) can be 
written as the following master problem MP: 

max 0, 

(MP) s.t. (1) O < - q [ x + ½ x ' Q l x + v ' ( b - A l x ) - ~ u ' Q 3 u ,  a l l ( u , v ) ~ { U , V } ,  

(2) (rJ)'(b - A lx )  >- O, j = 1 . . . . .  nr, 

(3) x E X. 

Master problem MP is equivalent to the original problem P. However,  MP is of 
theoretical interest only, since it has an enormous number of constraints. But, it 
can be solved iteratively by a process of relaxation [11]. At each iteration, a 
relaxed version of MP is solved: it includes only few of the constraints of types 
(1) and (2) of MP. In order to test the solution ~ of the relaxed master problem 
for feasibility in the unrelaxed master  problem MP, the subproblem P(g) is 
solved, and new Benders'  cuts are added to the relaxed problem as needed (see 
[6, 12, 22], and the discussion in Section 4 for more details). 

Benders' cuts that form the constraints of type (1) of the master problems are 
quadratic in the integer variables xl . . . . .  x,~. This makes the relaxed master 
problems difficult and untractable discrete optimization programs, especially if 
nt is large (as is the case in most practical applications). 

Next, the equivalent formulation of problem P under which Benders '  cuts are 

linear, rather than quadratic, in the integer variables, is developed. 

3. Equivalent formulations 

Consider the objective function f (x ,  y) = q~x + q~y + x'(Q2y + ~Qlx) + ½y'Q3y 
of program P. Define Q -= [Q2, ~Q1]: Q is an nl x (nl + n2)-matrix of rank r (the as- 
sumption r = nl will be introduced later). Let  Q* be a generalized inverse of  Q, i.e., 
Q* is an (n~ + n2) × nl-matrix satisfying QQtQ = Q. (See Ben-Israel and Greville 
[5], who denote this type of generalized inverse {1}-inverse. Such a matrix always 
exists, and it is not unique. Also, Q* = Q-I if Q is nonsingular; rank Q*_> rank Q; 
and QQ* and Q*Q are idempotent and have the same rank as Q.) Let  Q0 be an 
(n l+  n2)× (n j+  n2-r) -bas is  for the null space N(Q) of Q. In [5], the Hermite 

normal form of Q is used to construct Q*; an important advantage of this 
method is that a basis O ° is easilv obtained as a bv-oroduct of comoutin~ O*. 
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Hence, 
- K  

Q , =  F [ L  ojE ' Q0= F [  i,,+~2 r ], (5) 

where E is the product of the elementary row matrices that transform Q into its 
Hermite normal form H = EQ; F is a permutation matrix such that a postmulti- 
plication of EQ by F rearranges the columns of EQ so that its first r columns 
are the unit vectors; L is an arbitrary matrix of order (nl + n2-  r) × (nl - r); K is 
an r × (nl + n2-  r)-submatrix of the column-permuted form EQF;  and 0 is a null 
matrix. (E and F are nonsingular matrices of order n i x  nl and (n l+n2 )x  
(hi + n;), respectively.) 

Lemma 1. If  Q* is an nl x (nl + n2)-matrix of rank r, then: 
(1) QQ* = I,~ iffr = n~ (i.e., Q has full row rank), 
(2) Rank Q* = r + rank L. 
(3) Rank Q0 = nl + h a -  r. 

(4) If  Q has full row rank, then rank Q*= nl, and rank Q0= n2. 

Part (1) follows from the fact that QQ* is idempotent and nonsingular; the 
remaining parts follow from definition (5) and from the fact that E and. F are 
nonsingular. If Q has full row rank (i.e., r = nO, then: 

F - K  

Lemma 2. IF  Q has full row rank, then the (n~ + n2) x (nl + n2) matrix [Q*, Q0] is 
nonsingular. 

Proof. Define s-=(y, x) and consider the linear system Qs = w. Let N(Q)- -  
{s E R n2+nl ] Qs = 0} be the null space of Q and R(Q')  = 

{ s E R  n 2 + n l ] s = Q ' w , w ~ R  ~1} be the range set of the transpose Q'. The two 
subspaces are orthogonal to each  other: N ( Q ) =  R(Q') I. (The following is a 
short proof to this well-known relation. Since any s E N ( Q )  can be written as 
s = Q°z, z ~ R ~2 (see Remark 3.2 below), the inner product of any vector in 
R(Q')  and any vector in N(Q)  is (Q'w) ' (Q°z)= w'QQ°z = 0 (since QQ°=-0), 
which implies that N(Q)  = R(Q')I.) Since Q has full row rank, dim R(Q') = nl, 
and dim N(Q)  = n2. Therefore, a basis for R(Q') and a basis for N ( Q )  collec- 
tively constitute (nl + n2) linearly independent vectors that span R n2+n'. Q0 is a 
basis for N(Q),  since rank QO = n2 (Lemma 1) and dim N(Q)  = n2; similarly, Q* 
is a basis for R(Q'),  since rank Q* = nl (Lemma 1) and dim R(Q') = nv Hence, 
[Q,, Q0] is a basis for R "2+"~, which means that [Q*, Q0] is nonsingular. 

Remark 3.1. The proof of Lemma 2 as given above is general in the sense that it 
is independent of the particular method used to compute Q* and Q0. The proof 
becomes especially simple if Q* is computed by using the Hermite normal form 
of Q, in which case Q* and Q0 are given in (6). Since E and F are nonsingular 
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matrices of order n~x n~ and (n~+n2)x (n l+n: ) ,  respectively, and K is an 
n~ x nz-matrix, the columns of the (n~ + n:) x (nl + n2)-matrix 

are linearly independent. Hence, 

- K  -1 [Q? Q0]-I= {El E in2] } : [ E l  E 1KJF_ 1 
1.~ J " 

In general, the type of generalized inverse used in this paper is employed 
primarily for solving linear systems, as stated in Theorem 1 [26]. 

Theorem 1 [26]. Let Q---[Q2,½Qd be an n lx (n l+n2) -matr ix ,  and w be an 

nl+ 1-vector. Then, the linear system QEy + ~Qlx = w is consistent iff there is 
some generalized inverse Q* of Q such that QQ*w = w, in which case the general 

s o l u t i o n o f O 2 y + ½ O l x = w i s [ Y ] = O * w + p ,  p E N ( O ) .  

Remark 3.2. Since Q0 is a matrix for the null space basis of Q, N(Q)  can be 
written as N ( Q ) = { p  E R m÷n:[p = Q°z, z ER"~}. Then, if Q2y+~QlX = w is 

the set of all its solutions [x y] is consistent, 

(7) 

Let Qy* and QO be the matrices made up from the first n2 rows of Q* and QO, 
respectively: Q*y is of order n2 × nl, and QO is of order n2 × n2. Similarly, define 
Q*~ and QO to be the matrices made up from the remaining nl rows of Q* and QO, 
respectively: they are of order nl × nl, and nl× n2 respectively. For a given 
g @ X, let P'(g) be the following quadratic program: 

(P'(~)) 

where 

m a x  

s.t. (1) AEQ~W + A2Q°z <- b -  A1~, 

(2) Q~w + Q°z >- o. 

(3) Q~w + Q°z = y~, 

t t p 0 p d '=  (q~Q~ + qzQy, qlQx+ q2Q°), 

t 1 t t  ~ 1 Ot Ot # t 
[ Qx + ~Qy Q3Qy ~[ Qx + Qy Q3Qy] ] 

D = 1 o, o, , lr~o,r~ r~o J 

(8) 

(9) 
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are vector and symmetric matrix of order 1 × (n~ + n2) and (nl + n2) × (nl + n2), 
respectively. 

Theorem 2. I f  Q has full row rank, then program P'(~) is equivalent to program 
P(~), and: 

(1) I f  (~, g) solves P'(x), then the solution y to P(g) is given by y = Q*r~ + QO~,. 

(2) I f  y solves P($), then the solution ( ~, 2) to P'(g) is the 'unique '  solution to the 
linear system 

Furthermore, this solution is simply given by: 
(i) e = Q2Y + ½Q~,  

( [ l )  ( I J} ,[q (ii) ~j = F'  ,2Y ~+J' J = l .... , nz where F'  ,2 ~ ~ is the ith element ° f  F ~ . 

1 x Proof. Rank Q = nl implies R(Q)  = R "1 and that the linear system Q2y + ~QI = 

w is consistent for any w E R  "~. It then follows from Theorem 1 that any 
w E R"' can be written as 

w = Q 2 y + l Q l x ,  where [YJ = Q*w +p ,  

From Remark 3.2, [Y] can be written as 

p E N(A) .  (10) 

(11) 

In other words,  (10) and (11) constitute a one-to-one correspondence between all 

vectors w ~ R  nl and all translations [Yx] of N ( Q ) =  

if one substitutes [xYl as defined in (11)in w =  Q2y+ 1Q,x, and notes that seen 

rank 0 = nl implies QQ~= I,~ (Lemma 1), and that QQO___ 0.) 
Recalling the definitions of Q;, Q~, QOy and QO, ( l l )  can be written as 

y --- Q~w + Q°yz, x = Q~w + Q°z. (12) 

By substituting (10) and (12) in program P(2), the equivalent program P'(~) is 
obtained. 

Part (1) of the theorem follows directly from relations (10)-(12). As to part (2), 
suppose that given ~ E X, y is the solution to P(~). Then, the solution (~, 2) to 

P'(~) is obtained by solving the linear system Q*w + Q°z = [~] .  This solution is 
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unique, since the matrix [Q*, Q0] is nonsingular (Lemma 2). Furthermore, it is 
clear from (10) and (11) that ~ is simply given by ~ = Qzy +lQ1x. Hence, ~ is 
the solution to the linear system 

O°z = [~J - Q*~. (13) 

Using (6), (13) becomes 

[ 1.2 J 

o r  

since F is nonsingular, and F 1= F ' .  Since z is an n:-vector and the last n2 

elements of the vector [E0 ~ ]  are zero, it follows that 

nl+j 

Remark 3.3. Suppose that x in P'(x) is a vector of variables rather than a fixed 
point, and denote by P' the resulting optimization program in the xwz-space. 

Clearly, P' and the original program P are equivalent, since P'(x) and P(x) are 
equivalent for every point x @ X. Furthermore, the equivalence between the 
original and the new formulation holds in the almost general case (i.e., Q needs 
to be of full row rank). Observe that under the new formulation the integer 
variables x are absent from the objective function of P', and the constraint set 
of P' is linear in x. In this regard it is worthwhile to observe that the new 
formulation is not weaker than the original, in the sense that relaxing the integer 
restrictions does not destroy the equivalence between both formulations. 1 Finally, 
note that the transformation of P(~) into P'(~) is accomplished, essentially, by a 
one-to-one mapping of the set {y ~ R "21 A2y <- b - A1~, y >- 0} from the y-space 
onto the wz-space. 

4. The decomposition algorithm 

The generalized Benders decomposition method [12] is implemented in this 
section for solving program P. Based on the equivalent formulations developed 
in the last section, P is decomposed into a series of integer linear master problems, 
and standard quadratic subproblems. 

The last observation was pointed out to the author by an anonymous referee. 
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4.1. An outline of the decomposition strategy 

Define 

(16) 

G is an (m + n2+ n,) × (n, + n2)-matrix, and g(x) is an (m +/ /2+ n,) x 1-vector. 
The dual D'(£) to program P'(£) is [9]: 

(D'(£)) 
min ~5(~, u, v) = -u'Du + v'g(£), 

s.t. G ' v - 2 D u = d ;  v i - 0 ,  i =  1 .... ,re+n2. 

where u and v are vectors of dual variables of order (n, + n2)x 1 and (m + n2+ 
n~) x 1, respectively. (Note that only the first (m + n2) elements of v are required 
to be nonnegative.) 

Remark 4.1. Letting u i and v ~ be fixed points and x a vector  of variables it is 
clearly seen that ~b(x, u ~, v i) is linear in the integer variables x. Since ~b(x, u i, v~), 
i =  1,2 . . . . .  are used to form Benders '  cuts, this result makes it possible to 
overcome the difficulty that was encountered in Section 2. Fur thermore,  the dual 
constraint set is independent  of x, and Geoffrion's 'Proper ty  P' holds [12]. This 

makes it possible to implement the generalized Benders decomposit ion method. 
(Similar results were obtained by Balas under his formulation.) 

Let  S" be the set of all admissible solutions x to P'(X).  As noted in Section 2, 
one can use Farkas '  Lemma and show that 

r ~ .  p .  Sx-{xER"'l(rJ) 'g(x) >>-0, j= 1,...,nr, x E X } ,  (17) 

where rJj = 1 . . . . .  n'r are the generators of the convex polyhedron 

R' = {r ~ R  m+"2÷~ I G'r = 0; ri->0, i = 1, . . . ,  m + n2}. 

Then, program P' (and, hence, the original program P) can be written as (see 
Section 2): 

maximize{minimize[~b(x, u, v) [ (u, v) E {U, V}']}, (18) 
XESx (u, v) 

where {U, V}' is the feasible set of the dual D'(x). Finally, program (18) can be 
written as the following master problem MP': 

max 0 

(MP') s.t. (1) O<--u'Du+v'g(x), all(u,v)E{U,V}'  

(2) (ri)'g(x) >_ 0, j --- 1 . . . . .  n'r, 

(3) x E X. 
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In the following re laxed  master problem RMP', only few of the constraints (1) 
and (2) of master problem MP' are included: 

max 0, 

(RMP') s.t. (1) 0 -<- (u i ) 'Du / + ( v i ) ' g ( x ) ,  i = 1 . . . . .  k, 

(2) ( r i ) 'g (x )>_O,  i = 1 . . . . .  t, 

(3) x E X. 

An optimal solution (0,~) of RMP' is also optimal for the u n r e l a x e d  master 
problem MP' (and therefore,  for the original program P) iff (0, ~) is feasible for  
MP'. Furthermore,  subproblem P'(~) is used to test (0, 2) for feasibility MP': 

(1) ~ satisfies the constraint set (2) of MP' iff subproblem P'(~) is feasible: the 
feasibility of P'(~) implies that ~ E S' ,  which means that constraint set (2) of 
MP' is satisfied. 

(2) If P'(~) is feasible, then (0,~) satisfies the constraint set (1) of MP' iff 

o---4,(~z, a, ~). 
Thus, (~ ~) is feasible for MP' iff (1) P'($) is feasible, and (2) 0 - ~b($, t~, ~). 

Suppose, first, that P'(~) is feasible, but 0 > ~b(~, a, 0): this implies that some 

of the constraints of type (1) of MP' are violated. The 'most violated' constraint 
is created by solving min{~b(~, u, v) I (u, v) E {U, V}'}. This, however,  is the dual 
D'(~), whose optimal solution is ~b(~, fi, 13). To satisfy the violated constraint, the 
following constraint is added to the relaxed master problem RMP': 

0 --< th(x, a, ~3) (19) 

Next,  suppose that P'(~) is not feasible. This means that ~ S' ,  which 
implies the existence of a vector ~ such that ? 'g (~)<  0 (see (17)). (An alternative 
way to obtain this result is as follows. The generators r i, j = l . . . . .  n'r of the 

convex polyhedron R' = {r ~ R "+"2+"' [ G ' r  = 0; r i >-- 0, i = 1 . . . . .  m + n2} are the 
extreme rays of {v ] G'v -- d ; v~ -> 0, i = 1 . . . . .  m + n2}. The infeasibility of P'(~) 
implies that the dual D'(~) is unbounded. Then, there is an extreme ray ? of the 
convex polyhedron { v I G ' v = d ; v i > - 0 ,  i = l  . . . . .  r e + n 2 }  such that the dual 
objective function 4~(x, u, v) decreases infinitely along direction v = 75 + )~L 2, -> 0; 
this happens only if ? ' g ( 2 ) < 0 3  Hence,  £ does not satisfy some of the con- 
straints of type (2) of MP'. To eliminate this inadmissible point 2, the following 
constraint is added to the relaxed master problem RMP': 

~ 'g (x )  >- O. (20) 

Finally, observe that Benders '  cuts {0--<-(ui) 'Du i + ( v l ) ' g ( x ) ,  i =  1 . . . . .  k} of 
the relaxed master problem RMP' are l inear  in the in teger  var iab les  x,  since g ( x )  

is linear in x. This is the result of the new equivalent formulation (see Remarks 
3.3 and 4.1). As a consequence,  RMP' is an in teger  l inear  p r o g r a m ,  rather than a 
program with constraints that are quadratic in x. This renders the original 
problem P tractable. 
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4.2. The algorithm 

The detailed decomposit ion algorithm to solve P is stated below. 

Step 1. (a) Let  UB = +oo and LB = -co be the initial upper and lower bounds, 
respectively, on the optimal value of the objective function f(x, y) of program P. 
Set a tolerance value e > 0, and k = t = 0. 

(b) Generate ~ ~ X, and go to Step 3. 
Step 2. Solve the relaxed master problem RMP'. 
(a) If RMP' has no feasible solution, then there is no feasible solution to P. 
(b) Let  (0, 4) be the optimal solution to RMP'. Put  UB = 0. If U B -  LB - E, 

terminate; (~, Y) is the optimal solution to P. 
Step 3. Solve subproblem P(4): 

max f(~, y) = q ~  +-~x'Qlx +(q~+x 'Q2)y  +~y'Q3y, 

s.t. A 2 y < - b - A 1 4 ;  y>-O. 

(a) If P(4) has no feasible solution, go to Step 6. 
(b) Let  y be the optimal solution to P(4). If UB - f(g, ~) -< e terminate: (4, y) is 

the optimal solution to P. 
Step 4. (a) Determine the optimal solution (#, ~) to program P'($) by setting 

(Theorem 2): 
(i) ff = QzY + ½QI~. 

(i i)  ffj = { F '  ~ }.l+J, J = 1; . . . .  n2. 

(b) Find the optimal solution (a, ~) to the dual D'(4) by [9]: 

6)  a =- (~v, ~), 
(ii) ~ is the optimal solution to the linear program: 

min g(~)'v, 
(LP(4)) 

s.t. G' v = 2Dfi + d; vi>-O,i = 1,... , m + n z .  

Step 5. If f(4, Y) > LB, set LB = f(4, Y). Let  k = k + 1 and (u k, v k) = (a, ~) and 
go to Step 2. 

Step 6. Let  t = t + 1 and generate the extreme ray r t of the polyhedron G'v = d 
such that the dual functional ~b(4, u, v) decreases infinitely along the direction 
v = ~ +,~r t, )~-> 0. Go to Step 2. (If the quadratic subproblem is solved by a 
simplex-based algorithm, r t can be generated using standard linear programming 
techniques. See [10, 22].) 

Some comments  are now in order regarding this procedure and various 
computational aspects related to it. 

(a) The original mixed-integer quadratic problem P is decomposed into a 
series of integer linear programs and standard quadratic programs. These pro- 
grams are significantly simpler and more tractable than P, and efficient pro- 
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cedures are available for solving both types of programs. Furthermore, the 
objective of rendering P tractable is achieved without introducing new primary 
variables and~or new constraints into the subproblem P(g) and the relaxed 
master problem RMP'. However, the algorithm requires the solution of an 
additional standard linear program LP(~) in each iteration, which has (m + n2 + 
2nl) variables and (nl + n2) constraints. Further discussion of this issue follows. 

(b) The decomposition strategy of the algorithm is based on the new formula- 
tion P' of P and, hence, on the primal P'(g) and the dual D'(g). Each iteration 
requires the solution (a, ~) to the dual D'(~) which is readily available upon 
solving P'(~): a-= (~, 2), and ~ is given as a byproduct. P'(g) is a quadratic 
program with 2(n1+ n2) variables (the factor 2 is due to transforming the 
unrestricted variables (w, z) into nonnegative variables), and (m + nl + n2) con- 
straints. The original subproblem P(g), however, is a smaller quadratic program: 
it has only nz variables and m constraints. Furthermore, Theorem 2 makes it 
possible to solve P(Y) instead of P'(g): both programs are equivalent, and the 
solution (k, ~) to P'(~) is easily obtained upon solving P(~). This, of course, has 
a clear computational significance. As to the dual solution (fi, ~) to D'(g): 

-= (~, ~), but 13 is not readily available as a byproduct of solving P(~), and the 
linear program LP(g) has to be solved in order to determine ~5. Thus, in the 
tradeoff between solving the relatively big quadratic program P'(~) or the much 
smaller quadratic program P(g) and the linear program LP(~), the latter is more 
attractive from a computational point of view. (Further research into the nature 
of the new formulation suggested in this study and the relationships between 
programs P(~) and D(g) and programs P'(g) and D'(~), may eliminate the need 
to solve linear program LP(~). For instance, it may be possible to compute ~5 
directly from the primal solution to P(g) and the dual solution to D(~). It is also 
worthwhile to observe that the matrix of coefficients G' of LP(Y) is independent 
of 2, and remains unchanged from one iteration to another. Hence, the solution 
v k to LP(x k) in iteration k can be used as an initial basic solution to LP(x k+~) in 
iteration (k + 1); if v k is not feasible for LP(xk+~), the dual simplex algorithm can 
be used to restore primal feasibility.) As a result of solving P(g) as a sub- 
problem, the algorithm does not introduce new primary variables and/or new 
constraints: the variables of P(~) are the n2 original continuous variables 
y~ .... , y,~ and its constraints are the original m constraints; the variables of 
RMP' are the n~ original integer variables xl . . . . .  x,, and its constraints are 
generated iteratively as needed. 

(c) Solving the subproblem and the relaxed master problem. Quadratic pro- 
gramming techniques (e.g., [4, 23, 28]) can be used to solve subproblem P(g). 
The relaxed master problem RMP' can be solved using one of the available 
approaches for solving integer linear programs: branch-and-bound; cutting 
plane; implicit enumeration (see, e.g., [10]). 

(d) Computational experience with Benders' method. As in any implementation 
of Benders' method, the computational performance of the procedure described 
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here is highly dependent upon the structure of the relaxed master problem RMP' 
and upon the all-integer algorithm used to solve it: a complete computational 
study of the procedure will be reported separately. Several researchers report 
favorable computational experience with Benders' method. Benders reports 
encouraging results in solving mixed-integer linear programs, and so are the 
results of Geoffrion and Marsten [14]. Geoffrion and Graves' [13] experience in 
solving multicommodity distribution flow problems with hundreds of 0-1 vari- 
ables and thousands of rows and continuous variables suggests convergence 
with a relatively small number of Benders' cuts. Of a particular relevance to this 
study is the computational experience of Armstrong and Willis [1]. They applied 
Benders' method to solve a simple form of mixed-integer quadratic problems 
(namely, with an objective function that is linear in the integer variables). The 
sub and master problems in their procedure are of the same form as the 
corresponding problems in this study: quadratic subproblems, and integer linear 
master problems. Their experience suggests a rapid computational convergence 
of the algorithm: a maximum of five Benders' cuts for problems with 73 integer 
variables. However, other researchers had different experience with Benders' 
method. For instance, Bazaraa and Sherali's quadratic assignment problem [3] 
required a large number of Benders' cuts. (These researchers attempted the use 
of Gomory's [19] dual all-integer cuts to solve the 0-1 linear master problems, 
but report the experience of problems; they have also experienced convergence 
problems with Glover's [15] pseudo-primal-dual integer programming algorithm. 
Finally, they adopted an implicit enumeration scheme.) 

4.3. Upper and lower bounds 

Upper and lower bounds on the optimal objective value f(x*, y*) of P can be 
computed at every iteration of the search. This allows a premature termination 
of the search, in which case the bounds provide estimates regarding the distance 
of the present solution from the optimal one. Let (x*, y*) be the optimal solution 
of P, and (w*, z*) be the solution to the linear system 

o,w+oO  

(w*,z*) is the solution of subproblem p'(x*) (Theorem 2). Thus, there is a 
solution (u*, v*) to the dual D'(x*) such that u* --- (w*, z*) and ~b(x*, u*, v*) = 
h(w*, z*) (duality). At some iteration, assume that ~ ~ S~ and let (~, ~) and 
(~,~3), respectively, be the solutions to the primal P'(g) and the dual 
D'(~). Then, 

h(~, ~) = ~b(~, 4, ~) --< ~b(x*, u*, v*) ----- th(x*, 4, ~). (21) 

Therefore, the lower bound on ~b(x*, u*, v*) is obtained by fixing x = ~ and 
solving either P'(x) or D'(2), and the upper bound is obtained by maximizing 
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~b(x, t~, ~) over x E X. Furthermore,  maxxcx{4~(x, ~, TS)} = 0, where 0 is the 
solution of the relaxed master problem RMP' constructed after solving P'(g) 
and D'(g). Finally, note that ~b(g, a, 13) and 0 are the lower and upper bounds, 

respectively, on the optimal objective value ~b(x*, u*, v*L whereas we are 
interested in the bounds on f (x* ,y*) .  But since h(w*,z*)=da(x* ,u* ,v*)  
(duality), and h(w, z) =- f(x, y), it is clear that ~b(g, ~, fi) and 0 are, respectively,  
the lower and upper bounds on f(x*, y*) as well. 

5. Numerical example 

Let  P be the following mixed-integer quadratic program: 

m a x  f(x, y) = 80xl + 56x2+ 105yl + 12y2+ 150y3 

- 3Xl 2 -  18x 2 -  14xlx2- lOxlyi - 4x lyz -  14xly3- 30x2yl 

- 6xzy2- 36x2y3 - 15y 2 -  3y~-  18y~- 30yly3 - 6yey3, 

s.t. (1) 2xl + x: + 4y i + 3y2 + y3 -< 60, 
(2) 3x~ + 4x2 + yl + 2y2 + 2y2 --- 60, 

x ~ = 0 o r l ,  i = 1 , 2 ;  
y j - 0 ,  j = 1 , 2 , 3 .  

Using the notation of this paper, we have 

-10 - 4  -14 -3  -7 ]  
Q=[Q2,-~Q1]= - 3 0  - 6  - 3 6  - 7  -18  ' 

and rank Q = 2. (Note that n l = 2, n2 = 3, m = 2). 
To compute Q*, Q is t ransformed into its Hermite normal form by a finite 

sequence of elementary row operations: 

[Q 1 I2] : 

....> 

- - 1 0  - 4  -14 

- 3 0  - 6  - 3 6  

-1 0 1 6t ½ 

- 3  

- 7  

1 

! 
- - 2  

07 • 7 1 

l J  - 8  0 

Clearly, the 5 × 5 permutation matrix F such that EQF = [12, K] is the identity 

matrix 15. Hence,  

[I i] K =  . 
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Thus,  

or_ 

1 1 - -  

1 ! 
- - 2  6 

0 0 

0 0 

0 0 

- 1  _1 _½ 
1 1 - 1  -~ -~ 

1 0 0 

0 1 0 

0 0 1 

Also, the matr ices and vectors  D, d, G and g(x)  have  to be constructed (see 

definitions (8), (9) and (16)). 

Iteration 1. Set UB = + %  LB = - %  E = 10 -6, k = t = 0 .  Starting arbitrarily 

with ~ = (0, 0), the quadratic subproblem P(~) is solved. Its solution is y = 

(0,0,4.167) and f(~, Y)= 312.5. 
The solution (~, ~) to P'(~) is (Theorem 2) ~ = ( -58 .33 , -150 ) ,  ~ = (4.167, 0, 0), 

and h(# ,  ~)-=f(2,  9). The solution (ti, ~) to the dual D'(~) is ti-=-(~, ~) and 
= (0, 0, 20, 13, 0, 21.667, -94) .  

Since h ( ~ , ~ ) > L B ,  set L B ~ - h ( ~ , g ) = 3 1 2 . 5 .  Le t  k = k + l = l ,  (ul, vl) = 

(4, ~), and proceed  to the next  iteration. 

Iteration 2. cb(x, ul, v l ) = - u l ' D u ~  + v l ' g ( x ) =  312.5+ 21.5+ 21.667xl-94x2 is 

used to construct  the relaxed master  problem RMP':  

max O, 

s.t. 0 ~< 312.5 + 21.667xl - 94x2, 

Xl, X2 = 0 o r  1 

Its optimal solution is ~ = (1, 0) and 0 = 334.167. 
Set UB = 0. Since UB - LB = 334.167-  312.5 > e, subproblem P($) is solved 

(for ~ = (1, 0)). Its optimal solution is 9 = (0, 0, 3.778) and f(~, y) = 333.889. 
Hence,  # = ( -55 .889 , -143) ,  ~ = (3.778, 1,0), and h ( # , ~ ) =  333.889 is the solu- 
tion to P'(g).  The solution ( a , g )  to the dual D'(g) is ~ - - - (# ,~ )  and g =  

(0, 0, 18.333, 14.667, 0, 21.111, -94) .  
Since h ( ~ , g ) > L B ,  set L B - h ( # , ; g ) = 3 3 3 . 8 8 9 .  Let  k = k + l = 2  and 

(u  ~, v ~) = (4,  ~). 

Iteration 3. oh(x, u 2, v 2) = 312.778 + 21.111xl-94xz.  The revised master  problem 
is 

max O, 

s.t. (1) 0 -< 312.5 + 21.667x~ - 94x2, 

(2) 0 -< 312.778 + 21.11 lxl - 94x2, 

X l ,  X2 = 0 or 1. 

I ts  optimal solution is g = (1, 0) and 0 = 333.889. 
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Set  U B - =  0. S ince  U B -  L B  = 3 3 3 . 8 8 9 - 3 3 3 . 8 8 9  = 0, the  s e a r c h  is t e r m i n a t e d .  

T h e  o p t i m a l  s o l u t i o n  to the  m i x e d - i n t e g e r  q u a d r a t i c  p r o g r a m  P is x * =  

( l ,  0), y* = (0, 0, 3.778), a n d  f ( x * ,  y*) = 333.889. 
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