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I. Introduction 

In this paper we study local convergence of quasi-Newton methods for solving 

systems of nonlinear equations defined by B-differentiable functions. This analysis 
extends the class of equation functions to which such methods may be applied 

beyond the familiar Fr6chet differentiable functions. B-differentiable functions, 

introduced by Robinson [ 16], have properties of Lipschitz continuity and directional 

differentiability and they allow natural extensions of a number of key analytic results 

useful in proving convergence results. In two related recent papers, Pang [13, 14] 

extended the classical Newton method for solving nonlinear equations to B- 
differentiable functions and applied it to nonlinear complementarity and variational 
inequality problems. A similar extension of  the classical Newton method to B- 

differentiable nonlinear equations was also proposed by Harker and Xiao [8] who 

applied it to nonlinear complementarity problems. These Newton-type methods 

were subsequently further generalized to semismooth nonlinear equations by Qi 

and Sun [15]. Another extension of Newton's method to a different class of non- 
smooth equations was studied by Robinson [17J. 
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The objectives of this paper include: (i) extension of the classical linear and 
superlinear convergence results for general quasi-Newton methods as well as for 
Broyden's method, and (ii) a novel application of Broyden's method to nonlinear 
complementarity problems. The first objective is motivated by the fact that quasi- 
Newton methods combine excellent convergence rates with relatively minimal com- 
putational effort and are therefore often competitive with Newton's method [1-6]. 
Also, Newton's method of Pang [13, 14] requires a solution of nonlinear subproblems 
in each iteration which may be, in general, computationally inefficient. Thus, solution 
of nonlinear equations defined by non-Fr6chet ditterentiable functions using quasi- 
Newton methods, which require only low rank update of the matrix inverse, is of 
practical interest. The only other paper dealing with quasi-Newton methods for 
nondifferentiable equations is due to Kojima and Shindo [11] where they considered 
systems of piecewise continuously diiterentiable equations. 

The second objective is motivated by the simplicity of the specialization of 
Broyden's method to a nonlinear complementarity problem via equivalent systems 
of nonlinear equations. Computational methods for nonlinear complementarity 
problems typically require a solution of a mixed linear complementarity problem 
in each iteration which is in contrast to the method proposed here where only rank 
one update of the matrix inverse is done in each iteration. The solution of a mixed 
linear complementarity problem is required, for example, in the Newton and 
quasi-Newton methods of Josephy [9, 10] which extend the classical methods for 
nonlinear equations to variational inequalities and nonlinear complementarity prob- 
lems via the framework of generalized equations as well as in the recent Newton-type 
methods of Pang [13, 14] and Harker and Xiao [8]. The computational performance 
of the proposed method is illustrated on two small examples. 

The remainder of the paper is organized as follows. In Section 2 we review the 
notion and key analytic properties of a B-differentiable function. In Section 3 we 
study local convergence of quasi-Newton methods for solving B-ditterentiable sys- 
tems of nonlinear equations and generalize the classical results to B-difterentiable 
equation functions. In Section 4 we obtain local convergence properties of Broyden's 
method for nonlinear B-differentiable equations. In Section 5 we propose a new 
method for solving nonlinear complementarity problems based on the application 
of Broyden's method to two equivalent systems of nonlinear equations and analyze 
its local convergence properties. The computational performance of the proposed 
method is illustrated on two small examples in Section 6. 

2. B-differentiable functions 

In this section, we review the notion of a B-differentiable function and present some 
properties of such a function. We refer the reader to the recent papers by Robinson 
[16] and Pang [13] for a more detailed exposition. 

The following definition is due to Robinson [16]. 
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Definition 2.1 [16]. A function H : ~ "  is B-differentiable at a point z ~ D  if 

there exists a positively homogeneous function B H ( z ) : W " ~  ~ (i.e., B H ( z ) ( A v ) =  

A B H ( z ) v  for all A ~>0 and v~W") ,  called the B-derivative of H at z, such that 

l im[H(z  + v) - H ( z )  - BH(z)v] / I I  v II -- 0. 
v ~ 0  

If H is B-differentiable at all points z c D, then H is called B-differentiable on D. 

The basic properties of a B-differentiable function are summarized in the next 

proposition. 

Proposition 2.1 [13, 16]. Let H :~n-~ En be locally Lipschitz continuous at a point z. 

(1) I f  H is Fr£chet differentiable at z, then it is B-differentiable at z and B H ( z )  = 

V H ( z ) .  Conversely, i f  H is B-differentiable at z and i f  the B-derivative B H ( z ) v  is 

linear in v, then H is Frdchet differentiable at z. 

(2) I f  H is B-differentiable at z, the B-derivative is unique. Moreover, B H ( z )  is 

Lipschitz continuous with the same modulus as H. 

(3) I f  H is B-differentiable at z, then H is directionally differentiable at z in any 

direction and H'(z ,  d) = BH(z )d .  

(4) The addition, subtraction, and chain rules hold for the B-derivative. [] 

Throughout  this section we assume that the function H:Nn-+Nn is Lipschitz 
continuous in the region of interest. The following theorem was proved in Pang [13]. 

Theorem 2.1 [13]. Let H : Nn ~ Nn be B-differentiable on an open, convex set D ~ Nn. 

Then, for  any x, y, z c D, 

11/4(x)- /4(y)-BU(z)(x-y)[ l  sup II(B/-/(y + t(x-y))-BH(z))(x-y)ll. 
0~t-~-I 

Moreover, the following statements are equivalent: 

(1) B H  ( . )  is continuous at z c D, i.e., for  every e > 0  there exists a neighborhood 

N o f z  such that, for  all x ~ N and all v ~ ~" with 11 v [[ = 1, 

II(BI4(x)- BI4(z))vll 

(2) H is Frdchet differentiable at z in the strong sense (see Ortega and Rheinboldt 

[12]) which, in particular, implies that H is Frdchet differentiable at z. 
(3) The B-derivative B H ( z )  satisfies the stronger limit property 

lim [ H ( x ) - H ( v ) - B H ( z ) ( x - y ) ] / l l x - y l l = O .  [~ 
(x,y)~(z,z) " 

The above theorem as well as the next two lemmas will be utilized in subsequent 
sections. 
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Lemma 2.1. Let H :~" ~ R ~ be B-differentiable on an open, convex set D ~ ~", and 

suppose that B H ( . )  is continuous at z ~  D, and that VH(z)  is nonsingular (VH(z)  
exists by Theorem 2.1). Then there exists a neighborhood N o f  z and c~ > 0 such that, 

jor  all x, y ~ N, 

[IH(x)- H(y)]l >/o~llx-yll. 

Proof. By Proposition 2.1 and Theorem 2.1, for any e > 0 there exists a neighborhood 
N of z such that, for all x, y ~ N, 

IIH(x) - H(Y)II >~ I[V H ( z ) (  x - Y ) I I -  I[H(x) - H ( y )  - V  H ( z ) ( x  -Y)II  

>/{I x -Y l [ / [ IVH(z ) - '  I t-  etlx -Y{I 

= ( 1 / I l V H ( z ) - ' l l -  e)IIx -YI[,  

where we used 

II x -Yll = IIVH(z) 1 V H ( z ) (  x -Y)II  ~ IlVH(z)-'ll IiVH(z)(x-y)ll ,  

and where the symbol I1" 11 also denotes a matrix norm consistent with the vector 

norm II'lI in a ' .  Thus, if e<l/IIV/-/(z)-~l[, the conclusion holds with a =  

1/l lVH(z)- '[I-e>O. [] 

Lemma 2.2. Let H :N" ~ ~" be B-differentiable on an open, convex set D c R", and 

suppose that B H  ( . ) is Lipschitz continuous at z ~ 13, i.e., there exists a neighborhood 

N o f  z and some L > 0 such that, for  all x ~ N and all v ~ ~" with ]1 v I] = 1, 

II( BH ( x ) -  BH (z) )vl] <~ Ll lx -  zl]. 

Then, for  all x, y E N,  

)1H(x) - H ( y )  - B H  ( z ) ( x  -Y)II  <~ L max{ IIx - z)], IlY - zl]})lx -YlI .  

Proof. By Theorem 2.1 and Lipschitz continuity of B H ( .  ), 

IIH(x)- H(y)- BHt, z)(x-y)ll<~ e (oS~Pl II(y + t(,x-y))-zlOIIx-yll. 

The result now follows since 

sup I I ( y + t ( x - y ) ) - z l l ~ m a x { l l x - z l l ,  Ily-zll}. [] 

3. Local convergence of quasi-Newton methods 

In this section we study local convergence of quasi-Newton methods for solving 
B-differentiable systems of  nonlinear equations. We generalize classical results in 
[2-6] by relaxing the standard Fr6chet differentiability assumptions on the equation 
functions. The proofs of all the results in this section parallel those of the correspond- 

ing classical results. 
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Let F : ~ "  ~ "  be an arbi t rary  funct ion and  consider  a system of  s imul taneous  

nonl inear  equat ions  

F(x) =0. 

Genera l  quasi-Newton methods  for  solving this system have the  form [4, 5, 12], 

Xk+I=xt,--B~1F(XK), B k c ~  n×', k = 0 , 1 , . . . .  (3.1) 

Deno te  a vec tor  no rm by [Iv[[ for  v ~ ~"  and the subord ina te  matr ix  opera to r  no rm 

by  HAll for  A c ~  "×". The nota t ion  I][alll for  A c ~  "×" s tands for  any arbi t rary but  
fixed n o r m  on ~"  ×" which m a y  not  be subord ina te  to a vector  norm. We shall utilize 

the fact that  all norms  on ~"×" are equivalent.  In par t icular ,  for I1" ]l and Ill'Ill we 

assume for  some/ . t ,  '7 > 0 and any  A e ~ '×" ,  that  

ptl[IAIII ~< I]all ~< nIIIA)]]. 

The  fol lowing theo rem extends T h e o r e m  A2.1 in Dennis  and Walker  [6] to B- 

differentiable functions.  

Theorem 3.1. Let F : D c ~" ~ ~" be locally Lipschitz continuous and B-differentiable 

at x* ~ D, where D is an open, convex subset o f  ~n and F(x*)  = O, and let B ,  e R "×" 

be such that B ,  1 exists and for all v e ~ "  with [Iv[[ = 1, 

II[I-B,'BF(x*)]vil ~< r,  < 1. (3.2) 

Let U :~" x ~"×" ~ 2 ~ ..... be defined in a neighborhood N = N1 x N2 of  (x*, B , ) ,  where 

NI c D, N2 ~ {A e ~,×n I A-~ exists}. Suppose that there exist al >~ 0 and a2 >1 0 such 

that, for  each (x, B) e N, and for x+ = x - B-1F(x ) ,  every B+ e U(x, B) satisfies 

IIIB+ - B,III ~< [a + m o-(x, x+)P]/I[B- O,lll + ~=~(x, x+y (3.3) 

where o-(x, x+) = max{l/x - x*ll , [Ix+ - x* ]1} and p e (0, 1]. 

Then, for  any r e ( r , ,  1), there exist e~, 3~>0,  such that if  I]xo-x*l l<er and 

[ IBo-B, [ I  < 6~, then any sequence {xk} defined by 

Xk+l = xk - B { ' F ( x k ) ,  Bk+~ e U(xk,  Bk), k = 0, 1 . . . .  , 

converges q-linearly to x* with 

I1~+,- x*ll ~ r l lx~-  x*ll, 

and has the property that {llBkll} and {HBZ~II} are uniformly bounded. 

Proof ,  Since F is B-differentiable at x*, for  any p > 0, there is e~> 0 s u c h t h a t  

IIx-x*]]<e~]lF(x)-F(x*)-BF(x*)(x-x*)ll/I]x-x*)l<~p. (3.4) 

Let r e ( r , ,  1) and  choose 6 and p sufficiently small so that  for  I3~>]tB,~II and 
I> supll~ll=t I[ B F ( x * ) v  [I, one has 2/3,/6 < 1 and 

/3 
r>~ r ,q  - -  (p+2fi~106). 
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Now, choose er based on (3.4) so that 

E p 
( 2 c ~  + ~2) v,. _< ~. 

l _ r  p ~  

Select ~r small enough so that l l lB- B.III < ~ if l i b -  B ,  [I < ~r. Restrict er, ~,. so that  
(x, B ) ~ N i f i t B - B ,  II<2V~ and t[x-x*tl<er. Let ltBo-B,l[<6~ and [tXo-X*l < e ,  

From s tandard arguments,  

x, - x* = [1 - B~' BF(x*) ](Xo - x*) - B~'[ F(xo) - F(x*) - BF(x*)(Xo- x*)].  

Thus,  

l~x~- x*]l ~ I[Bg~II }[F(xo)- F (x* ) -  BF(x*)(Xo- X*)~] 

+ ] } [ I - U ~  1 B ~ ( X * )  ](Xo-- X*)I ] 

~ ~ ~ ~ ~ ~(Xo) - F(x*) - ~ ( x * ) ( x o -  x*)ll 

+ I][I - ~ ; '  ~F(x*)](xo-x*)}l 

+ ~ 2 - ~  ~ F ( x * ) ( x o - ~ * ) ~  

~ [[ B~' 1~ 1] F(xo) - F(x*) - BF(x*)(xo - x*)]1 

+ ~[~- s~' S~(x*)](xo-x*)[~ 
+ I~o~'{[ {~o~1[[ {[~o-~,{1 ~t~F(x*)(Xo-x*)~{. 

It follows from the Banach pe~urba t ion  lemma, since 

{~ B~'l[ ~l Bo- B. I~ ~ ~,/liB0- ~.I{[ < ~ , ~  < 2 ~ , ~  < ~, 

that B (  ~ exists and [[B~I{{ ~ f l /(1-2fl~6).  Thus, f rom the previous inequali ty 

[ fl +2~60)+r , ]~Xo  x * ~ r l ,  xo-x*)~. ~x, - x*l~ ~ i - 2 ~ , ~  ( p - 

Assume now by way of  induct ion that  for  k = 0, 1 , . . . ,  m - 1, i[~Bk -- B,~] ~ 2~ and 

I ~ + ~ - ~ * [ [  ~ ~ [ ~ -  ~*[]. T h ~ .  

[~B~+,- B,[~l- I[~B~ - B,I[[ ~ a , ~ ( x ~ ,  x~+,)Pil~B~ - B,[~I + az~(x~ ,  x~+,) n 

~ (2~,~  + ~ ) l l  x~ - x*l[ ~ < (2~ ,~  + ~ ) ~ r  "~. 

Summing both  sides f rom k = 0 to m - 1 we obtain 

[~[B~ - B,]~[ ~ [liB0 - B,[I[ + (2a~6 + a~)e~/(1 - r p) ~ 26 (3.5) 

so ~]B,;- B,~ < 2~8 and again by the Banach pe~urba t ion  lemma, BL ~ exists and 
]}BZ)]} ~/(1-2~W~). To complete  the induct ion we proceed  as for m = 0: 

][Xm+. --X*]I ~ I]B~I] IIF(x~)- F (x* ) -  BF(x*)(x~ - x*)[l 

+ [[B~'~I I[B~'II [IBm- B,[I ]]BF(x*)(x~- x*)]] 

+ l i l t -  B;  ~ ~F(x*)](x~ -x*)lJ 

~ [}IBL~II(p + IIB~I] IJB~ -B,l]O)+r,]llx~ -x*ll 

[ ' ~ , ,x~-x*, ,~r i ,x~-x*, , .  ~ ~ - ~ v ~  ( °  + 2~v~+)  + r, 
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Note that we have lIB;ill ~</3/(1-2/3r/8) and that jlBkl} ~<2~78+11B, II which com- 

pletes the proof. [] 

Theorem 3.1 is valid, in particular, when F is Fr6chet differentiable at x* which 

shows that the H61der continuity property of  V F ( . )  at x*, assumed in Theorem 

A2.1 in Dennis and Walker [6], can be considerably relaxed. The following corollary 

of  Theorem 3.1 demonstrates that the classical result of  Broyden, Dennis, and Mor6 
[2, Theorem 3.2] can be extended in the same manner. 

Corollary 3.1. I f  F : D c ~" -+ ~" is locally Lipschitz continuous and Frdchet differenti- 

able at x* c D, where D is an open, convex subset o f  ~ ,  F(x*)  = 0, VF(x*)  -1 exists 

and the property (3.3) in Theorem 3.1 holds with B ,  = V F ( x * ) ,  then the conclusions 

o f  Theorem 3.1 hold. [] 

The next theorem extends Theorem A3.1 in Dennis and Walker [6] to B-differenti- 

able functions. 

Theorem 3.2. Let F:  D c ~ --> ~n be locally Lipschitz continuous and B-differentiable 

at x* c D, where D is an open, convex subset o f  Nn and F ( x * ) = 0 ,  let {Xk} be a 

sequence generated by (3.1) which converges to x* with Xk ¢ X* for all but finitely 

many k and such that for some norm H" Ill and some r e  (0, 1), 

Irxk+,-x*ll,<-rllxk-x*ll, ,  k = O ,  1 , . . . .  (3.6) 

I f  Sk = Xk+l--Xk and B ,  c N.×n is any nonsingular matrix, then the norm-independent 

condition 

lim ]1 (Bk - B,)Sk I] = 0 (3.7) 

holds i f  and only if  the norm-independent condition 

~ o o  IIx~-x*l l  }tx~-x*tl - -0  

holds. In particular, i f  the condition (3.7) holds in some norm, then for any vector 

norm II" [I, {Xk} converges q-superlinearly to x* if and only if 

lim [ I - B ,  1 BF(x*)]  IIx~-x*ll 
k ~ cx3 

Proof. One has 

( Bk - B , )sk  -- [B ,  - BF(  x*) J( Xk --x*) -- B ,  ( x~ +l - x*) 

+ BF(x*)(Xk - x*) - F(Xk). 

Since IlXk+~ -x* l l  l <~ rllx k -x*ll~,  k = 0, 1 , . . . ,  and & = Xk+~--Xk, 

( 1  - -  r ) l l X  k - -X:~I I I  ~ IlSk]}l ~ ( 1  -{- r ) l l x  k - -  x :gl l  i . 
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By the B-dilterentiability of F at x*, 

lira I IBF(x*) (xk  - x * )  - F(x~)ll~ 

~ [Is~ll~ 

~< lira I1P(x~) - F ( x * )  - B F ( x * ) ( x ~  - x*)I1~ _ 0. 
k-,~ ( 1 - r ) l l x ~ - x * l l  ~ 

Thus. lim~_.~ll(Bk-t~,)s, lldllskll~=o if and only if 

lira ~ [B,  - BF(x* ) ] ( xg  - x*)  - B,(x~+~ - x * ) ~  _ O. 

Fu~her, one has 

1~[~,- ~ ( x * ) ] ( x ~  - x * )  - ~ , ( x ~ + ~ -  x*)[1~ 

Ilx~ll~ 

II~,ll, [ i  ( x ~ - x * )  
~(~_ ~1 - ~ '  ~F(x*)] II~-x*ll~ 

and 
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Xk+l -- X # )  l 

I[[B, - B F ( x * )  ](x~ - x*)  - B, (x~+,  - x*)il l  

llSk Ill 

1 [ i  ~>llB~,[i,(l+r ) - B ~ '  B F ( x * ) ]  ( x k - x * )  (Xk+~--_X_*) 

Thus, the first conclusion of the theorem holds and the second conclusion follows 
trivially since only norm-independent "zero" limits have been used. [] 

Similarly to Theorem 3.1, Theorem 3.2 is true, in particular, when F is Fr6chet 
differentiable at x* which shows that the H61der continuity property of VF( . )  at 
x*, assumed in Theorem A3.1 in Dennis and Walker [6], can be relaxed. 

In the case where B,  = VF(x*), Theorem 3.2 can be strengthened by replacing 
the linear convergence assumption (3.6) by ordinary convergence and imposing a 
local continuity assumption on the derivative of F. This result is given next and it 
extends Theorem 2.2 in Dennis and Mot6 [3] to B-ditterentiable functions. 

Theorem 3.3. Suppose that F : D ~ ~n -~ ~ is Lipschitz continuous and B-differentiabIe 

on D, where D is an open, convex subset o f  ~ ,  that for  some x * ~  D, B F ( ' )  is 

continuous at x*, and that VF(x*) is nonsingular (VF(x*) exists by Theorem 2.1). 
Let  {Bk} be a sequence o f  nonsingular matrices in E ~×~ and suppose that f o r  some 

Xo ~ D the sequence {xk} generated by (3.1) remains in D and converges to x*, where 

Xk ~ X* fo r  all but f ini tely many  k. 

Then, i f  Sk = Xk+~ --Xk, {Xk) converges q-superlinearly to x*  and F ( x * )  = 0 i f  and 

only if 

lim I[ (B~ - VF(x*))s~ II _ 0. (3.8) 
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Proof. Suppose that (3.8) holds. Since 

( B k - V F ( x * ) ) s k = F ( x k + L ) - F ( x k ) - V F ( x * ) ( x ~ + ~ - x k ) - F ( x k + , ) ,  (3.9) 

the continuity of  B F ( . )  at x* and (3.8) imply, in view of Theorem 2.1, that 

lim I] F(xk+O II/Ilxk+, - xk IJ = 0. (3.10) 

Thus, F(x*)  = 0, and since VF(x*)  is nonsingular, by Lemma 2.1 there exists o~ > 0 
such that 

IIf(xk+,)ll = II f (Xk+l ) -  F(x*)][ >~ c~ IIXk+,- x'l]. 

Therefore, 

[[Xk+l--Xk[I I)Xk+l--X:~jl"}-IIXk--X*[[ ]-J-Pk' 
where pk = I[ Xk+~ -- X* [I/[] Xk -- X* j[. Thus, (3.10) implies that Pk/(1 + Pk) converges to 
zero and hence {Pk} also converges to zero as desired. 

Suppose now that {xk} converges q-superlinearly to x* and F(x*)  = 0. Observe that 

IIf(xk+,)ll IIf(x~+,)-f(x*)II IIx~-x*ll 

[11:(x~+~)-F(x*)ll IIx~+,-x*ll IIx~-x*l[ 
IIx~+~-x*[I Ilxk-~*ll IIx~+,-x~ll" 

Since F is Lipschitz continuous on D and limk~o~[IXk+l--Xk[I/llXk --X*II = 1 (see [3]), 
(3.10) holds. It then follows from (3.9) that (3.8) is satisfied. [] 

4. Broyden's method 

In this section we study local convergence properties of Broyden's method for 
solving a system of  nonlinear equations F(x )  = 0 where F :  N" ~ ~n. We generalize 
classical results in [2, 5] by relaxing standard Fr6chet differentiability assumptions 
on the function F. 

Broyden's method for solving the system F(x )  = 0 has the form [1, 2, 5] 

X~+I=Xk+Sk, Sk =-B~LF(xk), k=0, 1, . . . ,  (4.1) 

= B k  + (Yk - BkSk)S~ 
Bk+l T , yk=F(xk+L)--F(xk) .  (4.2) 

SkSk 

Broyden's method is one of the most efficient and robust quasi-Newton methods 
and it has the key q-superlinear convergence property under appropriate assump- 
tions. 

Denote by Ilvl12 the 12 vector norm of v~N"  and by IIAII2 the 12 matrix norm of 
A c N"×", respectively. We shall also refer to the Frobenius norm of matrix A which 
is defined as the 12 norm of A written as a vector [5]. 
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The following lemma extends Lemma 8.2.1 in Dennis and Schnabel [5] (see also 
Broyden et al. [2]) to B-differentiable functions. 

Lemma 4.1. Let F:i~" ~ ~" be Lipschitz continuous and B-differentiable on an open, 
convex set D c ~ .  Suppose also that BF( .  ) is Lipschitz continuous at x* c  D (with 

Lipschitz constant L >  O) with respect to the 12 vector norm (this implies, by Theorem 
2.1, that VF(x*) exists). Define 

(y~-Acso)s~ 
A+ = A¢ q T , where 

Sc Sc 

A~s~=-F(xc) ,  y ~ = F ( x + ) - F ( x ~ ) ,  x+=x~+s~, 

and assume that x~, x+ c D, xo # x+. 

Then, 

IIA+-VF(x*)I] <<-IlA~-VF(x*)ll+Lmax{llx+-x*ll2,  llx~- x*]12 } (4.3) 

where II " I( is either the Frobenius or the 12 matrix norm. 

Proof. By the definition of A+, 

(yo-  Acsc)SV¢ 
A + - V F ( x * ) = A o - V F ( x * ) ~  T 

Sc Sc 

= ( A o - V F ( x * ) )  I -s°sv~ + T 

SeSc 

For either the Frobenius or the /2 matrix norm, it follows [5] that 

llA+-VF(x*)l[<~ l lAc-VF(x*) l l  I--s~sT I Nyc- V S(x*)sc[12 

2 llsd2 

Using ]]I-sosV~/ T S~ScI[2 = 1 [5] and 

Ily~- V e(x*)Scl{2<~ L max{llx+- x*N2, I{xo- x*l{2}{tso{I2 

concludes the proof. The last inequality follows from Lemma 2.2 by setting x = x+, 

y = x ~ , a n d z = x * .  [] 

Observe that formula (4.3), called the bounded deterioration property [5], is a 
special case of formula (3.3) in Theorem 3.1. 

The next theorem extends Theorem 8.2.2 in Dennis and Schnabel [5] (see also 
Broyden et al. [2, Theorem 4.3]) to B-differentiable functions. 

Theorem 4.1. Let F : ~n ~ ~ be Lipschitz continuous and B-differentiable on an open, 
convex set D c R n, and suppose that BF( .  ) is Lipschitz continuous at x* ~ D (with 

respect to the 12 vector norm), that F ( x * ) =  O, and VF(x*) -~ exists. 

Then, there exist e > 0 and 6 > 0 such that, if  [I Xo- x* II 2 <~ e and II Bo-- V F(x*)  {[ 2 ~< 6, 
then the sequence {xk} generated by (4.1)-(4.2) is well defined and converges q- 
superlinearly to x*. 
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Proof. By Lemma 4.1, formulas (3.2) and (3.3) in Theorem 3.1 hold with B, = 
VF(x*). Thus, the conclusions of Theorem 3.1 hold and, in particular, {xk} is well 
defined and converges q-linearly to x* and formula (3.5) holds. The conclusion 
now follows from Theorem 3.3 with the proof proceeding along the same lines as 
the proof of q-superlinear convergence in Theorem 8.2.2 in [5]. 

Another extension of Theorem 8.2.2 in Dennis and Schnabel [5] was recently 
proposed by Kojima and Shindo [11]. They considered a system of piecewise 
continuously differentiable equations and modified Broyden's method in such way 
that the formulas (4.1)-(4.2) were applied as long as the points xk stayed within a 
given Cl-piece (where the equation functions were continuously ditterentiable) and 
an appropriate initial starting matrix B0 was used when the point xk moved to a 
new piece. Their local convergence results states that q-superlinear convergence of 
{xk} is preserved if the assumptions of the classical theorem hold for each C~-piece. 
Note that while they do not require the existence of VF(x*), their method could 
be computationally less efficient since it requires storing a potentially large number 
of matrices (up to 2 ~, the number of possible C~-pieces) in addition to other 
bookkeeping chores. 

Another Newton-type method which does not require the existence of VF(x*) 
was proposed by Qi and Sun [ 15 ]. This method generalizes the Newton-type method 
of Pang [13] to nonlinear equations defined by semismooth functions and utilizes 
the generalized Jacobian OF(x*) instead of VF(x*). The authors obtain local 
q-superlinear convergence under the assumption that OF(x*) is nonsingular. While 
this method bears a certain resemblance to quasi-Newton methods studied here, it 
is fundamentally different since its iterations require Jacobian matrix information 
in contrast to simple updates used by quasi-Newton methods. 

5. Application to nonlinear complementarity problems 

In this section we propose a new method for solving nonlinear complementarity 
problems. The method applies Broyden's algorithm to two related formulations of 
the nonlinear complementarity problem as a system of B-differentiable equations. 
The results of Section 4 are used to analyze its local convergence properties. 

A nonlinear complementarity problem has the form 

NCP: find x such that x~O,  F(x) >~0, xVF(x) =0, 

where F:N" ~Nn. Pang [13] defined the following function H:N" - ~ ,  

H(x) = min(x, F(x)), (5.1) 

where the "min" operator denotes the componentwise minimum of two vectors, 
and observed that x solves NCP if and only if 

H(x) =0. (5.2) 
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Thus, the nonlinear complementarity problem NCP can be converted to an 
equivalent system of nonlinear equations (5.2). 

Pang [13] recently developed a novel Newton method for solving a B-differentiable 
nonlinear system of equations and applied it to nonlinear complementarity problems 
via system (5.2). His method requires a solution of a mixed linear complementarity 
problem in each iteration and, under appropriate assumptions, is shown to have 
the q-quadratic local convergence property. A globalized version of the method 
with line-search is also shown in [13] to have the global convergence property under 
certain assumptions. We propose to apply Broyden's method described in Section 
4 to the system (5.2) and show that, under assumptions similar to those in [13], it 
exhibits q-superlinear local convergence to the solution point. Our method has the 
advantage of requiring only the rank one update of the inverse of the matrix Bk in 
each iteration which is O(n2). In contrast, the Newton method in Pang [13] solves 
in each iteration either a mixed linear complementarity problem which potentially 
requires an exponential number of computations (in case of degeneracy) or a system 
of linear equations requiring O(n 3) computations (in case of nondegeneracy). Harker 
and Pang [7] and Pang [13] also survey and discuss earlier Newton and quasi-Newton 
methods for solving the problem NCP. In general, all those methods have similar 
local convergence properties and they all solve a certain mixed linear complemen- 
tarity problem in each iteration. 

The following theorem proved in Pang [13] summarizes the properties of the 
function H. 

Theorem 5.1 [13]. Let F:R"  ~ "  be FrEchet differentiable. Then: 
(1) The function H, defined in (5.1), is everywhere B-differentiable with the B- 

derivative given by 

[VF~(z)Tv if i ~ a (Z), 

(BH(z )v ) i  = ~min(VF/(z)Vv, eTiv) if i ~ f l(z),  
[eTv if ic  y(z), 

where e~(z) = (il Fi(z) < zi}, ~ ( z ) =  (i] Fi(z) = z,}, y (z )  = {il F~(z) > z~}, and e, is the 
ith unit vector. 

(2) H is Frdchet differentiable at a point z if and only if for each index i613(z), 
VF~(z) = ei. In particular, this holds if fl( z) is empty. 

(3) I f  VF(. ) is Lipschitz continuous at z, and if H is Fr~chet differentiable at z, 
then the B-derivative B H ( . )  is Lipschitz continuous at z. [] 

Suppose that x* solves the problem NCP and define the index sets 

I={ilx*i =O, Fi(x*)>O}, J = { i l x * > O ,  Fi(x*)=O}, 

L =  {ilx.*, =O, Fi(x*)=0}.  

For any index sets T and Z, define VTFz(x*)  to be the matrix [OFi(x*)/Oxj], i c Z, 
j c T. Note that I = y(x*),  J = ~ (x*), L = 13 (x*) and that if H is Fr6chet differentiable 
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at x*, then, by Theorem 5.1, 

V H ( x , ) = [ V ~ F ; ( x * )  V,,~LF~(/*)]Im J '  (5.3) 

where the identity matrix Im is m X m with m = [I[+ ILI(IZI denotes the cardinality 
of set Z). 

The next theorem shows that Broyden's method (4.1)-(4.2) applied to the system 
(5.2) is locally q-superlinearly convergent under appropriate assumptions on the 
Jacobian VF(x*). 

Theorem 5.2. Let F: ~n _~ j~n be Frdchet differentiable in a neighborhood of x* and let 
VF(.  ) be Lipschitz continuous at x* (with respect to the 12 vector norm). Suppose that 
x* solves the nonlinear complementarity problem NCP and that the following assump- 
tions hold: 

(i) VjFj(x*) is nonsingular; 
(ii) VF~(x*) = eifor all i~ L. 
Then, there exist e > 0 and ~ > 0 such that, if  II Xo - x *  [12 ~ e and I[ Bo - VH(x*)1[2 ~< ~, 

then the sequence {Xk} generated by (4.1)-(4.2) applied to the system H(x )  = 0 is well 
defined and converges q-superlinearly to x*. 

ProoL The result will follow from Theorem 4.1 if we can show that the assumptions 
of Theorem 4.1 hold for /4. By Theorem 5.1, assumption (ii) implies that H is 
Fr6chet differentiable at x* and B H ( . )  is Lipschitz continuous at x*. Finally, in 
view of formula (5.3), assumption (i) implies that VH(x*) -1 exists. [] 

Observe that if x* is a nondegenerate solution of NCP, i.e., L = 0, then assumption 
(ii) holds automatically. For degenerate solutions, however, assumption (ii) imposes 
a certain condition on the degenerate part of VF(x*) which substantially restricts 
the class of functions F to which Theorem 5.2 applies. The same restrictive assump- 
tion (ii) is imposed by Pang [13] to prove quadratic convergence of the generalized 
Newton method applied to the system H ( x ) =  0. However, under a strengthened 
assumption (i), Pang was able to prove in a subsequent paper [14] quadratic 
convergence rate of an arbitrary locally convergent sequence for a modified Newton 
method applied to H ( x ) =  0 without assuming condition (ii). 

Another reformulation of NCP as a system of nonlinear equations uses the concept 
of a Minty-map [11], i.e., the function G : ~ -~ ~ defined by 

G(z) = F(z  +) + z-, (5.4) 

where zi +=max(zi ,0) ,  z~=min(zi ,  0), z + =(zl,+ . . . ,z , )+ V, a n d z - = ( z [ , . . . ,  z~) v. It 
is easy to verify that there is a one-to-one correspondence between a solution z of 
the system of equations 

G(z)  = F(z  +) + z- = 0 (5.5) 
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and a solution x of NCP where x = z +. Thus, the problem NCP can be converted 
to an equivalent system of nonlinear equations different from (5.2). 

Harker and Xiao [8] applied the Newton method of Pang [13] for solving a 
B-differentiable nonlinear system of equations to nonlinear complementarity prob- 

lems via system (5.5). Their method requires a solution of the same mixed linear 

complementarity problem in each iteration as Pang's method, which uses the system 
(5.2), and has similar local convergence properties (a globalized version of  the 
method is also shown in [8] to converge globally to nondegenerate solutions). We 
again apply Broyden's method from Section 4 to the system (5.5) and show that it 
exhibits q-superlinear local convergence to the solution point. 

The next theorem summarizes the properties of the function G. Conclusions 
(1)-(2) were proved in Harker and Xiao [8] while conclusion (3) is new. 

Theorem 5.3 [8]. Let F : ~  ~ ~ ~n be Fr~ehet differentiable. Then: 
(1) The function G, defined in (5.4), is everywhere B-differentiable with the B- 

derivative given by 

(BG(~)v), = E BG~(~)vj, 
j = l  

I Fi)( z+)vj if j c ao( z ), (5.6) 

BG{(z)v j  = {F]j(z+)v + + IijVj- i f  j C flo(Z), 

" (I,jvj ifj  c ~o(Z), 

where ao(Z) = {i{zi > 0}, /3o(Z) = {i[z, = 0}, yo(z) = {ilzi < 0}, Fu(z +) = oFJaxj(z+) ,  
and lu = l i f  i = j, I u = 0  i f  i # j. 

(2) G is Fr&het differentiable at a point z i f  and only i f  for  each index j ~ ~o(z) ,  
Fu(z +) = Lj, i = 1 , . . . ,  n. In particular, this holds i f  flo(z) is empty. 

(3) I f  VF( .  ) is Lipschitz continuous at z +, and if  G is Frdchet differentiable at z, 
then the B-derivative B G ( .  ) is Lipschitz continuous at z. 

Proof. We only need to prove conclusion (3). Observe that for an arbitrary point 
y near z one has 

~o(y) = ~0(z) ~ (~o(y) ~ ~o(Z)), 

~o(y) = ~o(Z) u (~o(y) ~ tMz)),  ~o(y) ~ ~o(Z). 

In view of (5.6) and the Fr6chet differentiability of G at z one may write 

B G ~ ( y ) v - B G ~ ( z ) v  

= E F,j(y+)vj+ E [t:,j(y+)v;+I,jv;]+ E l~jvj 
Jeao(Y) J=-f~o(Y) J¢'Yo(Y) 

j ~ ~xo( Z ) j ~ ceo(y )c~f3o( Z ) 

- E [Fo.(~+)vf+X,sv;] - E xo.v:- E ~.~j 
ja3o(y)c~f~o(z) jc'yo(y)C~3o(Z) jaTo(Z) 

= E [~:0(y+)-v,j(z+)]vj + E [t~(y+)-Fo(z+)]v;. 
j ~ ao(y ) j ~13o(y ) 
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Lipschitz continuity of BGi ( ' )  at z now follows since l[y+-z+II<~ [[y-z[I and 

IIv*ll- llvll. [] 

Remark. Since Lipschitz continuity of B G ( . )  at z implies in particular that the 
B-derivative BG(z)  is strong in the sense of  Theorem 2.1 (3), conclusion (3) extends 
part (c) of Theorem 1 in Harker and Xiao [8] where the index set flo(Z) was assumed 
empty. Thus, the key global convergence result for the damped-Newton method in 
[8, Theorem 3] can be generalized to the class of functions for which the assumption 
in conclusion (2) holds (the same is true for the corresponding local convergence 
result for their Newton method which follows from the results in [13]). 

As before, suppose that x* solves the problem NCP and define the index sets / ,  
J, and L. If  we define z* by 

z * = - F , ( x * ) ,  z*= x*, z*= x*, (5.7) 

then it is easy to see that z* solves the system G(z) = 0. Note also that I = yo(Z*), 
J = C~o(Z*), L =/3o(z*) and that if G is Fr6chet differentiable at z*, then, by Theorem 
5.3, 

V G ( z * ) = [  VJFJ(x*) Om] , 
LV;F,~L(x*) 

where x* = (z*) + and the identity matrix Im is m x m with m = Ill+ILl. 
The next theorem shows that Broyden's method (4.1)-(4.2) applied to the system 

(5.5) is locally q-superlinearly convergent under appropriate assumptions on the 
Jacobian VF(x*) .  

Theorem 5.4. Let F : ~ ~ Nn be Frdchet differentiable in a neighborhood of x* and let 
VF( .  ) be Lipschitz continuous at x* (with respect to the 12 vector norm). Suppose that 
x* solves the nonlinear complementarity problem NCP and that the following assump- 
tions hold: 

(i) VlFj(x*) is nonsingular; 

(ii) For all j ~ L, i = 1 , . . . ,  n, OFJOxj(x*) = 1 i f  i = j  and OFi/Oxj(x*) = 0 if i ~j .  
Then, there exist e > 0 and 6 > 0 such that, i f  II Zo- z* 112 <~ e and II Bo-  V G(z*)112 <~ ~, 

where z* is defined in (5.7), then the sequence {zk} generated by (4.1)-(4.2) applied 
to the system G(z )=  0 is well defined and converges q-superlinearly to z* which in 
particular implies that the sequence {Xk = z~£} is well defined and converges q-super- 
linearly to x* = (z*) +. 

Proof. The proof  of  this result is the same as that of  Theorem 5.2 except that 
Theorem 5.3 is used here instead of  Theorem 5.1. 

The remarks that follow Theorem 5.2 apply to Theorem 5.4 as well. 
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6, Computational examples 

This section contains computational results obtained for two small nonlinear com- 

plementarity problems using Broyden's method applied to two formulations of these 
problems discussed in the previous section. 

Problem I (A Nondegenerate Nonlinear Complementarity Problem, [9]). Consider 
the following problem: find x c N4 such that x >~ O, F (x )  >! 0 and xTF(x )  = 0 where 
F : R 4 ~ N4 is given by 

Fl(x)  = 3x~ + 2XlX2 + 2x~ + x3 + 3 x 4 -  6, 

F2(x) = 2X2 + Xt + X2 + 3X3 + 2X4--2, 

Fa(X ) = 3x~ + xlx2 + 2x~ + 2x 3 -q- 3x4-1 ,  

F4(x) = 2 2 xt + 3x2 + 2x3 q-3X4 --3. 

This problem has a solution 

x* = @/-6 ~ 1.2247, 0, 0, 0.5), F(x*)  = (0, 2 + ~,/-6 ~ 3.2247, 5, 0). 

Since L = 0 ,  the solution x* is nondegenerate and it is easy to check that the 

assumptions of Theorems 5.2 and 5.4 hold at x*. 

Problem 2 (A Degenerate Nonlinear Complementarity Problem, [11]). Consider 
the following problem: find x c ~4 such that x >~ O, F(x )  >I 0 and xVF(x)  = 0 where 
F : N4 _~ R4 is given by 

F~(x) = 3x~ + 2xlx2 + 2x~ + x3 + 3x4-  6, 

F2(x) = 2x~ + xl + x 2 + 10x3 h- 2x4-  2, 

F3(x) = 3x~ + xlx2 + 2x~ + 2x3 + 9x4-  9, 

F4(x) = x~ + 3x~ + 2x3 + 3 x e -  3. 

This problem has two solutions 

x*  = (½,f6 ~ 1.2247, 0, 0, 0.5), F(x* )  = (0, 2 + ½,f6 ~- 3.2247, 0, 0), 

and 

X*ND = (1, 0, 3, 0), F(X*D) = (0, 31, 0, 4). 

Since L = O for the solution x ' D ,  it is a nondegenerate solution and it is easy to 
check that the assumptions of Theorems 5.2 and 5.4 hold at x*D. On the other 
hand, L =  {3} ¢ ~ for the solution x~,  so it is a degenerate solution and it can be 
verified that the assumptions (ii) of Theorems 5.2 and 5.4 do not hold at x* .  
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Table 1 

Results for problems 1 and 2 

Algorithm Starting point Number of iterations 

Problem 1 Problem 2 

MIN (0, 0, 0, 0) 15 27 (ND) 
MINTY (0, 0, 0, 0) 16 20 (ND) 

MIN (1, 1, 1, 1) 15 14 (ND) 
MINTY (1, 1, 1, 1) 16 67 (D) 

MIN (3, 3, 3, 3) 17 52 (ND) 
MINTY (3, 3, 3, 3) 38 45 (ND) 

MIN (5, 5, 5, 5) 17 21 (ND) 
M1NTY (5, 5, 5, 5) 41 45 (ND) 

M1N (100, 100, 100, 100) 16 25 (ND) 
MINTY (100, 100, 100, 100) 44 49 (ND) 

MIN (-2, -2, -2, -2) 24 19 (ND) 
MINTY (-2, -2,  -2, -2) 19 failed 

MIN (1, 0, 1, 0) 14 37 (ND) 
MINTY (1, 0, l, 0) 339 126 (D) 

MIN (10, 0, 10, 0) lS 43 (ND) 
MINTY (10, 0, 10, 0) 43 51 (ND) 

MIN (1, 0, 0, 0) 20 36 (NO) 
MINTY (1, 0, 0, 0) 15 17 (ND) 

MIN (10, 0, 0, 0) 18 19 (ND) 
MINTY (10, 0, 0, 0) 46 47 (ND) 

MIN (0, 1, 1, 0) 12 30 (ND) 
MINTY (0, 1, 1, 0) failed 491 (D) 

MIN (0, 10, 10, 0) 17 19 (ND) 
MINTY (0, 10, 10, 0) 44 46 (ND) 

MIN (1, - l ,  -1, 1) 15 35 (ND) 
MINTY (1, -1, -1, 1) 12 27 (D) 

MIN (-1, 1, 1, -1)  16 44 (ND) 
MINTY (-1, 1, 1, -1)  36 failed 

MIN (10, -10, -10, 10) 17 38 (ND) 
M1NTY (10,-10, -10, 10) 43 failed 

MIN (1, -1, 1, -1)  16 38 (ND) 
MINTY (1, - l ,  1, -1)  failed 71 (D) 

MIN (10, -10, 10, -10) 17 68 (ND) 
MINTY (10, -10, 10, -10) 43 49 (ND) 

D = degenerate solution, ND = nondegenerate solution. 
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The above two problems were tested using Broyden's method applied to Pang's 
formulation [13] of NCP given in (5.2), which is called "MIN", and Harker-Xiao 
formulation [8] of NCP given in (5.5), which is called "MINTY". Table 1 exhibits 
numerical results obtained using both versions of the method with the same 17 
starting points and the initial matrix Bo set to be the identity matrix. 

As the results in Table 1 show, Broyden's method is surprisingly robust in that 
it almost always converges to a solution of the problem regardless of the starting 
point chosen. They also indicate that for both Problems 1 and 2 the "MIN" method 
typically converges faster to a solution than the "MINTY" method. In fact, the 
"MIN" method has successfully found a solution in all cases while the "MINTY" 
method failed in several instances. It is also interesting to note that the "MIN" 
method always found the nondegenerate solution of Problem 2 in contrast to the 
"MINTY" method which was able to find the degenerate solution of Problem 2 in 
several cases. These results, of course, do not necessarily imply superiority of the 
"MIN" method over the "MINTY" method since they are restricted to two small 
problems. In fact, the results in Harker and Xiao [8] for the modified Newton 
method suggest that the "MINTY" approach may have some computational advan- 
tages over the "MIN" approach. 

In general, our results compare favorably with those reported in Josephy [9] and 
Harker and Xiao [8] for Problem 1 and the results in Kojima and Shindo [11] for 
Problem 2. This suggests that the method holds promise and that more extensive 
tests on larger problems should be performed to establish its efficiency. 
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