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1. Introduction

In this paper we study local convergence of quasi-Newton methods for solving
systems of nonlinear equations defined by B-differentiable functions. This analysis
extends the class of equation functions to which such methods may be applied
beyond the familiar Fréchet differentiable functions. B-differentiable functions,
introduced by Robinson [16], have properties of Lipschitz continuity and directional
differentiability and they allow natural extensions of a number of key analytic results
useful in proving convergence results. In two related recent papers, Pang [13, 14]
extended the classical Newton method for solving nonlinear equations to B-
differentiable functions and applied it to nonlinear complementarity and variational
inequality problems. A similar extension of the classical Newton method to B-
differentiable nonlinear equations was also proposed by Harker and Xiao [8] who
applied it to nonlinear complementarity problems. These Newton-type methods
were subsequently further generalized to semismooth nonlinear equations by Qi
and Sun [15]. Another extension of Newton’s method to a different class of non-
smooth equations was studied by Robinson [17].
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The objectives of this paper include: (i) extension of the classical linear and
supetlinear convergence results for general quasi-Newton methods as well as for
Broyden’s method, and (ii} a novel application of Broyden’s method to nonlinear
compiementarity problems. The first objective is motivated by the fact that quasi-
Newton methods combine excellent convergence rates with relatively minimal com-
putational effort and are therefore often competitive with Newton’s method [1-6].
Also, Newton’s method of Pang[13, 14] requires a solution of nonlinear subproblems
in each iteration which may be, in general, computationally inefficient. Thus, solution
of nonlinear equations defined by non-Fréchet differentiable functions using quasi-
Newton methods, which require only low rank update of the matrix inverse, is of
practical interest. The only other paper dealing with quasi-Newton methods for
nondifferentiable equations is due to Kojima and Shindo {11] whete they considered
systems of piecewise continuously differentiable equations.

The second objective is motivated by the simplicity of the specialization of
Broyden’s method to a nonlinear complementarity problem via equivalent systems
of nonlinear equations. Computational methods for nonlinear complementarity
problems typically require a solution of a mixed linear complementarity problem
in each iteration which is in contrast to the method proposed here where only rank
one update of the matrix inverse is done in each iteration. The solution of a mixed
linear complementarity problem is required, for example, in the Newton and
quasi-Newton methods of Josephy [9, 10] which extend the classical methods for
nonlinear equations to variational inequalities and nonlinear complementarity prob-
lems via the framework of generalized equations as well as in the recent Newton-type
methods of Pang [13, 14} and Harker and Xiao [8]. The computational performance
of the proposed method is illustrated on two small examples.

The remainder of the paper is organized as follows. In Section 2 we review the
notion and key analytic properties of a B-differentiable function. In Section 3 we
study local convergence of quasi-Newton methods for solving B-differentiable sys-
tems of nonlinear equations and generalize the classical results to B-differentiable
equation functions. In Section 4 we obtain local convergence properties of Broyden’s
method for nonlinear B-differentiable equations. In Section 5 we propose a new
method for solving nonlinear complementarity problems based on the application
of Broyden’s method to two equivalent systems of nonlinear equations and analyze
its local convergence properties. The computational performance of the proposed
method is illustrated on two small examples in Section 6.

2. B-differentiable functions

In this section, we review the notion of a B-differentiable function and present some
properties of such a function. We refer the reader to the recent papers by Robinson
[16] and Pang [13] for a more detailed exposition.

The following definition is due to Robinson [16].
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Definition 2.1 [16]. A function H:R™>R" is B-differentiable at a point z€ D if
there exists a positively homogeneous function BH(z):R™ > R" (i.e., BH(z){(Av) =
ABH (z)v for all A =0 and v€R™), called the B-derivative of H at z, such that

ling[H(z-l- v)— H(z)— BH(z)v]/|v] =0.
If H is B-differentiable at all points z€ D, then H is called B-differentiable on D.

The basic properties of a B-differentiable function are summarized in the next
proposition.

Proposition 2.1 [13,16]. Let H:R" > R" be locally Lipschitz continuous at a point z.

(1) If H is Fréchet differentiable at z, then it is B-differentiable at z and BH(z) =
VH(z). Conversely, if H is B-differentiable at z and if the B-derivative BH(z)v is
linear in v, then H is Fréchet differentiable at z.

(2) If H is B-differentiable at z, the B-derivative is unique. Moreover, BH(z) is
Lipschitz continuous with the same modulus as H.

(3) If H is B-differentiable at z, then H is directionally differentiable at z in any
direction and H'(z, d)= BH(z)d.

(4) The addition, subtraction, and chain rules hold for the B-derivative. [

Throughout this section we assume that the function H:R"—>R" is Lipschitz
continuous in the region of interest. The following theorem was proved in Pang [13].

Theorem 2.1 [13]. Let H :R" > R" be B-differentiable on an open, convex set D < R".
Then, for any x, y, z€ D,
[H(x)=H(y)=BH(z)(x—y)[|< sup [(BH(y+t(x—y))~BH(2))(x~y)||.
O=r=<1
Moreover, the following statements are equivalent:

(1) BH(") is continuous at z< D, i.e., for every £ >0 there exists a neighborhood
N of z such that, for all xe N and all veR" with |v|| =1,

I(BH(x) - BH(z))v||<e.

(2) H is Fréchet differentiable at z in the strong sense (see Ortega and Rheinboldt
[12]) which, in particular, implies that H is Fréchet differentiable at z.
(3) The B-derivative BH(z) satisfies the stronger limit property
lim [H(x)-H(y)-BH(z)(x-y)]/[|x—yll=0. O

(x,y)=>(z,2)

The above theorem as well as the next two lemrmas will be utilized in subsequent
sections.
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Lemma 2.1. Let H:R">R" be B-differentiable on an open, convex set D<R", and
suppose that BH(-) is continuous at z< D, and that VH(z) is nonsingular (VH(z)
exists by Theorem 2.1). Then there exists a neighborhood N of z and o > 0 such that,
for all x,y € N,

IH(x)=H(y)||= a|x—yl|.

Proof. By Proposition 2.1 and Theorem 2.1, for any £ > 0 there exists a neighborhood
N of z such that, for all x, ye N,

IH(x) - H(y)| = |[VH (z)(x = y)|| = | H(x) — H(y) =VH(z)(x - y)|
Z|x=yl/IVH(2) [~ ellx~ ]|
=(1/|VH(2) |- e)lx =yl

where we used
Ix =yl = IVH () 'VH(2)(x =) < [VH() | [VH(2) (x = y)]

and where the symbol ||+ || also denotes a matrix norm consistent with the vector
norm || in R”. Thus, if e<1/|VH(z)™'|, the conclusion holds with a=
1/|VH(z) Y|-e>0. O

Lemma 2.2. Let H:R"—>R" be B-differentiable on an open, convex set D<R", and
suppose that BH(-) is Lipschitz continuous at z € D, i.e., there exists a neighborhood
N of z and some L>0 such that, for all xe N and all veR" with |v|| =1,

I(BH(x)~BH(z))v| < L|x—z|.
Then, for all x, y€ N,

IH(x) - HO) = BH()x - )] < Lmax{e—z], by =21,
Proof. By Theorem 2.1 and Lipschitz continuity of BH(-),

IH )~ H) = BHE == L sup [0+ 1621 =1,
The result now follows since

sup [[(y +#(x~y)) —z|| s max{l|x—z|, |y —z|}. O

O=t=1

3. Local convergence of quasi-Newton methods

In this section we study local convergence of quasi-Newton methods for solving
B-differentiable systems of nonlinear equations. We generalize classical results in
[2-6] by relaxing the standard Fréchet differentiability assumptions on the equation
functions. The proofs of all the results in this section paralilel those of the correspond-
ing classical results.
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Let F:R">R" be an arbitrary function and consider a system of simultaneous
nonlinear equations

F(x)=0.
General quasi-Newton methods for solving this system have the form [4, 5, 12],
Xps1=Xe— Bi'F(x.), BeR™", k=0,1,.... (3.1)

Denote a vector norm by ||| for v € R" and the subordinate matrix operator norm
by [|A]| for AeR"™". The notation [|A]| for AeR"™" stands for any arbitrary but
fixed norm on R"™" which may not be subordinate to a vector norm. We shall utilize
the fact that all norms on R™™" are equivalent. In particular, for ||-| and [||-|| we
assume for some w, 7 >0 and any AeR"™", that

ullAll= Al = nllA]l.

The following theorem extends Theorem A2.1 in Dennis and Walker [6] to B-
differentiable functions.

Theorem 3.1. Let F: D < R" > R" be locally Lipschitz continuous and B-differentiable
at x* e D, where D is an open, convex subset of R" and F(x*)=0, and let B, e R"™*"
be such that B, exists and for all veR" with ||v| =1,

I[I— B BF(x*)Jv]|<r,<1. (3.2)
Let U:R"xR™" = 28" be defined in a neighborhood N = N, x N, of (x*, B,), where
N,= D, N,c{AeR""|A™" exists}. Suppose that there exist a;=0 and a;=>0 such
that, for each (x, B) e N, and for x, = x — B"'F(x), every B, ¢ U(x, B) satisfies

[IBs— B*HJ <[1+a0(x, x+)p]“[B - B*”l"' a0 (x, x,)F (3.3)
where o(x, x,.) = max{||x —x*|, [|x. —x™||} and p< (0, 1].

Then, for any re(ry, 1), there exist ¢,,8,>0, such that if ||x,~x*||<e, and

| Bo— By |l < 8,, then any sequence {x,} defined by

xk+1:xk_B;1F(xk)a Bk+1E U(xka Bk)a k:09 11""
converges g-linearly to x* with

k1 = x ™[ = rlloxe — x|,

and has the property that {||B,|} and {|| B{'|} are uniformly bounded.

Proof. Since F is B-differentiable at x*, for any p >0, there is &, > 0 such-that
| x = x*[| < e,=||F(x) = F(x*) = BF(x*)}(x —x*)||/ || x = x*|| < p. (3.4)

Let re(r,, 1) and choose & and p sufficiently small so that for 8= ||B;'|| and
= supy, - | BF(x*)v|, one has 2878 <1 and

1-2878

=

(p+2B8nyd).
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Now, choose g, based on (3.4) so that
&l
1—r?
Select 8, small enough so that ||B— B,[|< 8 if ||B— B,/ <§,. Restrict &,, 8, so that
(x, Bye N if || B— B,|| <276 and [|x — x*|| <e,. Let | By— B, || <8, and ||x,— x*| < ¢,.

From standard arguments,
xy=x*=[1-By" BF(x*))(xo—x*) = By '[ (%) = F(x*) = BF(x*)(xo— x*)].

Thus,

= 4.

2a,6+ a,)

flx1=x* < || Bo | | Fx0) = F(x*) = BF(x*)(xo ~ x*)|)
+ |11 = Bg' BF(x*)](xo— x*)]
<||Bo'|| | F(x0) = F(x*) = BF(x*)(xo~ x*)||
+ |11 = B," BF(x™)](xo—x*)]|
+[|By' = Bo ||| BF(x*) (x50~ x*)|)
<|Bo' || | F(x0) = F(x*) = BF (x*)(xo—x*)]
+ [T~ B3 BF(x*))(xo—~x*)|
+ 185 HIBL 1| Bo = B | BE (x¥)(x0 = x ™).
It follows from the Banach perturbation lemma, since
1B M| Bo— Byl < Blll Bo— Byl < Bnd <2Bnd <1,
that B, exists and ||By'l| < B8/(1—-2818). Thus, from the previous inequality
e —x*|| < [T_—f—ﬁ'—g
n
Assume now by way of induction that for k=0,1,..., m—1,||B,~ B,J| <28 and
%04y = x*([ = rl|x — x*[|. Then,

[1Bicrr = Byl = 1B = Bylll =< a10-(xi, Xic) [ B — Byl + ev20 (e, Xcsr)”

< (2a,8+ )| xe — x| < Qa8+ ay) 71,

(o +2000) 1, o] =1l x*)

Summing both sides from k=0 to m—1 we obtain
(B = Byll<|Bo— B+ (2,6 + as) el /(1 — #P) <28 (3.5)

s0 ||B,, — B,l|=<278 and again by the Banach perturbation lemma, B;,' exists and
| B, <B/(1-28%38). To complete the induction we proceed as for m = 0:

[%ms1 = x| < | B! | | F (%) = F(x*) = BE(x*)(x,, = x*)]|
BBy | B = Byll | BF (x*) (3, ~ X))
+|U - By BF(x®)](x, —x")])
<[IB.' | (p+ B B = Bully) + rdli % — x*|

s[?fﬁ%'é(”“ﬁ”&f”“*] 6 =X = 7= 5
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Note that we have ||B;'|<B/(1~2B73) and that || B, || <298+ B,| which com-
pletes the proof. [

Theorem 3.1 is valid, in particular, when F is Fréchet differentiable at x* which
shows that the Holder continuity property of VF(-) at x*, assumed in Theorem
A2.1in Dennis and Walker [6], can be considerably relaxed. The following corollary
of Theorem 3.1 demonstrates that the classical result of Broyden, Dennis, and Moré
[2, Theorem 3.2] can be extended in the same manner.

Corollary 3.1. If F: D<R"»>R" is locally Lipschitz continuous and Fréchet differenti-
able at x* € D, where D is an open, convex subset of R", F(x*)=0, VF(x*)™" exists
and the property (3.3) in Theorem 3.1 holds with B, =V F(x*), then the conclusions
of Theorem 3.1 hold. []

The next theorem extends Theorem A3.1 in Dennis and Walker [6] to B-differenti-
able functions.

Theorem 3.2. Let F: D<R">R" be locally Lipschitz continuous and B-differentiable
at x* e D, where D is an open, convex subset of R" and F(x*)=0, let {x,} be a
sequence generated by (3.1) which converges to x* with x, # x* for all but finitely
many k and such that for some norm |- ||, and some re(0, 1),

% =x* < rllxe—x*)),, k=0,1,.... (3.6)

If sp = X441 — X and B, e R"™" is any nonsingular matrix, then the norm-independent
condition
B,—B,)s

(3.7
koeo L]
holds if and only if the norm-independent condition

(%= x*)  (Xers —x%)
e —x* o — x|

=0

lim [T~ B, BF(x*)]

holds. In particular, if the condition (3.7) holds in some norm, then for any vector
norm |- ||, {xi} converges g-superlinearly to x* if and only if

1757 BrGe {2220

lim
o fl2 = x*|)

=0.

Proof. One has
(B = By)si =[ By~ BF(x*)](x; — x*) = By (%4, — x¥)
+ BF(x*)(x,, ~ x*) — F(x).
Since || —x* |y = rlxc—x*|;, k=0,1,..., and 8 = x4, — s,

(=)= x*[l < sl =< A+ ) e — =),
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By the B-differentiability of F at x*,
[ BE(x™)(x —x*) — F(x)s

lim
k>0 “Skul
llF(xk) F(x*) = BF(x*)(x,~x™)|,; o
k‘“’" (1= r) e —x*|, ’

Thus, limy ool (B~ By)si|y/ [ sc]li =0 if and only if

”[B — BF(x*)1(x —x*) — B, (% — x|
k'“’o lIsiclls

=0.

Further, one has
LBy — BF (x™*)](00 — x*) — By (%1 — x¥)
llsiclls

” [1-B,' BF(x*)]

Byl
S(-1)

(X =x") (X —x%)
flee =x*{[1 floex = x*[I,

s

and

0By — BF(x™*)](x —x*) = By (e — ™)y
flsiclls

- e (e~ x%) __(xkﬂ“X*)
“TB0 <1+>““ B BN e,

Thus, the first conclusion of the theorem holds and the second conclusion follows
trivially since only norm-independent “zero” limits have been used. [J

1

Similarly to Theorem 3.1, Theorem 3.2 is true, in particular, when F' is Fréchet
differentiable at x* which shows that the Hoélder continuity property of VF(-) at
x*, assumed in Theorem A3.1 in Dennis and Walker [6], can be relaxed.

In the case where B, =VF(x™), Theorem 3.2 can be strengthened by replacing
the linear convergence assumption (3.6) by ordinary convergence and imposing a
local continuity assumption on the derivative of F. This result is given next and it
extends Theorem 2.2 in Dennis and Moré [3] to B-differentiable functions.

Theorem 3.3. Suppose that F: D < R" » R" is Lipschitz continuous and B-differentiable
on D, where D is an open, convex subset of R", that for some x*< D, BF(-) is
continuous at x*, and that VF(x*) is nonsingular (VF(x*) exists by Theorem 2.1).
Let {B,} be a sequence of nonsingular matrices in R*™" and suppose that for some
Xo€ D the sequence {x,} generated by (3.1) remains in D and converges to x*, where
X # x* for all but finitely many k.

Then, if s; = Xpoq— X, {Xx} converges g-superlinearly to x* and F(x*)=0 if and
only if

lim ”(Bk 'VF(X*))Sk”

ke sl

=0. (3.8)
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Proof. Suppose that (3.8) holds. Since
(B =VF(x*))si = F(xis1) = F(%) =VF(x*) (1 = %) = F(Xea),  (3.9)
the continuity of BF(-) at x* and (3.8) imply, in view of Theorem 2.1, that
ll‘_i_)IE)”F(xk-H)”/“xk—H —x ]| =0. (3.10)

Thus, F(x*)=0, and since VF(x*) is nonsingular, by Lemma 2.1 there exists & >0
such that

I FGoiee D = 1F (i) = FO) = @iy — x*]).
Therefore,

I F (o)l > a f|Xes — x| = Pr

e =Xl [Xur =x*[| e =x*)  1+p”

where py = || Xr; — x*||/ || X — x*||. Thus, (3.10) implies that p./(1+ p,) converges to
zero and hence {p,} also converges to zero as desired.
Suppose now that {x, } converges g-superlinearly to x* and F(x*) = 0. Observe that

[FOe D NFGaa) = FGEH) - flxc—x*)

l)xkﬂ—xk}r [l —x*|| f %1 = x|
IFGa) ~FG e —x*] =7
(S e = x| Ner —xell”

Since F is Lipschitz continuous on D and limy .o/ X+ 1 — X ||/ || X — x*| = 1 (see [3]),
{3.10) holds. It then follows from (3.9) that (3.8) is satisfied. O

4, Broyden’s method

In this section we study local convergence properties of Broyden’s method for
solving a system of nonlinear equations F(x)=0 where F:R" - R". We generalize
classical results in {2, 5] by relaxing standard Fréchet differentiability assumptions
on the function F,

Broyden’s method for solving the system F(x)=0 has the form [1, 2, 5]

X1 =X+ S, 8 =—Br ' Fx), k=0,1,..., (4.1)
(Ve — Bisi)sp
Buwi= Byt P E = Flx) - F(x). (4.2)
k9 k

Broyden’s method is one of the most efficient and robust quasi-Newton methods
and it has the key g-superlinear convergence property under appropriate assump-
tions.

Denote by ||v|, the L, vector norm of veR" and by ||A|, the }, matrix norm of
AeR"™", respectively. We shall also refer to the Frobenius norm of matrix A which
is defined as the I, norm of A written as a vector [5].
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The following lemma extends Lemma 8.2.1 in Dennis and Schnabel {5] (see also
Broyden et al. [2]) to B-differentiable functions.

Lemma 4.1. Let F:R” > R" be Lipschitz continuous and B-differentiable on an open,
convex set D<R”. Suppose also that BF(-) is Lipschitz continuous at x* < D (with
Lipschitz constant L>0) with respect to the 1, vector norm (this implies, by Theorem
2.1, that VF(x*) exists). Define

C_ACC I
A+=Ac+~(L—T—S—)£—, where
Sese

Acsc:—F(xc): yc:F(x+)—F(xc)7 Xp=X.t s,

and assume that x., x, € D, x.# x..
Then,

| AL =VF(x*))| < |Ac =V F(x*)||+ L max{]|x, —x*|,, [|x.— x¥)|,} (4.3)

where |- | is either the Frobenius or the I, matrix norm.

Proof. By the definition of A,

y 'C_—AC c :
A, ~VE(x*) = A~V F(x¥) 4 Lo BeSe)se

Se S,

T — * T

:<AC—VF<x*))[1—i;i°-]+<yc VEOT)se)se
c9¢ S 8¢

For either the Frobenius or the /, matrix norm, it follows [5] that

A~V FGe)| = A=V ) | 1 -2 Sl Then

Using |1 —s.s50/5¢s.]l,=1[5] and
Hyc‘VF(X*)SC“Zs L max{“x+_X*[127 ch'—X*‘(Z}HSCUZ

concludes the proof. The last inequality follows from Lemma 2.2 by setting x = x,,
y=x,and z=x* [

Observe that formula (4.3), called the bounded deterioration property {5], is a
special case of formula (3.3) in Theorem 3.1.

The next theorem extends Theorem 8.2.2 in Dennis and Schnabel [5] (see also
Broyden et al. [2, Theorem 4.3]) to B-differentiable functions.

Theorem 4.1. Let F:R" - R" be Lipschitz continuous and B-differentiable on an open,
convex set D <R", and suppose that BF(-) is Lipschitz continuous at x* € D (with
respect to the I, vector norm), that F(x*)=0, and VF(x*)™" exists.

Then, there exist € > 0 and 8 > 0 such that, if || xo— x*|,=< e and | B~V F(x*)|,< 6,
then the sequence {x.} generated by (4.1)-(4.2) is well defined and converges q-
superlinearly to x*,
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Proof. By Lemma 4.1, formulas (3.2) and (3.3) in Theorem 3.1 hold with B, =
V F(x*). Thus, the conclusions of Theorem 3.1 hold and, in particular, {x} is well
defined and converges g-linearly to x* and formula (3.5) holds. The conclusion
now follows from Theorem 3.3 with the proof proceeding along the same lines as
the proof of g-superlinear convergence in Theorem 8.2.2 in [5]. [0

Another extension of Theorem 8.2.2 in Dennis and Schnabel [5] was recently
proposed by Kojima and Shindo [11]. They considered a system of piecewise
continuously differentiable equations and modified Broyden’s method in such way
that the formulas (4.1)-(4.2) were applied as long as the points x; stayed within a
given C'-piece (where the equation functions were continuously differentiable) and
an appropriate initial starting matrix B, was used when the point x, moved to a
new piece. Their local convergence results states that g-superlinear convergence of
{x,} is preserved if the assumptions of the classical theorem hold for each C"'-piece.
Note that while they do not require the existence of VF(x*), their method could
be computationally less efficient since it requires storing a potentially large number
of matrices (up to 2", the number of possible C'-pieces) in addition to other
bookkeeping chores.

Another Newton-type method which does not require the existence of VF(x*)
was proposed by Qi and Sun [15]. This method generalizes the Newton-type method
of Pang [13] to nonlinear equations defined by semismooth functions and utilizes
the generalized Jacobian dF(x*) instead of VF(x*). The authors obtain local
g-superlinear convergence under the assumption that 3 F(x*) is nonsingular. While
this method bears a certain resemblance to quasi-Newton methods studied here, it
is fundamentally different since its iterations require Jacobian matrix information
in contrast to simple updates used by quasi-Newton methods.

5. Application to nonlinear complementarity problems

In this section we propose a new method for solving nonlinear complementarity
problems. The method applies Broyden’s algorithm to two related formulations of
the nonlinear complementarity problem as a system of B-differentiable equations.
The results of Section 4 are used to analyze its local convergence properties.

A nonlinear complementarity problem has the form

NCP: find x suchthat x=0, F(x)=0, x'F(x)=0,
where F:R">R". Pang [13] defined the following function H:R" > R",
H{x)=min(x, F(x)), (5.1)

where the “min” operator denotes the componentwise minimum of two vectors,
and observed that x solves NCP if and only if

H(x)=0. (5.2)
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Thus, the nonlinear complementarity problem NCP can be converted to an
equivalent system of nonlinear equations (5.2).

Pang [ 13] recently developed a novel Newton method for solving a B-differentiable
nonlinear system of equations and applied it to nonlinear complementarity problems
via system (5.2). His method requires a solution of a mixed linear complementarity
problem in each iteration and, under appropriate assumptions, is shown to have
the g-quadratic local convergence property. A globalized version of the method
with line-search is also shown in [13] to have the global convergence property under
certain assumptions. We propose to apply Broyden’s method described in Section
4 to the system (5.2) and show that, under assumptions similar to those in [13], it
exhibits g-superlinear local convergence to the solution point. Our method has the
advantage of requiring only the rank one update of the inverse of the matrix By in
each iteration which is O(n?). In contrast, the Newton method in Pang [13] solves
in each iteration either a mixed linear complementarity problem which potentially
requires an exponential number of computations (in case of degeneracy) or a system
of linear equations requiring O(n’) computations (in case of nondegeneracy). Harker
and Pang [7] and Pang[13] also survey and discuss earlier Newton and quasi-Newton
methods for solving the problem NCP. In general, all those methods have similar
local convergence properties and they all solve a certain mixed linear complemen-
tarity problem in each iteration.

The following theorem proved in Pang [13] summarizes the properties of the
function H.

Theorem 5.1 [13]. Let F:R" >R" be Fréchet differentiable. Then:
(1) The function H, defined in (5.1), is everywhere B-differentiable with the B-
derivative given by

VE(2)"v ifiea(z),
(BH(z)v); ={ min(VF(z)", e]v) ificp(2),
ejv ifiey(z),

where a(z)={i|Fi(z) <z}, B(z)={i|F(z) =z}, y(z) = {i|Fi(z)>z}, and e is the
ith unit vector.

(2) H is Fréchet differentiable at a point z if and only if for each index ic B(z),
VF(z)=e,. In particular, this holds if B(z) is empty.

(3) If VF(-) is Lipschitz continuous at z, and if H is Fréchet differentiable at z,
then the B-derivative BH(-) is Lipschitz continuous at z. [

Suppose that x* solves the problem NCP and define the index sets
I={ilx¥=0,F(x*)>0}, J={i|x¥>0, F(x*)=0},
L={i|x¥=0, F,(x*)=0}.

For any index sets T and Z, define VF;(x*) to be the matrix [dFi(x*)/0x;], i€ Z,
je T.Notethat I = y(x*), J = a(x*), L = B(x*) and that if H is Fréchet differentiable
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at x*, then, by Theorem 5.1,

V,F(x*) vluLFJ(X*):‘

0 I (5.3)

VH(x*)= [
where the identity matrix I, is m x m with m =|I|+|L|(|Z| denotes the cardinality
of set Z).

The next theorem shows that Broyden’s method (4.1)-(4.2) applied to the system
(5.2) is locally g-superlinearly convergent under appropriate assumptions on the
Jacobian VF(x*).

Theorem 5.2. Let F:R" - R" be Fréchet differentiable in a neighborhood of x* and let
VF(-) be Lipschitz continuous at x* (with respect to the I, vector norm). Suppose that
x™* solves the nonlinear complementarity problem NCP and that the following assump-
tions hold:

(i) V,F,;(x*) is nonsingular;

(i) VF(x*)=¢ forallic L.

Then, there exist e > 0 and § > 0 such that, if |x,— x*|,< g and | By~ VH(x*)|,< 5,
then the sequence {x,} generated by (4.1)-(4.2) applied to the system H(x) =0 is well
defined and converges q-superlinearly to x*.

Proof. The result will follow from Theorem 4.1 if we can show that the assumptions
of Theorem 4.1 hold for H By Theorem 5.1, assumption (ii) implies that H is
Fréchet differentiable at x* and BH(-) is Lipschitz continuous at x*. Finally, in
view of formula (5.3), assumption (i) implies that VH (x*)™' exists. [J

Observe that if x* is a nondegenerate solution of NCP, i.e., L =, then assumption
(ii) holds automatically. For degenerate solutions, however, assumption (ii) imposes
a certain condition on the degenerate part of VF(x*) which substantially restricts
the class of functions F to which Theorem 5.2 applies. The same restrictive assump-
tion (ii) is imposed by Pang [13] to prove quadratic convergence of the generalized
Newton method applied to the system H(x)=0. However, under a strengthened
assumption (i), Pang was able to prove in a subsequent paper [14] quadratic
convergence rate of an arbitrary locally convergent sequence for a modified Newton
method applied to H(x) =0 without assuming condition (ii).

Another reformulation of NCP as a system of nonlinear equations uses the concept
of a Minty-map [11], i.e., the function G:R" > R" defined by

G(z)=F(z)+z, (5.4)

where z; =max(z,0), z; =min(z,0), z"=(z{,...,2z5)", and z = (z,...,z;)" It
is easy to verify that there is a one-to-one correspondence between a solution z of
the system of equations

G(z)=F(z)+z =0 (5.5)
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and a solution x of NCP where x = z”. Thus, the problem NCP can be converted
to an equivalent system of nonlinear equations different from (5.2).

Harker and Xiao [8] applied the Newton method of Pang [13] for solving a
B-differentiable nonlinear system of equations to nonlinear complementarity prob-
lems via system (5.5). Their method requires a solution of the same mixed linear
complementarity problem in each iteration as Pang’s method, which uses the system
(5.2), and has similar local convergence properties (a globalized version of the
method is also shown in [8] to converge globally to nondegenerate solutions). We
again apply Broyden’s method from Section 4 to the system (5.5) and show that it
exhibits g-superlinear local convergence to the solution point.

The next theorem summarizes the properties of the function G. Conclusions
(1)-(2) were proved in Harker and Xiao [8] while conclusion (3) is new.

Theorem 5.3 [8]. Let F:R" »R" be Fréchet differentiable. Then:
(1) The function G, defined in (5.4), is everywhere B-differentiable with the B-
derivative given by

(BG(z)v),= ¥, BGH(z)v,

=1
Fy(z")y; if j€ a(z), (5.6)
BG{(z)v; =4 Fy(z")v] + vy if je Bo2),
Ly, if j € vo(2),

where a(z) ={ilz> 0}, Bo(z)={i|z=0}, ¥(z)={i|z <0}, Fy(z")=3F/ax(z"),
and I;=1ifi=j, I;=0 if i#}j.

(2) G is Fréchet differentiable at a point z if and only if for each index j € Bo(z),
Fiz")=1I;, i=1,..., n. In particular, this holds if B,(z) is empty.

(3) If VF(-) is Lipschitz continuous at z*, and if G is Fréchet differentiable at z,
then the B-derivative BG( ) is Lipschitz continuous at z.

Proof. We only need to prove conclusion (3). Observe that for an arbitrary point
vy near z one has
ao(y) = ao(z) U (an(y) N Bol2)),
Yo(¥) = yo(2) W (vo(¥) N Bo(2)), Bo(y) < Bo(z).
In view of (5.6) and the Fréchet differentiability of G at z one may write
BG(y)v—BG(z)v
= % Ej(y+)vj+ ) )[E-j(y+)v;’+1,-jv;]+ L Ay

jeeo(y) Jj=Boly jevoly)

- ¥ FRE)y- X F()y
jeog(z) Jeag(¥)mBo(z)

- Z [E](Z_F)D;.‘*‘LJD‘]— Z IUUJ—- 2 IUU}
JeBoly)nBolz) J€va(¥)Bo(z) Jjeyolz)

= ¥ [FOY-FE)y+ ¥ [F0M—Fyz")]).

Jjeag(y) JeBoly)
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Lipschitz continuity of BG,(-) at z now follows since |[y"—z"||<|y—z| and
lo"l=lofl. O

Remark. Since Lipschitz continuity of BG(-) at z implies in particular that the
B-derivative BG(z) is strong in the sense of Theorem 2.1 (3), conclusion (3) extends
part (¢) of Theorem 1 in Harker and Xiao [8] where the index set By(z) was assumed
empty. Thus, the key global convergence result for the damped-Newton method in
[8, Theorem 3] can be generalized to the class of functions for which the assumption
in conclusion (2) holds (the same is true for the corresponding local convergence
result for their Newton method which follows from the results in [13]).

As before, suppose that x* solves the problem NCP and define the index sets I,
J, and L. If we define z* by

f=-F(x*), Zi=x}, zi=xi, (5.7)

then it is easy to see that z* solves the system G(z)=0. Note also that I = y,(z*),
J = ay(z*), L= Bo(z*) and that if G is Fréchet differentiable at z*, then, by Theorem
5.3,

V,F(x*) 0 ]

VG(Z*) - [VJFIuL(X*) L,

where x* = (z*)" and the identity matrix I, is m X m with m =|I|+|L|.

The next theorem shows that Broyden’s method (4.1)-(4.2) applied to the system
(5.5) is locally g-superlinearly convergent under appropriate assumptions on the
Jacobian VF(x*).

Theorem 5.4. Let F:R" > R" be Fréchet differentiable in a neighborhood of x* and let
VF(-) be Lipschitz continuous at x* (with respect to the I, vector norm). Suppose that
x* solves the nonlinear complementarity problem NCP and that the following assump-
tions hold:

(i) V,F,(x*) is nonsingular;

(ii) ForalljelL,i=1,...,n 0F/ox(x*)=1if i=j and 3F,/ox;(x*) =0 if i #].

Then, there exist € >0 and 8 > 0 such that, if ||z,— z*|,< e and | B,— VG (z*)|,= 8,
where z* is defined in (5.7), then the sequence {z,} generated by (4.1)-(4.2) applied
to the system G(z)=0 is well defined and converges q-superlinearly to z* which in
particular implies that the sequence {x, =z} is well defined and converges q-super-
linearly to x* = (z*)".

Proof. The proof of this result is the same as that of Theorem 5.2 except that
Theorem 5.3 is used here instead of Theorem 5.1. [

The remarks that follow Theorem 5.2 apply to Theorem 5.4 as well.
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6. Computational examples

This section contains computational results obtained for two small nonlinear com-
plementarity problems using Broyden’s method applied to two formulations of these
problems discussed in the previous section.

Problem 1 (A Nondegenerate Nonlinear Complementarity Problem, [9]). Consider
the following problem: find x € R* such that x=0, F(x)=0 and x" F(x) =0 where
F:R*>R*is given by

Fi(x)=3x3+2%x,%,+ 2x3+ x;+3x,— 6,
Fo(x)=2x7+x,+x5+3x;+2x, 2,
Fo(x) =3x3+x,0,+2X5+ 2x3+ 3%, ~ 1,
F(x)=x}+3x3+2x;,+3x,~3.
This problem has a solution
x*=(W6=12247,0,0,0.5), F(x*)=(0,2+3/6=3.2247,5,0).
Since L=, the solution x* is nondegenerate and it is easy to check that the

assumptions of Theorems 5.2 and 5.4 hold at x™*.

Problem 2 (A Degenerate Nonlinear Complementarity Problem, [11]). Consider
the following problem: find x € R* such that x=0, F(x)=0 and x'F(x) =0 where
F:R*->R*is given by

Fy(x) =3x3+2%,%,+2x5+ x3+3x,— 6,

Fo(x) =2x7+x,+ x5+ 10x;+2x,—2,

Fy(x) = 3x34x,x,+2x5+ 2%+ 9x,— 9,

Fu(x)=x7+3x3+2x;+3x,—3.
This problem has two solutions

xE=(36=12247,0,0,0.5),  F(x§)=(0,2+3/6~3.2247,0,0),
and

xkp=101,0,3,0), F(x¥%p)=1(0,31,0,4).

Since L=¢ for the solution x¥p, it is a nondegenerate solution and it is easy to
check that the assumptions of Theorems 5.2 and 5.4 hold at x%p. On the other
hand, L={3}# ¢ for the solution x%, so it is a degenerate solution and it can be
verified that the assumptions (ii) of Theorems 5.2 and 5.4 do not hold at x5
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Table 1

Results for problems 1 and 2

Algorithm Starting point Number of iterations
Problem 1 Problem 2

MIN (0,0,0,0) 15 27 (ND)
MINTY (0,0,0,0) 16 20 (ND)
MIN (1,1,1,1) 15 14 (ND)
MINTY (1,1,1,1) 16 67 (D)
MIN (3,3,3,3) 17 52 (ND)
MINTY (3,3,3,3) 38 45 (ND)
MIN (5,5,5,5) 17 21 (ND)
MINTY (5,5,5,5 41 45 (ND)
MIN (100, 100, 100, 100) 16 25 (ND)
MINTY (100, 100, 100, 100) 44 49 (ND)
MIN (=2,-2,-2,-2) 24 19 (ND)
MINTY (=2,-2,-2,-2) 19 failed
MIN (1,0,1,0) 14 37 (ND)
MINTY (1,0,1,0) 339 126 (D)
MIN (10,0, 10, 0) 18 43 (ND)
MINTY (10,0, 10, 0) 43 51 (ND)
MIN (1,0,0,0) 20 36 (ND)
MINTY (1,0,0,0) 15 17 (ND)
MIN (10,0, 0,0) 18 19 (ND)
MINTY (10,0,0,0) 46 47 (ND)
MIN 0,1,1,0) 12 30(ND)
MINTY (0,1,1,0) failed 491 (D)
MIN (0, 10, 10, 0) 17 19 (ND)
MINTY (0, 10, 10, 0) 44 46 (ND)
MIN (1,-1,-1,1) 15 35(ND)
MINTY (1,-1,-1,1) 12 27 (D)
MIN (~1,1,1,-1) 16 44 (ND)
MINTY (-1,1,1,-1) 36 failed
MIN (10, —10, —10, 10) 17 38 (ND)
MINTY (10, -10, —10, 10) 43 failed
MIN (1,-1,1,-1) 16 38 (ND)
MINTY 1,-1,1,-1) failed 71 (D)
MIN (10, —10, 10, —10) 17 68 (ND)
MINTY (10, —10, 10, —10) 43 49 (ND)

D = degenerate solution, ND = nondegenerate solution.
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The above two problems were tested using Broyden’s method applied to Pang’s
formulation [13] of NCP given in (5.2), which is called “MIN”, and Harker-Xiao
formulation [8] of NCP given in (5.5), which is called “MINTY”. Table 1 exhibits
numerical results obtained using both versions of the method with the same 17
starting points and the initial matrix B, set to be the identity matrix.

As the results in Table 1 show, Broyden’s method is surprisingly robust in that
it almost always converges to a solution of the problem regardless of the starting
point chosen. They also indicate that for both Problems 1 and 2 the “MIN” method
typically converges faster to a solution than the “MINTY” method. In fact, the
“MIN” method has successfully found a solution in all cases while the “MINTY”
method failed in several instances. It is also interesting to note that the “MIN”
method always found the nondegenerate solution of Problem 2 in contrast to the
“MINTY” method which was able to find the degenerate solution of Problem 2 in
several cases. These results, of course, do not necessarily imply superiority of the
“MIN” method over the “MINTY” method since they are restricted to two small
problems. In fact, the results in Harker and Xiao [8] for the modified Newton
method suggest that the “MINTY” approach may have some computational advan-
tages over the “MIN” approach.

In general, our results compare favorably with those reported in Josephy [9] and
Harker and Xiao [8] for Problem 1 and the results in Kojima and Shindo [11] for
Problem 2. This suggests that the method holds promise and that more extensive
tests on larger problems should be performed to establish its efficiency.
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