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1. Introduction 

A combinatorial optimization problem involves picking the best solution from a 
finite set of feasible solutions. One way to solve such problems is to use a cutting 
plane approach. In such a method, a sequence of linear programming relaxations 
of the original combinatorial problem is examined, with each linear programming 
problem in the sequence being obtained from the previous relaxation by adding 
one or more inequalities. 

Classically, linear programming problems have been solved using the simplex 
algorithm due to Dantzig [8]. In 1984, Karmarkar [28] introduced an alternative 
algorithm for linear programming which has better worst-case performance than 
the simplex algorithm. This algorithm has led to development of a class of interior 
point methods for linear programming (see Goldfarb and Todd [19] or den Hertog 
and Roos [26] for surveys). Computational testing (see, for example, [1, 6, 33, 34]) 
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indicates that some interior point methods may outperform the simplex algorithm 
on many classes of linear programming problems. 

In this paper, we present a cutting plane algorithm for solving combinatorial 
optimization problems which is based on Karmarkar's algorithm. The algorithm is 
applicable to most integer linear programming problems; we show how it may be 
used to solve matching problems. Our computational experience with this algorithm 
on matching problems is described. The results of this paper were announced in 
Mitchell and Todd [40]. 

This paper is organized as follows. In Section 2, we describe how we apply an 
interior method to a given relaxation of our combinatorial optimization problem. 
In Section 3, we present our algorithm, with some of the details being given in 
Section 3, and others being presented in Section 4 and Section 5. In Section 6, we 
discuss some of the implementation details and in Section 7 we present our computa- 

tional results. Our conclusions are contained in Section 8. Further computational 
testing is required before definitive conclusions can be made. 

At each iteration of our algorithm, we have a linear programming relaxation of 
the combinatorial optimization problem. The standard way to solve these linear 
programs is by using the simplex method. Every point which is feasible in the 
combinatorial optimization problem is also feasible in each relaxation. Generally, 
the next relaxation is obtained from the current one by adding constraints, and 
these constraints cut off the current feasible solution, so it is not feasible in the next 

relaxation. The addition of cutting planes adds variables to the dual linear program; 
if we give these additional variables value zero then the previous dual point is still 
feasible. Since dual feasibility is maintained, each revision of the original linear 
program is solved using the dual simplex method. 

We consider using an interior point method instead of the simplex method to 
solve the linear programs that arise when using a cutting plane approach. We choose 
to apply Karmarkar's algorithm to the dual of the relaxation of the combinatorial 
problem, so after adding cutting planes we know a feasible point, but that point is 
not strictly positive. Therefore, we need to be able to obtain an interior point in the 
dual when we add cutting planes. We give a direction which produces such a point 

in Section 4. 
We use the primal projective standard-form variant of Karmarkar's algorithm, 

applying it to the dual of our current relaxation. The projective standard-form 
variant is known to solve linear programs in polynomial time. The affine variant is 
not known to be polynomial. Through consideration of trajectories (see [3, 4, 35]), 
Megiddo and Shub [36] have provided evidence that it may take exponential time 
when started very close to a particular vertex of the polyhedron of feasible solutions 
to the linear program. These authors exhibited problems where one of the 
infinitesimal trajectories touches every vertex, so if the sequence of iterates follows 
this infinitesimal path, an exponential number of iterations will be required. 

If  the current relaxation of the combinatorial problem is not the final relaxation, 
the optimal vertex of the current relaxation will not be the optimal vertex of the 
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final one. The sequence of iterates we generate converges to the optimal vertex of 

the current relaxation. Therefore, we will probably be restarting the algorithm from 

a point close to a nonoptimal vertex, so some centering may well be necessary in 
order to obtain an efficient algorithm. For this reason, we chose to use an interior 

point method with a built-in centering component.  
For many combinatorial optimization problems, it is relatively easy to find the 

optimal solution; it is much harder to actually prove optimality. Usually, proving 

optimality requires the examination of a dual problem. This observation provides 
motivation for our decision to apply Karmarkar's algorithm to the dual of the 
relaxation of our combinatorial optimization problem. Another benefit of applying 
the algorithm to the dual of the relaxation is that branch-and-bound is easier to 
implement, since fixing a primal variable corresponds to dropping a dual constraint. 

Many of the best computational results for interior point methods have been 

obtained for primal-dual  interior point methods; see Lustig et al. [33, 34] and Choi 
et al. [6]. These methods maintain strictly interior points in both the primal and the 
dual. Thus, the addition of a cutting plane will introduce dual infeasibility in addition 
to giving a point on the boundary of the primal linear programming problem, making 
it necessary to find new interior points in both the primal and the dual problems. 
One way to get around this potential difficulty is to restart from the last dual iterate 
which was feasible in the modified problem; the drawback with this approach is 
that the resulting point may be far from the central trajectory in the new problem. 

Goffin et al. [16, 17, 18] have investigated using variants of Karmarkar's algorithm 
to solve problems in non-differentiable optimization. Their methods involve the 
addition of cutting planes and we refer the interested reader to the papers cited. 
Karmarkar et al. [29, 30] have considered using interior-point methods in a different 
way to solve problems in combinatorial optimization. 

Freund [12] has proposed a shifted barrier approach when a "warm start" is 
known; Mitchell [38] has shown how this method can be used in the column 

generation setting and has related the resulting direction to the one derived in this 
paper. Warm starts can be exploited in an algorithm based on an interior point 

method, as evidenced by Borchers and Mitchell [5], where a branch-and-bound 
code which solves the subproblems using a dual affine method is presented. The 
performance of  this algorithm has been compared with the IBM package OSL [27] 
on several facility location problems. The run times for the interior point code are 
competitive with, and for larger problems often better than, those for OSL. From 
a more theoretical viewpoint, Ye [47] has investigated the change in a potential 
value of  a polytope when an additional constraint is added. He has used this result 
to show that a particular column generation algorithm runs in time polynomial in 
the length of  the original and added data. The papers [5, 38, 47] were prepared 
after the first version of the current paper. 

In order to employ linear programming techniques we have to express our 
combinatorial problem in polyhedral form. We assume that our problem is given 
in the form m a x { b T y : y ~  ~} where ~ is a finite set of  points in R m and b c ~  m. 
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Define conv(~) to be the convex hull of ~. Then the combinatorial problem is 
equivalent to the linear program max{bTy :y ~ conv(°~)}. Notice that the constraints 
are not stated explicitly in this formulation. In using a cutting plane approach, we 
are looking to represent a sufficient number of these constraints explicitly in the 
form Bry <~ h so that the optimal point for the linear program max{bTy : BVy ~ h} 
is in conv(~).  

The algorithm we develop is employed to solve the perfect matching problem, a 
classical problem in graph theory. Each feasible solution consists of a subset of the 
edges of a given graph, so it can be represented by a vector in R;, namely the 
incidence vector of the subset. (Here, p denotes the number of edges of the graph.) 
As was shown by Edmonds [10, 11], the convex hull of these incidence vectors is 
the set of vectors which satisfy three sets of constraints, known as nonnegativity 
constraints, degree constraints and odd set constraints. The number of odd set 
constraints is considerably larger than the number of nonnegativity constraints and 
degree constraints, so our cutting plane algorithm would use an initial relaxation 
consisting of all points satisfying the nonnegativity constraints and the degree 
constraints, and the algorithm would add odd set constraints as necessary in the 
form of cutting planes. The reason for testing the code on the perfect matching 
problem is that there are good straightforward separation routines for this problem 
so it is possible to analyze the fundamental algorithm without getting distracted by 
the peripheral issue of finding good cutting planes. Gr/Stschel and Holland [24] 
have developed a cutting plane algorithm for the perfect matching problem which 
is based on the simplex algorithm. Like those authors, we do not expect to obtain 
an algorithm competitive with combinatorial codes for this problem. 

2. Our standard-form variant 

We assume that the current linear programming relaxation of our combinatorial 
optimization problem is expressed in the form 

(~) max b~ry 

s.t. 3,Ty ~< ~, 

where y and b are m-vectors, ~ is an (n-1)-vector ,  and ~ R m × ( n  tl. (We discuss 
alternative formulations at the end of this section.) The problem (1~) is equivalent 

to the following problem: 

(D) max z 

s.t. ATy + zg <~ c, 

where A := [~1 b] ~ R,~×n, c := ( t  "r, 0) v ~ Rn, and g := (0, 1) ~ R". We assume that A 

has rank m. 
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The dual p rob lem to (D) is 

(P) rain c'rx 

s.t. A x  = O, 

gVx = 1, 

x>~O. 

In  order  to be consistent with the usual terminology,  we refer to (P) as the current 

pr ima l  l inear p rogramming  problem,  and we refer to (D) as the current dual  linear 

p rogramming  problem. 

The problem (P) is in the s tandard  form for the primal projective s tandard-form 

variant  o f  Karmarkar ' s  algorithm. This variant  is known to converge to the opt imal  

solution in time that  is bounde d  by a polynomial  in the length o f  the input, provided  

the feasible region is compact .  It has been investigated by Anstreicher [2], Gonzaga  

[22], Gay  [13], Jensen and Steger [44] and Ye and Koj ima [48], among  others. 

The algori thm is given in Figure 1. For  a motivat ion and derivation of  this method,  

see, for example,  [22]. The vector o f  ones is denoted by e and (y~, z k) denotes the 

vector  (ykT, Z~)V" For  any matrix M, PM denotes the project ion map onto the null 

space o f  M ;  if M has full row rank, the matrix opera tor  corresponding to P~4 is 
1 - M V ( M M V ) - I M .  

Initialization: Set k = 0. Let x°> 0 be feasible for (P) and (yO, z 0) be feasible for (D). Choose a tolerance 
e for the duality gap. 

While e~r x k - z ~ > e 
(Update dual solution): Solve the one variable linear program 

(D(z)) max z 
s.t. aXy(z)+zg<~c, 

where y(z) := (AkA~T)-IAk(c ~ - zgk). Here, A k := A X  k, c ~ := X%, g~ := X~g, and X ~ denotes the 
diagonal matrix whose diagonal entries are the coordinates of the current primal solution x ~. Let £ 
be the optimal value of the problem (D(z)). If £>z  k, set zk+~£, yg+l~y(£); otherwise, set 
z k + l  .~ ~Tk, y k + l  ~_ y k .  

(Compute search direction): Set d ~- -- P A k (  C ~: - z k  + l g k ). 

(Choose step size): Choose step length o~ and set £ ~-e + ad, with c~ chosen so that £ > 0. 
(Update primal solution): Set xk+~+ - (g~rY)-~Xk£. 
(Update iteration count): Set k ~ k + 1. 

End While 

Fig. 1. The projective standard-form variant of Karmarkar's algorithm. 

Notice that  y ( z )  is a linear funct ion o f  z, so the problem (D(z))  defined in Step 

2 can be solved by a ratio test. (D(z) )  is a constra ined version o f  (D), so ( y ( z ) ,  z)  

is feasible in (D) if it is feasible in (D(z)) .  This method  of  updat ing  the dual solution 
was first p roposed  by Todd  and Burrell [45]. 
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The step length a defined in Step 4 can be found in any of several different ways. 
For example, c~ can be chosen by using a line search on an appropriate potential 
function, it can be a fixed multiple of  ]1 d I1-1, or it can be chosen so that min{~i : 1 <~ i ~< 

n} = 3/for some fixed 3' such as 0.1 or 0.01. See references [28], [45] and [46]. 
Because g is nonnegative and nonzero and ~ is strictly positive, the update of  

the primal solution is well defined. 

I f  some of the constraints in (D) are equality constraints, some of the variables 

in the primal problem will be unrestricted in sign. In such a situation, we use the 

primal projective algorithm described in Mitchell and Todd [39]. This algorithm is 
based on eliminating unrestricted variables, as is done also in the dual affine 

algorithm first described in Adler et al. [1]. 

3. An algorithm for perfect matching problems 

3.1. The perfect matching problem 

The perfect matching problem is one of the fundamental  problems of combinatorial  

optimization. It was shown to be polynomially solvable by Edmonds [ 11] in a classic 

paper  in which he introduced and formalized the concept of a good algorithm. 
Edmonds [10] found a polyhedral description for the perfect matching problem, 

giving a complete and nonredundant  description of the facets of this polyhedron. 
The number  of facets is exponential in the number of vertices of the graph, but 

Edmonds was able to use the structure of  the set of facets to obtain an alogirthm 

which runs in time polynomial in the number  of vertices. 
In order to define the perfect matching problem, we first need to define some 

terms from graph theory. A graph G = [ V, E ]  consists of  a finite, nonempty set of 

vertices V together with a set of edges E where each element e ~ E is defined as 

an unordered pair of  vertices i and j in V - -  we write e -- ij; these two vertices are 
then adjacent and are called the endvertices of e. A graph G is called complete if 

every pair of  vertices is adjacent and if G contains no loops, that is, no edges of  

the form ii. The complete graph on n vertices is written Kn. I f  G = [V ,E ]  is a 
graph and W c_ V, the set of edges in the subgraph induced by W is defined to be 
E(W):={ i j cE:  i , j~ W}, and the cut induced by W is defined to be 8 (W) :  = 
{i j~E: i~ W, j~  V\W}.  We write 8(v) for 8({v)), the set of  edges adjacent to 

vertex v. 
We now define the perfect matching problem. A set of edges M c_ E with no two 

edges sharing a common endvertex is called a matching. Let n = IV I. Henceforth,  
we assume n is even. A matching of cardinality ½n is called a perfect matching. It 
should be noted that if M is a perfect matching then every vertex in V is an endvertex 
of exactly one edge in M. Let b : E-> N be a weight function on the edges of  the 
graph G. For a matching M, the weight of M is given by 

b(M):= Y~ b(e). 
e ~ M  
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Then the perfect matching problem is to find the minimum weight perfect matching 
in the graph G. Since we are interested in solving the perfect matching problem we 
assume, without loss of generality, that b > 0. 

3.2. Formulation as a linear programming problem 

We now recall Edmonds's polyhedral description of the perfect matching problem. 
Let A be a subset of the edges of the graph G=[V,  E]. Define m=lEI, and 

consider the components of N,n indexed by E. The incidence vector y(A) of A is the 
{0, 1}-vector in Rr, given by 

{~ i f e ~ A ,  
ye(A) = otherwise. 

The perfect matching polytope P(G) ~_ ~ of the graph G is defined to be the convex 
hull of the set of incidence vectors of perfect matchings of the graph. Thus P(G) 
can be written 

P(G) := conv{y(M) ~ ~" :  M _~ E is a perfect matching}. 

There is a bijection between the vertices of P(G) and the perfect matchings M of 
the graph G. 

Edmonds showed: 

Theorem 1. For every graph G =  [V, E], P(G) is the solution set of the .following 
system of equations and inequalities: 

y(6(v))=l forallv6 V, (1) 

y(E(W))<~½(IWt-1 ) forallWc_ V, IW 1 odd, (2) 

y(e)>~O JbrallecE. [] (3) 

P(G) can also be described by (1) and (3) together with 

y(t3(W))~>l forall W ~  [W]odd. (4) 

We refer to (2) (or (4)) as odd set constraints, or alternatively as clique constraints. 
Thus the perfect matching problem can be expressed as 

min{bVy: y ¢ ~'~, y satisfies (1), (2), (3)}, 

or alternatively as 

min{b~': y ~ ~ ' ,  y satisfies (1), (4), (3)}. 

This is the optimization problem associated with the perfect matching polytope P(G).  
The separation problem for this polytope is: 

Separation problem for P(G). For a given y ~ N~, decide whether y ~ P(G). If not, 
exhibit a hyperplane separating y from P(G). 

P(G) consists of all points u cN "~ which satisfy (1), (3) and (4). It is trivial to 
verify whether a given point satisfies (1) and (3). If we regard the components of 
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a point as capacities on the flow on the corresponding edge of the graph, then a 
given point y 6 ~'~ satisfies (4) if and only if the graph has no odd cut of capacity 
less than one. Padberg and Rao [41] have used this observation to construct an 
algorithm which solves the separation problem for P(G) by means of solving a 
sequence of max flow problems. This algorithm is a variant of the Gomory-Hu 
procedure for finding the minimum cut in a graph (see [21] or [32]) and it runs in 
O(n 4) time in the worst case. It follows from [25] that the ellipsoid algorithm can 
then be used in conjunction with this algorithm to give a polynomial time algorithm 
for the perfect matching problem. This algorithm has a considerably higher worst 
case running time than Edmonds's algorithm. 

The matchingpolytope P~ (G) is defined to be the convex hull of incidence vectors 
of matchings on the graph G. It has been shown by Edmonds that PM(G) is given 
by the set of vectors y e N" which satisfy 

y(6(v)) ~< 1 Vv~V,  

y(E(W))<~½(lW[-1)  V W ~  V,[Wlodd, 

ye~O "~e~E. 

Notice that the degree constraints are inequalities in the description of P,m(G). 
There is a bijection between vertices of PM(G) and matchings of the graph G. 

3.3. An overview of the algorithm 

The initial relaxation is comprised of the degree constraints and nonnegativity 
constraints. Odd set constraints are added as cutting planes as necessary. 

As described in Section 2, we refer to the current relaxation as the current dual 
linear programming problem, and we apply the primal projective standard-form 
variant of Karmarkar's algorithm to the corresponding primal problem. Therefore, 
cutting planes are added as constraints in the dual problem and as variables in the 
primal linear program. 

It is easy to find an initial dual solution by using heuristics to find a good perfect 
matching. We attempt to improve upon the best perfect matching found to date by 
rounding any points which are dual feasible. 

When using the simplex algorithm, the current relaxation is solved to optimality 
and then cutting planes are added. By contrast we try to add cutting planes before 
solving the current relaxation, so the initial iterate for the next relaxation is not an 
extreme point. This should aid the solution of the next relaxation. It is possible to 
attempt to separate any non-integral dual feasible solution (any integral solution is 
the incidence vector of a perfect matching). The initial dual solution for each 
relaxation is the incidence vector of the best perfect matching found to date and 
dual feasibility is always maintained. (In fact, the algorithm is monotonic in the 
dual, though not strictly monotonic.) As soon as a better dual feasible solution is 
found, the separation routines can be invoked. 
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A simplified version of our algorithm is as follows: 
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• (Initialization). Set up initial relaxation. 

• (Loop) 
1. Update the solution to the current relaxation. If  a non-integral dual 

solution is obtained, decide whether to attempt to round it and /or  separate it. 
2. If  cutting planes are found, decide which (if any) to add to the relaxation. 

If cutting planes are added, update the primal solution to obtain a strictly 
feasible point and update the dual solution to the incidence vector of the best 
perfect matching found to date. 

3. If  termination criterion is met, STOP. 

The performance of this algorithm can be considerably enhanced by various 

modifications. The algorithm is discussed in considerably more detail in Section 3.5. 

3.4. A n  initial solution 

The degree constraints are equality constraints in the perfect matching problem, so 
the primal variables corresponding to them are unrestricted in sign. Therefore, we 
could solve the relaxations using the method described in Mitchell and Todd [39]. 
This method requires the solution at each iteration of a least squares problem where 
the constraining matrix is stored implicitly using a sparse format, but is itself dense. 
Such problems can be solved efficiently using a preconditioned conjugate gradient 

method. However, we use a sparse QR factorization in order to solve least squares 
problems, and such a method is not well suited to solving problems where the 
constraining matrix is stored in the form indicated. 

Therefore, we use a different approach. We relax the degree constraints so that 
we solve a matching problem rather than a perfect matching problem. We adjust 
the weight function b to ensure that the optimal solution is the optimal perfect 
matching. 

Thus, our initial relaxation has the form 

(D °) max z 

s.t. Sy <~ e, 

y ~ 0 ,  

( b - B e ) T y + z < ~ O .  

Here, S denotes the vertex-edge incidence matrix for the graph, with columns only 
for those edges that are in the relaxation. It follows that S has exactly two nonzero 
entries in each column, with each nonzero entry having value one. The vector b 
contains the edge weights, with B being a positive real number which is large enough 
to ensure that if integrality constraints on y were added to (D°), the optimal solution 
would be a petfect  matching. The vector y is associated with the edges of the graph, 
with one element for each edge in the relaxation. We refer to (D °) as the inital dual 
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relaxation. The solution of (D o ) consists of matched edges with value one and 
circuits with value 0.5 on each edge (see [9]). 

The initial primal relaxation is 

(pO) rain eTx~ 

s.t. S T x ~ - x e + ( b - B e ) x o = O ,  

Xo = l ,  

x,/>0, Xe/>0, Xo>~0. 

The primal variables x~ correspond to the vertices of the graph, with one element 
for each vertex. The surplus variables xe correspond to the edges of the graph, with 
one element for each edge in the relaxation. Then a strictly positive, feasible solution 
to (pO) is 

x~=½B V v ~ V ,  x~=b~ V e ~ E ,  and x o = l .  

3.5. The algorithm in detail 

As we proceed, we modify (D O ) by adding cutting planes of the form (2). There are 
an exponential number of cutting planes of this type, so we cannot add them all if 
our algorithm is to remain practical. However, we want to add a large enough 
number so that the optimal solution to our modified linear program is the optimal 
solution to the problem max{bTt: y ~ PM(G)}, where 6:= B e -  b. 

Our algorithm is outlined in Figure 2. Preprocessing is done in boxes 1 and 2. 
The iterations of the interior point algorithm are performed in the loop consisting 
of boxes 3, 4, 5, 12, and 9. After updating the dual solution, we decide whether to 
invoke the separation routines. If we do, we update the relaxation and the primal 
solution appropriately. This is described in boxes 5, 6, 7, 8, and 12. Because of the 
preprocessing, we have to do some postprocessing, as described in boxes 10, 11, 
and 12. This postprocessing may lead us back into the heart of the algorithm. We 

now describe how the algorithm works in detail. 
Box 1. In order to save computational time, our initial linear programming 

relaxation only involves a subset/F _ E of the edges. 
For each vertex v ~ V, find the N N  shortest edges (with respect to the objective 

function) in the set 6(v). Then /~ is the union of these subsets. (In order to ensure 
that there exists a perfect matching in the modified graph, we may modify /~ in 
Box 2.) We have 1 ~< N N ~  n -  1, and it appears from the work of both Gr6tschel 
and Holland and ourselves that the best choice for N N  for problems of the size 
and type we were solving lies in the range 5 <~ N N  ~ 10. 

Box 2. We use a greedy procedure to find a perfect matching M. If M ~/F, we 
modify /~ ~-/~ u M. Let yF be the incidence vector of M. This gives us an upper 
bound bXy F on the value of min{bTy: y~  P(G)}.  We then set B to be this upper 
bound and we define the modified objective function /~ by 

tTe :-- R -  be. 
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Fig. 2. Algorithm for the perfect matching problem. 

Then zF: = bTy r =½B(n - 2 )  is a lower bound on the optimal value of 

max{z: z<~ b Vy, y c PM( G)} 

and also on any relaxation of this linear program. (It was shown in Mitchell [37] 

that this choice of  B is large enough to ensure that the optimal solution to the given 

matching problem is the optimal solution to our original perfect matching problem.) 
M is actually the best of several matchings which we inspect. To find each 

matching requires several steps: 

1. Choose an ordering ~r of  the vertices V. 
2. (Label all vertices unmatched.) Set M ~ 0 and i ~- 1. 
3. (Find a greedy matching.) While i<~ n 

• I f  i unmatched then 

- Find j with b(~/) = min{b(~'):  j '  unmatched).  
- Add /j to M and label i and j matched. 

• Set i~-i+l .  
4. (Use 2-opt (see [31] or [42]) to locally optimize the matching.) While 3i, j, k, l 

V with /j, kl~ M and b(ij)+b(kl)> b(ik)+b(jl) 
• Set M ~ - M w ( i k w j l ) \ ( i j w k l ) .  

In our tests we used two orderings - -  placing the vertices in numerical order and 
in reverse numerical order. 
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At this stage, we also initialize the primal and dual solutions. The initial dual 

solution is y~_yF, z ~  z F. The initial primal solution x is defined as described in 
Section 3.4. 

Box 3. We use the Todd-Burrel l  procedure [45] to update  the current dual solution 
(y, z). 

Box 4. I f  y # yF then we round y to find a perfect matching ]Q whose value we 
compare with z F. Let y(/Q) be the incidence vector of  ]~t. Set z ~t :=/~Ty(~t).  I f  

z ~ > z F then we update yF to y ( ~ t )  and z r to z ~.  I f z ~ t >  z then we set y = y ( ~ t )  

and z = z ~.  

We round y as follows. 

1. Initialize 1~ ~- 0. 

2. For e ~ f  

• I f y e > 0 . 5  update ~ t < - ) ~ u  e. 
3. I f  I/~tl<½n then 

• Pair off unmatched vertices and add resulting edge(s) to )~t. 

4. While 3i, j, k, l ~ V with/ j ,  kl c ]~I and b( ij) + b( kI) > b( ik ) + b(jl)  
• Set . ~ 7 l + - M w ( i k u j l ) \ ( i j u k l ) .  

Notice that the degree constraints imply that ~ t  obtained in step 2 is a matching, 

though not necessarily a perfect matching. If  it is necessary to pair off vertices in 

step 3, it is unlikely that the resulting matching will improve upon the current best 
matching; therefore, we chose to pair off vertices randomly in step 3. 

Box 5. We call the cutting plane routines if y ¢ yF, provided Phase I has been 

completed. 

Box 6. Our separation routines are based on those of Gr6tschel and Holland 

[24]. To be computationally efficient, it is vital for us to reduce the number of stages 
of  adding constraints. For that reason our heuristics are more extensive than those 

of Gr6tschel and Holland. Our hope is that by spending more time searching for 

violated constraints we will find more such constraints and save iterations later on. 

This hope has been borne out by our computational  experience. 
We choose k values a ~, . . . ,  A k. (Our standard choice is to take k = 7 and use the 

values 0.01, 0.06, 0.11, 0.16, 0.21, 0.26, and 0.31. All of  the results we report used 

this choice unless otherwise stated.) For 1 <~ i ~< k define E i := {e c/7:  y(e)  > A i}. We 
then use depth first search to find the components of  the graph (V, El). If  any of 
the odd components  W violates the corresponding odd set constraint, add the 
constraint of  the form (2) to the formulation (provided the component  was not a 

component  of  the graph ( V, E j) for some j < i). However, if I WI > IV\  WI then we 
add the constraint corresponding to V \ W  rather than that corresponding to W, 
because this constraint is likely to be more sparse and the two constraints are 

equivalent. 
Note that there is no point in setting h i = 0  for some i because Karmarkar ' s  

algorithm is an interior point method (and usually, except for one constraint, in 
the dual), so the components of  (V, E i) will nearly always be the same as the 

components of  G = (V,/~). 
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We have not implemented the Padberg-Rao procedure, which is guaranteed to 

find a violated constraint if one exists. Therefore, it is possible that we will be unable 

to separate y from PM (G) although y ~ PM (G).  However,  it appears that the heuristic 

routines are sufficiently good that this rarely happens.  
Box 7. I f  cutting planes were found in Box 6 then we go to Box 8; otherwise we 

go to Box 12. 

Box 8. We update our relaxation by adding the constraints found in Box 6. The 

dual point (y, z) is not feasible after we add the cutting planes, so we update z to 
z F a n d y t o y F .  

It is possible to develop criteria to decide when to drop primal variables. For 
details, see Mitchell [37]. In this algorithm, we never drop any primal variables. 

Box 9. We check whether the duality gap is sufficiently small (see Section 6.3). 

I f  it is then we move to Box 10 and check reduced costs; if it is not then we return 

to Box 3. 

Box I0. Our initial formulation does not use all the edges of  the graph. Therefore, 

it is necessary to check the reduced costs of  these edges in order to confirm optimality 

of  the solution. I f  some edge has negative reduced cost then we move to Box 11. 

Otherwise we STOP. It should be noted that it is not guaranteed that our final 

solution is a matching because we do not use the Padberg-Rao  procedure. Define 

Y:= {y c ~m: y satisfies (1) and (3), y is not separable from PM(G) 
using the separation routines of Box 6}. 

Define Py(G):--conv(y ~ Y}. Then our final solution is an optimal solution to the 
problem max{bTy:ycfi(G)} for some polytope fi(G) with PM(G)c_fi(G)c_ 
P v ( G ) .  

Box 11. We choose some subset of  the edges with negative reduced cost and add 

these variables to our formulation. We describe how to do this in Section 5.4, with 
surplus variables being introduced in each additional primal constraint and an 

artificial variable with large cost being added in the primal relaxation. I f  more than 

fifty edges have negative reduced cost, the edges are bucket sorted by violation, and 

the (approximately) fifty most violated constraints added. In the resulting Phase I 
problem, all the additional primal surplus variables have the value of the appropriate  

reduced cost, with the artificial column being the sum of  the vector of  ones and the 
vector of  reduced costs. After revising our linear program, we move to Box 12. 

(Note that all the dual variables are bounded by one, so if we added this constraint 
to the dual linear program, we could immediately find an interior primal feasible 

point, as described in Section 5.2. We intend to investigate this option at a later 
date; for the current paper,  we were interested in the performance of the procedure 
described in Section 5.4.) 

Box 12. The primal solution x is updated. 

I f  we came to this box from either Box 5 or Box 7 or Box 11, we have an interior 
primal feasible point and we use the projective s tandard-form variant of  Karmarkar ' s  
algorithm to calculate a new point. 
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If we entered this box from Box 8, the current primal feasible point is not an 
interior point. A procedure to find an interior primal feasible point is described in 
Section 4.5. We set the vector of relative weights for the added variables to be e, 
unless otherwise stated, The step length we chose is 0.75 of the maximum possible 

step length. 

4. Obtaining an interior point when adding cutting planes 

4.I .  In troduct ion 

We assume that the linear program 

(D) max z 

s.t. A T y + z g ~ c ,  

iS the currem linear programming relaxation of the combinatorial problem that we 
are solving. The dual of this linear program is 

(P) rain c'rx 

s.t. A x  = O, 

g'rx = 1, 

x > 0 .  

We wish to modify (D) by adding the constraint 

aS), + zgo ~< Co, (5) 

where ao is an m-vector and Co and go are scalars. Adding this constraint corresponds 
to adding a variable xo to (P), giving the problem 

(Po) rain C T X + CoXo 

s.t. A x  + aoXo = 0, 

g T x + goxo = I,  

x>O,  xo~0.  

We assume that we have an interior feasible point ~ for the problem (P). Then 
the point 

x = ~ ,  xo=0,  

is feasible for (P0), but it is clearly not an interior point. We also assume that g and 

go are nonnegative. 
In this section, we give two methods by which an interior point may be obtained, 

and we show that these methods are essentially equivalent. One method resembles 
a Phase I procedure in that it introduces an artificial variable. The other method 
calculates an appropriate direction more directly. For consideration of other direc- 
tions, the reader is referred to Mitchell [37]. 
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Before describing the two procedures in more detail, we define some notation 

and make an observation. We define .~ to be the n × n diagaonal matrix whose 
diagonal elements are the entries of ~. Then e, the vector of ones, is feasible for the 

scaled problem 

(F') rain ~Ty 

s.t. A 2  = 0, 

~ > 0 ,  

where ?:= J(c, A:= A3( and 4: = J~g. The corresponding scaled version of (Po) is 

(Po) min ?T£ + CoXo 

s.t. A £  + aoXo = O, 

~, T £ + goXo = 1, 

2~>0, Xo >~ O, 

and £ = e, Xo = 0 is feasible for (Po). 

4.2. A Phase  I procedure 

We first describe the Phase I procedure. We define the linear program 

(P_,) min x-1 

s.t. f ~ £  + aoXo - a o x _ l  = O, 

~, T £ + gOX 0 _ goX_ l : 1, 

It should be noted that £ = e, Xo = 1, x-i  = 1 is a strictly positive feasible solution 
to the problem (['_1), and £ = e, Xo = O, x_~ = 0 is an optimal solution. Indeed, any 

optimal solution to (P 1) leads naturally to a feasible solution to (P0). We propose 
to solve (Po) using Karmarkar's algorithm for linear programming. Therefore we 
consider the direction 

P[Aao-~o] =: do , 
\d_l/ 

where PM denotes projection onto the null space of the matrix M. 
In general a Phase I procedure can take several iterations; however, in this case, 

the direction (d, do, d-O defined above is such that the Phase I procedure can be 
completed in one iteration with a suitable choice of  step length. In addition, a 
strictly positive feasible point for (Po) is returned, provided £ is strictly positive. In 
order to show this we first prove several lemmas. The first lemma gives an explicit 
expression for the direction (d, do, d_~). 
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Lemma 1. The direction (d, do, d_~) given above is proportional to 

/,~(~,~)-'oo\ 
- -  0 ~ t,+o) 

where 
~ ~ T  

0 := a~o(AA )-'ao. (6) 

Proofl  We use the Sherman-Morr i son-Woodbury  formula (see, e.g., [20]) to 

calculate 

do = P[;~ ~o-,M 
d_a 

- [a~][~ ' r+2aoa-[ ] -~[~ao-ao] (O t 
-1 k-a~J \-1/ 

= - a [ ( ~ T ) - : _ ~ ( ~ : ) - : a o a : ( ~ ) - , ] a o  
1+20  

1 [ - a o J  

-~/~(~>-'oo~ 
1:o ) 

Notice that 0 > 0  so we can drop the scaling term 1 / ( t + 2 0 )  and redefine the 

direction to be 

:---- - (7) ~ol \ 1+0 / 
The following lemma discusses the relative sizes of the components  of  the direction 

(d, do, d_~). 

Lemma 2. The smallest component of the direction defined above is d-a, and it is 
strictly smaller than any other component. In addition, d-I is negative. 

Proof.  Since 0 > 0 it is clear that d-1 < do and d_a < 0. In addition dVd = 0 so every 
component  d~, 1 ~< i ~ n, of d satisfies d~ ~ - , /~ .  We have two cases depending on 

the size of  0: 
1. I f 0 ~ l t h e n d ~ > ~ - l > d _ l , l < ~ i < ~ n .  
2. I f 0 > l t h e n d ~ > ~ - 0 > d _ a ,  l<~i<~n. 

Hence d-a is the smallest component  of  the direction defined above. [] 
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Lemma 3. The largest step length c~ such that the point 

x_ , ( . ) J  \ l J  \d_  b/ 

is nonnegative is ~ := -1/d_1. Then x_~(5) = O, Xo(5) > 0 and .~(5) > O. 

Proof. This follows directly from the previous lemma. [~ 
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The standard Karmarkar step, as defined in, for example, the work of Gonzaga 
[22], involves moving in the direction which is the negative of the projection of the 
(scaled) objective function onto the null space of the (scaled) matrix of subspace 
constraints and then normalizing to satisfy the normalizing constraint. In this case, 
the projected direction is the direction (d, do, d_a) defined above. 

Theorem 2. The problem (~-1) can be solved in one step using Karmarkar's algorithm 
by moving an appropriate amount in the projected direction and then normalizing to 
satisfy the normalizing constraint. Moreover, the resulting solution gives a strictly 
positive feasible solution to the problem (~o) and thus a strictIy positive feasibIe solution 
to (Po) 

Proof. The step length 8 defined in the previous lemma gives a strictly positive 
point (~(c~), Xo(5)) which is feasible in the subspace constraints of the problem 
(~0). Define ~:=#g'rY(8)+goxo(8 ). It should be noted that ~>0  since 3~(~)>0, 
Xo(OT) > 0 and (g, go) is nonnegative and not identically zero. Then (1/.~) (~(O7), Xo(g)) 
is strictly positive feasible point in (~o) and (1 /~: ) (~(5) ,  xo(8)) is a strictly positive 
point which is feasible in (Po). [] 

Now 

and 

do 1 (8) 
Xo( 5)) = 1 --~_~= i ~ O" 

_ ~ 1  d 1 ~T(~T)_~ao. (9) 
Y ( 5 ) = e  d_, = e - i + ' 0  

Therefore, when using the Phase I procedure detailed above the following strictly 
positive feasible point for (Po) is obtained: 

xo = 0, (10) 

x = (1+ 0)0~ "2 "2 T-1 - 4 , x  A ( A X  A ) do, (11) 

where 

1 
0:= 1 + 0 + go-  gTX2A(AX 2A'r) lao 

and 0 = aTo(Af(2AT)-~ao, as in equation (6). 

(12) 
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4.3. Working directly in (Po) 

We now describe a more direct method of obtaining a direction in the problem (Po)- 
Moving in this direction from the point x = ~, xo = 0 gives a strictly positive feasible 
point for (P0). In order to derive this direction we first define the direction 

P 0 

We are going to consider moving in this direction from the point .~ = e, xo = 0 in 
the problem (Po)- 

As mentioned in Section 3, the speed of convergence of Karmarkar's algorithm 
is adversely affected if the sequence of iterates approaches a nonoptimal vertex too 
closely. For that reason, it is important to bring the added variable xo in at as large 
a value as possible without greatly increasing the objective function value. In 

addition, from considerations of complementary slackness, it is probable that the 
larger the value of xo the smaller the slack in the corresponding dual constraint 
when the dual solution is updated. This is desirable because it is likely that the 
added dual constraint will hold at equality at the optimal solution to the current 

relaxation. 
The direction (d, do) is the direction of steepest ascent for the problem 

max Xo 

s.t. A 2  + aoXo = O, 

~ 0 ,  Xo>~O. 

We work in the scaled problem because in this problem the initial point is ~ = e, 
so a step of length at least one can be taken without violating the nonnegativity 

constraints. 

Lemma 4. The direction ( d, do) is proportional to 

and do > O. 

Proof. This lemma is proved by direct calculation, using the Sherman-Morrison- 
Woodbury formula (see, e.g., [20]). Recall 0 = a~(AA T) lao from (6). We have 

P~Aa°l 1 = -- ao [AAT+a°a~]-~a°  

= _ [ ( ~ T )  , 1 (f~f~v)_,aoa~(f~f~T)_,]a ° 
1+0  

Thus do = 1/(1 + 0), which is clearly positive. [] 
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Thus we are led to consider the set of  points 

~ : =  {(X(0l) ,  X0(0L)): 3~(0~) = e -- o ~ d T ( d d T ) - l a 0 ,  X0(OL ) = 0 60L > 0}. 

Every point in this set satisfies the subspace constraints for the problem (Po). 

Define 

(14) 

- 1  
O%~x := mini{a[(AdT)- lao} '  

where c/~ denotes the ith column of ,4. 

(15) 

Lemma 5. IXma x is well-defined and positive. 

Proof. Recall that e is in the null space of A so 

eT,4T( ,~AT)- - la0  = 0. 

Also, ao is not identically zero so dT(d,4T)- la0 is not identically zero. Therefore 

,i-r(idT)-~ao has a negative component.  [] 

Lemma 6, The point (~(ce), Xo(a)) is strictly positive and satisfies the subspace con- 
straints for the problem (Po) if and only if 0 <  ce < ~m~x. 

Proof. The given point satisfies the subspace constraints by definition. The value 

of Xo(a) is positive if and only if 0 < a. From the definition of  amax, for ce > 0, Y(a)  

is positive if and only if o~ < a . . . .  • [] 

Lemma 7. The value of  C~max is bounded below by 0 -1/2 and it is strictly bounded below 
by (1 + 0) -1. (Recall, from (6), 0 = aT(*,4T)-la0.)  

Proof. This follows from the fact that the 2-norm of the vector ~IT(A/~I T) la 0 is the 

square root of  0 and that ~ <  1 + w for any real positive w. [] 

Define 

( ( a )  := g V x ( a ) +  gOXo(a). (16) 

Then the point ((1/~(a))X,Y(a),  (1/~(a))Xo(a)) is feasible for the problem (Po) 
provided 0 ~< a ~< a . . . .  and it is an interior point if the inequalities hold strictly. We 

denote this point by (x(a) ,  xo(a)). Then 

Xo(Cr) = ~0, (17) 

x(o~) = tbol-'~ -- ~x, Za T (a22A  X)-a ao, (18) 

where 

1 
~t := --1 j_ T`*2 T "*2 T--1 " (19) a g o - g  X A ( A X  A ) ao 
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Theorem 3. There exists a step length ~ for which the point (x(~) ,  Xo(ff)) is the point 
found using the Phase I approach defined in Section 4.2. 

Proof. Define ~ := (1 + 0) 1. Then (x(c~), xo(~)) is exactly the point obtained using 
the Phase I method. See equations (10)-(12). [] 

In general we do not want to be limited to choosing a = g. We can either choose 
to go a certain fraction of the maximum possible step o~m,× or we can use a line 

search on a potential function similar to Karmarkar's potential function. Care is 

needed if this second approach is used because the potential function is not defined 
on the boundary of the feasible region, so in particular it is not defined at (e, 0), 
the inital point of the step. 

4.4. The objective function value 

We consider here the change in the primal objective function value when adding a 

dual constraint. When moving in the direction found above, we obtain a point in 
the set ~, defined in equation (14). 

Lemma 8. Assume the dual values y and z have been updated in the standard way 
given in Todd and Burrell [45] and that (y, z) violates the added constraint defined 
in equation (5). Then every point in ~ has smaller value with respect to the objective 

function ( ~ -  z~, Co- zgo) than the point (e, 0). 

Proof. By assumption we have 

y = (7,A T) 1A(~-z~) ,  

and so for 0?(oQ, Xo(~)) c ~ we have 

( c -  zg)Vx(a) + (Co- zgo)Xo(a) - ( c -  zg)Te 

c~[Co- zgo- a ~ ( A A X ) - t A ( e -  zff)] 

= a[Co-  zgo-  aVoy]. 

Since y violates the added constraint, this quantity must be negative. [] 

4.5. Adding many constraints 

We now consider adding many constraints to the problem (P). Thus we modify (D) 
by adding the p constraints 

A~y + Zgo <~ Co, (20) 
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where Ao c ~m×p and Co and go are both real p-vectors, go being nonnegative. Adding 

these constraints corresponds to adding the variables Xo to (P), giving the problem 

(Poo) min cVx + C[Xo 

s.t. A x  + Aoxo = 0, 

grx  + g~xo = 1, 

X ~ O, Xo >1 O, 

where xo is now a p-vector. By analogy with Section 4.3, we condier the direction 

Lemma 9. The direction doo is given by ( I  + O)-le,  where we define 

O := Aor(A/i+)-lAo. (22) 

Proof. This can be shown by direct calculation using the Sherman-Morrison- 
Woodbury formula (see, e.g., [20]). [] 

A drawback to finding an interior feasible point for (Poo) using the direction 
defined in (21) is that it is not guaranteed that the direction doo is strictly positive. 

Since doo solves the system 

( I +  O)doo = e, 

standard error analysis shows that doo will be close to e (and thus positive) if the 

norm of the matrix 0 defined in (22) is sufficiently small. The scaling of the columns 
of A0 is arbitrary, so it is possible to scale them so that the norm of AoX(/(,4+)-lAo 

is small and doo> 0. However, such an approach is liable to produce badly scaled 
constraint matrices and for that reason we develop a different approach. 

This method involves replacing the extra variables with one variable. We then 
use the methods defined above for dealing with problems with one extra variable. 
Therefore, we define 

C~o := Aow, (23) 

Go := CroW, (24) 

go := g~w, (25) 

where w is a strictly positive p-vector, and consider the linear program 

(Poo) min ~vy + ~o~o 

s.t. , 42  + do~o = O, 

~-r~ + ~o~o = 1, 

Y~>0, 2o~>0. 
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Here Xo, Co and go are scalars, go being nonnegative, and ao is an m-vector. Notice 
that Y = e, Xo = 0 is feasible for the problem ({'oo). 

The simplest choice for w is to set it equal to e. We have also experimented with 
two other choices for w, namely, setting the ith component of w to be the amount 
by which the current solution y violates the ith added constraint, and setting the 
ith component of w to be the reciprocal of the 2-norm of the normal to the ith 
added constraint. 

Lemma 10. I f  (~, Xo) is feasible for (Poo) then ()~Y, ~oW) is feasible for (Poo) and has 
the same objective function value. 

Proof. This lemma is proved by substitution. Notice that 2oAow = YCodo and similarly 

~og[w = Xogo and 2oC[W = "2o~o. [] 

It follows from this lemma that if (Y, 2o) is a strictly positive feasible point for 
(~'oo) then (XY, 2oW) is a strictly feasible point for (Poo) with the same objective 
function value. Thus we propose to find an interior feasible point for the problem 
(Poo) by first finding such a point for (Poo) using the methodology of Section 4.3. 
Equations (17)-(19) imply that we obtain the following point, which is an interior 
feasible point for (13oo) provided 0<  ~ < O~m~: 

~ o ( ~ )  = ~', 
~(a)  = Oc~-'e - ~ / j A T ( ] ~ A T ) - l a  0 . 

where 

1 
0 := ' +  go -- gTA*('Li~)- 'ao ' 

-1  
~max := m i n i { ~ ( ~ T )  1do } • (26) 

Thus we obtain the interior feasible point 

Xo(a) = Ow, (27) 

X ( O L )  = ~.tOL.--1.~ - -  OX2AT(A2ZA x) 1Aow, (28) 

for the problem (Poo). Note that it follows from Lemma 7 that t~ma x is bounded 
below by the reciprocal of ,/doV(AA-r)~lC~o =,/wTA~(,i~i~)-lao w = 

5. Adding variables 

5.1. Introduction 

We assume that the linear program 

(D) max z 

s.t. ATy+zg<~c, 
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is the current linear programming relaxation of  the combinatorial problem that we 

are solving. The dual of this linear program is 

(P) min cTx 

s.t. A x  = O, 

gYx  ~ l ,  

x>~O. 

In this section we consider adding variables to the problem (D). The reason we 

develop the methodology to do this is as follows. We are interested in solving 
combinatorial optimization problems. For some of these problems, it is desirable 

to omit several variables from the initial formulation if the size of the relaxation is 
to remain manageable and if a cutting plane approach is to be efficient. For example, 

when solving perfect matching problems only a small subset of the edges appear 
in the initial formulation, because it is expected that edges connecting widely 
separated vertices are unlikely to appear in the optimal perfect matching. Using the 
cutting plane approach defined in Section 3, the relaxation of the combinatorial 
problem will have the same form as the problem (D). In order to show that the 
optimal solution to the relaxation is the optimal solution to the combinatorial 

problem, it is necessary to check that none of the omitted variables should appear 

in the relaxation. This check involves looking at the reduced costs of the omitted 
variables. If any reduced cost is of the wrong sign then it is necessary to add the 

corresponding variable to the relaxation, and the appropriate constraint to the dual 
of  the relaxation. Therefore, for many problems, a cutting plane approach based 
on Karmarkar 's algorithm can be competitive only if it has the ability to add variables 
to problems of  the form (D). 

In what follows, we assume that we have either a simple upper bound or a simple 

lower bound on each variable of the combinatorial problem. Thus, each possible 
extra constraint for the problem (P) is an inequality constraint. 

We assume that the problem (D) is modified to the following problem when the 
variable Y0 is added to the relaxation: 

(Do) max z 

s.t. A T y  + aoYo + zg ~ c, 

Yo <~ Uo, 

- Y o  <~ - lo. 

Here, ao is an n-vector, and Yo, uo and lo are scalars. Thus Uo and lo are upper and 
lower bounds respectively on Yo. We do not require that both Uo and lo be finite, 
merely that one of them is. We assume that lo <~ 0 ~< Uo, so if (y, z) is feasible for the 
problem (D) then setting Yo--0 gives a feasible point for (Do). 
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The dual problem to (Do) is 

(Po) min CTX + UoX, - loxt 

s.t. A x  = O, 

aToX+Xu --Xt = O. 

gTx = l, 

x/>0,  xu >>- O, xt >10, 

where xu and xt are scalars. 

Recall from Section 3 that we regard the current linear programming relaxation 

as solved when the duality gap is less than some threshold e. We refer to a primal 

feasible point x and a dual feasible point (y, z) as an e-optimal pair o f  solutions if 

c T x - - z < e ;  we also say x is e-optimal for (P) and (y, z) is e-optimal for (D) in 

this case. 

Assume that 2 and ()~, 2) constitute an e-optimal pair for the dual pair of  problems 

(P) and (D) and that 2 was obtained using an interior point method, so that it is 
T A  strictly positive. Define ~7 := aox, the reduced cost of  the variable Y0. We divide the 

analysis into four cases: 

1. ~7 = 0: Then x = 2, x, = xl = 0 and y = )~, z = 2, Yo = 0 are an e-optimal pair of 

solutions for (Po) and (Do). 

2. ~7 ~>0 and lo=0: Then x = 2 ,  xu=0 ,  xl=~7 and y=)~, z=~ ,  y o = 0  are an 

e-optimal pair of  solutions for (P0) and (Do). 

3. ~<~0 and Uo=0: Then x = 2 ,  x , = - ~ ,  x~=0 and y=)~, z = 2 ,  y o = 0  are an 

e-optimal pair of  solutions for (Po) and (Do). 

4. Otherwise: It is necessary to add the variable Yo to (D) and the corresponding 

constraint to (P) and reoptimize. 
From now on, we assume that we are in the last of these cases. 

5.2. Both bounds are finite 

I f  lo and Uo are both finite consider the following procedure: 

~+/3 if~>0, 
1. Set x~ ~ I. /3 otherwise. 

2. Set x u ~ x 1 - ~ .  

This gives an interior feasible point for (Po) for any positive/3. Notice that one of 
x, and x~ takes the value 17/1+/3, with the other taking the value/3. The adjustment 

to the objective function value is 

/ 3 (uo - lo ) - r f l o  if~7>~0, 

/3(Uo- lo ) -  rtuo otherwise. 

Thus the greater the value of/3, the greater the increase in the objective function 
value. The drawback to choosing a small value for/3 is that a variable in the problem 
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(Po) has that small value, so if this variable is nonzero at the optimal solution, 

Karmarkar ' s  algorithm will take many iterations to converge. 

I f  ~ is an arithmetically large positive (negative) number,  it appears likely that 

xu (xl) will be zero at the optimal solution and therefore it is reasonable to choose 

a small value for ]3. I f  the absolute value of 77 is small then it is not clear which 
one of  the variables xu and xl will be basic at the optimal solution and therefore a 

large value of /3 should be chosen. We suggest choosing /3 to be a constant, 

independent  of  the value of ~7. Notice that this choice satisfies the requirements for 

values of  ~/which have either large or small absolute value: if ~/has small absolute 

value, xu and x~ will have approximately the same value; if ~/ has large absolute 

value, one of x~ and xt will have approximately that value, with the other variable 

being small relative to it. 

5.3. One bound is infinite 

We assume that the upper  bound on Yo is infinite and the lower bound finite but 

nonpositive. Usually the lower bound is zero; however, we consider a more general 
situation. The procedure we develop can be modified straightforwardly for the case 

when the lower bound is infinite and the upper  bound finite. 

Thus we are interested in finding a strictly positive feasible point for the problem 

(Po) min eTx -- loxl 

s.t. A x  = O, 

a T x - -  X~ = O, 

gTx = 1, 

x>~O, xt>~O. 

The point ~ is e-optimal for (P) and ~7 is defined to be T A aox. I f  ~7 > 0, setting xt = ~/ 

gives an interior feasible point for (Po), and in fact this gives an e-optimal solution 

to (Po) if l0 = 0. Therefore, for the rest of  this section we assume that ~7 < 0. Consider 
the Phase I problem 

(P 1) min x_l 

s.t. A x  = O, 

aTx- -x ,+( /3 - -~?)X  1=0,  

gTx~- 1, 

x>~O, xt>~O, x _ ~ O ,  

where/3 is some positive number. Notice that setting x = ~, xl =/3 and x-1 = 1 gives 
a strictly positive feasible point for (P -0 .  This Phase I problem can be obtained as 
a scaling of the limiting version of the problem (Po) as the upper  bound goes to 
infinity. 
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If  the optimal value to (P-l) is greater than zero, the problem (Po) is infeasible 
and therefore the current relaxation of the original combinatorial problem is 
unbounded. If the optimal value to (P_~) is zero, the optimal solution leads naturally 
to a feasible point for (Po); the question remains as to whether this point will be 
strictly positive. In p(actice, we use a big-M method, so we use the objective function 

cX x - Ioxl + M x _ I ,  

where M is some large positive number, and we use Karmarkar's algorithm. Provided 
M is large enough and (Po) is feasible, x i will be zero at the optimal solution. If 
the direction we move in is such that choosing a step length of an appropriate size 

would give an interior feasible point for (P~), we choose that step length and drop 
the artificial variable from the formulation. It follows that we always have a strictly 
positive feasible point for either (P 1) or (P~). 

The scaled version of (P-l)  is 

(P-l)  min x l 

s.t. ~ Y  = 0, 

dory - /3~,  + (8  - n ) x - ,  = o, 

~T)~ = 1, 

Y~>0, £t>~0, x_l~>0, 

where ,4 :--AX, do := Xao, ~ := )(g and 2 is the diagonal matrix whose entries are 
the components of the vector 2. Thus the point )? = e, Yt = 1 and x_~ = 1 is feasible 

for (P-l). 

Lemma 11. The direction o f  steepest descent in the null space o f  the subspace constraints 

f o r  the problem (P-I)  is 

: : /  (29) 

Proof. This result can be shown by direct calculation, using the fact that 

I w T L _ p - l w T  H I p - I  , 

where p = v - w T H - l w ,  H is a symmetric positive definite matrix, w is a vector, and 

v is a scalar. [] 
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We now give a bound on the reduced cost 7/ of the omitted variable Yo. 
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Lemma 12. The size of is bounded above by the 1-norm of the vector PAdo. In 
fact, r/ = eT pTfio. 

Proof. By definition, 

~7 a~ 2 = ' T  = aoe = eTpAdo, 

the last equality holding because e is in the null space of A. [] 

In the previous section we were able to give a Phase I procedure which converged 
in one step. The Phase I procedure defined in this section will not in general converge 
so quickly, although if the size of the reduced cost is sufficiently small we do have 

the following lemma. 

Lemma 13. If 

then the smallest component of  the direction defined in Lemma 11 is that for the 
artificial variable, provided fi is chosen appropriately. 

Proof. Set/3 = [[P~do][~. The lemma then follows from equation (29). [] 

It follows that if 

In] Ile a011 , 
the Phase 1 procedure converges in one step with an appropriate choice of  step 

length. Therefore, using Lemma 12, the procedure converges in one step if 

lerP~do111 P~ ~ol]~ ~< II P~ao 1122. (30) 

i f  the Phase I procedure converges quickly, it is likely that the feasible point we 
find for (Po) will be close to ~, so convergence to optimality in this problem should 
be rapid. We now give two cases in which the condition for convergence in one 
step holds. First we state the following technical lemma. (For a proof, see [37].) 

Lemma 14. For any n-vector a, 

Ilall22~> TI[a[ll[[all~, 

where 

2 [] r =  l + v ~ -  
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Theorem 4. 

(i) 

or 
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If 

(ii) leTpx ol ~< ~-IIP~&ll,, 
2 

where r - -  
1 + , f n '  

then the Phase I procedure converges in one step. 

Proof. In case (i), the result follows from equation (30), since Ilall~<~ Nail2 for any 

vector a. Case (ii) follows from Lemma 14 and equation (30). [] 

5.4. Adding many variables 

We may wish to add many variables to (D) at once. We can use the procedure given 

in Section 5.2 for each of these variables that have finite upper  and lower bounds 
in order to obtain a point in the modified version of (P) where the additional slack 

and surplus variables have positive value. Therefore, we assume that all p added 

variables have infinite upper  bound. Thus we wish to find a strictly positive feasible 

point to the following problem: 

T (Po) rain cTx -- IoX; 

s.t. A x  = 0, 

A ~ x  - x; = O, 

gTx  = 1, 

x>~O, xt>~O, 

where now x; and lo are p-vectors and A0 is an n x p real matrix. Define the vector 

:= AoV2. I f  the value of any component  of  ~ is positive the appropriate component  

of  x~ can be set equal to that value. Thus we assume that ~ <~ 0. 
Let/3 be a strictly positive p-vector. Then, by analogy with the method given in 

Section 5.3, consider the Phase I problem 

( P - 0  min x 1 

s.t. A x  = O, 

a ~ x -  xl + ([3 - n ) X _ l = O ,  

gTx = 1, 

X ~ O, X I ~ O, X_ 1 ~ O, 

where x-1 is a scalar. Notice that x = 2, x; = fl, x-1 = 1 is a strictly positive feasible 

point for this problem. 
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If  the optimal value of this problem is zero, the optimal solution leads to a feasible 

point for (P~); if the optimal value of (P_~) is strictly greater than zero then (P~) 

is infeasible. In practice, we use a big-M method, as in the case when we only add 
one variable. Thus, our Phase I objective function is 

cTx -- l~Xo + Mx-1 ,  

where M is some large positive number. Provided M is large enough and (Po) is 

feasible, X_l will be zero at the optimal solution. 

6. Discussion of the implementations 

6.1. Technical details 

The algorithm was run on an IBM 3090 at Cornell University. Our computer code 

was written in FORTRAN77.  We compiled the code using FORTVS, with an 

optimization level of three. We used the GOSTMT option. All other options were 
set to their default values, except as indicated in the next paragraph. We did not 

use the vector option available on the IBM 3090. 
The method we used to perform the projections necessary in an implementation 

of  Karmarkar's algorithm requires large amounts of virtual memory when running 

larger problems. The operating system VM/CMS is limited to 16 megabytes of 
virtual memory (24 bit addressing). In order to use more than 16 megabytes of 
memory on the IBM 3090, it is necessary to use the Extended Data Array Capability 
(EDAC) of VM/XA. This requires placing large arrays into dynamic common blocks 
and then compiling the code with a special option. When this facility is used, 
VM/XA provides extended addressing up to 999 megabytes (31 bit addressing). 

6.2. Performing the projections 

When using Karmarkar's algorithm to solve linear programming problems, the major 

work at each iteration is performing a projection onto the null space of a scaled 
version of the current constraint matrix. There are several methods available for 
calculating such a projection; we chose to use one based on forming a QRfactoriz-  

ation of the constraint matrix. This method is very numerically stable, but in practice 
it is not as fast as other methods based on Cholesky factorization or preconditioned 
conjugate gradients. 

For a description of QR factorizations of matrices, the reader is referred to Golub 
and Van Loan [20]. The articles by George and Heath [14] and George and Ng 
[15] discuss solving sparse least squares problems using QR factorizations. 

Having calculated the projection matrix, we calculate the projections of the 
objective function c and the normalizing constraint g separately, and once we have 
a new primal point we project that point in order to ensure primal feasibility. Thus, 
at each iteration we perform three projections, with the third of these projections 
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not being strictly necessary, merely useful for obtaining greater numerical accuracy. 
In fact, it was shown by Gay [13] that the new primal point can be calculated using 
just one projection whenever it is not possible to update the lower bound using the 
method of Todd and Burrell [45]. In our implementation, most of the run time is 
spent on calculating the factorization, with a relatively small amount spent on the 
projections. It follows that the improvement in run time which could be obtained 
from using Gay's work would not be large. However, if a different method was used 
for calculating the projections, the benefit of calculating fewer projections could be 
far greater. 

In our current implementation, we calculate the projection matrix anew every 
time rows or columns are added to the constraint matrix. The run time could be 
reduced if we exploited information about the projection matrix used during the 
previous relaxation. 

6.3. Convergence criterion 

We regarded the current linear programming relaxation as solved if the duality gap 
was smaller than 10 -8. Usually, a convergence criterion depends to some degree on 
the absolute value of the objective function; however, because of the structure of 
our set of test problems, the order of magnitude of the optimal value is known in 
advance, so we used the convergence criterion indicated. 

7. Computational results for perfect matching problems 

In the tables in this section and the following section, the columns labelled itns, 
time, cliques, stages, and gap contain, respectively, the following information: 

• Iterations: Number of iterations of Karmarkar's algorithm to solve the problem. 
• Time: Run time in seconds. 
• Cliques: Number of cutting planes added. 
• Stages: Number of stages of adding cutting planes. 
• Gap: Number of iterations of Karmarkar's algorithm between the time cutting 

planes are first added and either (a) the next time the separation routines are called 
or (b) the time the problem is solved, whichever is less. 

Note that, for a given perfect matching problem, the total number of relaxations 
examined is 

1 + number of stages of adding cutting planes + number of stages of adding 
variables. 

For more detailed results for the perfect matching problem and also results for 
the linear ordering problem, the reader is referred to Mitchell [37]. 

7.1. Generating probtems 

It is rare to find real world instances of the matching problem in its pure form (see 
GrStschel and Holland [24]). However, the matching problem does arise in certain 
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heuristics designed to solve other combinatorial optimization problems. For 

example, the Christofides heuristic (see [7] or [42]) for the traveling salesman 

problem involves the solution of a perfect matching problem. 

Therefore, it was suggested by Gr6tschel [23] that we generate random perfect 
matching problems where the edge weights could be those of traveling salesman 
problem. For that reason, we generated problems as follows: 

• Generate k points uniformly in the unit square. 

• Look at the complete graph on those vertices. 
• Take the Euclidean distance between two vertices as the length of the corres- 

ponding edge. 
Following [24], we also generated some problems as follows: 
• Look at the complete graph on k vertices. 

• Generate edge lengths uniformly in the range [0, 1]. 
Unless otherwise stated, the results we give are for problems generated using the 

first of  these procedures. 

7.2. Investigating the procedures used when adding cutting planes 

The performance of our algorithm depends upon the choice of a number of para- 
meters. In this subsection we examine the effect of some of the parameters which 

determine how the relaxation is updated when the separation routines are called. 

7.2.1. When to call the separation routines 

As described in Section 3, the algorithm calls the separation routines as soon as a 
non-integral dual solution is found. We found that calling the separation routines 
later harmed the performance of  the algorithm. 

7.2.2. Different search levels 

In our standard choice of parameters for the algorithm, the separation routines 
involve searching for connected components at seven different prescribed levels. In 
this subsection we investigate different choices for the search levels. 

In the results that we give, the standard strategy is referred to as "search strategy 
B". The main alternative we consider is to search at just two levels: 0.01 and 0.31. 
This is referred to as "search strategy A". A second alternative strategy we considered 
was to only look for connected components in the graph given by dropping all 
edges of size less than 0.01. Since we are using an interior point method, no edge 
will have value exactly zero. Therefore, this strategy closely corresponds to that of 
Gr6tschel and Holland [24] of looking for connected components in the graph of 
all edges with nonzero value. This strategy was considerably inferior to the other 
two strategies, so we do not report the results for it. 

Table 1 gives the results for seven sixty node problems when run with strategies 
A and B. The number of nearest neighbours, NN, was set equal to 7. Table 2 gives 
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Table 1 

Comparing search strategies for sixty node problems 

Problem Search Itns Time Cliques Stages Gap 
strategy 

60i A 16 19.5 11 2 4 
B 18 23.6 15 3 5 

60ii A 11 11.5 9 1 4 
B 12 12.6 13 1 5 

60iii A 15 10.4 10 2 3 
B 14 12.0 18 3 3 

60iv A 15 19.7 7 2 8 
B 15 19.7 7 2 8 

60v A 10 8.6 2 1 5 
B 10 8.6 2 1 5 

60vi A 20 29,2 17 3 4 
B 21 3"1.9 22 3 7 

60vii A 31 50.5 18 7 2 
B 31 47.6 29 5 5 

average A 16.9 21.3 10.6 2.6 4.3 
B 17.3 22.3 15.1 2.6 5.4 

Table 2 

Comparing search strategies for 202 node problems 

Problem Search Itns Time Cliques Stages Gap 
strategy 

202i A 45 329.8 38 8 6 
B 39 267.8 54 6 6 

202ii A 75 b 527.4 54 16 4 
B 35 278.1 69 7 5 

202iii A 20 125.0 26 3 5 
B 24 162.2 41 4 6 

202iv A 52 b 367.2 49 8 3 
B 74 536.4 66 10 4 

202v A 33 246.0 35 5 5 
B 27 198.3 49 3 7 

average a A 32.7 233.6 33.0 5.3 5.3 
B 30.0 209.4 48.0 4.3 6.3 

a Average is mean of problems 202i, 202ii, and 202v. 
b This run finished with a non-integral solution. 

t h e  resu l t s  fo r  five 202 n o d e  p e r f e c t  m a t c h i n g  p r o b l e m s .  F o r  t h e s e  p r o b l e m s ,  N N  

w a s  set  to  10. 

T h e  f o l l o w i n g  c o n c l u s i o n s  c a n  be  d r a w n  f r o m  t h e s e  e x p e r i m e n t s :  

• U s i n g  s t r a t egy  A resu l t s  in  t h e  a d d i t i o n  o f  f e w e r  c l i ques  a n d  in a s m a l l e r  g a p  

t h a n  w h e n  s t r a t egy  B is u sed .  Th is  is to  be  e x p e c t e d :  by  its ve ry  n a t u r e ,  s t r a t egy  A 
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will result in the addition of  fewer constraints at each stage, and since fewer cliques 

are added on the first stage, the gap will be smaller. 

• For the easier problems (that is, most of the 60 node problems and problem 
202iii), strategy A is better than the standard strategy in terms of  number of  iterations 
and run time. In these runs, the two strategies required approximately the same 
number of stages, so the benefit of adding fewer constraints at each stage shows up 
in the number of  iterations because it is then slightly faster to reoptimize. 

• For the harder problems (60vii and the remaining 202 node problems), the 
standard strategy is better. Strategy A failed to solve a couple of these problems, 
and it took more stages on the others, resulting in a higher number of iterations 

and a greater run time. 
From these last two conclusions, it would appear that it is only beneficial to use 

the more extensive search routines for harder problems. The harder problems are 
more likely to contain nested odd sets, where cutting planes found at different stages 

are related in that one of the corresponding cliques is a subset of the other. For 
example, consider the graph given in Figure 3. The distances in this graph are 

Euclidean distances. The solution to the initial relaxation of  the perfect matching 
problem on this problem violates the odd set constraints corresponding to the cliques 
{v~, v2, v3} and {vs, V9, ~)10)" When these constraints are added and the new relaxation 
solved, the solution violates the odd set constraints corresponding to the cliques 

{vl, v2, v3, v4, vs} and {v6, vv, v~, Vg, v~o}. Because our algorithm is looking for odd 
set constraints violated by an interior point and because it searches at different 
levels, it may well discover both of these sets of constraints simultaneously. For a 
graph containing nested odd sets, the more extensive search routines are likely to 
lead to a more efficient algorithm than the simpler routines. 

'02 "05 "07 l)9 
• • • • 

~10 

~Y3 ~)4 t~6 ~8 
• • • • 

Fig. 3. An i l lus t ra t ion  of  the p h e n o m e n o n  of  nes ted  odd  sets. 

7.2.3. Different choices for direction 
Having chosen which cutting planes to add, we need to determine their relative 
weightings. 

Recall from Section 4.5 that the direction we move in when adding cutting planes 
depends on a positive set of weights for the variables corresponding to the added 
cutting planes. We experimented with three different choices for the weightings: 

1. All weights are equal. 
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2. Each weight is equal to the amount by which the current dual solution y 
violates the corresponding cutting plane. 

3. Each weight is equal to the reciprocal of the 2-norm of the normal to the 

corresponding cutting plane. 
These last two choices are motivated by considerations of dual ellipsoids. In [37], 

we developed a criterion for deciding when to add a particular cutting plane, and 
this criterion depended upon the current violation and the 2-norm of the inequality. 
Therefore we hypothesized that an inequality is more important if the current 
violation of it is large or if its norm is small. 

We found that scaling by violation is very slightly better than the other two 
options, but it is not significantly better. The algorithm appears to be robust, in that 
the performance is only slightly affected by varying the choice of weighting. 

7.3. Investigating the procedures used when adding variables 

Once the duality gap for the current relaxation is less than some tolerance, and if 
the current dual solution y cannot be cut off using our separation routines, we check 
the reduced costs of all the edges in the graph. If the reduced cost of edge e is 

negative, edge e should be added to the relaxation. We discussed how to do this 
in Section 5.4. 

We investigated two different choices for the vector/3 described in that section. 

The first choice is to set every component of/3 to be one (the standard choice); the 

second is to set/3 to be the vector of the negatives of the reduced costs. We found 
no significant difference in the performance of the algorithm when/3 was varied. 
Therefore, we only report some of our results for the standard choice of/3. 

Notice that it may happen that none of the added edges have nonzero value in 
the optimal matching, with the optimal matching being the best matching found 
before these edges are added. This is due to two things: primal degeneracy, and the 
fact that our termination criterion is not exact but depends on the duality gap being 

smaller than some value. 
For N N  < 10, the sixty node problem 60viii requires the addition of at least one 

additional edge. In order to see how the performance of the algorithm is affected 
by the choice of NN, we solved this problem for all choices of N N  from 2 to 9. 
These results are presented in Table 3. The number of edges in the initial relaxation 
is approximately ½(1 + N N )  times the number of vertices. Only for N N  = 2 does 
there exist a stage at which we have to invoke the bucket sort in order to limit the 
number of edges added. We repeated the runs for N N  = 2, adding all edges with 
negative reduced cost; the results were substantially the same as those reported here. 

As can be seen from the table, the performance of the algorithm does depend 
upon the choice of N N :  

• Iterations: Setting N N  to be five or six resulted in a significantly lower number 
of iterations than other choices. These values result in fewer iterations than the 
lower values of N N  because they result in fewer stages of adding variables; they 
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Table 3 

Problem 60viii with different choices for NN 
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NN Itns Time Cliques Stages Added edges* 

Total Stages Stage by stage 

Added Phase I 

2 51 22.1 24 

3 38 5.8 18 

4 33 9.5 22 
5 22 11.9 17 
6 17 13.5 15 
7 36 31.4 21 
8 37 42.0 19 
9 37 38.0 21 

3 84 3 22 5 
49 3 
13 12 

3 15 2 13 10 
2 5 

3 8 1 8 11 
3 4 1 4 5 
2 2 1 2 4 
4 1 1 1 9 
4 1 1 1 9 
4 1 l 1 9 

* The last four columns contain the following information: 
• Total: Total number of added edges. 
• Stages: Number of stages of adding edges. 
• Stage by stage: Breakdown of stages of adding edges. 

- Added: Number of edges added on a particular stage. 
- Phase 1: Number of Phase I iterations. 

requi re  fewer  i te ra t ions  than  the la rger  choices  o f  N N  because  the l inear  p r o g r a m -  

ming p r o b l e m s  are smaller .  

• Run  t ime:  Set t ing N N  to be 3, 4, 5, or  6 gives s ignif icant ly  lower  run t imes 

than  o ther  choices .  The choices  5 and  6 do  well  because  they  requi re  few i tera t ions ;  

the  choices  o f  3 and  4 do well  because  the  l inear  p r o g r a m s  are re la t ively  small ,  

mak ing  the t ime  pe r  i t e ra t ion  small .  

• N u m b e r  o f  edges a d d e d  and  n u m b e r  o f  stages o f  add ing  var iables :  As is 

expec ted ,  the  mean  values  o f  bo th  o f  these ca tegor ies  dec reased  as N N  increased ,  

with N N  = 2 resul t ing  in s ignif icant ly  h igher  values  than  o ther  choices.  

We also ana lyzed  the n u m b e r  o f  i te ra t ions  r equ i red  to solve Phase  I af ter  add ing  

edges.  This va lue  d id  not  a p p e a r  to be co r re l a t ed  with e i ther  NN, or  the n u m b e r  

o f  edges a d d e d  at tha t  stage, or  the  n u m b e r  o f  edges a l r e a d y  in the re laxat ion .  (The 

da ta  was ana lyzed  us ing  D u n c a n ' s  mul t ip le  range  test (see [43]).) 

7.4. Problems with randomly generated edge weights 

All  the  results  we have  r epo r t ed  so far  have been  on  p r o b l e m s  where  the vertices 
are un i fo rmly  d i s t r ibu ted  wi thin  the  unit  square  and  the edge  lengths are t aken  to 

be  the  E u c l i d e a n  d is tances  be tween  the vert ices.  In  this sect ion,  we cons ider  genera t -  

ing p r o b l e m s  where  the  edge lengths are  gene ra t ed  r andomly .  
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Table 4 
Perfect matching problems with the edge weights 
distributed uniformly 

Problem Itns Time Cliques Stages Gap 

E60i 12 10.2 0 0 - -  
E100i 14 42.9 1 1 1 
El00ii 10 20.5 0 0 - -  
E202i 15 285.4 3 2 1 
E202ii 15 281.1 2 1 4 

In Table 4, we give the results for five problems where the edge weights were 

independently generated from a uniform distribution on the interval [0, 1]. Problem 

E60i is a sixty node problems, problems E100i and E100ii are 100 node problems, 

and problems E202i and E202ii are 202 node problems. For all of these problems, 

the number  of nearest neighbours N N  was set to five. 

As can be seen, these problems require the addition of very few cutting planes 

and correspondingly few iterations. However, the low iteration count is not reflected 

in the run time, when compared with problems generated using the other method. 

This is because of the structure of  the constraint matrix. When the vertices are 

uniformly distributed, the edge lengths satisfy the triangle inequality. It follows that 

if vertex i is close to vertex j and vertex j is close to vertex k, vertex i will be close 

to vertex k. Therefore, vertices that are close together will have similar sets of nearest 

neighbours. This means that the adjacency matrix for the initial relaxation can 

probably be permuted so that A A  T has most of its nonzero elements close to the 

main diagonal (A is the initial constraint matrix). This beneficial numerical feature 

is unlikely to be a property of the constraint matrix when the edge lengths are 

randomly generated. 

8. Summary 

With the standard choice of parameters,  the algorithm we proposed produces the 
optimal perfect matching on most problems, showing that the algorithm is robust 
and that the separation heuristics are efficient. ( I f  the algorithm does not finish with 
an integral solution, the Padberg-Rao procedure [41] can be used to find a violated 

clique inequality. We did not implement this routine.) 
In Table 5, we give the results for eight sixty node problems and eight 202 node 

problems which were solved using our algorithm. For the sixty node problems, 
N N  = 7; for the 202 node problems, N N  = 10. Most of these results were given in 
the previous section; they are repeated here for convenience. For the sixty node 
problems, the initial constraint matrices have approximately 240 rows and 300 
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Table 5 

Several 60 and 202 node problems 

281 

Problem Optimal Itns Time Cliques Stages Gap 
value 

60i 2.5692 18 23.6 15 3 5 
60ii 2.7601 12 12.6 13 1 5 
60iii 2.8377 14 12.0 18 3 3 
60iv 2.7939 15 19.7 7 2 8 
60v 2.2073 10 8.6 2 1 5 
60vi 2.5609 21 31.9 22 3 7 
60vii 2.7714 31 47.6 29 5 5 
60viii 2.6279 36 b 31.4 21 4 7 

202i 4.7793 39 267.8 54 6 6 
202ii 4.8593 35 278.1 69 7 5 
202iii 4.6887 24 162.2 41 4 6 
202iv 4.4972 74 536.4 66 10 4 
202V 4.6585 27 198.3 49 3 7 
202vi 4.4679 28 U 180.4 30 2 5 
202vii 4.4000 31 a 253.3 65 6 5 
202viii 4.7317 55 b 427.7 57 7 6 

" This run finished with 
b This run required the 

of the wrong sign. 

a non-integral solution. 
addition of one extra edge which had reduced cost 

columns, with the final constraint matrices having approximately 15 more columns. 
For the 202 node problems, the initial constraint matrices have approximately 1100 
rows and 1300 columns, with the final matrices having approximately 50 more 
columns. 

We believe that these results give some justification for optimism regarding the 

performance of our algorithm. This optimism is based on consideration of both the 
number of iterations and the number of stages. 

Our optimism regarding the number of iterations is based purely on consideration 
of interior point methods. Using Karmarkar's algorithm to solve the final linear 
programming relaxation starting from scratch would take about half as many 
iterations as the number reported in the table. This is because we call the separation 
routines before optimality is reached, so the sequence of iterates does not approach 
the vertices of  the polytope too closely, and thus the number of iterations in each 
stage is reasonably small. Hence, after a cutting plane is added, we have a fairly 
central "warm start" which can be exploited. The value of "Gap"  in the tables 
further illustrates this point. 

The number of stages of  adding cliques using our algorithm is smaller than they 
would be if a cutting plane algorithm based on the simplex method were used. One 
reason for this is that, at a given stage, our separation heuristics often find violated 
odd set constraints that correspond to nested odd sets. This phenomenon occurs 
because we use an interior point method and because we do not solve the current 
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relaxation to optimality. I f  each linear program was solved to optimality, it would  

frequently be the case that the nested odd set constraints would  be added at successive 

stages. 

The run times we report  are not good,  principally because of  the method we use 

to calculate the projections. Forming a QR-factor izat ion is a very numerical ly stable 

method  of  calculating a projection,  but  it is not  fast. The lack o f  speed is especially 

noticeable when Householder  t ransformat ions  are used to form the QR-factorizat ion,  

because this leads to considerable fill in, in the intermediate matrices, and thus in 

the representat ion o f  the or thogonal  matrix Q. Another  drawback  to the method  of  

calculating projections that we used is the need to per form a new symbolic factoriz- 

ation of  the matrix every time cutting planes are added.  Possible remedies for this 

problem include calculating the projections using a precondi t ioned conjugate 

gradient me thod  (the same precondi t ioner  can be used on successive stages) or 

using low rank updates  to the project ion matrices, such as Schur  complements  (see 

Choi  et al. [6], for example).  

It is not  clear that  a warm start can be exploited as efficiently in a cutting plane 

method  based on an interior point  algorithm as in one based on the simplex 

algorithm. Thus, for an interior point-based method to be competitive, it is necessary 

to limit the number  o f  iterations per formed at each stage and to reduce the number  

o f  stages by designing separat ion routines which exploit  the nature of  the solutions 

generated by an interior point  method.  The results we have presented indicate that 

this may well be possible. 
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