
Mathematical Programming 56 (1992) 361-364 361
North-Holland

Short communication

On affine scaling and
semi-infinite programming

M i c h a e l C. Fe r r i s

Computer Sciences Department, University of Wisconsin, Madison, WI 53706, USA

A n d r e w B. P h i l p o t t

University of Auckland, New Zealand

Received 8 May 1990
Revised manuscript received 25 February 1991

We consider an extension of the affine scaling algorithm for linear programming problems with free
variables to problems having infinitely many constraints, and explore the relationship between this
algorithm and the finite affine scaling method applied to a discretization of the problem.

Key words: Affine scaling, semi-infinite linear programming, free variables.

In this note we are concerned with the generalization given by Ferris and Philpott
[3] of the affine scaling algorithm discovered by Dikin [2] to solve semi-infinite
linear programming problems, in which the number of variables is finite, but the
number of constraints is not. In [3] a discrepancy is pointed out between the classical
algorithm and its generalization. The purpose of this note is to explain the dis-
crepancy.

Ferris and Philpott [3] propose an affine scaling algorithm for linear programs
of the following form:

minimize c V x

subject to A x - z = b ,

z~>0.

Since the variables x are unrestricted in sign, it seems natural that only the z variables
should undergo the scaling transformation at each stage. Given a feasible point
(x (k~, z(k~), with zJ k) > 0 for each component j, a single iteration of the algorithm in
[3] performs the following steps.

This material is based on research supported by Air Force Office of Scientific Research Grant
AFOSR 89-0410.

362 M.C. Ferris, A.B. Philpott / Semi-infinite affine scaling

Algorithm 1.
Step 1. Z = diag(z~kS).
S t e p 2 . d = - [I + A V Z - 2 A] % , f = - Z - 1 A [I + A - r Z - 2 A] ~c.

Step 3. x (k+~) = x ~k) + c~d, z fk+l) = z ~k) + a Z f

Here [J] is the projection of [oc] onto the nullspace of [A - Z] , and the step
length c~ is chosen in Step 3 so that z <k+~ retains strictly positive components.

The algorithm described here differs both from that for free variables derived by
Vanderbei [4], and the dual affine scaling algorithm described by Adler et al. [1].
In terms of the scaled variables, the constraints above become

[A - Z] Z _ ~ z

Observe that Algorithm 1 scales each free variable xj by unity. If one interprets the

aim of affine scaling to be to place the (scaled) iterate at distance one coordinatewise
from each of the (scaled) lower bounds on the variables, then Algorithm 1 scales
xj as i f it had a lower bound o f x~ k) - 1. The algorithm thus may be viewed as adjusting
a set of hypothetical lower bounds for the free variables on each iteration. Notwith-
standing this it gives a sequence of iterates which can be shown to converge to the

solution.
Of course, such an algorithm is not the most natural extension of affine scaling

to free variables. The canonical extension is obtained by Vanderbei [4], who derives
an algorithm which explicitly uses bounds on the free variables, and then lets these
bounds tend to infinity. The algorithm which this procedure produces performs the
following steps in each iteration.

Algorithm 2.
Step 1. Z = diag(z~k)).
Step 2. d = - [A T Z - 2 A] - l c , f = - Z - ~ A [A T Z - 2 A] - I c .

Step 3. x Ck+l~ = x (k) + ted, z ~k+~ = z (k~ + o~Zf

When it is normalized to have unit length, the direction d for Algorithm 2 is the

solution to the following problem:

minimize c T y

subject to A y - w = O,

w T z - Z w ~ 1.

This might be contrasted with the direction given by Algorithm 1, which when
normalized solves:

minimize

subject to

¢Ty

A y - w =0,

w T Z - 2 w + yTy <~ 1.

M.C. Ferris, A.B. Philpott / Semi-infinite affine scaling 363

Observe that here the inequality constraint explicitly restricts the size of y in
exactly the same fashion that y would be restricted if each xj had a lower bound
of x~ k) - 1. This has a deleterious effect on the algorithm as one might expect.

In [3] Algorithm 1 is extended to solve semi-infinite programming problems of

the following form:

minimize

subject to

cTx

a(s)-~X-- Z(S) = b(s),

z(s)>~O, s ~ S ,

where S is some infinite index set, which in all the examples discussed in [3] is the

interval [0, 1].
Since the nullspace of the constraint operator is finite dimensional, at each iterate

(x (k), z (k)) one can compute the direction d of Algorithm 1 by solving

[I + B]d = - c

where the matrix B has elements given by

b° --= I
ai (s)a j (s)

s (z(k)(s)) 2 ds.

The components b~j can be computed by some suitable numerical quadrature
technique such as Simpson's Rule.

The computational tests reported in [3] give conclusive evidence that this algorithm
has an inferior performance to that of Algorithm 1 applied to a discretization of
the semi-infinite problem. Furthermore, this discrepancy does not disapper with
refinement of the discretization. Indeed, for the discrete problem, the direction d u
computed by Algorithm 1 is the solution to

[I + BN]d N = --C

where

biN= ~ ai(sr)aj(Sr)
r = l (Z(Sr)) 2

Thus, since bi'f ~ Nbij, d N can differ significantly from d.
If we now consider Algorithm 2 then the direction d is given by d = - B ~c where

B is computed as above. If Algorithm 2 is applied to a discretization then dN is
given by d N = - (BU)-~c , which in the limit has the same direction as d. Computa-
tional tests on the problems in [3] confirm that Algorithm 2 gives the same number
of iterations when applied to a discretization of the semi-infinite linear program as
it does when Simpson's Rule is used to perform the quadrature. Furthermore,
computational results show Algorithm 2 outperforms Algorithm 1.

In conclusion, it is clear that the natural method to extend to the semi-infinite
case is Algorithm 2. One can similarly define generalizations of the finite dimensional

364 M.C. Ferris, A.B. Philpott / Semi-infinite affine scaling

in ter ior po in t me thods which use logar i thmic bar r i e r funct ions . However , the ma in

d r a w b a c k to ob ta in ing an efficient in te r io r po in t m e t h o d for semi-infini te p rog ram-

ming is in the c o m p u t a t i o n o f a s tep length. To ascer ta in the m a x i m u m step at any

i terat ion, it appea r s that the m e t h o d has to find the g loba l m a x i m u m of the func t ion

-z~(s)
a (s) r d

over s c S. This would seem to be a difficult p rob lem.

References

[1] I. Adler, M.G.C. Resende, G. Veiga and N.K. Karmarkar, "An implementation of Karmarkar's
algorithm for linear programming," Mathematical Programming 44 (1989) 297-336.

[2] I.I. Dikin, "Iterative solution of problems of linear and quadratic programming," Soviet Mathematics
Doklady 8 (1967) 674-675.

[3] M.C. Ferris and A.B. Philpott, "An interior point algorithm for semi-infinite linear programming,"
Mathematical Programming 43 (1989) 257-276.

[4] R.J. Vanderbei, "Affine-scaling for linear programs with free variables," Mathematical Programming
43 (1989) 31-44.

