
Mathematical Programming 56 (1992) 361-364 361 
North-Holland 

Short communication 

On affine scaling and 
semi-infinite programming 

M i c h a e l  C. Fe r r i s  

Computer Sciences Department, University of Wisconsin, Madison, WI 53706, USA 

A n d r e w  B. P h i l p o t t  

University of Auckland, New Zealand 

Received 8 May 1990 
Revised manuscript received 25 February 1991 

We consider an extension of the affine scaling algorithm for linear programming problems with free 
variables to problems having infinitely many constraints, and explore the relationship between this 
algorithm and the finite affine scaling method applied to a discretization of the problem. 

Key words: Affine scaling, semi-infinite linear programming, free variables. 

In this note we are concerned with the generalization given by Ferris and Philpott 
[3] of the affine scaling algorithm discovered by Dikin [2] to solve semi-infinite 
linear programming problems, in which the number of variables is finite, but the 
number of constraints is not. In [3] a discrepancy is pointed out between the classical 
algorithm and its generalization. The purpose of this note is to explain the dis- 
crepancy. 

Ferris and Philpott [3] propose an affine scaling algorithm for linear programs 
of the following form: 

minimize c V x 

subject to A x -  z = b ,  

z~>0. 

Since the variables x are unrestricted in sign, it seems natural that only the z variables 
should undergo the scaling transformation at each stage. Given a feasible point 
(x (k~, z(k~), with zJ k) > 0 for each component j, a single iteration of the algorithm in 
[3] performs the following steps. 

This material is based on research supported by Air Force Office of Scientific Research Grant 
AFOSR 89-0410. 
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Algorithm 1. 
Step 1. Z = diag(z~kS). 
S t e p 2 .  d = - [ I + A V Z - 2 A ]  % , f = - Z - 1 A [ I + A - r Z - 2 A ]  ~c. 

Step 3. x (k+~) = x ~k) + c~d, z fk+l) = z ~k) + a Z f  

Here [J] is the projection of [oc] onto the nullspace of [A - Z ] ,  and the step 
length c~ is chosen in Step 3 so that z <k+~ retains strictly positive components. 

The algorithm described here differs both from that for free variables derived by 
Vanderbei [4], and the dual affine scaling algorithm described by Adler et al. [1]. 
In terms of  the scaled variables, the constraints above become 

[ A - Z ]  Z _ ~ z  

Observe that Algorithm 1 scales each free variable xj by unity. If one interprets the 

aim of  affine scaling to be to place the (scaled) iterate at distance one coordinatewise 
from each of the (scaled) lower bounds on the variables, then Algorithm 1 scales 
xj as i f  it had a lower bound o f  x~ k) - 1. The algorithm thus may be viewed as adjusting 
a set of  hypothetical lower bounds for the free variables on each iteration. Notwith- 
standing this it gives a sequence of iterates which can be shown to converge to the 

solution. 
Of course, such an algorithm is not the most natural extension of affine scaling 

to free variables. The canonical extension is obtained by Vanderbei [4], who derives 
an algorithm which explicitly uses bounds on the free variables, and then lets these 
bounds tend to infinity. The algorithm which this procedure produces performs the 
following steps in each iteration. 

Algorithm 2. 
Step 1. Z = diag(z~k)). 
Step 2. d = - [ A T Z - 2 A ] - l c ,  f = - Z - ~ A [ A T Z - 2 A ] - I c .  

Step 3. x Ck+l~ = x (k) + ted, z ~k+~ = z (k~ + o~Zf 

When it is normalized to have unit length, the direction d for Algorithm 2 is the 

solution to the following problem: 

minimize c T y 

subject to A y  - w = O, 

w T z - Z w  ~ 1. 

This might be contrasted with the direction given by Algorithm 1, which when 
normalized solves: 

minimize 

subject to 

¢Ty 

A y - w  =0,  

w T Z - 2 w  + yTy  <~ 1. 
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Observe that here the inequality constraint explicitly restricts the size of  y in 
exactly the same fashion that y would be restricted if each xj had a lower bound 
of x~ k ) -  1. This has a deleterious effect on the algorithm as one might expect. 

In [3] Algorithm 1 is extended to solve semi-infinite programming problems of 

the following form: 

minimize 

subject to 

cTx 

a(s)-~X-- Z(S) = b(s),  

z(s)>~O, s ~ S ,  

where S is some infinite index set, which in all the examples discussed in [3] is the 

interval [0, 1]. 
Since the nullspace of the constraint operator is finite dimensional, at each iterate 

(x (k), z (k)) one can compute the direction d of Algorithm 1 by solving 

[ I + B]d  = - c  

where the matrix B has elements given by 

b° --= I 
ai ( s )a j ( s )  

s (z(k)(s)) 2 ds. 

The components b~j can be computed by some suitable numerical quadrature 
technique such as Simpson's Rule. 

The computational tests reported in [3 ] give conclusive evidence that this algorithm 
has an inferior performance to that of Algorithm 1 applied to a discretization of 
the semi-infinite problem. Furthermore, this discrepancy does not disapper with 
refinement of the discretization. Indeed, for the discrete problem, the direction d u 
computed by Algorithm 1 is the solution to 

[I + BN]d  N = --C 

where 

biN= ~ ai(sr)aj(Sr) 
r = l  (Z(Sr)) 2 

Thus, since bi'f ~ Nbij, d N can differ significantly from d. 
If  we now consider Algorithm 2 then the direction d is given by d = - B  ~c where 

B is computed as above. If Algorithm 2 is applied to a discretization then dN is 
given by d N = - (BU)-~c ,  which in the limit has the same direction as d. Computa- 
tional tests on the problems in [3] confirm that Algorithm 2 gives the same number 
of iterations when applied to a discretization of the semi-infinite linear program as 
it does when Simpson's Rule is used to perform the quadrature. Furthermore, 
computational results show Algorithm 2 outperforms Algorithm 1. 

In conclusion, it is clear that the natural method to extend to the semi-infinite 
case is Algorithm 2. One can similarly define generalizations of the finite dimensional 
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in ter ior  po in t  me thods  which use logar i thmic  bar r i e r  funct ions .  However ,  the ma in  

d r a w b a c k  to ob ta in ing  an efficient in te r io r  po in t  m e t h o d  for  semi-infini te  p rog ram-  

ming is in the  c o m p u t a t i o n  o f  a s tep length.  To ascer ta in  the  m a x i m u m  step at any 

i terat ion,  it appea r s  that  the m e t h o d  has to find the  g loba l  m a x i m u m  of  the func t ion  

-z~(s) 
a ( s ) r d  

over  s c S. This would  seem to be a difficult p rob lem.  
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