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We describe a new potential function and a sequence of ellipsoids in the path-following algorithm 
for convex quadratic programming. Each ellipsoid in the sequence contains all of the optimal 
primal_and dual slack vectors. Furthermore, the volumes of the ellipsoids shrink at the ratio 
2 ±~('/"), in comparison to 2 ~(~) in Karmarkar's algorithm and 2 -~2(~/n~ in the ellipsoid method. 
We also show how to use these ellipsoids to identify the optimal basis in the course of the algorithm 
for linear programming. 
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I. Introduction 

Since K a r m a r k a r  p r o p o s e d  the in ter ior  pro jec t ive  a lgor i thm [7], ano the r  in te r io r  

a lgor i thm which  avoids  the projec t ive  t r a n s f o r m a t i o n s - - t h e  center  pa th - fo l l owing  

a l g o r i t h m - - h a s  been  d e v e l o p e d  by several  authors .  Sonnevend  [15] p r o p o s e d  the 

concep t  o f  the ' ana ly t i c '  center  for po lyhedra .  M e g i d d o  [ 11 ] and  Bayer  and  Lagar ias  

[1] s tud ied  the  center  p a t h w a y  to the op t ima l  set. Renegar  [14] d e v e l o p e d  the cen te r  

m e t h o d  with  the first g loba l  convergence  ra t io  (1 - J2 ( l / , , / n ) )  for  l inear  p r o g r a m m i n g  

(LP).  Us ing  the pa th - fo l lowing  idea  and  r ank -one  u p d a t i n g  techniques ,  G o n z a g a  

[5] and  Va idya  [17] fur ther  r educed  the so lu t ion  t ime for  LP to O(n3L).  Recent ly ,  

Ko j ima ,  Mizuno  and Yosh ise  [9], M o n t e i r o  and  A d l e r  [12] and  Ye [18] have 

ana lyzed  the p r i m a l - d u a l  center  pa th - fo l lowing  a lgor i thm for convex quad ra t i c  

p r o g r a m m i n g  or  convex l inear  c o m p l e m e n t a r i t y  p rob lems .  

On the o ther  hand ,  there  is an in teres t ing r e l a t ionsh ip  be tween  the e l l ipso id  

m e t h o d  and  K a r m a r k a r ' s  a lgor i thm.  T o d d  [16] desc r ibed  a sequence  o f  e l l ipso ids  

that  con ta in  all of  the  op t ima l  dua l  solut ions .  Ye [20] found  that  K a r m a r k a r ' s  

po ten t ia l  func t ion  represen ts  the  loga r i thmic  vo lume  o f  the e l l ipso ids  con ta in ing  all 
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optimal dual slack vectors; therefore the containing ellipsoids shrink at the ratio 
2 a(~) at each iteration as the potential function declines. Moreover,  a criterion for 

checking the intersection of  dual hyperplanes and the containing ellipsoid was 
developed to identify the optimal basis for LP [16, 19]. 

In this paper,  we analyze a new sequence of ellipsoids in the primal-dual center 
path-following algorithm. We show that each ellipsoid in the sequence contains all 

of  the optimal primal and dual (slack) solutions and these ellipsoids shrink at the 
global ratio 2 ~('~-~), in comparison to 2 -~(1) in Karmarkar ' s  algorithm and 2 -~(1/n~ 
in the ellipsoid method [8, 10]. Similarly, we develop a criterion to identify the 
optimal basis for linear programming. 

2. Path-following algorithm for convex quadratic programming 

The convex quadratic program is usually stated in the following standard form: 

QP: minimize f ( x ) = ½ x T Q x + c V x  

subject to A x  = b, x >~ O, 

where Q c ~ ,x , ,  c and x c R' ,  A ~ R re×n, b c ~m, Q is a positive semi-definite matrix, 

and superscript v denotes the transpose operation. The dual problem can be written 
a s  

QD: maximize d(x ,  y)  = bVy--½xVQx 

subject to A x  = b, x >~ O, Qx + c - A Vy >~ O, 

where y ~ R "~. For all x and y that are feasible for QD, 

d(x ,  y)  <~ z* <~f(x), (1) 

where z* designates the optimal objective value of QP. 
Based on the Kuhn-Tucker  conditions, x* is an optimal feasible solution for QP 

if and only if the following three optimality conditions hold [3]: 
(i) primal feasibility: x* is feasible for QP; 

(ii) dual feasibility: there exists y* such that x* and y* are feasible for QD; 
(iii) complementary slackness: 

X * s * = O  or f ( x * )  = d ( x * , y * )  (2) 

where s * =  Q x * +  c - A T y  * is the corresponding dual slack vector. 

In this paper,  the upper-case letter X (S) designates the diagonal matrix whose 
entries are the components of  the vector x (s), e is the vector of  all ones, and [I. l[ 
(without subscript) denotes the L2 norm. These notations will be used throughout 

this paper. Note that 

eV Sx  = eT Xs  = xVs = f ( x )  - d(x ,  y )  
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whenever  

s = Qx + c - A Xy and Ax = b. 

The algori thm for solving QP and QD can be described as follows (see [9, 12, 
18], which also describe how to obtain the initial x ° and (yO, sO)). 

Algorithm. Given x °, yO and s o with 

a x ° = b , x ° > O ,  s ° = O x ° + c - A T y ° > O  and I]X°s°-z°eH<~ctz °, 

where z °=  (x°)Ws°/n and a =~; and given convergence criterion s > 0; 

set k = 0; 
while z k >i s do 

begin 
let ,~ = (1 - o~/,J-n)zk; 
let Ax and Ay solve the linear equat ions 

( O + ( X A ) - ' S k  - A T ~ ( A x ~  = ( A ( X k ) o  ' e -  
0 / k A y /  sk ) ;  (3) 

let xk+I=Xk+AX, yk+, = y k + A y  ' As= Q A x - A T A y ,  s k+l = s k + A s  and z k+l= 

(xk+~)~sk+'/n; 
k = k + l ;  

end. 

Instead of  using the objective funct ion as the merit function,  let us define the 
following potential  funct ion associated with the algori thm 

~(x k, s ~) =2n ln((xk)Tsk) - E ln(x~s~), 
i=l 

which is similar to Karmarkar ' s  potential  funct ion [7]. Then we can establish the 
fol lowing result. 

i Then for all k, the sequences {xk}, {yk} and {s k} generated by Theorem 1. Let a = g. 
the algorithm satisfy 

A x k = b ,  x k > O ,  Sk=QXk+c- -ATyk>O,  (4) 

J[Xks k - -zke[ I  ~ o/z k (5 )  

and 
&(x k+', s k+') ~< &(x k, s k ) - ,10,~/-n. (6) 

Inequali t ies (4) ensure (strict) feasibility. We call inequali ty (5) the approximate ly  
centered condition.  It ensures that x k and (yk, s k) are close to the center  pathways.  
In addi t ion to (6), we have (see Lemma 2), 

zk+ ,~ (1  _ 1 / ( l O f g ) ) z  ~. 
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This shows that the gap between the primal and dual objective values, or the mean 
value of the complementary slackness vector Xks k, is reduced at a fixed ratio 
1 -  1/(10x/~) < 1. 

We use induction to prove Theorem 1. We now state the following two lemmas, 

whose proofs follow arguments in [9, 12] (also see [18]) and are omitted here. 
Lemma 1 below essentially says that x g+l and s k+' remain as interior solutions 

for QP and QD for sufficiently small a. 

Lemma 1. I f  (4) and (5) hold, then 

II(x~)-'axll=+ll(s~)-'a, ll2<-2(,~/(1-~)) ~. [] 

The following lemma establishes a fixed convergence ratio for z k+~ and a bound 
for I lxk+'s~+'-  ~+'e l l .  

Lemma 2. I f  (4) and (5) hold, then 
[ Og Og 2 

1 c~ ~ ~ < / 1 - - = - ~  

and 
IlXk+'Sk+'--Zk+'ell~,~2Zk/(1--O~). [] 

Proof of Theorem 1. Assume (4) and (5) hold for k. Then ~ =~ implies 
2 ( ~ / ( 1 - ~ ) ) 2 <  1 and so from Lemma 1, since A A x = 0 ,  

Axk+l=b, xk+ l>0 ,  and sk+1=Qxk+I+c--ATyk+'>O. 

From Lemma 2, 

o r  

Ilxk-'s~+'/z~+' - ell-< ~. (7) 

Hence (4) and (5) hold for k + l .  To prove (6), we note first that for any 8 with 

l a l ~ / 3 < l ,  
ln(1 + 6)/> 8 _!,22v //( 1 - / 3 )  

from [7] and [6]. Thus 

° I lXk+'sk+' /zk+'_ ell 2 ln( x~+l ski+l/ zk+l ) >1 
i = 1  

From (7) and (8), 
n 

n ln((xk+')Vs k+l) -- 3~ ln(x/k+ls/k+') 
i = 1  

= n ln((x~+')*s~+'lz ~+') - ~ ln(x~,+'s~+'lz ~+') 
i = 1  

~< n In n + 1 o / 2 / ( 1  - O~) 

~< n ln ( (xk)Tsk) -  ~ ln(x~s~)+½ee2/(1 -o~), 
i = 1  

2(1 -IIXk+'Sk+'/Z k + '  - e l l ~ )  " 
(8) 

(9) 
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where the last relation holds due to the arithmetic-geometric mean inequality. Again 
from Lemma 2, 

n In((xk+~)Ts k+l) -- n l n ( ( x k ) T s  k) 

/ z k + ' \  ( ~ o~ ~ ) o~ ~ 

: t ) - - .  n ln  7 -  ~<nln 1 - ~ n n 4 ( l _ ~ ) n  - ~ < - , ~ a - ~ l _  a 

Adding (9) and (10), we have 

~ ( X  k+l ,  S k+ l )  --  I~)(X k, S k ) ~ --~-~Ol -~- 30d 2 / ( 1  --  Og) 

- ~, /~ + ~ ~ - ,~,/-~. [] 

3. Containing ellipsoids in the path-following algorithm 

Note that if s k = Q x  k + c - A T y k >1 0 and s* = Qx* + c - A Ty * >~ O, then 

(x k - x*)T(s k -- S*) = (X k -- x* )T  Q ( x  k -- X*) >1 O, 

SO that 

(xk)Ts  k + (x*)Ts * >1 (xk)Ts* + (X*)T S ~ >I O. 

Suppose x* and s* are optimal primal and dual (slack) vectors. Then 

IfX~s* IJ 2 + II s kx* I[ 2 

<~ ( ( x~) Ts * + ( s~) Tx* ) 2 <~ ( ( X~) TS ~ + (x*)Ts*) 2 = ( ( x~)  T s~)L 

Now let us define a primal-dual ellipsoid 

E ~ = {(x, s) c ~2°:  IIX~sl[2+ IlSkxll2~ ((x~)Tsk)2}.  

Then, we must have 

( x * , s * ) c E  k for all k. 

Furthermore, the volume of E k is 

v ( ~  k ) -  ~ ( ( x~)~sk )  ~" _ ~'((Xk)TS~) ~" 

det(Xk) det(Sk) Hi'-1 (x~s~)  

where y is the volume of the unit ball in N 2n. In other words, 

In V ( E  k) = c~(x k, sk) +ln  y, 

i.e., the logarithmic volume of the ellipsoid E k only differs from the potential 
function by a constant. Therefore, via Theorem 1 and the above relations, we derive 
the following shrinking theorem for the containing ellipsoids {Ek}. 

Theorem 2. For  all k, the ellipsoids defined above  sat is fy  

( x * , s * ) c E  k and  V ( E k + I ) / V ( E k ) < ~ 2  -n('/-d~). D 
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4. A criterion to identify the optimal basis 

In order to use E k to identify the optimal basis, one has to calculate the projections 
onto the null space of A scaled by X k and by ( s k )  -1, which may be too costly to 

compute [16, 19]. However,  we can do almost as well using a single projection, 

onto the null space of A D ,  where 

D = ( X k ) I / 2 ( S k )  - ' /2. 

Indeed, if Q = 0 so that QP reduces to a linear programming problem, then this 

projection is used to solve (3). Let 

= A D  and /5-----,~T(,~T)-I~, 

SO that t5 is the projection onto the row space of X, and I - / 5  the projection onto 
its null space. Then the solution to (3) when Q = 0 is 

A y = - ( A / 7 ,  v) 'A(A~ ' - ~ )  and d x - ~ D ( I - / 5 ) ( A ~  ' - ~ ) ,  

where 
O - ~ = ( x k s k ) - ~ / 2 e  and O = ( x k s k ) W 2 e .  

We now construct an approximation /~k to E k by 

~k = {(x, x) ~ ~2.: iiDsli2+ lid 'xl[ =~ n : z k l ( 1  - a)}. 

To verify that E k ~ ~k ,  note that 

ILDsll2+ IIn- 'xl l2~ II(x~s~)-'/211Z(llX~sll~+ [IS~xll ~) 

<~ ( ( xk )Tsk )2 / ( (1  -- c~)Z k) = n2 z k / (1  -- c~) 

for any (x, s) ~ E k. Furthermore, the volume of  /~k shrinks at approximately the 
same rate as that of  E k, since it is easy to show that 

Ek = ,/((1 + a ) / (1  - a ) ) E  k. 

NOW we use /~k to identify if possible the optimal basis. Consider the problem 

BPi: minimize si (or x i) 

subject to A x = b ,  

s : Q x + c - - A T y ,  

( x , s ) ~  ~. 

I f  the minimal value of BPi is positive, then s* > 0 (x* > 0), showing that x~ is 
not in (or is in) the optimal basis [4]. Note that a closed-form (analytical) solution 
exists for BP~. However, for simplicity, we assume that Q = 0, i.e., the QP problem 
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reduces to a LP problem. Then, similar to [2] we show how to solve BP~. In fact, 

we can rewrite BPg (up to a positive scale factor  in the objective funct ion)  by using 

the scaling matrix D as 

BPI: minimize g~ (or ~ )  

subject to f i .£= b, 

57= g--  ffi Ty, 

I1~11~+ [[~11~ < n2z~/(1 -,~), 

where 

g= Dc, .~ = D-~ x and g = D s .  

Since we are only interested in the sign o f  the minimal solution o f  BPi, BP~ gives 

the same informat ion as BPI. 
To solve BP~, we first note that x k and s k are feasible for the primal and dual. 

Hence,  x = e and s = e are feasible in BPI. Also, 

.A/50 = A0 = b 

and 
( I  - 15)0 = 6 - ~Tyk  _ AT(AAT)- ,  A0. 

Thus any ff and g satisfying the equality constraints in BPI can be expressed as 

g = / 5 0 + ( I - / 5 ) t 7  and g = ( I - / 5 ) 0 + / 5 ~ 3  

for some ti and ~3 in R". Substituting £ and g in BPI with the above two expressions 

and noting that the equali ty constraints are now redundant ,  we have the following 
problem that  is equivalent  to BP~: 

minimize ( ( I - / 5 ) 6 ) i + ( / 5 ~ ) ~  (or ( f i O ) i + ( ( I - / 5 ) a ) ~ )  

n2z k 
subject to I I ~ i l l 2 + l l ~ l l 2 ~ - - - I l P o l l 2 - J l ( I - / 5 ) o l l  2. 

1 - - a  

The right hand  side o f  this inequali ty is denoted  by 

n2Z k n2Z k ( rl2 ) 
k _  l l / 5 0 1 1 = _ l l ( / _ p ) 0 1 1 2 _ 1 _  ~ = n z k. 1 - ~  110112 1 - 4  

We can now show: 

Theorem 3. I f  

((I--  P)O) i - -~ f i i i>O,  
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then xi is not in the optimal basis, while if 

( P ~ ) i - ~ / e k ( 1 - p . ) > O ,  

x~ is in the optimal basis, Here ft, is the ith diagonal entry of P. 

Proof. The minimal solut ion of  BPI (minimizing g~) is to set t7 = 0  
-~£~k/Sei/ll/Seill, where e ~ is the ith unit vector. Then the minimal value is 

( ( I  - / 5 )  O ) g - , / 7 ~  ii/Se  II = ( ( i  - / 5 )  ~ ) ~ -  ~ e  k/~., 
s ince 

II Pei[[ 2 = ( e i )Tprpe '=  (e')Vpe ' = p .  >10. 

This proves the first part of  the theorem, and the second part fol lows similarly. 

and ~5 = 

[] 
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