
Mathematical Programming 56 (1992) 245-284 245
North-Holland

Solving combinatorial optimization problems
using Karmarkar's algorithm

John E. Mitchell*
Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, N Y 12180, USA

Michael J. Todd**
School of Operations Research and Industrial Engineering, Cornell University, Ithaca, N Y 14853, USA

Received 9 March 1989
Revised manuscript received 29 April 1991

We describe a cutting plane algorithm for solving combinatorial optimization problems. The primal
projective standard-form variant of Karmarkar's algorithm for linear programming is applied to the
duals of a sequence of linear programming relaxations of the combinatorial optimization problem.

Key words: Combinatorial optimization, integer programming, Karmarkar's method.

1. Introduction

A combinatorial optimization problem involves picking the best solution from a
finite set of feasible solutions. One way to solve such problems is to use a cutting
plane approach. In such a method, a sequence of linear programming relaxations
of the original combinatorial problem is examined, with each linear programming
problem in the sequence being obtained from the previous relaxation by adding
one or more inequalities.

Classically, linear programming problems have been solved using the simplex
algorithm due to Dantzig [8]. In 1984, Karmarkar [28] introduced an alternative
algorithm for linear programming which has better worst-case performance than
the simplex algorithm. This algorithm has led to development of a class of interior
point methods for linear programming (see Goldfarb and Todd [19] or den Hertog
and Roos [26] for surveys). Computational testing (see, for example, [1, 6, 33, 34])

Computational facilities provided by the Cornell Computational Optimization Project supported by
NSF Grant DMS-8706133 and by the Cornell National Supercomputer Facility. The Cornell National
Supercomputer Facility is a resource of the Center for Theory and Simulation in Science and Engineering
at Cornell Unversity, which is funded in part by the National Science Foundation, New York State, and
the IBM Corporation. The research of both authors was partially supported by the U.S. Army Research
Office through the Mathematical Sciences Institute of Cornell University,

* Research partially supported by ONR Grant N00014-90-J-1714.
** Research partially supported by NSF Grant ECS-8602534 and by ONR Contract N00014-87-K-0212.

246 J.E. Mitchell, M.J. Todd / Karmarkar' s algorithm for IPs

indicates that some interior point methods may outperform the simplex algorithm
on many classes of linear programming problems.

In this paper, we present a cutting plane algorithm for solving combinatorial
optimization problems which is based on Karmarkar's algorithm. The algorithm is
applicable to most integer linear programming problems; we show how it may be
used to solve matching problems. Our computational experience with this algorithm
on matching problems is described. The results of this paper were announced in
Mitchell and Todd [40].

This paper is organized as follows. In Section 2, we describe how we apply an
interior method to a given relaxation of our combinatorial optimization problem.
In Section 3, we present our algorithm, with some of the details being given in
Section 3, and others being presented in Section 4 and Section 5. In Section 6, we
discuss some of the implementation details and in Section 7 we present our computa-

tional results. Our conclusions are contained in Section 8. Further computational
testing is required before definitive conclusions can be made.

At each iteration of our algorithm, we have a linear programming relaxation of
the combinatorial optimization problem. The standard way to solve these linear
programs is by using the simplex method. Every point which is feasible in the
combinatorial optimization problem is also feasible in each relaxation. Generally,
the next relaxation is obtained from the current one by adding constraints, and
these constraints cut off the current feasible solution, so it is not feasible in the next

relaxation. The addition of cutting planes adds variables to the dual linear program;
if we give these additional variables value zero then the previous dual point is still
feasible. Since dual feasibility is maintained, each revision of the original linear
program is solved using the dual simplex method.

We consider using an interior point method instead of the simplex method to
solve the linear programs that arise when using a cutting plane approach. We choose
to apply Karmarkar's algorithm to the dual of the relaxation of the combinatorial
problem, so after adding cutting planes we know a feasible point, but that point is
not strictly positive. Therefore, we need to be able to obtain an interior point in the
dual when we add cutting planes. We give a direction which produces such a point

in Section 4.
We use the primal projective standard-form variant of Karmarkar's algorithm,

applying it to the dual of our current relaxation. The projective standard-form
variant is known to solve linear programs in polynomial time. The affine variant is
not known to be polynomial. Through consideration of trajectories (see [3, 4, 35]),
Megiddo and Shub [36] have provided evidence that it may take exponential time
when started very close to a particular vertex of the polyhedron of feasible solutions
to the linear program. These authors exhibited problems where one of the
infinitesimal trajectories touches every vertex, so if the sequence of iterates follows
this infinitesimal path, an exponential number of iterations will be required.

If the current relaxation of the combinatorial problem is not the final relaxation,
the optimal vertex of the current relaxation will not be the optimal vertex of the

.I.E. Mitchell, M.J. Todd / Karrnarkar's algorithm for IPs 247

final one. The sequence of iterates we generate converges to the optimal vertex of

the current relaxation. Therefore, we will probably be restarting the algorithm from

a point close to a nonoptimal vertex, so some centering may well be necessary in
order to obtain an efficient algorithm. For this reason, we chose to use an interior

point method with a built-in centering component.
For many combinatorial optimization problems, it is relatively easy to find the

optimal solution; it is much harder to actually prove optimality. Usually, proving

optimality requires the examination of a dual problem. This observation provides
motivation for our decision to apply Karmarkar's algorithm to the dual of the
relaxation of our combinatorial optimization problem. Another benefit of applying
the algorithm to the dual of the relaxation is that branch-and-bound is easier to
implement, since fixing a primal variable corresponds to dropping a dual constraint.

Many of the best computational results for interior point methods have been

obtained for primal-dual interior point methods; see Lustig et al. [33, 34] and Choi
et al. [6]. These methods maintain strictly interior points in both the primal and the
dual. Thus, the addition of a cutting plane will introduce dual infeasibility in addition
to giving a point on the boundary of the primal linear programming problem, making
it necessary to find new interior points in both the primal and the dual problems.
One way to get around this potential difficulty is to restart from the last dual iterate
which was feasible in the modified problem; the drawback with this approach is
that the resulting point may be far from the central trajectory in the new problem.

Goffin et al. [16, 17, 18] have investigated using variants of Karmarkar's algorithm
to solve problems in non-differentiable optimization. Their methods involve the
addition of cutting planes and we refer the interested reader to the papers cited.
Karmarkar et al. [29, 30] have considered using interior-point methods in a different
way to solve problems in combinatorial optimization.

Freund [12] has proposed a shifted barrier approach when a "warm start" is
known; Mitchell [38] has shown how this method can be used in the column

generation setting and has related the resulting direction to the one derived in this
paper. Warm starts can be exploited in an algorithm based on an interior point

method, as evidenced by Borchers and Mitchell [5], where a branch-and-bound
code which solves the subproblems using a dual affine method is presented. The
performance of this algorithm has been compared with the IBM package OSL [27]
on several facility location problems. The run times for the interior point code are
competitive with, and for larger problems often better than, those for OSL. From
a more theoretical viewpoint, Ye [47] has investigated the change in a potential
value of a polytope when an additional constraint is added. He has used this result
to show that a particular column generation algorithm runs in time polynomial in
the length of the original and added data. The papers [5, 38, 47] were prepared
after the first version of the current paper.

In order to employ linear programming techniques we have to express our
combinatorial problem in polyhedral form. We assume that our problem is given
in the form m a x { b T y : y ~ ~} where ~ is a finite set of points in R m and b c ~ m.

248 ,I.E. Mitchell, M.J. Todd / Karmarkar's algorithm for IPs

Define conv(~) to be the convex hull of ~. Then the combinatorial problem is
equivalent to the linear program max{bTy :y ~ conv(°~)}. Notice that the constraints
are not stated explicitly in this formulation. In using a cutting plane approach, we
are looking to represent a sufficient number of these constraints explicitly in the
form Bry <~ h so that the optimal point for the linear program max{bTy : BVy ~ h}
is in conv(~).

The algorithm we develop is employed to solve the perfect matching problem, a
classical problem in graph theory. Each feasible solution consists of a subset of the
edges of a given graph, so it can be represented by a vector in R;, namely the
incidence vector of the subset. (Here, p denotes the number of edges of the graph.)
As was shown by Edmonds [10, 11], the convex hull of these incidence vectors is
the set of vectors which satisfy three sets of constraints, known as nonnegativity
constraints, degree constraints and odd set constraints. The number of odd set
constraints is considerably larger than the number of nonnegativity constraints and
degree constraints, so our cutting plane algorithm would use an initial relaxation
consisting of all points satisfying the nonnegativity constraints and the degree
constraints, and the algorithm would add odd set constraints as necessary in the
form of cutting planes. The reason for testing the code on the perfect matching
problem is that there are good straightforward separation routines for this problem
so it is possible to analyze the fundamental algorithm without getting distracted by
the peripheral issue of finding good cutting planes. Gr/Stschel and Holland [24]
have developed a cutting plane algorithm for the perfect matching problem which
is based on the simplex algorithm. Like those authors, we do not expect to obtain
an algorithm competitive with combinatorial codes for this problem.

2. Our standard-form variant

We assume that the current linear programming relaxation of our combinatorial
optimization problem is expressed in the form

(~) max b~ry

s.t. 3,Ty ~< ~,

where y and b are m-vectors, ~ is an (n-1)-vector , and ~ R m × (n tl. (We discuss
alternative formulations at the end of this section.) The problem (1~) is equivalent

to the following problem:

(D) max z

s.t. ATy + zg <~ c,

where A := [~1 b] ~ R,~×n, c := (t "r, 0) v ~ Rn, and g := (0, 1) ~ R". We assume that A

has rank m.

J.E. Mitchell, M.J. Todd / Karmarkar's algorithm for IPs 249

The dual p rob lem to (D) is

(P) rain c'rx

s.t. A x = O,

gVx = 1,

x>~O.

In order to be consistent with the usual terminology, we refer to (P) as the current

pr ima l l inear p rogramming problem, and we refer to (D) as the current dual linear

p rogramming problem.

The problem (P) is in the s tandard form for the primal projective s tandard-form

variant o f Karmarkar ' s algorithm. This variant is known to converge to the opt imal

solution in time that is bounde d by a polynomial in the length o f the input, provided

the feasible region is compact . It has been investigated by Anstreicher [2], Gonzaga

[22], Gay [13], Jensen and Steger [44] and Ye and Koj ima [48], among others.

The algori thm is given in Figure 1. For a motivat ion and derivation of this method,

see, for example, [22]. The vector o f ones is denoted by e and (y~, z k) denotes the

vector (ykT, Z~)V" For any matrix M, PM denotes the project ion map onto the null

space o f M ; if M has full row rank, the matrix opera tor corresponding to P~4 is
1 - M V (M M V) - I M .

Initialization: Set k = 0. Let x°> 0 be feasible for (P) and (yO, z 0) be feasible for (D). Choose a tolerance
e for the duality gap.

While e~r x k - z ~ > e
(Update dual solution): Solve the one variable linear program

(D(z)) max z
s.t. aXy(z)+zg<~c,

where y(z) := (AkA~T)-IAk(c ~ - zgk). Here, A k := A X k, c ~ := X%, g~ := X~g, and X ~ denotes the
diagonal matrix whose diagonal entries are the coordinates of the current primal solution x ~. Let £
be the optimal value of the problem (D(z)). If £>z k, set zk+~£, yg+l~y(£); otherwise, set
z k + l .~ ~Tk, y k + l ~_ y k .

(Compute search direction): Set d ~- -- P A k (C ~: - z k + l g k).

(Choose step size): Choose step length o~ and set £ ~-e + ad, with c~ chosen so that £ > 0.
(Update primal solution): Set xk+~+ - (g~rY)-~Xk£.
(Update iteration count): Set k ~ k + 1.

End While

Fig. 1. The projective standard-form variant of Karmarkar's algorithm.

Notice that y (z) is a linear funct ion o f z, so the problem (D(z)) defined in Step

2 can be solved by a ratio test. (D(z)) is a constra ined version o f (D), so (y (z) , z)

is feasible in (D) if it is feasible in (D(z)) . This method of updat ing the dual solution
was first p roposed by Todd and Burrell [45].

250 .I.E. Mitchell, M.J. Todd / Karmarkar's algorithm for IPs

The step length a defined in Step 4 can be found in any of several different ways.
For example, c~ can be chosen by using a line search on an appropriate potential
function, it can be a fixed multiple of]1 d I1-1, or it can be chosen so that min{~i : 1 <~ i ~<

n} = 3/for some fixed 3' such as 0.1 or 0.01. See references [28], [45] and [46].
Because g is nonnegative and nonzero and ~ is strictly positive, the update of

the primal solution is well defined.

I f some of the constraints in (D) are equality constraints, some of the variables

in the primal problem will be unrestricted in sign. In such a situation, we use the

primal projective algorithm described in Mitchell and Todd [39]. This algorithm is
based on eliminating unrestricted variables, as is done also in the dual affine

algorithm first described in Adler et al. [1].

3. An algorithm for perfect matching problems

3.1. The perfect matching problem

The perfect matching problem is one of the fundamental problems of combinatorial

optimization. It was shown to be polynomially solvable by Edmonds [11] in a classic

paper in which he introduced and formalized the concept of a good algorithm.
Edmonds [10] found a polyhedral description for the perfect matching problem,

giving a complete and nonredundant description of the facets of this polyhedron.
The number of facets is exponential in the number of vertices of the graph, but

Edmonds was able to use the structure of the set of facets to obtain an alogirthm

which runs in time polynomial in the number of vertices.
In order to define the perfect matching problem, we first need to define some

terms from graph theory. A graph G = [V, E] consists of a finite, nonempty set of

vertices V together with a set of edges E where each element e ~ E is defined as

an unordered pair of vertices i and j in V - - we write e -- ij; these two vertices are
then adjacent and are called the endvertices of e. A graph G is called complete if

every pair of vertices is adjacent and if G contains no loops, that is, no edges of

the form ii. The complete graph on n vertices is written Kn. I f G = [V ,E] is a
graph and W c_ V, the set of edges in the subgraph induced by W is defined to be
E(W):={ i j cE: i , j~ W}, and the cut induced by W is defined to be 8 (W) : =
{i j~E: i~ W, j~ V\W}. We write 8(v) for 8({v)), the set of edges adjacent to

vertex v.
We now define the perfect matching problem. A set of edges M c_ E with no two

edges sharing a common endvertex is called a matching. Let n = IV I. Henceforth,
we assume n is even. A matching of cardinality ½n is called a perfect matching. It
should be noted that if M is a perfect matching then every vertex in V is an endvertex
of exactly one edge in M. Let b : E-> N be a weight function on the edges of the
graph G. For a matching M, the weight of M is given by

b(M):= Y~ b(e).
e ~ M

J.E. Mitchell, M.J. Todd/Karmarkar's algorithrn for 1Ps 251

Then the perfect matching problem is to find the minimum weight perfect matching
in the graph G. Since we are interested in solving the perfect matching problem we
assume, without loss of generality, that b > 0.

3.2. Formulation as a linear programming problem

We now recall Edmonds's polyhedral description of the perfect matching problem.
Let A be a subset of the edges of the graph G=[V, E]. Define m=lEI, and

consider the components of N,n indexed by E. The incidence vector y(A) of A is the
{0, 1}-vector in Rr, given by

{~ i f e ~ A ,
ye(A) = otherwise.

The perfect matching polytope P(G) ~_ ~ of the graph G is defined to be the convex
hull of the set of incidence vectors of perfect matchings of the graph. Thus P(G)
can be written

P(G) := conv{y(M) ~ ~" : M _~ E is a perfect matching}.

There is a bijection between the vertices of P(G) and the perfect matchings M of
the graph G.

Edmonds showed:

Theorem 1. For every graph G = [V, E], P(G) is the solution set of the .following
system of equations and inequalities:

y(6(v))=l forallv6 V, (1)

y(E(W))<~½(IWt-1) forallWc_ V, IW 1 odd, (2)

y(e)>~O JbrallecE. [] (3)

P(G) can also be described by (1) and (3) together with

y(t3(W))~>l forall W ~ [W]odd. (4)

We refer to (2) (or (4)) as odd set constraints, or alternatively as clique constraints.
Thus the perfect matching problem can be expressed as

min{bVy: y ¢ ~'~, y satisfies (1), (2), (3)},

or alternatively as

min{b~': y ~ ~ ' , y satisfies (1), (4), (3)}.

This is the optimization problem associated with the perfect matching polytope P(G).
The separation problem for this polytope is:

Separation problem for P(G). For a given y ~ N~, decide whether y ~ P(G). If not,
exhibit a hyperplane separating y from P(G).

P(G) consists of all points u cN "~ which satisfy (1), (3) and (4). It is trivial to
verify whether a given point satisfies (1) and (3). If we regard the components of

252 J.E. Mitchell, M.J. Todd / Karmarkar" s algorithm for IPs

a point as capacities on the flow on the corresponding edge of the graph, then a
given point y 6 ~'~ satisfies (4) if and only if the graph has no odd cut of capacity
less than one. Padberg and Rao [41] have used this observation to construct an
algorithm which solves the separation problem for P(G) by means of solving a
sequence of max flow problems. This algorithm is a variant of the Gomory-Hu
procedure for finding the minimum cut in a graph (see [21] or [32]) and it runs in
O(n 4) time in the worst case. It follows from [25] that the ellipsoid algorithm can
then be used in conjunction with this algorithm to give a polynomial time algorithm
for the perfect matching problem. This algorithm has a considerably higher worst
case running time than Edmonds's algorithm.

The matchingpolytope P~ (G) is defined to be the convex hull of incidence vectors
of matchings on the graph G. It has been shown by Edmonds that PM(G) is given
by the set of vectors y e N" which satisfy

y(6(v)) ~< 1 Vv~V,

y(E(W))<~½(lW[-1) V W ~ V,[Wlodd,

ye~O "~e~E.

Notice that the degree constraints are inequalities in the description of P,m(G).
There is a bijection between vertices of PM(G) and matchings of the graph G.

3.3. An overview of the algorithm

The initial relaxation is comprised of the degree constraints and nonnegativity
constraints. Odd set constraints are added as cutting planes as necessary.

As described in Section 2, we refer to the current relaxation as the current dual
linear programming problem, and we apply the primal projective standard-form
variant of Karmarkar's algorithm to the corresponding primal problem. Therefore,
cutting planes are added as constraints in the dual problem and as variables in the
primal linear program.

It is easy to find an initial dual solution by using heuristics to find a good perfect
matching. We attempt to improve upon the best perfect matching found to date by
rounding any points which are dual feasible.

When using the simplex algorithm, the current relaxation is solved to optimality
and then cutting planes are added. By contrast we try to add cutting planes before
solving the current relaxation, so the initial iterate for the next relaxation is not an
extreme point. This should aid the solution of the next relaxation. It is possible to
attempt to separate any non-integral dual feasible solution (any integral solution is
the incidence vector of a perfect matching). The initial dual solution for each
relaxation is the incidence vector of the best perfect matching found to date and
dual feasibility is always maintained. (In fact, the algorithm is monotonic in the
dual, though not strictly monotonic.) As soon as a better dual feasible solution is
found, the separation routines can be invoked.

J.E. Mitchell, M.J. Todd / Karmarkar's algorithm for IPs

A simplified version of our algorithm is as follows:

253

• (Initialization). Set up initial relaxation.

• (Loop)
1. Update the solution to the current relaxation. If a non-integral dual

solution is obtained, decide whether to attempt to round it and /or separate it.
2. If cutting planes are found, decide which (if any) to add to the relaxation.

If cutting planes are added, update the primal solution to obtain a strictly
feasible point and update the dual solution to the incidence vector of the best
perfect matching found to date.

3. If termination criterion is met, STOP.

The performance of this algorithm can be considerably enhanced by various

modifications. The algorithm is discussed in considerably more detail in Section 3.5.

3.4. A n initial solution

The degree constraints are equality constraints in the perfect matching problem, so
the primal variables corresponding to them are unrestricted in sign. Therefore, we
could solve the relaxations using the method described in Mitchell and Todd [39].
This method requires the solution at each iteration of a least squares problem where
the constraining matrix is stored implicitly using a sparse format, but is itself dense.
Such problems can be solved efficiently using a preconditioned conjugate gradient

method. However, we use a sparse QR factorization in order to solve least squares
problems, and such a method is not well suited to solving problems where the
constraining matrix is stored in the form indicated.

Therefore, we use a different approach. We relax the degree constraints so that
we solve a matching problem rather than a perfect matching problem. We adjust
the weight function b to ensure that the optimal solution is the optimal perfect
matching.

Thus, our initial relaxation has the form

(D °) max z

s.t. Sy <~ e,

y ~ 0 ,

(b - B e) T y + z < ~ O .

Here, S denotes the vertex-edge incidence matrix for the graph, with columns only
for those edges that are in the relaxation. It follows that S has exactly two nonzero
entries in each column, with each nonzero entry having value one. The vector b
contains the edge weights, with B being a positive real number which is large enough
to ensure that if integrality constraints on y were added to (D°), the optimal solution
would be a petfect matching. The vector y is associated with the edges of the graph,
with one element for each edge in the relaxation. We refer to (D °) as the inital dual

254 J.E. Mitchell, M.J. Todd / Karmarkar's algorithm for IPs

relaxation. The solution of (D o) consists of matched edges with value one and
circuits with value 0.5 on each edge (see [9]).

The initial primal relaxation is

(pO) rain eTx~

s.t. S T x ~ - x e + (b - B e) x o = O ,

Xo = l ,

x,/>0, Xe/>0, Xo>~0.

The primal variables x~ correspond to the vertices of the graph, with one element
for each vertex. The surplus variables xe correspond to the edges of the graph, with
one element for each edge in the relaxation. Then a strictly positive, feasible solution
to (pO) is

x~=½B V v ~ V , x~=b~ V e ~ E , and x o = l .

3.5. The algorithm in detail

As we proceed, we modify (D O) by adding cutting planes of the form (2). There are
an exponential number of cutting planes of this type, so we cannot add them all if
our algorithm is to remain practical. However, we want to add a large enough
number so that the optimal solution to our modified linear program is the optimal
solution to the problem max{bTt: y ~ PM(G)}, where 6:= B e - b.

Our algorithm is outlined in Figure 2. Preprocessing is done in boxes 1 and 2.
The iterations of the interior point algorithm are performed in the loop consisting
of boxes 3, 4, 5, 12, and 9. After updating the dual solution, we decide whether to
invoke the separation routines. If we do, we update the relaxation and the primal
solution appropriately. This is described in boxes 5, 6, 7, 8, and 12. Because of the
preprocessing, we have to do some postprocessing, as described in boxes 10, 11,
and 12. This postprocessing may lead us back into the heart of the algorithm. We

now describe how the algorithm works in detail.
Box 1. In order to save computational time, our initial linear programming

relaxation only involves a subset/F _ E of the edges.
For each vertex v ~ V, find the N N shortest edges (with respect to the objective

function) in the set 6(v). Then /~ is the union of these subsets. (In order to ensure
that there exists a perfect matching in the modified graph, we may modify /~ in
Box 2.) We have 1 ~< N N ~ n - 1, and it appears from the work of both Gr6tschel
and Holland and ourselves that the best choice for N N for problems of the size
and type we were solving lies in the range 5 <~ N N ~ 10.

Box 2. We use a greedy procedure to find a perfect matching M. If M ~/F, we
modify /~ ~-/~ u M. Let yF be the incidence vector of M. This gives us an upper
bound bXy F on the value of min{bTy: y~ P(G)}. We then set B to be this upper
bound and we define the modified objective function /~ by

tTe :-- R - be.

J.E. Mitchell, M.J. Todd / Karmarkar's algorithm for IPs

subset °i ed~;s ~ No Re;~se LP

2 ~pd ahtgiiiiill) ? ~ i e I e i atiOn

: : ' ,%o t°

, t
F Try to improve on y by rounding current dual solution 8

5 No Revise LP i rela~atio n
routines No 7

'"uncu"n0=" t Lgeneration methods

255

Fig. 2. Algorithm for the perfect matching problem.

Then zF: = bTy r =½B(n - 2) is a lower bound on the optimal value of

max{z: z<~ b Vy, y c PM(G)}

and also on any relaxation of this linear program. (It was shown in Mitchell [37]

that this choice of B is large enough to ensure that the optimal solution to the given

matching problem is the optimal solution to our original perfect matching problem.)
M is actually the best of several matchings which we inspect. To find each

matching requires several steps:

1. Choose an ordering ~r of the vertices V.
2. (Label all vertices unmatched.) Set M ~ 0 and i ~- 1.
3. (Find a greedy matching.) While i<~ n

• I f i unmatched then

- Find j with b(~/) = min{b(~'): j ' unmatched).
- Add /j to M and label i and j matched.

• Set i~-i+l .
4. (Use 2-opt (see [31] or [42]) to locally optimize the matching.) While 3i, j, k, l

V with /j, kl~ M and b(ij)+b(kl)> b(ik)+b(jl)
• Set M ~ - M w (i k w j l) \ (i j w k l) .

In our tests we used two orderings - - placing the vertices in numerical order and
in reverse numerical order.

256 .I.E. Mitchell, M.J. Todd / Karmarkar' s algorithm for IPs

At this stage, we also initialize the primal and dual solutions. The initial dual

solution is y~_yF, z ~ z F. The initial primal solution x is defined as described in
Section 3.4.

Box 3. We use the Todd-Burrel l procedure [45] to update the current dual solution
(y, z).

Box 4. I f y # yF then we round y to find a perfect matching]Q whose value we
compare with z F. Let y(/Q) be the incidence vector of]~t. Set z ~t :=/~Ty(~t). I f

z ~ > z F then we update yF to y (~ t) and z r to z ~. I f z ~ t > z then we set y = y (~ t)

and z = z ~.

We round y as follows.

1. Initialize 1~ ~- 0.

2. For e ~ f

• I f y e > 0 . 5 update ~ t < -) ~ u e.
3. I f I/~tl<½n then

• Pair off unmatched vertices and add resulting edge(s) to)~t.

4. While 3i, j, k, l ~ V with/ j , kl c]~I and b(ij) + b(kI) > b(ik) + b(jl)
• Set . ~ 7 l + - M w (i k u j l) \ (i j u k l) .

Notice that the degree constraints imply that ~ t obtained in step 2 is a matching,

though not necessarily a perfect matching. If it is necessary to pair off vertices in

step 3, it is unlikely that the resulting matching will improve upon the current best
matching; therefore, we chose to pair off vertices randomly in step 3.

Box 5. We call the cutting plane routines if y ¢ yF, provided Phase I has been

completed.

Box 6. Our separation routines are based on those of Gr6tschel and Holland

[24]. To be computationally efficient, it is vital for us to reduce the number of stages
of adding constraints. For that reason our heuristics are more extensive than those

of Gr6tschel and Holland. Our hope is that by spending more time searching for

violated constraints we will find more such constraints and save iterations later on.

This hope has been borne out by our computational experience.
We choose k values a ~, . . . , A k. (Our standard choice is to take k = 7 and use the

values 0.01, 0.06, 0.11, 0.16, 0.21, 0.26, and 0.31. All of the results we report used

this choice unless otherwise stated.) For 1 <~ i ~< k define E i := {e c/7: y(e) > A i}. We
then use depth first search to find the components of the graph (V, El). If any of
the odd components W violates the corresponding odd set constraint, add the
constraint of the form (2) to the formulation (provided the component was not a

component of the graph (V, E j) for some j < i). However, if I WI > IV\ WI then we
add the constraint corresponding to V \ W rather than that corresponding to W,
because this constraint is likely to be more sparse and the two constraints are

equivalent.
Note that there is no point in setting h i = 0 for some i because Karmarkar ' s

algorithm is an interior point method (and usually, except for one constraint, in
the dual), so the components of (V, E i) will nearly always be the same as the

components of G = (V,/~).

J.E. Mitchell, M.J. Todd / Karmarkar' s algorithm for IPs 257

We have not implemented the Padberg-Rao procedure, which is guaranteed to

find a violated constraint if one exists. Therefore, it is possible that we will be unable

to separate y from PM (G) although y ~ PM (G). However, it appears that the heuristic

routines are sufficiently good that this rarely happens.
Box 7. I f cutting planes were found in Box 6 then we go to Box 8; otherwise we

go to Box 12.

Box 8. We update our relaxation by adding the constraints found in Box 6. The

dual point (y, z) is not feasible after we add the cutting planes, so we update z to
z F a n d y t o y F .

It is possible to develop criteria to decide when to drop primal variables. For
details, see Mitchell [37]. In this algorithm, we never drop any primal variables.

Box 9. We check whether the duality gap is sufficiently small (see Section 6.3).

I f it is then we move to Box 10 and check reduced costs; if it is not then we return

to Box 3.

Box I0. Our initial formulation does not use all the edges of the graph. Therefore,

it is necessary to check the reduced costs of these edges in order to confirm optimality

of the solution. I f some edge has negative reduced cost then we move to Box 11.

Otherwise we STOP. It should be noted that it is not guaranteed that our final

solution is a matching because we do not use the Padberg-Rao procedure. Define

Y:= {y c ~m: y satisfies (1) and (3), y is not separable from PM(G)
using the separation routines of Box 6}.

Define Py(G):--conv(y ~ Y}. Then our final solution is an optimal solution to the
problem max{bTy:ycfi(G)} for some polytope fi(G) with PM(G)c_fi(G)c_
P v (G) .

Box 11. We choose some subset of the edges with negative reduced cost and add

these variables to our formulation. We describe how to do this in Section 5.4, with
surplus variables being introduced in each additional primal constraint and an

artificial variable with large cost being added in the primal relaxation. I f more than

fifty edges have negative reduced cost, the edges are bucket sorted by violation, and

the (approximately) fifty most violated constraints added. In the resulting Phase I
problem, all the additional primal surplus variables have the value of the appropriate

reduced cost, with the artificial column being the sum of the vector of ones and the
vector of reduced costs. After revising our linear program, we move to Box 12.

(Note that all the dual variables are bounded by one, so if we added this constraint
to the dual linear program, we could immediately find an interior primal feasible

point, as described in Section 5.2. We intend to investigate this option at a later
date; for the current paper, we were interested in the performance of the procedure
described in Section 5.4.)

Box 12. The primal solution x is updated.

I f we came to this box from either Box 5 or Box 7 or Box 11, we have an interior
primal feasible point and we use the projective s tandard-form variant of Karmarkar ' s
algorithm to calculate a new point.

258 J.E. Mitchell, M.Z Todd / Karmarkar's algorithm for IPs

If we entered this box from Box 8, the current primal feasible point is not an
interior point. A procedure to find an interior primal feasible point is described in
Section 4.5. We set the vector of relative weights for the added variables to be e,
unless otherwise stated, The step length we chose is 0.75 of the maximum possible

step length.

4. Obtaining an interior point when adding cutting planes

4.I . In troduct ion

We assume that the linear program

(D) max z

s.t. A T y + z g ~ c ,

iS the currem linear programming relaxation of the combinatorial problem that we
are solving. The dual of this linear program is

(P) rain c'rx

s.t. A x = O,

g'rx = 1,

x > 0 .

We wish to modify (D) by adding the constraint

aS), + zgo ~< Co, (5)

where ao is an m-vector and Co and go are scalars. Adding this constraint corresponds
to adding a variable xo to (P), giving the problem

(Po) rain C T X + CoXo

s.t. A x + aoXo = 0,

g T x + goxo = I,

x>O, xo~0.

We assume that we have an interior feasible point ~ for the problem (P). Then
the point

x = ~ , xo=0,

is feasible for (P0), but it is clearly not an interior point. We also assume that g and

go are nonnegative.
In this section, we give two methods by which an interior point may be obtained,

and we show that these methods are essentially equivalent. One method resembles
a Phase I procedure in that it introduces an artificial variable. The other method
calculates an appropriate direction more directly. For consideration of other direc-
tions, the reader is referred to Mitchell [37].

.I.E. Mitchell, M.J. Todd / Karmarkar's algorithrn for IPs 259

Before describing the two procedures in more detail, we define some notation

and make an observation. We define .~ to be the n × n diagaonal matrix whose
diagonal elements are the entries of ~. Then e, the vector of ones, is feasible for the

scaled problem

(F') rain ~Ty

s.t. A 2 = 0,

~ > 0 ,

where ?:= J(c, A:= A3(and 4: = J~g. The corresponding scaled version of (Po) is

(Po) min ?T£ + CoXo

s.t. A £ + aoXo = O,

~, T £ + goXo = 1,

2~>0, Xo >~ O,

and £ = e, Xo = 0 is feasible for (Po).

4.2. A Phase I procedure

We first describe the Phase I procedure. We define the linear program

(P_,) min x-1

s.t. f ~ £ + aoXo - a o x _ l = O,

~, T £ + gOX 0 _ goX_ l : 1,

It should be noted that £ = e, Xo = 1, x-i = 1 is a strictly positive feasible solution
to the problem (['_1), and £ = e, Xo = O, x_~ = 0 is an optimal solution. Indeed, any

optimal solution to (P 1) leads naturally to a feasible solution to (P0). We propose
to solve (Po) using Karmarkar's algorithm for linear programming. Therefore we
consider the direction

P[Aao-~o] =: do ,
\d_l/

where PM denotes projection onto the null space of the matrix M.
In general a Phase I procedure can take several iterations; however, in this case,

the direction (d, do, d-O defined above is such that the Phase I procedure can be
completed in one iteration with a suitable choice of step length. In addition, a
strictly positive feasible point for (Po) is returned, provided £ is strictly positive. In
order to show this we first prove several lemmas. The first lemma gives an explicit
expression for the direction (d, do, d_~).

2 6 0 .I.E. Mitchell, M.J. Todd I Karmarkar' s algorithm for IPs

Lemma 1. The direction (d, do, d_~) given above is proportional to

/,~(~,~)-'oo\
- - 0 ~ t,+o)

where
~ ~ T

0 := a~o(AA)-'ao. (6)

Proofl We use the Sherman-Morr i son-Woodbury formula (see, e.g., [20]) to

calculate

do = P[;~ ~o-,M
d_a

- [a~][~ ' r+2aoa-[] -~[~ao-ao] (O t
-1 k-a~J \-1/

= - a [(~ T) - : _ ~ (~ :) - : a o a : (~) - ,] a o
1+20

1 [- a o J

-~/~(~>-'oo~
1:o)

Notice that 0 > 0 so we can drop the scaling term 1 / (t + 2 0) and redefine the

direction to be

:---- - (7) ~ol \ 1+0 /
The following lemma discusses the relative sizes of the components of the direction

(d, do, d_~).

Lemma 2. The smallest component of the direction defined above is d-a, and it is
strictly smaller than any other component. In addition, d-I is negative.

Proof. Since 0 > 0 it is clear that d-1 < do and d_a < 0. In addition dVd = 0 so every
component d~, 1 ~< i ~ n, of d satisfies d~ ~ - , /~ . We have two cases depending on

the size of 0:
1. I f 0 ~ l t h e n d ~ > ~ - l > d _ l , l < ~ i < ~ n .
2. I f 0 > l t h e n d ~ > ~ - 0 > d _ a , l<~i<~n.

Hence d-a is the smallest component of the direction defined above. []

J.E. Mitchell, M.J. Todd /Karmarkar's algorithm Jbr IPs

Lemma 3. The largest step length c~ such that the point

x_ , (.) J \ l J \d_ b/

is nonnegative is ~ := -1/d_1. Then x_~(5) = O, Xo(5) > 0 and .~(5) > O.

Proof. This follows directly from the previous lemma. [~

261

The standard Karmarkar step, as defined in, for example, the work of Gonzaga
[22], involves moving in the direction which is the negative of the projection of the
(scaled) objective function onto the null space of the (scaled) matrix of subspace
constraints and then normalizing to satisfy the normalizing constraint. In this case,
the projected direction is the direction (d, do, d_a) defined above.

Theorem 2. The problem (~-1) can be solved in one step using Karmarkar's algorithm
by moving an appropriate amount in the projected direction and then normalizing to
satisfy the normalizing constraint. Moreover, the resulting solution gives a strictly
positive feasible solution to the problem (~o) and thus a strictIy positive feasibIe solution
to (Po)

Proof. The step length 8 defined in the previous lemma gives a strictly positive
point (~(c~), Xo(5)) which is feasible in the subspace constraints of the problem
(~0). Define ~:=#g'rY(8)+goxo(8). It should be noted that ~>0 since 3~(~)>0,
Xo(OT) > 0 and (g, go) is nonnegative and not identically zero. Then (1/.~) (~(O7), Xo(g))
is strictly positive feasible point in (~o) and (1 /~:) (~(5) , xo(8)) is a strictly positive
point which is feasible in (Po). []

Now

and

do 1 (8)
Xo(5)) = 1 --~_~= i ~ O"

_ ~ 1 d 1 ~T(~T)_~ao. (9)
Y (5) = e d_, = e - i + ' 0

Therefore, when using the Phase I procedure detailed above the following strictly
positive feasible point for (Po) is obtained:

xo = 0, (10)

x = (1+ 0)0~ "2 "2 T-1 - 4 , x A (A X A) do, (11)

where

1
0:= 1 + 0 + go- gTX2A(AX 2A'r) lao

and 0 = aTo(Af(2AT)-~ao, as in equation (6).

(12)

262 J.E. Mitchell, M.J. Todd / Karmarkar' s algorithm for IPs

4.3. Working directly in (Po)

We now describe a more direct method of obtaining a direction in the problem (Po)-
Moving in this direction from the point x = ~, xo = 0 gives a strictly positive feasible
point for (P0). In order to derive this direction we first define the direction

P 0

We are going to consider moving in this direction from the point .~ = e, xo = 0 in
the problem (Po)-

As mentioned in Section 3, the speed of convergence of Karmarkar's algorithm
is adversely affected if the sequence of iterates approaches a nonoptimal vertex too
closely. For that reason, it is important to bring the added variable xo in at as large
a value as possible without greatly increasing the objective function value. In

addition, from considerations of complementary slackness, it is probable that the
larger the value of xo the smaller the slack in the corresponding dual constraint
when the dual solution is updated. This is desirable because it is likely that the
added dual constraint will hold at equality at the optimal solution to the current

relaxation.
The direction (d, do) is the direction of steepest ascent for the problem

max Xo

s.t. A 2 + aoXo = O,

~ 0 , Xo>~O.

We work in the scaled problem because in this problem the initial point is ~ = e,
so a step of length at least one can be taken without violating the nonnegativity

constraints.

Lemma 4. The direction (d, do) is proportional to

and do > O.

Proof. This lemma is proved by direct calculation, using the Sherman-Morrison-
Woodbury formula (see, e.g., [20]). Recall 0 = a~(AA T) lao from (6). We have

P~Aa°l 1 = -- ao [AAT+a°a~]-~a°

= _ [(~ T) , 1 (f~f~v)_,aoa~(f~f~T)_,]a °
1+0

Thus do = 1/(1 + 0), which is clearly positive. []

J.E. Mitchell, M.J. Todd / Karmarkar's algorithm for IPs 263

Thus we are led to consider the set of points

~ : = {(X(0l) , X0(0L)): 3~(0~) = e -- o ~ d T (d d T) - l a 0 , X0(OL) = 0 60L > 0}.

Every point in this set satisfies the subspace constraints for the problem (Po).

Define

(14)

- 1
O%~x := mini{a[(AdT)- lao} '

where c/~ denotes the ith column of ,4.

(15)

Lemma 5. IXma x is well-defined and positive.

Proof. Recall that e is in the null space of A so

eT,4T(,~AT)- - la0 = 0.

Also, ao is not identically zero so dT(d,4T)- la0 is not identically zero. Therefore

,i-r(idT)-~ao has a negative component. []

Lemma 6, The point (~(ce), Xo(a)) is strictly positive and satisfies the subspace con-
straints for the problem (Po) if and only if 0 < ce < ~m~x.

Proof. The given point satisfies the subspace constraints by definition. The value

of Xo(a) is positive if and only if 0 < a. From the definition of amax, for ce > 0, Y(a)

is positive if and only if o~ < a • []

Lemma 7. The value of C~max is bounded below by 0 -1/2 and it is strictly bounded below
by (1 + 0) -1. (Recall, from (6), 0 = aT(*,4T)-la0.)

Proof. This follows from the fact that the 2-norm of the vector ~IT(A/~I T) la 0 is the

square root of 0 and that ~ < 1 + w for any real positive w. []

Define

((a) := g V x (a) + gOXo(a). (16)

Then the point ((1/~(a))X,Y(a), (1/~(a))Xo(a)) is feasible for the problem (Po)
provided 0 ~< a ~< a and it is an interior point if the inequalities hold strictly. We

denote this point by (x(a) , xo(a)). Then

Xo(Cr) = ~0, (17)

x(o~) = tbol-'~ -- ~x, Za T (a22A X)-a ao, (18)

where

1
~t := --1 j_ T`*2 T "*2 T--1 " (19) a g o - g X A (A X A) ao

264 .I.E. Mitchell, M.J. Todd / Karmarkar' s algorithm for IPs

Theorem 3. There exists a step length ~ for which the point (x(~) , Xo(ff)) is the point
found using the Phase I approach defined in Section 4.2.

Proof. Define ~ := (1 + 0) 1. Then (x(c~), xo(~)) is exactly the point obtained using
the Phase I method. See equations (10)-(12). []

In general we do not want to be limited to choosing a = g. We can either choose
to go a certain fraction of the maximum possible step o~m,× or we can use a line

search on a potential function similar to Karmarkar's potential function. Care is

needed if this second approach is used because the potential function is not defined
on the boundary of the feasible region, so in particular it is not defined at (e, 0),
the inital point of the step.

4.4. The objective function value

We consider here the change in the primal objective function value when adding a

dual constraint. When moving in the direction found above, we obtain a point in
the set ~, defined in equation (14).

Lemma 8. Assume the dual values y and z have been updated in the standard way
given in Todd and Burrell [45] and that (y, z) violates the added constraint defined
in equation (5). Then every point in ~ has smaller value with respect to the objective

function (~ - z~, Co- zgo) than the point (e, 0).

Proof. By assumption we have

y = (7,A T) 1A(~-z~) ,

and so for 0?(oQ, Xo(~)) c ~ we have

(c - zg)Vx(a) + (Co- zgo)Xo(a) - (c - zg)Te

c~[Co- zgo- a ~ (A A X) - t A (e - zff)]

= a[Co- zgo- aVoy].

Since y violates the added constraint, this quantity must be negative. []

4.5. Adding many constraints

We now consider adding many constraints to the problem (P). Thus we modify (D)
by adding the p constraints

A~y + Zgo <~ Co, (20)

J.E. Mitchell, M.J. Todd / Karmarkar' s algorithm for IPs 265

where Ao c ~m×p and Co and go are both real p-vectors, go being nonnegative. Adding

these constraints corresponds to adding the variables Xo to (P), giving the problem

(Poo) min cVx + C[Xo

s.t. A x + Aoxo = 0,

grx + g~xo = 1,

X ~ O, Xo >1 O,

where xo is now a p-vector. By analogy with Section 4.3, we condier the direction

Lemma 9. The direction doo is given by (I + O)-le, where we define

O := Aor(A/i+)-lAo. (22)

Proof. This can be shown by direct calculation using the Sherman-Morrison-
Woodbury formula (see, e.g., [20]). []

A drawback to finding an interior feasible point for (Poo) using the direction
defined in (21) is that it is not guaranteed that the direction doo is strictly positive.

Since doo solves the system

(I + O)doo = e,

standard error analysis shows that doo will be close to e (and thus positive) if the

norm of the matrix 0 defined in (22) is sufficiently small. The scaling of the columns
of A0 is arbitrary, so it is possible to scale them so that the norm of AoX(/(,4+)-lAo

is small and doo> 0. However, such an approach is liable to produce badly scaled
constraint matrices and for that reason we develop a different approach.

This method involves replacing the extra variables with one variable. We then
use the methods defined above for dealing with problems with one extra variable.
Therefore, we define

C~o := Aow, (23)

Go := CroW, (24)

go := g~w, (25)

where w is a strictly positive p-vector, and consider the linear program

(Poo) min ~vy + ~o~o

s.t. , 42 + do~o = O,

~-r~ + ~o~o = 1,

Y~>0, 2o~>0.

266 .I.E. Mitchell, M.J. Todd / Karmarkar's algorithm for IPs

Here Xo, Co and go are scalars, go being nonnegative, and ao is an m-vector. Notice
that Y = e, Xo = 0 is feasible for the problem ({'oo).

The simplest choice for w is to set it equal to e. We have also experimented with
two other choices for w, namely, setting the ith component of w to be the amount
by which the current solution y violates the ith added constraint, and setting the
ith component of w to be the reciprocal of the 2-norm of the normal to the ith
added constraint.

Lemma 10. I f (~, Xo) is feasible for (Poo) then ()~Y, ~oW) is feasible for (Poo) and has
the same objective function value.

Proof. This lemma is proved by substitution. Notice that 2oAow = YCodo and similarly

~og[w = Xogo and 2oC[W = "2o~o. []

It follows from this lemma that if (Y, 2o) is a strictly positive feasible point for
(~'oo) then (XY, 2oW) is a strictly feasible point for (Poo) with the same objective
function value. Thus we propose to find an interior feasible point for the problem
(Poo) by first finding such a point for (Poo) using the methodology of Section 4.3.
Equations (17)-(19) imply that we obtain the following point, which is an interior
feasible point for (13oo) provided 0< ~ < O~m~:

~ o (~) = ~',
~(a) = Oc~-'e - ~ / j A T (] ~ A T) - l a 0 .

where

1
0 := ' + go -- gTA*('Li~)- 'ao '

-1
~max := m i n i { ~ (~ T) 1do } • (26)

Thus we obtain the interior feasible point

Xo(a) = Ow, (27)

X (O L) = ~.tOL.--1.~ - - OX2AT(A2ZA x) 1Aow, (28)

for the problem (Poo). Note that it follows from Lemma 7 that t~ma x is bounded
below by the reciprocal of ,/doV(AA-r)~lC~o =,/wTA~(,i~i~)-lao w =

5. Adding variables

5.1. Introduction

We assume that the linear program

(D) max z

s.t. ATy+zg<~c,

,I.E. Mitchell, M.J. Todd / Karmarkar' s algorithm for IPs 267

is the current linear programming relaxation of the combinatorial problem that we

are solving. The dual of this linear program is

(P) min cTx

s.t. A x = O,

gYx ~ l ,

x>~O.

In this section we consider adding variables to the problem (D). The reason we

develop the methodology to do this is as follows. We are interested in solving
combinatorial optimization problems. For some of these problems, it is desirable

to omit several variables from the initial formulation if the size of the relaxation is
to remain manageable and if a cutting plane approach is to be efficient. For example,

when solving perfect matching problems only a small subset of the edges appear
in the initial formulation, because it is expected that edges connecting widely
separated vertices are unlikely to appear in the optimal perfect matching. Using the
cutting plane approach defined in Section 3, the relaxation of the combinatorial
problem will have the same form as the problem (D). In order to show that the
optimal solution to the relaxation is the optimal solution to the combinatorial

problem, it is necessary to check that none of the omitted variables should appear

in the relaxation. This check involves looking at the reduced costs of the omitted
variables. If any reduced cost is of the wrong sign then it is necessary to add the

corresponding variable to the relaxation, and the appropriate constraint to the dual
of the relaxation. Therefore, for many problems, a cutting plane approach based
on Karmarkar 's algorithm can be competitive only if it has the ability to add variables
to problems of the form (D).

In what follows, we assume that we have either a simple upper bound or a simple

lower bound on each variable of the combinatorial problem. Thus, each possible
extra constraint for the problem (P) is an inequality constraint.

We assume that the problem (D) is modified to the following problem when the
variable Y0 is added to the relaxation:

(Do) max z

s.t. A T y + aoYo + zg ~ c,

Yo <~ Uo,

- Y o <~ - lo.

Here, ao is an n-vector, and Yo, uo and lo are scalars. Thus Uo and lo are upper and
lower bounds respectively on Yo. We do not require that both Uo and lo be finite,
merely that one of them is. We assume that lo <~ 0 ~< Uo, so if (y, z) is feasible for the
problem (D) then setting Yo--0 gives a feasible point for (Do).

268 J.E. Mitchell, M.J. Todd / Karmarkar's algorithm for IPs

The dual problem to (Do) is

(Po) min CTX + UoX, - loxt

s.t. A x = O,

aToX+Xu --Xt = O.

gTx = l,

x/>0, xu >>- O, xt >10,

where xu and xt are scalars.

Recall from Section 3 that we regard the current linear programming relaxation

as solved when the duality gap is less than some threshold e. We refer to a primal

feasible point x and a dual feasible point (y, z) as an e-optimal pair o f solutions if

c T x - - z < e ; we also say x is e-optimal for (P) and (y, z) is e-optimal for (D) in

this case.

Assume that 2 and ()~, 2) constitute an e-optimal pair for the dual pair of problems

(P) and (D) and that 2 was obtained using an interior point method, so that it is
T A strictly positive. Define ~7 := aox, the reduced cost of the variable Y0. We divide the

analysis into four cases:

1. ~7 = 0: Then x = 2, x, = xl = 0 and y =)~, z = 2, Yo = 0 are an e-optimal pair of

solutions for (Po) and (Do).

2. ~7 ~>0 and lo=0: Then x = 2 , xu=0 , xl=~7 and y=)~, z=~ , y o = 0 are an

e-optimal pair of solutions for (P0) and (Do).

3. ~<~0 and Uo=0: Then x = 2 , x , = - ~ , x~=0 and y=)~, z = 2 , y o = 0 are an

e-optimal pair of solutions for (Po) and (Do).

4. Otherwise: It is necessary to add the variable Yo to (D) and the corresponding

constraint to (P) and reoptimize.
From now on, we assume that we are in the last of these cases.

5.2. Both bounds are finite

I f lo and Uo are both finite consider the following procedure:

~+/3 if~>0,
1. Set x~ ~ I. /3 otherwise.

2. Set x u ~ x 1 - ~ .

This gives an interior feasible point for (Po) for any positive/3. Notice that one of
x, and x~ takes the value 17/1+/3, with the other taking the value/3. The adjustment

to the objective function value is

/ 3 (uo - lo) - r f l o if~7>~0,

/3(Uo- lo) - rtuo otherwise.

Thus the greater the value of/3, the greater the increase in the objective function
value. The drawback to choosing a small value for/3 is that a variable in the problem

J.E. Mitchell, M.J. Todd / Karmarkar's algorithm for IPs 269

(Po) has that small value, so if this variable is nonzero at the optimal solution,

Karmarkar ' s algorithm will take many iterations to converge.

I f ~ is an arithmetically large positive (negative) number, it appears likely that

xu (xl) will be zero at the optimal solution and therefore it is reasonable to choose

a small value for]3. I f the absolute value of 77 is small then it is not clear which
one of the variables xu and xl will be basic at the optimal solution and therefore a

large value of /3 should be chosen. We suggest choosing /3 to be a constant,

independent of the value of ~7. Notice that this choice satisfies the requirements for

values of ~/which have either large or small absolute value: if ~/has small absolute

value, xu and x~ will have approximately the same value; if ~/ has large absolute

value, one of x~ and xt will have approximately that value, with the other variable

being small relative to it.

5.3. One bound is infinite

We assume that the upper bound on Yo is infinite and the lower bound finite but

nonpositive. Usually the lower bound is zero; however, we consider a more general
situation. The procedure we develop can be modified straightforwardly for the case

when the lower bound is infinite and the upper bound finite.

Thus we are interested in finding a strictly positive feasible point for the problem

(Po) min eTx -- loxl

s.t. A x = O,

a T x - - X~ = O,

gTx = 1,

x>~O, xt>~O.

The point ~ is e-optimal for (P) and ~7 is defined to be T A aox. I f ~7 > 0, setting xt = ~/

gives an interior feasible point for (Po), and in fact this gives an e-optimal solution

to (Po) if l0 = 0. Therefore, for the rest of this section we assume that ~7 < 0. Consider
the Phase I problem

(P 1) min x_l

s.t. A x = O,

aTx- -x ,+(/3 - -~?)X 1=0,

gTx~- 1,

x>~O, xt>~O, x _ ~ O ,

where/3 is some positive number. Notice that setting x = ~, xl =/3 and x-1 = 1 gives
a strictly positive feasible point for (P -0 . This Phase I problem can be obtained as
a scaling of the limiting version of the problem (Po) as the upper bound goes to
infinity.

270 J.E. Mitchell, M.J. Todd /Karmarkar's algorithm for IPs

If the optimal value to (P-l) is greater than zero, the problem (Po) is infeasible
and therefore the current relaxation of the original combinatorial problem is
unbounded. If the optimal value to (P_~) is zero, the optimal solution leads naturally
to a feasible point for (Po); the question remains as to whether this point will be
strictly positive. In p(actice, we use a big-M method, so we use the objective function

cX x - Ioxl + M x _ I ,

where M is some large positive number, and we use Karmarkar's algorithm. Provided
M is large enough and (Po) is feasible, x i will be zero at the optimal solution. If
the direction we move in is such that choosing a step length of an appropriate size

would give an interior feasible point for (P~), we choose that step length and drop
the artificial variable from the formulation. It follows that we always have a strictly
positive feasible point for either (P 1) or (P~).

The scaled version of (P-l) is

(P-l) min x l

s.t. ~ Y = 0,

dory - /3~, + (8 - n) x - , = o,

~T)~ = 1,

Y~>0, £t>~0, x_l~>0,

where ,4 :--AX, do := Xao, ~ :=)(g and 2 is the diagonal matrix whose entries are
the components of the vector 2. Thus the point)? = e, Yt = 1 and x_~ = 1 is feasible

for (P-l).

Lemma 11. The direction o f steepest descent in the null space o f the subspace constraints

f o r the problem (P-I) is

: : / (29)

Proof. This result can be shown by direct calculation, using the fact that

I w T L _ p - l w T H I p - I ,

where p = v - w T H - l w , H is a symmetric positive definite matrix, w is a vector, and

v is a scalar. []

J.E. Mitchell, M.J. Todd /Karmarkar's algorithm for IPs

We now give a bound on the reduced cost 7/ of the omitted variable Yo.

271

Lemma 12. The size of is bounded above by the 1-norm of the vector PAdo. In
fact, r/ = eT pTfio.

Proof. By definition,

~7 a~ 2 = ' T = aoe = eTpAdo,

the last equality holding because e is in the null space of A. []

In the previous section we were able to give a Phase I procedure which converged
in one step. The Phase I procedure defined in this section will not in general converge
so quickly, although if the size of the reduced cost is sufficiently small we do have

the following lemma.

Lemma 13. If

then the smallest component of the direction defined in Lemma 11 is that for the
artificial variable, provided fi is chosen appropriately.

Proof. Set/3 = [[P~do][~. The lemma then follows from equation (29). []

It follows that if

In] Ile a011 ,
the Phase 1 procedure converges in one step with an appropriate choice of step

length. Therefore, using Lemma 12, the procedure converges in one step if

lerP~do111 P~ ~ol]~ ~< II P~ao 1122. (30)

i f the Phase I procedure converges quickly, it is likely that the feasible point we
find for (Po) will be close to ~, so convergence to optimality in this problem should
be rapid. We now give two cases in which the condition for convergence in one
step holds. First we state the following technical lemma. (For a proof, see [37].)

Lemma 14. For any n-vector a,

Ilall22~> TI[a[ll[[all~,

where

2 [] r = l + v ~ -

272

Theorem 4.

(i)

or

.I.E. Mitchell, M.J. Todd /Karmarkar's algorithm for IPs

If

(ii) leTpx ol ~< ~-IIP~&ll,,
2

where r - -
1 + , f n '

then the Phase I procedure converges in one step.

Proof. In case (i), the result follows from equation (30), since Ilall~<~ Nail2 for any

vector a. Case (ii) follows from Lemma 14 and equation (30). []

5.4. Adding many variables

We may wish to add many variables to (D) at once. We can use the procedure given

in Section 5.2 for each of these variables that have finite upper and lower bounds
in order to obtain a point in the modified version of (P) where the additional slack

and surplus variables have positive value. Therefore, we assume that all p added

variables have infinite upper bound. Thus we wish to find a strictly positive feasible

point to the following problem:

T (Po) rain cTx -- IoX;

s.t. A x = 0,

A ~ x - x; = O,

gTx = 1,

x>~O, xt>~O,

where now x; and lo are p-vectors and A0 is an n x p real matrix. Define the vector

:= AoV2. I f the value of any component of ~ is positive the appropriate component

of x~ can be set equal to that value. Thus we assume that ~ <~ 0.
Let/3 be a strictly positive p-vector. Then, by analogy with the method given in

Section 5.3, consider the Phase I problem

(P - 0 min x 1

s.t. A x = O,

a ~ x - xl + ([3 - n) X _ l = O ,

gTx = 1,

X ~ O, X I ~ O, X_ 1 ~ O,

where x-1 is a scalar. Notice that x = 2, x; = fl, x-1 = 1 is a strictly positive feasible

point for this problem.

J.E. Mitchell, M.J. Todd / Karmarkar's algorithm for IPs 273

If the optimal value of this problem is zero, the optimal solution leads to a feasible

point for (P~); if the optimal value of (P_~) is strictly greater than zero then (P~)

is infeasible. In practice, we use a big-M method, as in the case when we only add
one variable. Thus, our Phase I objective function is

cTx -- l~Xo + Mx-1 ,

where M is some large positive number. Provided M is large enough and (Po) is

feasible, X_l will be zero at the optimal solution.

6. Discussion of the implementations

6.1. Technical details

The algorithm was run on an IBM 3090 at Cornell University. Our computer code

was written in FORTRAN77. We compiled the code using FORTVS, with an

optimization level of three. We used the GOSTMT option. All other options were
set to their default values, except as indicated in the next paragraph. We did not

use the vector option available on the IBM 3090.
The method we used to perform the projections necessary in an implementation

of Karmarkar's algorithm requires large amounts of virtual memory when running

larger problems. The operating system VM/CMS is limited to 16 megabytes of
virtual memory (24 bit addressing). In order to use more than 16 megabytes of
memory on the IBM 3090, it is necessary to use the Extended Data Array Capability
(EDAC) of VM/XA. This requires placing large arrays into dynamic common blocks
and then compiling the code with a special option. When this facility is used,
VM/XA provides extended addressing up to 999 megabytes (31 bit addressing).

6.2. Performing the projections

When using Karmarkar's algorithm to solve linear programming problems, the major

work at each iteration is performing a projection onto the null space of a scaled
version of the current constraint matrix. There are several methods available for
calculating such a projection; we chose to use one based on forming a QRfactoriz-

ation of the constraint matrix. This method is very numerically stable, but in practice
it is not as fast as other methods based on Cholesky factorization or preconditioned
conjugate gradients.

For a description of QR factorizations of matrices, the reader is referred to Golub
and Van Loan [20]. The articles by George and Heath [14] and George and Ng
[15] discuss solving sparse least squares problems using QR factorizations.

Having calculated the projection matrix, we calculate the projections of the
objective function c and the normalizing constraint g separately, and once we have
a new primal point we project that point in order to ensure primal feasibility. Thus,
at each iteration we perform three projections, with the third of these projections

274 J.E. Mitchell, M.J. Todd / Karmarkar' s algorithm for IPs

not being strictly necessary, merely useful for obtaining greater numerical accuracy.
In fact, it was shown by Gay [13] that the new primal point can be calculated using
just one projection whenever it is not possible to update the lower bound using the
method of Todd and Burrell [45]. In our implementation, most of the run time is
spent on calculating the factorization, with a relatively small amount spent on the
projections. It follows that the improvement in run time which could be obtained
from using Gay's work would not be large. However, if a different method was used
for calculating the projections, the benefit of calculating fewer projections could be
far greater.

In our current implementation, we calculate the projection matrix anew every
time rows or columns are added to the constraint matrix. The run time could be
reduced if we exploited information about the projection matrix used during the
previous relaxation.

6.3. Convergence criterion

We regarded the current linear programming relaxation as solved if the duality gap
was smaller than 10 -8. Usually, a convergence criterion depends to some degree on
the absolute value of the objective function; however, because of the structure of
our set of test problems, the order of magnitude of the optimal value is known in
advance, so we used the convergence criterion indicated.

7. Computational results for perfect matching problems

In the tables in this section and the following section, the columns labelled itns,
time, cliques, stages, and gap contain, respectively, the following information:

• Iterations: Number of iterations of Karmarkar's algorithm to solve the problem.
• Time: Run time in seconds.
• Cliques: Number of cutting planes added.
• Stages: Number of stages of adding cutting planes.
• Gap: Number of iterations of Karmarkar's algorithm between the time cutting

planes are first added and either (a) the next time the separation routines are called
or (b) the time the problem is solved, whichever is less.

Note that, for a given perfect matching problem, the total number of relaxations
examined is

1 + number of stages of adding cutting planes + number of stages of adding
variables.

For more detailed results for the perfect matching problem and also results for
the linear ordering problem, the reader is referred to Mitchell [37].

7.1. Generating probtems

It is rare to find real world instances of the matching problem in its pure form (see
GrStschel and Holland [24]). However, the matching problem does arise in certain

J.E. Mitchell, M.J. Todd / Karmarkar's algorithm for 1Ps 275

heuristics designed to solve other combinatorial optimization problems. For

example, the Christofides heuristic (see [7] or [42]) for the traveling salesman

problem involves the solution of a perfect matching problem.

Therefore, it was suggested by Gr6tschel [23] that we generate random perfect
matching problems where the edge weights could be those of traveling salesman
problem. For that reason, we generated problems as follows:

• Generate k points uniformly in the unit square.

• Look at the complete graph on those vertices.
• Take the Euclidean distance between two vertices as the length of the corres-

ponding edge.
Following [24], we also generated some problems as follows:
• Look at the complete graph on k vertices.

• Generate edge lengths uniformly in the range [0, 1].
Unless otherwise stated, the results we give are for problems generated using the

first of these procedures.

7.2. Investigating the procedures used when adding cutting planes

The performance of our algorithm depends upon the choice of a number of para-
meters. In this subsection we examine the effect of some of the parameters which

determine how the relaxation is updated when the separation routines are called.

7.2.1. When to call the separation routines

As described in Section 3, the algorithm calls the separation routines as soon as a
non-integral dual solution is found. We found that calling the separation routines
later harmed the performance of the algorithm.

7.2.2. Different search levels

In our standard choice of parameters for the algorithm, the separation routines
involve searching for connected components at seven different prescribed levels. In
this subsection we investigate different choices for the search levels.

In the results that we give, the standard strategy is referred to as "search strategy
B". The main alternative we consider is to search at just two levels: 0.01 and 0.31.
This is referred to as "search strategy A". A second alternative strategy we considered
was to only look for connected components in the graph given by dropping all
edges of size less than 0.01. Since we are using an interior point method, no edge
will have value exactly zero. Therefore, this strategy closely corresponds to that of
Gr6tschel and Holland [24] of looking for connected components in the graph of
all edges with nonzero value. This strategy was considerably inferior to the other
two strategies, so we do not report the results for it.

Table 1 gives the results for seven sixty node problems when run with strategies
A and B. The number of nearest neighbours, NN, was set equal to 7. Table 2 gives

276 .I.E. Mitchell, M.J. Todd / Karmarkar's algorithm for IPs

Table 1

Comparing search strategies for sixty node problems

Problem Search Itns Time Cliques Stages Gap
strategy

60i A 16 19.5 11 2 4
B 18 23.6 15 3 5

60ii A 11 11.5 9 1 4
B 12 12.6 13 1 5

60iii A 15 10.4 10 2 3
B 14 12.0 18 3 3

60iv A 15 19.7 7 2 8
B 15 19.7 7 2 8

60v A 10 8.6 2 1 5
B 10 8.6 2 1 5

60vi A 20 29,2 17 3 4
B 21 3"1.9 22 3 7

60vii A 31 50.5 18 7 2
B 31 47.6 29 5 5

average A 16.9 21.3 10.6 2.6 4.3
B 17.3 22.3 15.1 2.6 5.4

Table 2

Comparing search strategies for 202 node problems

Problem Search Itns Time Cliques Stages Gap
strategy

202i A 45 329.8 38 8 6
B 39 267.8 54 6 6

202ii A 75 b 527.4 54 16 4
B 35 278.1 69 7 5

202iii A 20 125.0 26 3 5
B 24 162.2 41 4 6

202iv A 52 b 367.2 49 8 3
B 74 536.4 66 10 4

202v A 33 246.0 35 5 5
B 27 198.3 49 3 7

average a A 32.7 233.6 33.0 5.3 5.3
B 30.0 209.4 48.0 4.3 6.3

a Average is mean of problems 202i, 202ii, and 202v.
b This run finished with a non-integral solution.

t h e resu l t s fo r five 202 n o d e p e r f e c t m a t c h i n g p r o b l e m s . F o r t h e s e p r o b l e m s , N N

w a s set to 10.

T h e f o l l o w i n g c o n c l u s i o n s c a n be d r a w n f r o m t h e s e e x p e r i m e n t s :

• U s i n g s t r a t egy A resu l t s in t h e a d d i t i o n o f f e w e r c l i ques a n d in a s m a l l e r g a p

t h a n w h e n s t r a t egy B is u sed . Th is is to be e x p e c t e d : by its ve ry n a t u r e , s t r a t egy A

J.E. Mitchell, M.J. Todd / Karmarkar's algorithm for IPs 277

will result in the addition of fewer constraints at each stage, and since fewer cliques

are added on the first stage, the gap will be smaller.

• For the easier problems (that is, most of the 60 node problems and problem
202iii), strategy A is better than the standard strategy in terms of number of iterations
and run time. In these runs, the two strategies required approximately the same
number of stages, so the benefit of adding fewer constraints at each stage shows up
in the number of iterations because it is then slightly faster to reoptimize.

• For the harder problems (60vii and the remaining 202 node problems), the
standard strategy is better. Strategy A failed to solve a couple of these problems,
and it took more stages on the others, resulting in a higher number of iterations

and a greater run time.
From these last two conclusions, it would appear that it is only beneficial to use

the more extensive search routines for harder problems. The harder problems are
more likely to contain nested odd sets, where cutting planes found at different stages

are related in that one of the corresponding cliques is a subset of the other. For
example, consider the graph given in Figure 3. The distances in this graph are

Euclidean distances. The solution to the initial relaxation of the perfect matching
problem on this problem violates the odd set constraints corresponding to the cliques
{v~, v2, v3} and {vs, V9, ~)10)" When these constraints are added and the new relaxation
solved, the solution violates the odd set constraints corresponding to the cliques

{vl, v2, v3, v4, vs} and {v6, vv, v~, Vg, v~o}. Because our algorithm is looking for odd
set constraints violated by an interior point and because it searches at different
levels, it may well discover both of these sets of constraints simultaneously. For a
graph containing nested odd sets, the more extensive search routines are likely to
lead to a more efficient algorithm than the simpler routines.

'02 "05 "07 l)9
• • • •

~10

~Y3 ~)4 t~6 ~8
• • • •

Fig. 3. An i l lus t ra t ion of the p h e n o m e n o n of nes ted odd sets.

7.2.3. Different choices for direction
Having chosen which cutting planes to add, we need to determine their relative
weightings.

Recall from Section 4.5 that the direction we move in when adding cutting planes
depends on a positive set of weights for the variables corresponding to the added
cutting planes. We experimented with three different choices for the weightings:

1. All weights are equal.

278 J.E. Mitchell, M.J. Todd /Karmarkar's algorithm for IPs

2. Each weight is equal to the amount by which the current dual solution y
violates the corresponding cutting plane.

3. Each weight is equal to the reciprocal of the 2-norm of the normal to the

corresponding cutting plane.
These last two choices are motivated by considerations of dual ellipsoids. In [37],

we developed a criterion for deciding when to add a particular cutting plane, and
this criterion depended upon the current violation and the 2-norm of the inequality.
Therefore we hypothesized that an inequality is more important if the current
violation of it is large or if its norm is small.

We found that scaling by violation is very slightly better than the other two
options, but it is not significantly better. The algorithm appears to be robust, in that
the performance is only slightly affected by varying the choice of weighting.

7.3. Investigating the procedures used when adding variables

Once the duality gap for the current relaxation is less than some tolerance, and if
the current dual solution y cannot be cut off using our separation routines, we check
the reduced costs of all the edges in the graph. If the reduced cost of edge e is

negative, edge e should be added to the relaxation. We discussed how to do this
in Section 5.4.

We investigated two different choices for the vector/3 described in that section.

The first choice is to set every component of/3 to be one (the standard choice); the

second is to set/3 to be the vector of the negatives of the reduced costs. We found
no significant difference in the performance of the algorithm when/3 was varied.
Therefore, we only report some of our results for the standard choice of/3.

Notice that it may happen that none of the added edges have nonzero value in
the optimal matching, with the optimal matching being the best matching found
before these edges are added. This is due to two things: primal degeneracy, and the
fact that our termination criterion is not exact but depends on the duality gap being

smaller than some value.
For N N < 10, the sixty node problem 60viii requires the addition of at least one

additional edge. In order to see how the performance of the algorithm is affected
by the choice of NN, we solved this problem for all choices of N N from 2 to 9.
These results are presented in Table 3. The number of edges in the initial relaxation
is approximately ½(1 + N N) times the number of vertices. Only for N N = 2 does
there exist a stage at which we have to invoke the bucket sort in order to limit the
number of edges added. We repeated the runs for N N = 2, adding all edges with
negative reduced cost; the results were substantially the same as those reported here.

As can be seen from the table, the performance of the algorithm does depend
upon the choice of N N :

• Iterations: Setting N N to be five or six resulted in a significantly lower number
of iterations than other choices. These values result in fewer iterations than the
lower values of N N because they result in fewer stages of adding variables; they

J.E. Mitchell, M.J. Todd / Karmarkar's algorithm for IPs

Table 3

Problem 60viii with different choices for NN

279

NN Itns Time Cliques Stages Added edges*

Total Stages Stage by stage

Added Phase I

2 51 22.1 24

3 38 5.8 18

4 33 9.5 22
5 22 11.9 17
6 17 13.5 15
7 36 31.4 21
8 37 42.0 19
9 37 38.0 21

3 84 3 22 5
49 3
13 12

3 15 2 13 10
2 5

3 8 1 8 11
3 4 1 4 5
2 2 1 2 4
4 1 1 1 9
4 1 1 1 9
4 1 l 1 9

* The last four columns contain the following information:
• Total: Total number of added edges.
• Stages: Number of stages of adding edges.
• Stage by stage: Breakdown of stages of adding edges.

- Added: Number of edges added on a particular stage.
- Phase 1: Number of Phase I iterations.

requi re fewer i te ra t ions than the la rger choices o f N N because the l inear p r o g r a m -

ming p r o b l e m s are smaller .

• Run t ime: Set t ing N N to be 3, 4, 5, or 6 gives s ignif icant ly lower run t imes

than o ther choices . The choices 5 and 6 do well because they requi re few i tera t ions ;

the choices o f 3 and 4 do well because the l inear p r o g r a m s are re la t ively small ,

mak ing the t ime pe r i t e ra t ion small .

• N u m b e r o f edges a d d e d and n u m b e r o f stages o f add ing var iables : As is

expec ted , the mean values o f bo th o f these ca tegor ies dec reased as N N increased ,

with N N = 2 resul t ing in s ignif icant ly h igher values than o ther choices.

We also ana lyzed the n u m b e r o f i te ra t ions r equ i red to solve Phase I af ter add ing

edges. This va lue d id not a p p e a r to be co r re l a t ed with e i ther NN, or the n u m b e r

o f edges a d d e d at tha t stage, or the n u m b e r o f edges a l r e a d y in the re laxat ion . (The

da ta was ana lyzed us ing D u n c a n ' s mul t ip le range test (see [43]).)

7.4. Problems with randomly generated edge weights

All the results we have r epo r t ed so far have been on p r o b l e m s where the vertices
are un i fo rmly d i s t r ibu ted wi thin the unit square and the edge lengths are t aken to

be the E u c l i d e a n d is tances be tween the vert ices. In this sect ion, we cons ider genera t -

ing p r o b l e m s where the edge lengths are gene ra t ed r andomly .

280 J.E. Mitchell, M.J. Todd / Karmarkar's algorithm for IPs

Table 4
Perfect matching problems with the edge weights
distributed uniformly

Problem Itns Time Cliques Stages Gap

E60i 12 10.2 0 0 - -
E100i 14 42.9 1 1 1
El00ii 10 20.5 0 0 - -
E202i 15 285.4 3 2 1
E202ii 15 281.1 2 1 4

In Table 4, we give the results for five problems where the edge weights were

independently generated from a uniform distribution on the interval [0, 1]. Problem

E60i is a sixty node problems, problems E100i and E100ii are 100 node problems,

and problems E202i and E202ii are 202 node problems. For all of these problems,

the number of nearest neighbours N N was set to five.

As can be seen, these problems require the addition of very few cutting planes

and correspondingly few iterations. However, the low iteration count is not reflected

in the run time, when compared with problems generated using the other method.

This is because of the structure of the constraint matrix. When the vertices are

uniformly distributed, the edge lengths satisfy the triangle inequality. It follows that

if vertex i is close to vertex j and vertex j is close to vertex k, vertex i will be close

to vertex k. Therefore, vertices that are close together will have similar sets of nearest

neighbours. This means that the adjacency matrix for the initial relaxation can

probably be permuted so that A A T has most of its nonzero elements close to the

main diagonal (A is the initial constraint matrix). This beneficial numerical feature

is unlikely to be a property of the constraint matrix when the edge lengths are

randomly generated.

8. Summary

With the standard choice of parameters, the algorithm we proposed produces the
optimal perfect matching on most problems, showing that the algorithm is robust
and that the separation heuristics are efficient. (I f the algorithm does not finish with
an integral solution, the Padberg-Rao procedure [41] can be used to find a violated

clique inequality. We did not implement this routine.)
In Table 5, we give the results for eight sixty node problems and eight 202 node

problems which were solved using our algorithm. For the sixty node problems,
N N = 7; for the 202 node problems, N N = 10. Most of these results were given in
the previous section; they are repeated here for convenience. For the sixty node
problems, the initial constraint matrices have approximately 240 rows and 300

.I.E. Mitchell, M,J. Todd / Karmarkar's algorithm for IPs

Table 5

Several 60 and 202 node problems

281

Problem Optimal Itns Time Cliques Stages Gap
value

60i 2.5692 18 23.6 15 3 5
60ii 2.7601 12 12.6 13 1 5
60iii 2.8377 14 12.0 18 3 3
60iv 2.7939 15 19.7 7 2 8
60v 2.2073 10 8.6 2 1 5
60vi 2.5609 21 31.9 22 3 7
60vii 2.7714 31 47.6 29 5 5
60viii 2.6279 36 b 31.4 21 4 7

202i 4.7793 39 267.8 54 6 6
202ii 4.8593 35 278.1 69 7 5
202iii 4.6887 24 162.2 41 4 6
202iv 4.4972 74 536.4 66 10 4
202V 4.6585 27 198.3 49 3 7
202vi 4.4679 28 U 180.4 30 2 5
202vii 4.4000 31 a 253.3 65 6 5
202viii 4.7317 55 b 427.7 57 7 6

" This run finished with
b This run required the

of the wrong sign.

a non-integral solution.
addition of one extra edge which had reduced cost

columns, with the final constraint matrices having approximately 15 more columns.
For the 202 node problems, the initial constraint matrices have approximately 1100
rows and 1300 columns, with the final matrices having approximately 50 more
columns.

We believe that these results give some justification for optimism regarding the

performance of our algorithm. This optimism is based on consideration of both the
number of iterations and the number of stages.

Our optimism regarding the number of iterations is based purely on consideration
of interior point methods. Using Karmarkar's algorithm to solve the final linear
programming relaxation starting from scratch would take about half as many
iterations as the number reported in the table. This is because we call the separation
routines before optimality is reached, so the sequence of iterates does not approach
the vertices of the polytope too closely, and thus the number of iterations in each
stage is reasonably small. Hence, after a cutting plane is added, we have a fairly
central "warm start" which can be exploited. The value of "Gap" in the tables
further illustrates this point.

The number of stages of adding cliques using our algorithm is smaller than they
would be if a cutting plane algorithm based on the simplex method were used. One
reason for this is that, at a given stage, our separation heuristics often find violated
odd set constraints that correspond to nested odd sets. This phenomenon occurs
because we use an interior point method and because we do not solve the current

282 .I.E. Mitchell, M.J. Todd / Karmarkar' s algorithm for IPs

relaxation to optimality. I f each linear program was solved to optimality, it would

frequently be the case that the nested odd set constraints would be added at successive

stages.

The run times we report are not good, principally because of the method we use

to calculate the projections. Forming a QR-factor izat ion is a very numerical ly stable

method of calculating a projection, but it is not fast. The lack o f speed is especially

noticeable when Householder t ransformat ions are used to form the QR-factorizat ion,

because this leads to considerable fill in, in the intermediate matrices, and thus in

the representat ion o f the or thogonal matrix Q. Another drawback to the method of

calculating projections that we used is the need to per form a new symbolic factoriz-

ation of the matrix every time cutting planes are added. Possible remedies for this

problem include calculating the projections using a precondi t ioned conjugate

gradient me thod (the same precondi t ioner can be used on successive stages) or

using low rank updates to the project ion matrices, such as Schur complements (see

Choi et al. [6], for example).

It is not clear that a warm start can be exploited as efficiently in a cutting plane

method based on an interior point algorithm as in one based on the simplex

algorithm. Thus, for an interior point-based method to be competitive, it is necessary

to limit the number o f iterations per formed at each stage and to reduce the number

o f stages by designing separat ion routines which exploit the nature of the solutions

generated by an interior point method. The results we have presented indicate that

this may well be possible.

References

[1] I. Adler, M.G.C. Resende, G. Veiga and N.K. Karmarkar, "An implementation of Karmarkar's
algorithm for linear programming," Mathematical Programming 44 (1989) 297-335.

[2] K.M. Anstreicher, "A monotonic projection algorithm for fractional linear programming," Algorith-
mica 1 (1986) 483-498.

[3] D.A. Bayer and J.C. Lagarias, "The nonlinear geometry of linear programming I. Affine and
projective scaling trajectories," Transactions of the American Mathematical Society 314 (1989)
499-526.

[4] D.A. Bayer and J.C. Lagarias, "The nonlinear geometry of linear programming II. Legendre
transform coordinates and central trajectories," Transactions of the American Mathematical Society
314 (1989) 527-581.

[5] B. Botchers and J.E. Mitchell, "Using an interior point method in a branch and bound algorithm
for integer programming," Technical Report 195, Mathematical Sciences, Rensselaer Polytechnic
Institute (Troy, NY, 1991).

[6] In Chan Choi, C.L. Monma and D.F. Shanno, "Further development of a primal-dual interior
point method," ORSA Journal on Computing 2 (1990) 304-311.

[7] N. Christofides, "Worst-case analysis of a new heuristic for the traveling salesman problem,"
Technical report, GSIA, Carnegie-Mellon University (Pittsburgh, 1976).

[8] G.B. Dantzig, "Maximization of a linear function of variables subject to linear inequalities," in:
Tj.C. Koopmans, ed., Activity Analysis of Production and Allocation (Wiley, New York, 1951)
pp. 339-347.

[9] U. Derigs and A. Metz, "On the use of optimal fractional matchings for solving the (integer)
matching problem," Computing 36 (1986) 263-270.

J.E. Mitchell, M.J. Todd / Karmarkar' s algorithm for IPs 283

[10] J. Edmonds, "Maximum matching and a polyhedron with 0, 1 vertices," JournalofResearch National
Bureau of Standards 69B (1965) 125-130.

[11] J. Edmonds, "Paths, trees and flowers," Canadian Journal of Mathematics 17 (1965) 449-467.
[12] R.M. Freund, "A potential-function reduction algorithm for solving a linear program directly from

an infeasible "warm start"," Mathematical Programming (Series B) 52 (1991) 441-466.
[13] D.M. Gay, "A variant of Karmarkar's linear programming algorithm for problems in standard

form," Mathematical Programming 37 (1987) 81-90.
[14] J.A. George and M.T. Heath, "Solution of sparse linear least squares problems using Givens

rotations," Linear Algebra and its Applications 34 (1980) 69-83.
[15] J.A. George and E.G.Y. Ng, "Orthogonal reduction of sparse matrices to upper triangular form

using Householder transformations," SIAM Journal on Scientific and Statistical Computing 7 (1986)
460-472.

[16] J.-L. Goffin, "ANne and projective transformations in non-differentiable optimization," in: K.-H.
Hoffmann, J.-B. Hiriart-Urruty, C. Lemarechal and J. Zowe, eds., Trends in Mathematical Optimiz-
ation, International Series of Numerical Mathematics No. 84 (Birkhauser, Basel-Boston, 1988)
pp. 79-91.

[17] J.-L. Goffin, A. Haurie and J.-P. Vial, "Decomposition and nondifferentiable optimization with the
projective algorithm," Technical Report 91-01-17, Faculty of Management, McGill University
(Montreal, Que., 1990).

[18] J.-L. Goffin and J.-P. Vial, "Cutting planes and column generation techniques with the projective
algorithm," Journal of Optimization Theory and Applications 65 (1990) 409-429.

[19] D. Goldfarb and M.J. Todd, "Linear programming," in G.L. Nemhauser et al., eds., Optimization
(North-Holland, Amsterdam, 1989) Chapter 2, pp. 73-170.

[20] G.H. Golub and C.F. Van Loan, Matrix Computations (Johns Hopkins University Press, Baltimore,
MD, 1983).

[21] R.E. Gomory and T.C. Hu, "Multi terminal network flows," Journal of the Society for Industrial
and Applied Mathematics 9 (1961) 551-571.

[22] C.C. Gonzaga, "A conical projection algorithm for linear programming," Mathematical Program-
ming 43 (1989) 151-174.

[23] M. Gr6tschel, Private Communication, 1987.
[24] M. Gr6tschel and O. Holland, "Solving matching problems with linear programming," Mathematical

Programming 33 (1985) 243-259.
[25] M. Gr6tschel, L. Lovasz and A. Schrijver, "The ellipsoid method and its conseqeunces in com-

binatorial optimization," Combinatorica 1 (1981) 16%197.
[26] D. den Hertog and C. Roos, "A survey of search directions in interior point methods for linear

programming," Mathematical Programming (Series B) 52 (1991) 481-509.
[27] IBM. IBM Optimization Subroutine Library Guide and Reference, Publication number SC23-0519-1

(1990).
[28] N.K. Karmarkar, "A new polynomial-time algorithm for linear programming," Combinatorica 4

(1984) 373-395.
[29] N.K. Karmarkar, "An interior-point approach to NP-complete problems (Part I)," in: J.C. Lagarias

and M.J. Todd, eds., Mathematical Developments Arising from Linear Programming, Contemporary
Mathematics No. 114 (American Mathematical Society, Providence, RI, 1991) pp. 297-308.

[30] N.K. Karmarkar, M.G.C. Resende and K.G. Ramakrishnan, "An interior point algorithm to solve
computationally difficult set covering problems," Mathematical Programming (Series B) 52 (1991)
597-618.

[31] S. Lin, "Computer solutions to the traveling salesman problem," Bell System Technical Journal 44
(1965) 2245-2269.

[32] L. Lov~sz and M.D. Plummet, Matching Theory (Akad6miai Kiadd, Budapest, 1986).
[33] I.J. Lustig, R.E. Marsten and D.F. Shanno, "Computational experience with a primal-dual interior

point method for linear programming," Linear Algebra and its Applications 152 (1991) 191-222.
[34] I.J. Lustig, R.E. Marsten and D.F. Shanno, "On implementating Mehrotra's predictor-corrector

interior point method for linear programming," to appear in: SIAM Journal on Optimization.
[35] N. Megiddo, "Pathways to the optimal set in linear programming," in: N. Megiddo, ed., Progress

in Mathematical Programming (Springer, New York, 1989) pp. 131-158.

284 J.E. Mitchell, M.J. Todd /Karmarkar's algorithm for IPs

[36] N. Megiddo and M. Shub, "Boundary behaviour of interior point algorithms in linear programming,"
Mathematics of Operations Research 14 (1989) 97-146.

[37] J.E. Mitchell, Karmarkar ' s Algorithm and Combinatorial Optimization Problems, Ph.D. thesis, School
of Operations Research and Industrial Engineering, Cornell University (Ithaca, NY, 1988).

[38] J.E. Mitchell, "An interior point column generation method for linear programming using shifted
barriers," Technical Report 191, Mathematical Sciences, Rensselaer Polytechnic Institute (Troy,
NY, 1990).

[39] J.E. Mitchell and M.J. Todd, "A variant of Karmarkar's linear programming algorithm for problems
with some unrestricted variables," SIAM Journal on Matrix Analysis and Applications 10 (1989)
30-38.

[40] J.E. Mitchell and M.J. Todd, "Solving matching problems using Karmarkar's algorithm," in: J.C.
Lagarias and M.J. Todd, eds., Mathematical Developments Arising from Linear Programming,
Contemporary Mathematics No. 114 (American Mathematical Society, Providence, RI, 1991)
pp. 309-318.

[41] M.W. Padberg and M.R. Rao, "Odd minimum cut-sets and b-matchings," Mathematics of Operations
Research 7 (1982) 67-80.

[42] C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity
(Prentice-Hall, Englewood Cliffs, NJ, 1982).

[43] SAS Institute, Inc, Cary, North Carolina, SAS User's Guide, Version 5 (1985).
[44] A.E. Steger, "An extension of Karmarkar's algorithm for bounded linear programming problems,"

Master's thesis, State University of New York at Stony Brook (Stony Brook, NY, 1985).
[45] M.J. Todd and B.P. Burrell, "An extension of Karmarkar's algorithm for linear programming using

dual variables," Algorithmica 1 (1986) 409-424.
[46] R.J. Vanderbei, M.S. Meketon and B.A. Freedman, "A modification of Karmarkar's linear program-

ming algorithm," Algorithmica 1 (1986) 395-407.
[47] Y. Ye, "A potential reduction algorithm allowing column generation," SIAM Journal on Optimization

2 (1992) 7-20.
[48] Y. Ye and M. Kojima, "Recovering optimal dual solutions in Karmarkar's polynomial algorithm

for linear programming," Mathematical Programming 39 (1987) 305-317.

