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We describe a new potential function and a sequence of ellipsoids in the path-following algorithm
for convex quadratic programming. Each ellipsoid in the sequence contains all of the optimal
primal and dual slack vectors. Furthermore, the volumes of the ellipsoids shrink at the ratio
2’”(‘/"), in comparison to 27" in Karmarkar’s algorithm and 2~/ in the ellipsoid method.
We also show how to use these ellipsoids to identify the optimal basis in the course of the algorithm
for linear programming.
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1. Introduction

Since Karmarkar proposed the interior projective algorithm [7], another interior
algorithm which avoids the projective transformations—the center path-following
algorithm—has been developed by several authors. Sonnevend [15] proposed the
concept of the ‘analytic’ center for polyhedra. Megiddo [11] and Bayer and Lagarias
[1] studied the center pathway to the optimal set. Renegar [14] developed the center
method with the first global convergence ratio (1— £(1/+v/n)) for linear programming
(LP). Using the path-following idea and rank-one updating techniques, Gonzaga
[5] and Vaidya [17] further reduced the solution time for LP to O(n’L). Recently,
Kojima, Mizuno and Yoshise [9], Monteiro and Adler [12] and Ye [18] have
analyzed the primal-dual center path-following algorithm for convex quadratic
programming or convex linear complementarity problems.

On the other hand, there is an interesting relationship between the ellipsoid
method and Karmarkar’s algorithm. Todd [16] described a sequence of ellipsoids
that contain all of the optimal dual solutions. Ye [20] found that Karmarkar’s
potential function represents the logarithmic volume of the ellipsoids containing all
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optimal dual slack vectors; therefore the containing ellipsoids shrink at the ratio
270 at each iteration as the potential function declines. Moreover, a criterion for
checking the intersection of dual hyperplanes and the containing ellipsoid was
developed to identify the optimal basis for LP [16, 19].

In this paper, we analyze a new sequence of ellipsoids in the primal-dual center
path-following algorithm. We show that each ellipsoid in the sequence contains all
of the optimal primal and dual (slack) solutions and these ellipsoids shrink at the
global ratio 22" in comparison to 2~?"" in Karmarkar’s algorithm and 2~?¢"/™
in the ellipsoid method [8, 10]. Similarly, we develop a criterion to identify the
optimal basis for linear programming.

2. Path-following algorithm for convex quadratic programming

The convex quadratic program is usually stated in the following standard form:
QP: minimize f(x)=3ix"Qx+c"x

subjectto Ax=b, x=0,
where Qe R"™", cand xcR", AcR™", bcR", Q is a positive semi-definite matrix,

and superscript ' denotes the transpose operation. The dual problem can be written
as

QD: maximize d(x,y)=b"y—3x"Qx
subjectto Ax=b, x=0, Qx+c—A"y=0,
where y € R”. For all x and y that are feasible for QD,
d(x,y)<=z*<f(x), (1)

where z* designates the optimal objective value of QP.
Based on the Kuhn-Tucker conditions, x* is an optimal feasible solution for QP
if and only if the following three optimality conditions hold [3]:
(i) primal feasibility: x* is feasible for QP;
(ii) dual feasibility: there exists y* such that x* and y* are feasible for QD;
(iii) complementary slackness:

X*s*=0 or f(x*)=d(x* y*) (2)

where s*= Qx*+c— A"y* is the corresponding dual slack vector.

In this paper, the upper-case letter X (S) designates the diagonal matrix whose
entries are the components of the vector x (s), e is the vector of all ones, and |||
(without subscript) denotes the L, norm. These notations will be used throughout
this paper. Note that

e'Sx=e"Xs=x"s=f(x)—d(x,y)
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whenever
s=Qx+c—A"y and Ax=b.

The algorithm for solving QP and QD can be described as follows (see [9, 12,
18], which also describe how to obtain the initial x° and (»°, 5°)).

Algorithm. Given x°, y° and s° with
Ax’=b,x">0, s°=Qx’+c—A"y’>0 and |X°°—:z%|=az’

where z°=(x°)"s’/n and « =1%; and given convergence criterion & > 0;
set k=0;
while z*= ¢ do
begin
let A =(1—a/Vn)z*;
let Ax and Ay solve the linear equations
<Q+(Xk)“S" -AT)<Ax> 3 <)\(X")‘le-sk)' 3)
A 0 Ay 0 ’
let x*"'=xF+Ax, y*"' =y + Ay, As=QAx—AT4y, s*"'=s"+As and 2*"' =
(xk+1)Tsk+1/n_
k=k+1;
end.

Instead of using the objective function as the merit function, let us define the
following potential function associated with the algorithm

G(x* ") =2n In(x)"s") ~ T In(xts),

which is similar to Karmarkar’s potential function [7]. Then we can establish the
following result.

Theorem 1. Let a =3. Then for all k, the sequences {x*}, {y*} and {s*} generated by
the algorithm satisfy

Ax*=b, x*>0, sk =QxF+e—ATy >0, (4)

| X*s* —z¥e|| < az" (5)
and

(", sH ) = p(x ) —vn. (6)

Inequalities (4) ensure (strict) feasibility. We call inequality (5) the approximately
centered condition. It ensures that x* and (y*, s*) are close to the center pathways.
In addition to (6), we have (see Lemma 2),

= (1-1/(0Vn))z~
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This shows that the gap between the primal and dual objective values, or the mean
value of the complementary slackness vector X*s* is reduced at a fixed ratio
1-1/(10vVn) <1.
We use induction to prove Theorem 1. We now state the following two lemmas,
whose proofs follow arguments in [9, 12] (also see [18]) and are omitted here.
Lemma 1 below essentially says that x**! and s**' remain as interior solutions
for QP and QD for sufficiently small «.

Lemma 1. If (4) and (5) hold, then
HX) " Ax P+ (85 ' As|P<2(a/(1-a))®. O

The following lemma establishes a fixed convergence ratio for z**' and a bound
for ”Xk+1sk+l _ Zk+1e” .

Lemma 2. If (4) and (5) hold, then
2
XNk k+1 o @ K
1-— )< s {1l
(1-5)= === (-Gt

||Xk+lsk+l—Zk+le||$a22k/(l—0[). O

and

Proof of Theorem 1. Assume (4) and (5) hold for k. Then o« =3 implies
2(a/(1—a))*<1 and so from Lemma 1, since Adx =0,

Ax*'=b, x>0, and s"'=Qx*'+c-ATYM'>0.
From Lemma 2,

[ XK sk =M e = 0’2" (1~ @) < a(1~ a/Vn)z" < azt™!
or

”Xkﬂskﬂ/zkﬂ_e”gm (7)
Hence (4) and (5) hold for k+1. To prove (6), we note first that for any § with
|s|=B<1,

In(1+8)=6—-%6%/(1—-B)
from [7] and [6]. Thus

En: ln(xl-(ﬂsl-(ﬂ/zkﬂ)?— ”Xkﬂskﬂ/zkﬂ_e“z
o i i 2(1_”Xk+1Sk+l/Zk+l—e”oo)

From (7) and (8),

(8)

nln((x*MTsF Y= ¥ In(xEsE
i=1

=n ln((xk+1)Tsk+1/Zk+l)_ z ln(xf_&+1s:_(+l/zk+l)
i=1
=nlnn+ie’/(1-a)

<nIn((x)s) = 3 In(xts") +1a?/(1-a), )



Y. Ye, M.J. Todd / Containing and shrinking ellipsoids 5

where the last relation holds due to the arithmetic-geometric mean inequality. Again
from Lemma 2,

n ln((xk+1)Tsk+l) —-n ln((xk)Tsk)
2 a2

Zk+1 o [24
=nl =nl _—— = - + . 0
n n( p ) n n(l In a )n> na ] (10)

Adding (9) and (10), we have

(x5 = (X", sy = —Vna+3a’/(1-a)
<s—Wn+H=s-5/n. O

3. Containing ellipsoids in the path-following algorithm

Note that if s*=Qx*+c—A"y*=0 and s*= Qx*+c—ATy*=0, then
(x* =x*)T(s* = %) = (x" = x*)TQ(x* —x*) =0,
so that
(x*) s + (x®)Ts* = (x")Ts* + (x*)Ts* = 0.
Suppose x* and s* are optimal primal and dual (slack) vectors. Then
1X 5|2+ ] 552
< ((xF)Ts* 4 (%) T*) = () Ts" + (%) Ts%)7 = ((x*) Ts*)2.
Now let us define a primal-dual ellipsoid
E* ={(x, 5) eR*": | X"s[*+ ]| $%x|* = ((x*)"s")’}.
Then, we must have
(x*, s*)e E* for all k.
Furthermore, the volume of E* is
KNT ky2n KNT ky2n
V(ED= dezgfk)) ai&sw - yri(x ?x?sfk)

where vy is the volume of the unit ball in R*". In other words,
In V(E*)=¢(x*, s")+Iny,

i.e., the logarithmic volume of the ellipsoid E* only differs from the potential
function by a constant. Therefore, via Theorem 1 and the above relations, we derive
the following shrinking theorem for the containing ellipsoids {E*}.

Theorem 2. For all k, the ellipsoids defined above satisfy
(x*,s*)e EX and V(E*Y)/ V(EN) =279



6 Y. Ye, M.J. Todd | Containing and shrinking ellipsoids

4. A criterion to identify the optimal basis

In order to use E* to identify the optimal basis, one has to calculate the projections
onto the null space of A scaled by X* and by (S*)™', which may be too costly to

compute [16, 19]. However, we can do almost as well using a single projection,
onto the null space of AD, where

D= (X*)73(s*) 72,

Indeed, if Q=0 so that QP reduces to a linear programming problem, then this
projection is used to solve (3). Let

A=AD and P=AT(AA)'A,

so that P is the projection onto the row space of A and I — P the projection onto
its null space. Then the solution to (3) when Q=0 is

Ay=—(AAT) 'A(xe"'—¢) and Ax=D(I-P)re '-¢e),
where
&' =(X"S")"%e and e=(X"S")"’e

We now construct an approximation E* to E* by
E*={(x,s)eR?": | Ds|>+ | D 'x|*= n’z*/(1-a)}.
To verify that EX < EX note that
IDs |+ D7 x> = (X “S*) 72 2(| X s 1P+ [ 85 17)
= (M=) =2/ (1~ )

for any (x, s)€ E*. Furthermore, the volume of E* shrinks at approximately the
same rate as that of E* since it is easy to show that

EXeV{((Q+a)/(1—a))EX
Now we use E* to identify if possible the optimal basis. Consider the problem
BP;: minimize s, (or x')
subject to Ax=b,
s=Qx+c—A"y,
(x,s)e EX,

If the minimal value of BP; is positive, then s¥ >0 (x¥>0), showing that x; is
not in (or is in) the optimal basis [4]. Note that a closed-form (analytical) solution
exists for BP,. However, for simplicity, we assume that Q =0, i.e., the QP problem
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reduces to a LP problem. Then, similar to [2] we show how to solve BP,. In fact,
we can rewrite BP; (up to a positive scale factor in the objective function) by using
the scaling matrix D as

BP;: minimize § (or x')

subject to AX=b,

s=c-Aly,

%[> +115]*= n*z*/(1 - a),
where

¢= D, £=D7'x and §=Ds.

Since we are only interested in the sign of the minimal solution of BP;, BP! gives
the same information as BP;.

To solve BP/, we first note that x* and s* are feasible for the primal and dual.
Hence, X =¢ and §= ¢ are feasible in BP;. Also,

APe=Aé=b

and
(I-P)e=c-ATy*—AT(AA") 'Ae

Thus any X and § satisfying the equality constraints in BP; can be expressed as
x=Pe+(I-P)a and §=(I-P)ée+Pp

for some # and ¥ in R". Substituting X and § in BP; with the above two expressions
and noting that the equality constraints are now redundant, we have the following
problem that is equivalent to BP;:

minimize ((I — P)é),+(P5); (or (P2),+((I—P)i),)
2 k

——|1Pel = |- Pl

subject to  |all*+ o)’ <

The right hand side of this inequality is denoted by

2_k 2 k 2
e L TR S o [ A e B
a 1-«a

1—«

We can now show:

Theorem 3. If
((I_p)é)i_\f Ekﬁii>0,
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then x; is not in the optimal basis, while if
(ﬁé)i— v Ek(l_ﬁii)>0,

x; is in the optimal basis, Here p, is the ith diagonal entry of P.

Proof. The minimal solution of BP; (minimizing §;) is to set #=0 and ¢ =
—/&*Pe'/| Pe'||, where €' is the ith unit vector. Then the minimal value is

((I-P)&),—Ve"|Pe'| = (I - P)&), —V e By,
since
| Pe'||*=(e')"P"Pe' =(e')" Pe' = p,, =0.

This proves the first part of the theorem, and the second part follows similarly. O
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