
Mathematical Programming 41 (1988) 1-27 1
North-Holland

S E C O N D - O R D E R S E N S I T I V I T Y A N A L Y S I S I N F A C T O R A B L E

P R O G R A M M I N G : T H E O R Y A N D A P P L I C A T I O N S *

Richard H.F. J A C K S O N
Center for Applied Mathematics, National Bureau of Standards, Gaithersburg, MD 20899, USA

Garth P. M c C O R M I C K
Department of Operations Research, School of Engineering and Applied Science, George Washington
University, Washington, DC 20052, USA

Received 14 January 1987
Revised manuscript received 22 June 1987

Second-order sensitivity analysis methods are developed for analyzing the behavior of a
local solution to a constrained nonlinear optimization problem when the problem functions are
perturbed slightly. Specifically, formulas involving third-order tensors are given to compute second
derivatives of components of the local solution with respect to the problem parameters. When in
addition, the problem functions are factorable, it is shown that the resulting tensors are polyadic
in nature.

Key words: Second-order sensitivity analysis, high-order methods, Nth-order derivatives,
polyads, tensors, factorable functions, nonlinear optimization, Lagrangian analysis.

1. In trodu c t ion

In an earlier paper (Jackson and McCormick (1986)) the structure taken by

N-dimens iona l arrays of N t h partial derivatives o f the special class of factorable

functions was examined. The N-dimens iona l arrays (or tensors as they are sometimes

called) turn out to be computab le naturally as the sum o f generalized outer p roduc t

matrices (polyads).
This natural polyadic structure has impor tant computa t ional implications for

solving problems associated with nonl inear programming. It means for example

that with some minor modif icat ion to existing software routines, h igh-order deriva-

tives can be calculated efficiently, making previously intractable techniques that

require them, again worthy of consideration. In the dissertation by Jackson (1983)

f rom which most o f the material in this paper is taken, these implications were

pursued for second-order sensitivity analysis and high-order methods for solving
the problem:

minimize f (x) ,
x~R° (1.1)

subject to gi(x) >~ O,

for i = 1 , . . . , m, when f (x) and gi(x) are factorable functions.

The ability to compute third derivatives efficiently provides ready access to

second-order nonl inear p rogramming sensitivity information. In Section 3 o f this

* Research sponsored by contract N00014-86-K-0052, US Office of Naval Research.

2 R.H.F. Jackson, G.P. McCormick / Second-order sensitivity analysis

paper, second-order sensitivity analysis methods are developed for analyzing the
behavior of a local solution to (1.1) when the problem functions are perturbed

slightly. Section 3 begins by summarizing results from first-order sensitivity analysis
which provide formulas for the first derivatives of the components of the local
solution with respect to the problem parameters. Also developed are formulas,
involving third-order tensors, for computing the second derivatives of the local
solution with respect to the problem parameters. In addition, the polyadic structure
of the tensors is investigated and displayed, and techniques for manipulating these
three-dimensional arrays, capitalizing on this special structure, are developed. In
general, this type of array manipulation is straightforward but time-consuming and
requires significant computer storage. It is shown that these difficulties are amelior-
ated when the special structure of factorable functions is exploited. Examples of
the use of these formulas for estimating the solution to perturbed problems using
Taylor series approximations are also given.

The next section provides some definitions and mathematical background useful
in understanding the results given in Section 3. Before proceeding, however, some
comments on notation are required. There are unavoidable complications in the
theory that follows that require subscripted subscripts. In some cases these are used.
In other cases, subscripted subscripts are replaced with subscript functions. For

example, /j ~ i (j) . ~ The choice in each case was made on the basis of clarity of
resulting formulae. Also in what follows, all vectors are assumed to be column
vectors, and, where not otherwise stated, differentiation is with respect to the vector
X = (X l , X 2 , . . . , Xn) T. Lastly, we use 8 and V to indicate partial differentiation, and
d and D indicate total differentiation.

2. The po lyad ic structure o f tensors o f fac torable funct ions

Loosely, a factorable function is a multivariable function that can be written as
the last of a finite sequence of functions, in which the first n functions in the sequence
are just the coordinate variables, and each function beyond the nth is a sum, a

product, or a single-variable transformation of previous functions in the sequence.

More rigorously, let [f l (x) , f z (x) , fL (X)] be a finite sequence of functions such
that f : R " ~ R, where each f (x) is defined according to one of the following rules.
Rule 1. For i = 1 , . . . , n, f (x) is the value of the ith Euclidean coordinate:

f , (x) = x,.

R u l e 2 . For i = n + 1 , . . . , L,f(x) is formed using one of the following compositions:

(a) f (x) = f j (i) (x) + f k (i) (x) , or
(b) f (x) = f j (i) (x) " f k ~ ,) (x) , or (1.2)

(c) f , (x) = ~ [f j (,) (x)] ,

where j (i) < i, k (i) < i, and Ti is a function of a single variable.

R.H.F. Jackson, G.P. McCormick / Second-order sensitivity analysis 3

Then f (x) =fL(x) is a factorable function and [fl (x), f 2 (x) , . . . , fL(x)] is a factored
sequence. Thus a func t ion , f (x), will be called factorable if it can be formed according
to Rules 1 and 2, and the resulting sequence of functions will be called a factored
sequence or, at times, the function written in factored form.

Although it is not always immediately grasped, the concept of a factorable function
is actually a very natural one. In fact, it is just a formalization of the natural
procedure one follows in evaluating a complicated function. See Jackson and
McCormick (1986) for examples that illustrate this.

In order to understand what follows, the concept of an outer product matrix must
be introduced. An (m x n) matrix A is called an outer product matrix if there exists
a scalar ce, and (m x 1) vector a, and an (n x 1) vector b such that

A = aceb T.

The expression aceb v is called an outer product or a dyad. Note that a dyad is
conformable since the dimensions of the product are (m x 1)(1 x 1)(1 x n), which
yields the (m x n) outer product matrix A as desired. A useful property of outer
product matrices is that, if they are kept as dyads, matrix multiplication with them
is simplified to inner products alone, saving the computations required to form the
matrices involved. For example,

AC = a a [b T c],

dTA = [dTa]ab v, and

A F = a~ [bTF],

where c is (n x 1), d is (m x 1) and F is (n xp) .
It is well-known (see McCormick (1983)) that factorable functions possess two

very special properties that can be exploited to produce efficient (fast and accurate)
algorithms: (i) once written in factorable form, their gradients and Hessians may
be computed exactly, automatically, and efficiently; and (ii) their Hessians occur
naturally as sums of dyads whose vector factors are gradients of terms in the factored
sequence. The first of these properties has eased the task of providing the derivatives
of a nonlinear programming problem to a computer code that solves it, and has the
potential eventually to trivialize it. The second, as noted above, changes the way

we look at matrix multiplication, which in many cases results in less computat ional
effort.

There are factorable problems whose structure is such that the factorable approach
results in more work: small, dense problems, for example. For these problems, the
factorable approach can still be used for easy input, but some of the matrix techniques
would be replaced by classical approaches.

Software packages have been written that perform the factoring automatically

from natural language input. See Jackson and McCormick (1987) for a history of
such efforts and more recently, Jackson, McCormick, and Sofer (1988). The latter
describes a system that allows user input for nonlinear functions in a format similar

4 R . H . F . Jackson , G.P. M c C o r m i c k / Second-order sens i t iv i ty analys i s

to FORTRAN, without any requirement on the user to understand the details of
factorable functions.

As mentioned above, one fundamental value of factorable functions lies in the
simple and computationally efficient forms that result for their Hessians. In fact
factorable programming is based on the existence of, and the simplified operations
that result from, these simple forms. The seminal result, (Fiacco and McCormick,
1968, pp. 184-188), is that the Hessian of a factorable function can be written as
the sum of dyads, or outer products, of gradients of functions in the factored
sequence. This basic result was generalized in Jackson and McCormick (1986).
Before explaining the generalization, it is necessary to generalize the concepts of
Hessian and dyad.

Let A c R ~n, N), and let Ai iN denote the (i ~ , . . . , iN) th element of this array.
For the purposes of this paper, A is called the Nth-order tensor of a multivariable
function f (x) if

A i iN : c ') N f (x) / O X i N " " " c~Xil"

Note that gradients and Hessians are tensors of order 1 and 2 respectively.
An N-dimensional array A is called generalized outer product matr ix if there exists

a scalar a, and an ordered set of vectors a ~ , . . . , aN (where each ak is (nk × 1)) such
that each element of A is generated by the product of the scalar a and certain
specific elements of the vectors al , aN as follows

Ail , . . . , i N : a :g a l , i l rg . . . ~ a N , iN,

for i~ = 1 , . . . , nl; • • • ; iN = 1 , . . . , nN, where ak, ik represents the (ik)th element of the
(nk X 1) vector ak.

The scalar and set of vectors which generate a generalized outer product matrix
taken together are called a polyad and are written

(o~ :al . • • aN) , (2.1)

where order is important, i.e. the vector in position j is associated with the j th
dimension. A polyad containing N vector factors is an N-ad. Also, an expression
containing a sum of polyads is a polyadic, and an expression containing a sum of
N-ads is an N-adic. (The actual addition here is performed as a sum of the associated
generalized outer product matrices.) When vector factors in a polyad are repeated,
exponential notation is used, as in the case of the symmetric N-ad, (a : [a]N). Note
that the representation of a generalized outer product matrix by a polyad is not
unique. For example, (o~ / y : [a 1 ~ /] ° " " aN) generates the same N- dimensional array
of numbers as does (2.1) for any nonzero scalar 3/. Finally, a 2-ad of the form
(a : ab) is equivalent to the more familiar dyad of the form aab T, and the two will
be used interchangeably.

The generalization mentioned above is given in the following theorem. It states
that all tensors (that exist) of factorable functions possess a natural polyadic
structure.

R.H.F. Jackson, G.P. McCormick/Second-order sensitivity analysis 5

Theorem 1 (Polyadic tensors). Let f (x) be a factorable function in R n, let

[f l (x) , f 2 (x) , . . . , fL(x)] be a factored sequence for f (x) , and assume that f (x) ~ C N
and f (x) ~ C N, for i= 1 , . . . , L. Then the Nth-order tensor o f f (x) can be written as

the sum of generalized outer product matrices whose associated polyads have the form

(a : al • • • a N) where each a k is the gradient o f some function in the factored sequence,

and the scalar a is a product o f functions in the factored sequence and derivatives o f

the single-variable transformations used in defining the functions in the sequence. Only
derivatives okT[f] / Of k, for 1 <~ k <~ N, are used.

Proof. See Jackson and McCormick (1986).

It was also shown in Jackson and McCormick (1986) that the vector factors that
comprisse the monads of the gradient are the same vector factors which comprise
the dyads of the Hessian, the triads of the third order tensor, and so on. This has
important computational implications in mathematical programming. It means that
once the gradient of a factorable function is computed, a major portion of the work
involved in computing higher-order derivatives is already calculated. Consequently,
high-order minimization techniques, previously considered computationally intract-
able, are once again worthy of consideration. See Jackson and McCormick (1986)
for more.

It should be noted that, by their very nature, the tensors of factorable functions
are ideally suited for computation on parallel processing and array processing
computers. We know of few other such ideal applications in numerical optimization.
Also, it has been shown (McCormick (1985)) that all factorable programming
problems have an equivalent separable programming representation, and that
efficient algorithms (Falk and Soland (1969), Falk (1973), Hoffman (1975), McCor-
mick (1976), Leaver (1984)) exist for finding global solutions to these problems.
Thus there exists the potential of finding global solutions to factorable programming
problems fast and accurately.

3. Second-order sensitivity analysis in nonlinear programming

3.1. Basic first-order sensitivity results

One application of the results in Section 2 is in obtaining high-order sensitivity
information for nonlinear programming problems, although only the second-order
case is considered in this paper. Sensitivity analysis in nonlinear programming is
concerned with analyzing the behavior of a local solution when the problem functions
are perturbed slightly. This perturbation might be due to an inexactness with which
certain parameter values in the problem are calculated or because the optimization
model was parameterized and one is interested in the solution for a variety of values
of the parameters. For additional information on this topic, see Armacost and Fiacco
(1974), Armacost and Fiacco (1978), Fiacco (1980) and especially Fiacco (1983)

6 R.H.F. Jackson, G.P. McCormick / Second-order sensitivity analysis

and its excellent bibliography. The parametric problem is written

P(e) : minimize f (x , e),
x~R" (3.1)

subject to gi(x, e) >1 O,

for i = 1 , . . . , m, where e is an (r x 1) vector of parameters. The more general version
of the sensitivity problem includes equality constraints, but these are not included
here for simplicity. The ideas and results presented in this section generalize readily
to the equality-constrained problem.

The essence of sensitivity analysis in nonlinear programming is the application
of the Implicit Function Theorem (see, e.g. Bliss (1946) to the Karush-Kuhn-Tucker
(KKT) necessary conditions for the problem, P(e), in (3.1). First, define the
Lagrangian for P(e) as

m
L(x, u, e)= f (x , e) - • uigi(x , e).

i--I

Then, assuming continuous differentiability in x of the problem functions, the KKT
conditions for P(e) are that there exists a feasible point, x, for (3.1) and associated
vector of Lagrange multipliers, u, such that

VL(x, u, e)= O,

u i g i (x , e) ---- 0, (3.2)

ui >-- O,

for i= 1 , . . . , m.
The statement of the first-order sensitivity results given in Theorem 3 below also

requires that the second-order sufficient conditions (SOSC) hold at a particular
solution Y, of P(g) (which is just (3.1) for a specified vector of parameter values,
~). These conditions may be written as follows.

Theorem 2 (SOSC). Let ~ be a feasible point for P(~) and assume that the functions
of P(g) are twice-continuously differentiable in x in a neighborhood of ~. Let (~, ~, ~)
be a triple that satisfies the K K T conditions in (3.2) and define

B={i[gi(~,~)=O} and D={i[~,>O}.

Further, suppose that

dTV2L()~, u, ~)d > 0,

for all d ~ O, such that

dTVgi(:~, ~)>~0 for all ic B,

R.H.F. Jackson, G.P. McCormick / Second-order sensitivity analysis

and

dWVgi(2, ?) = 0 for all i ~ D.

Then ~ is a strict local minimizer for P(?).

The earliest known reference to these conditions is Pennisi (1953), although it
was almost 15 years (see McCormick (1967), and Fiacco and McCormick (1968))
before they were more fully developed and exploited.

The following theorem can be viewed as the basic result in nonlinear programming
sensitivity analysis.

Theorem 3 (First-order sensitivity)• Let x be a feasible point for P(?) and assume that
(i) the functions in (3.1) are twice-continuously differentiable in x and the cross-

partial derivatives exist and are jointly continuous in x and e in a neighborhood of (2, ?);
(ii) the second-order sufficient conditions (Theorem 2) for a local minimum of P(?)

hold at 2, with associated Lagrange multipliers ~;
(iii) the gradients of the binding constraints, i.e., Vgi(~, ?), i c B , are linearly

independent; and
(iv) ui > 0 for all i c B.
Then, for e in a sufficiently small neighborhood of ?, there exists a unique, once-

continuously differentiable vector function

y(e) = [x(e) T, u(e)W] T,

satisfying the K K T conditions for P(e), with

y(g) = [x(?) T, U(?)T] T,

such that x(e) is a locally unique isolated minimizer for P(e) . Furthermore, the first
partial derivatives of x(e) and u(e) with respect to e can be obtained from the equation

Y = - M - 1 N , (3.3)

where

Y = V,y =

OX1
• , o

°° o

OXn
• , o

OE~

3U2

OE1

0 Um

381

3X~

3er

OX n

08r

OU 1 '

Oer

OUm

Oe r

and

M =

R.H.F. Jackson, G.P. McCormick / Second-order sensitivity analysis

V 2 L - V g l -Vg2 V g m 1

Ul•gTI g l 0 " • " o I
u 2 V g ~ O g 2 " ' ' : m] . . .

Um V gTm 0 0 " " "

V~xL

ulV ~gT
N= u2V ~g~

.u~ V ~g T

with all quantities in M and N evaluated at ()~T, /~T)T

Proof. See Fiacco (1983).

3.2. Development of the second-order equation

The result in (3.3) provides a direct way of calculating first-order sensitivity
information and is the point of departure for the work given here, which begins
with the following theorem due to Fiacco (1983).

Theorem 4 (Higher-order sensitivity). Let :~ be a feasible point for P(g) and assume
conditions (i) through (iv) in Theorem 3. Assume also that all (k + 1)st-order partial
derivatives in x and all (k + 1)st-order cross partial derivatives in x and e exist and
are jointly continuous in x and e in a neighborhood of (~, ~). Then in a sufficiently
small neighborhood of g, the vector function y(e) is k times continuously differentiable.

Proof. The proof follows directly from the fact that if the Jacobian, M, of the KKT
conditions in (3.2) is nonsingular, and if the functions involved posses the appropri-
ate degree of differentiability, the Implicit Function Theorem (see Bliss, 1946, p. 270)
guarantees the existence of the higher-order partial derivatives. Nonsingularity of
M for (3.2) was shown in Fiacco and McCormick (1968). Thus the theorem is
proved by direct application of the Implicit Function Theorem.

If this high-order sensitivity information is to be used, it is necessary also to
develop a convenient mechanism for calculating it. This is done next for the case
when k = 2. Consider the matrix equation in (3.3) and rewrite it as

M Y = -N .

R.H.F. Jackson, G.P. McCormick / Second-order sensitivity analysis 9

The (i , j) th element of this matricial equation is

E Mi~Ysj=-Nij,
s

and, by straightforward applications of the product-rule and the chain rule, the
total derivative of this equation is written

OY, j [~ OM/s aMi,'] y,j+~ ON 0 ONij
- Z Mi,-T "-~ = Z Oek , s - Ty, . (3.4)

Now consider the left-hand-side (lhs) in (3.4) more closely. It can be written

02y~
--~s misoek aej'

which is of the form

- ~ Mi,Asjk,
s

which in turn gives the (i, j, k)th element of the three-dimensional array that results
from the matrix multiplication of M and the kth (counting from front to rear)
two-dimensional matrix of A that is parallel to the xz-plane in R 3.

Observe that 02yi/aekOe~ can be obtained by premultiplying both sides of (3.4)
by H = M -~. Then

OZyi _ _ ~ t_i~,{~ [~ OMr~ Oy, OMrs'] Oy~ __ ONrj OYt k ONrj~
• ~ - - / - - + Z - - (3 . 5)

OEj Oe k OYt Oek Oek l Oej t Oyt 08k Oek J '

which is the (i,j, k)th element of the three-dimensional array of second partial
derivatives of y = [x(e) v, u(e)v] v with respect to e.

It is desired next to write (3.5) using array notation. Because these operations
are performed in three-space, however, some new notation must be developed before
this is rewritten. In order to motivate the new notation, consider a multivariable
function f(x). It is perhaps clear in this case what is meant by V f, V2f and ~73f, i.e.,
Vf is a vector that is written down the page, V2f requires taking the gradient of
each element of Vf and writing that result across the page to form a two-dimensional
matrix, and thus to form va f one would take the gradient of each element of V2f
and write that result into the third dimension (into the page, say). Hence if M is a
matrix, it should be clear what is meant by VM; i.e., take the gradient of each
element of M and write the result into the third dimension.

But, if y is a vector in R 2, there are three possible orientations parallel to the
coordinate planes in R 3 for the matrix usually notated as Vy. These are shown 1 in
Figure 1. In order clearly to differentiate among these, the notation "V{. }" will be

1 All graphs were produced using DATAPLOT as described in Filliben (1981).

10 R.H.F. Jackson, G.P. McCormick / Second-order sensitivity analysis

used. Thus V{.} operates on the argument by taking its gradient into the third
dimension. Note that

Vy # V{y} # V{yT}.

Whereas the elements of these vectors are the same, their orientations in three-space
are not. These, too, are shown in Fig. 1. The same comments apply with regard to
total differentiation, for which the notation D{-} will be used. This notation, of
course, is only used for an operation from R 2 to R 3, analogs exist for higher
dimensions.

Now with this notation, the matrix form of (3.5) is written:

VZ~y = -M-I[V,MV~{y}V~y+V~MV~y+V,NV~{y}+V~N], (3.6)

where, letting p = (n+ m),

VZ~y is(pxrxr), V~y i s (p x r x l) ,

M -1 i s (p x p x l) , V~M is(pxpxr),

VyM is(pxpxp), VyN is(pxrxp),

V~{y} i s (p x l x r) , V~N is(pxrxr),

and the multiplication in three-space is carried out so that each array within the
brackets on the rhs of (3.6) is (p x r x r). This (p x r x r) array must then be
premultiplied by M- l , a (p x p x 1) array. This multiplication is effected by premulti-
plying each of the r matrices of dimension (p x r) by M -a, resulting in r matrices
of dimension (p x r), or a (p x r x r) array again, as required by V~y. More on
three-dimensional array multiplication (including graphical depictions) is given in
Section 3.5.

Vy

V{y}

V{yT}

Fig. 1. Possible orientations of a matrix in three-space.

R.H.F. Jackson, G.P. McCormick / Second-order sensitivity analysis 11

Observe that (3.3) could have been differentiated directly using the techniques
for differentiation of matrices as given in Marlow (1978). He uses Kronecker products
and a special two-dimensional representation of three-dimensional arrays for per-
forming this kind of differentiation. A disadvantage of this approach is that whatever
special structure that exists in the three-dimensional arrays is lost in the process.
This "structural integrity" is maintained in the approach given here, allowing the
more detailed analysis given in the next section.

There has been some previous work in second-order sensitivity analysis. Dembo
(1982) derived a computationally efficient technique for getting an approximation
to the second derivative with respect to e of the vector function y, correct to terms
of order two. By contrast, (3.6) is exact. Also, a result for the geometric programming
problem for the case where e is a scalar was provided by Kyparisis (1983).

The material in the remainder of this section addresses the issue of computational
efficiency when the problem functions are factorable. Sections 3.3 and 3.4 are
admittedly rather detailed. The reason for including them is twofold: to illustrate
the special polyadic structure of the tensors in nonlinear programming sensitivity
analysis, and to stimulate more research in these areas. It is not necessary to wade
through this material for each second-order sensitivity calculation. Ultimately this
will be performed automatically by the Factorable Programming system of programs

being developed at the National Bureau of Standards.

3.3. Structure of the three-dimensional arrays

While the formula in (3.6) may be mathematically succinct, it may not be obvious
how the polyadic structure of derivatives of factorable functions can assist in its
calculation. To understand how these calculations are performed, it is necessary to
investigate further the structure of the three-dimensional arrays involved. These are:
VyM, V~M, VyN, and V~N. Since V~N is the simplest of these, it is considered first.

Strictlyspeaking, the (i,j, k)th element of VEN is

03 L /;ek c3"--~j OXi' i<~n'
(V~N)/jk = | 02gi-,

lUi n - - - - , i>n.
L Oe k Oej

This can be thought of as taking the gradient with respect to e of each element of
N into the third dimension, and thus can be pictured as a partit ioned rectangular
parallelepiped as shown in Fig. 2. The partitioning, which is due to the parts in y,
separates V~N into an "upper" part which is V3eex L and a " lower" part which is
just a stack of constraint Hessians with respect to e. This more detailed structure

is shown in the exploded view of VeN given in Fig. 3.
The next simplest array to portray is VyN. This is a three-dimensional array that

has four parts, again a result of the two parts in y, arranged as shown in Fig. 4.

12 R.H.F. Jackson, G.P. McCormick / Second-order sensitivity analysis

Vy

v~
/

V~
Fig. 2. Basic partitioned structure of V~N.

i
I

V3ccx L

I =

V2 g i

Fig. 3. Exploded view of structural details of V~N.

Vy

Vy

V~

Fig. 4. Basic partitioned structure of VyN.

R.H.F. Jackson, G.P. McCormick / Second-order sensitivity analysis 13

These partitions are described mathematically as:

03L
i<~n, k<~n,

OX k cgej cgXi"

O2 gi_.
i>n, k<~n, ui-"~Xk Oej'

(VyN)i jk = t92gk n
i<~n, k>n,

Oej Oxi'
c')g~_,

i>n, k>n, i=k,
Oxj '

0, otherwise.

These are depicted graphically in the exploded view in Fig. 5, where the different
orientations of the various matrices and vectors in three-space are more easily
grasped.

The next three-dimensional array to consider is V~M. This too is partit ioned into
four smaller three-dimensional arrays, but with an orientation that differs from VyN.
The basic structure of the parts is shown in Fig. 6, and each element of the array

Vaxcx L

V2¢× gi

. _----7-

Vg~

Fig. 5. Exploded view of structural details of VyN.

Vy

Vy

Fig. 6. Basic partitioned structure of V~M.

14 R.H.F. Jackson, G.P. McCormick / Second-order sensitivity analysis

is defined in the following equations:

(V~M)uk =

03L

Oek Oxj Oxi'

02gj_ ,

OekOXi '

02 gi n

Ui nOe~"~OXj,

Ogi-n

Oek

.0,

i<~n, j<~n,

i<~n,j>n,

i> n, j<~n,

i> n, j > n, i=j,

otherwise.

The three-dimensional orientation of these matrices and vectors is shown in more
detail in Fig. 7.

The last three-dimensional array to be depicted is VyM, the most complicated,
with eight parts that result from differentiating three times with respect to the
partitioned vector y. The eight parts are shown in Fig. 8, and the mathematical

uiV2exgi

Vegi

Fig. 7. Exploded view of structural details of V~M.

Vy

~ l ~ -- - - ~ _ _ _

Vy i "=

Fig. 8. Basic partitioned structure of VyM.

R.H.F. Jackson, G.P. McCormick / Second-order sensitivity analysis

statement of the (i,j, k)th element for each case is given below.

03L

Oxk Oxj Ox~ '
O=gj_ ,
Oxk Oxi'

02gi_n
Ui--n OX---~ OXj'

Oi n
(VyM)0 k =

O x , ~ '

02 gk_n
Oxj Oxi'

0,

Ogi-n

Ox~'
O, i>n, j > n , k>n ,
0, otherwise.

And finally, these structures are shown in detail in Fig. 9.

i<~n, j<~n, k<~n,

i<~n, j > n , k<~n,

i>n, j<~n, k<~n,

i> n, j > n, k<~n, i : j ,

i<~n, j<~n, k>n ,

i<~n, j > n , k>n ,

i>n, j<~n, k>n , i=k,

15

3.4. Polyadics in second-order sensitivity analysis

3.4.1. The dyadics in the second-order terms
Although the material in the previous section provided insight into the three-

dimensional structure of the second-order sensitivity analysis formula in (3.6), it
still may not be clear how the natural polyadic structure of tensors of factorable
functions can assist in the evaluation of the formula. To see this, it is first necessary
to show that each substructure exhibited in Figs 3, 5, 7, and 9, is a polyadic, and

V3L

UiV2gi

-V2gi

Vgj

Fig. 9. Exploded view of structural details of VyM.

16 R.H.F. Jackson, G.P. McCormick / Second-order sensitivity analysis

then to demonstrate how the multiplication with V~y (or V~{y}) is to be carried out.
This section addresses the former of these activities by providing proofs that
factorable functions of (x, e) have polyadic derivatives. Section 3.5 addresses the
latter.

First notice that if the functions of the problem given in (3.1) are factorable in x
and e, so too is the Lagrangian of that problem factorable in x and e. Then the task
of this section reduces to considering some function f(x, e) =ft(x, e), with factored
sequence [fl(x, e), f 2 (x , 6) , . . . , fL(x, e)] formed using the following modification to
the rules given in (1.2).

Rule 1. For i ~< n,

f (x , ~) = x,.

Rule Z For i > n, either

(a) f (x , e) =fj(i)(x, e)+fk(i)(x, e), or

(b) f (x , e) =fj(o(x, e) "fk(,)(x, e), or (3.7)

(C) f (X , 8) = T i [f j (i) (x , 8) , 8];

where j (i)<i , and k(i)<i, and the derivatives with respect to e of the T~ are
themselves factorable functions in e.

For convenience, in the rest of this section, let j(i)=.~ k(i)= k, and drop the
arguments (x, e) and [fj(i)(x, e)]. Thus, e.g., T~[fj(i)(x, e), e]~ Ti.

Calculation of the Hessians with respect to x of the forms in (3.7) is straightforward
and shown in Table 1. Notice that these forms are uncomplicated by derivatives
with respect to ~. Therefore Theorem 1 can be invoked here to show that it is possible
to write V2f(x, e) as a sum of dyads of the appropriate form.

Table 1

Hessians of factorable function forms in sensitivity analysis

Rule f, V2f,

1 X i On× n
2a f j + fl~ V2fj + 72fk

2b ~ fk ~ v G + vf~vf7 +A. v2fj + v f # f i
2C T/ 'Fi V2fj q- Vfj T/V f) T

The calculation of the matrix of second partial derivatives o f f (x , e) with respect
to x and e is slightly more complicated by the fact that T~ is a composite function
o f f (x , e) and ~. This requires the chain rule to obtain the second derivative matrix.
Hence,

D~T, = D~[~Vfj] = ~V2~fj + VffiO,V~fjv+ Vf/Vfl'T,

R.H.F. Jackson, G.P. McCormick / Second-order sensitivity analysis 17

where ~ =- 0 T~ Of and Ti = 02 T~ Of 2. With this, the formulae for the matrix of second

partials o f f with respect to x and e can be written as in Table 2. The first appearance
of these formulae was in de Silva and McCormick (1978).

Using the results displayed in Table 4, an inductive argument paralleling that
used in the proof of Theorem 2 in Jackson and McCormick (1986) will yield the
fact that V2xf can also be written as the sum of dyads. The difference is that for

VZxf the first vector in the dyads is a gradient with respect to x of a factored-sequence
function, and the second vector is a gradient with respect to e of a factored-sequence
function or a derivative of a single-variable transformation.

This result implies that the submatrices of second-order derivatives which appear
in the arrays VyM, V~M, VyN, and V~N on the rhs of (3.6) and in Figs 3, 5, 7, and
9, are all dyadics. What remains is to show that the subarrays of third-order
derivatives, in these same four arrays, are triadics. Those subarrays, arising from
the block ~72L in M and the block 2 3 V~xL in N, a re ~73L, 3 3 V ~xL. Vx,xL, V~x~L, and
The first case, V3L, again is uncomplicated by derivatives with respect to e, and
thus is a triadic by Theorem 1. The proofs for the other cases are in the same vein
as the proof of Theorem 2 in Jackson and McCormick (1986) and require that the
formulae for the third derivatives with respect to x and e respectively be derived
for the forms in Table 1. Consider for example V3~xxf The first step in showing that

V3~x~f is triadic is to apply the operator D~{. } to each factorable function form in
Table 1. This is straightforward for cases 1 and 2a. Case 2b represents the first use
of the new notation, and is developed below.

D~ {fj V2fk + VfkVfT+fkV2fj + Vfj Vf[}

= f~V 3~fk + V=fk V ~ {fj} + vAv~fvff} + vffv~{vfk} -[-fkV3exx£
+v=£vAA}+ ~ v£v~{vfA+ vf~w{v£}.

The more complicated case is 2c, which is a result of the fact that, as noted earlier,
each T/ (and hence ~ and ~) is a composite function o f f (x , e) and e, requiring
the chain rule to calculate the total derivative. This is shown below.

D~{ Z V ~ £ + V £ ~ V f 7 } = ~V3exxfj + V 2 f j o e { r i } + V e { V f j } r i v f 7

+ V fiDe{ ~}Vf7 + Vfj~-V ~ {vff}. (3.8)

Table 2

Hessians with respect to x and e of factorable function forms in sensitivity
analysis

Rule f V2~f

1 x~ O,,xr
2a f j+f~ V~:,fj+Vzxfk
2b fj " fk fjV 2~xfk + V fk V~f iT +fkV 2.~ + V~V~fkT

r, v j , + vfjr, v~fj + v f j w L 2c Ti[fj , 8] • 2 "" q" " T

18

However, using the chain rule,

R.H.F. Jackson, G.P. McCormick / Second-order sensitivity analysis

and (3.9)

= + V . (# , } .

After using (3.9), the rhs of (3.8) becomes:

~ V 3exxf j + TiV2£V e {£} -~- va£Ve{ ~} "~ V e{Vfj} LvfT+ Vfj ~V ~ {fj}Vf7

+ V fjV~{ Ti}V f T + V f j~V~{VYT}.

These third-derivative formulae for V 3 ~ f are collected in Table 3. The proof that
V 3.~xf is triadic is a straightforward application of induction to the factored sequence

and mimics the argument used in the proof of Theorem 2 of Jackson and McCormick
(1986). The result is that V 3 ~ f can be written as the sum of triads of the form

(Oe: ala2a3) ,

where

al is (n x 1),

a2 is (n x 1) ,

a3 is (r x 1),

and a is a product of factored sequence functions and first, second, and third
derivatives of the single-variable transformations used in forming the factored
sequence. Also, the vector factors a, and a2 are gradients with respect to x of a

factored sequence function, and a 3 is a gradient with respect to e of a factored-
sequence function or of a first or second derivative with respect to f of one of the
single-variable transformations in the factored sequence.

Similar arguments, tables, and results are obtained for the remaining cases: V 3 ~ f
and 3 V ~ f See Jackson (1983) for the details.

Table 3

Third-order tensors with respect to x, x, and e of factorable function forms in sensitivity analysis

Rule f/ V3x.~ f/

1 x i

2a fj+fk
2b f .fj

2c Ti[~, e I

Onxnxr
v3.xxf, + vL,f ,
f,v~xfk + v=fk%{f,} + vfkv o(vf 7} + v/TvAvf~} +f~vLxfj

+ V2J}V.{fk} + V fk V.{W[} + V f'~V .{V fj}
L v G f , + i;V~J;Ve{f,}+V=fjVA~}+%{Vfj}i',Vf7

+ VfiTiV.{fj}Vf~ + VfjV.{Ti}Vf~ + VfjTiV~{Vf f}

R.H.F. Jackson, G.P. McCormick / Second-order sensitivity analysis 19

3.5. A r r a y mult ipl icat ion with general ized outer product matr ices

In the previous section, the polyadic nature of the arrays in (3.6) was exhibited.

This section takes up the notion of multiplying these generalized outer product
matrices by Y = V~y, which appears in (3.6) with two different three-space orienta-

tions; via., V~y which is (p × r × 1) and V~{y} which is (p × 1 x r). Multiplication is
one area wherein Factoriable Programming, through the natural polyadic nature of
the function derivatives involved, offers a potentially great computational saving
over alternative approaches.

Consider for instance the case of multiplication of a dyad and a matrix,

(a : a b) * F = (a a b T) F ,

wher a is (n × 1), b is (m x 1), F is (m × n) and a is a scalar. Of course one method
of computing this is to form (a a) b f which requires n (m + 1) multiplications, then
to multiply the result by F, requiring mn 2 multiplications and additions. A far more
efficient way, however, is to form c = b f F , requiring the same nm multipliccations
and additions, but now store the result in the dyadic form as

(a : ac) = a a c T,

thus saving the ran2+ n operations required to compute everything explicitly. In
fact, one of the basic tenets of Factorable Programming is that certain matrices need
never be formed explicitly, since all required calculations can be performed with
the dyadic structures. This of course offers a potentially great computational saving.

It only needs demonstrating, therefore, how to perform the multiplications in
(3.6). Consider then multiplication between a generalized outer product matrix of
order 3, a triad, and a two-dimensional matrix in three-space. Since there are three
possible orientations for a two-dimensional matrix in three-space, one could guess
that there are six ways to perform the multiplication depending on whether the
matrix is pre- or post-multiplying the three-dimensional array. This is of course the
case, and these multiplications are illustrated in Fig. 10, where in each case the
matrix post-multiplies each similarly oriented matrix-slice of the three-dimensional
array. A similar situation obtains for pre-multiplication.

Just as with the multiplication of a dyad and a matrix, these three multiplications
are simplified when the three-dimensional array is stored as a triadic and it is desired
to store the result as a triadic also. Let one of the triads be (a : abc) and the matrix

be F, and consider the post-multiplication of each matrix-slice by F. Then the result
of the multiplications in Fig. 10 is just

(i) (a : a [b f F] T c) ,

(ii) (a : ab[cTF]T), and

(iii) (a : a b [c T F] V) .

(That which appears at first to be an error in (iii) is in fact a result of the simple
fact that the vector in the third position, associated with the third dimension, is

20 R.H.F. Jackson, G.P. McCormick / Second-order sensitivity analysis

9
Fig. 10. Three ways to multiply a three-dimensional array by a matrix.

involved in defining two sets of slabs: one set with the vector a in the first dimension,
and one set with the vector b in the second dimension).

One use of this ability to multiply polyads and matrices is in further exploiting
the polyadic structure of the matrices in (3.6). This was used, for example, in a
recent application of this technique to an unconstrained problem for the U.S.
Department of Energy. For an unconstrained problem, (3.6) becomes

2 V ~ x = _ (V 2 f) I[V3fVe{x}VEx + V3xxfVex + 3 3 V x ~ x f V ~ { x } + V ~ x f] .

In this particular problem, all but the leading term inside the brackets vanished,

leaving

VZ x = - (V2 f) - l [v3 fV~{x}V~x] .

Also in this problem it turned out that the triadic structure of V3f was naturally
symmetric, and thus can be written

V 3 L = i (fli: b~bjbj).
j--1

This by the way is not unusual. Many large problems have a natural symmetric
polyadic structure. The objective function for the chemical equilibrium problem is
another example.

For the DOE problem above, the Hessian inverse was also factorable and was
written

i - -1 i - -1

Then, for this unconstrained case,
2 m

V ~ x = • (ai:a,c,) ([3j:b~bjbj)V~{x}V~x.
i = 1 j = l

R.H.F. Jackson, G.P. McCormick/Second-order sensitivity analysis 21

Application of (ii) yields

V2~x = ~ (a,:a,ci) ~ (flj:bj[bTV~x]bj)V~{x},
i--1 i--I

and application of (iii) yields

V2,x = ~. (a~:a,c,) '~, (flj:bj[bTV~x][bTV~x]).
i=1 j - -1

Similar rules obtain for premultiplication and yield, using the associative law also,

V2~x = ~ ~ (ai~j[c~bj]:a,[b~V~x][b~V~x]),
i--1 j = l

the efficiency of which should be apparent. If it were desired, as it was in the
Department of Energy problem, to produce each frontal slab of this in turn, the
kth of these is given by

~ (a,~,[aTbj]a,,k:[bTV~xl[bTV,x]),
i--l j--1

where, as before, a~,k denotes the kth element of the vector ai.

3.6. Parameter tensors of the optimal value function

In this section, formulae are developed for the tensors (through order 3) of the
optimal value function f* (e) =fix(e), e] of problem P(e) given in (3.1). Armacost
and Fiacco (1974) were the first to extend basic first-order results for the right-hand-
side perturbation problem to the general parametric problem in (3.1), and also
developed the second-order results given below in theorem 5. Fiacco (1983) gives
a complete treatment of all cases for all the variations of (3.1). Our interest is in
providing results for the third-order tensor of f *(e) and we begin with the first and
second-order cases. Theorem 5 is due to Armacost and Fiacco (1974).

Theorem 5 (First- and second-order changes in f*(e) for P(e)). Let x be a feasible
point for P(g) and assume conditions (i) through (iv) in Theorem 3. Then, for e in a
sufficiently small neighborhood of

(a) f*(e)= L*,

(b) V~T*(e)=V~L=V~f- ~ u~V~&
i=1

=V~f-urV~g, and

(c) V2~f*(e)=V2~LV~y+V2~L

= V2~LV~ x - V~ grv~ u + V2~L.

22 R.H.F. Jackson, G.P. M c C o r m i c k / Second-order sensit ivity analysis

Proof. See Fiacco (1983).

It is easy to see from their forms and from the results given in the previous section
that V~f*(e) is monadic and vZ~f*(e) is dyadic. The result for the third-order
tensor of f *(e) is given in.the following.

Theorem 6 (Third-order changes in f * (e) for P(e)) . I f the conditions of Theorem 5
hold and all third-order partial derivatives in x and third-order partial derivatives in
x a n d e exist and are continuous in x and e in a neighborhood of (~, ~), then

V3 f , (e) = 2 2 3 3 3 .~ Vy~LV ~ y + Vyy~LV~ {y}V~ y + V ~y~ LV~ y + V ~ L + Vy~LV ~ y

~ 2 L V 2 , 3 3 = v x ± V ~ L V ~ { x } V ~ x + V ~ L V ~ { u } V ~ x + V 3 ~ L V ~ x

- -V s g T v 2~e U -- V{Vs g T } v e {X}V e U -- V e {V e g T } v sU q- V 3ee e L,

and V3~f*(e) is a triadic.

Proof. Straightforward differentiation of (c) in Theorem 5 gives the formula for
V3~f*(e) . The proof of its triadic structure is also straightforward using the results
of the previous sections.

3.7. Second-order sensitivity results in use

The direct use of first- and second-order sensitivity results is in estimating the
solution and multiplier vectors for P(e) as the problem is perturbed away from
P(Y). This estimation is done using the Taylor series approximations to two and
three terms:

y (e) ~ y (~) + v~ y (~) (e - ~), (3.12)

y (e) _ y (~) + V ~ y (~) (e _ A , 2 e) +sV ~ y (e) (e - ?)(e - ~), (3.13)

where the multiplication in the third term on the rhs of (3.13) is understood to be
inner product multiplication that reduces the dimension of V~y.

To illustrate this idea as well as some of the other ideas in this section, consider
the following parameterized nonlinear programming problem:

minimize f (x , e) = xXx+ el exp(e2aTx).
x ~ R n

At ? = 0 , the solution by inspection is at ~ = 0 . Since L(x, u, e) = f (x , e) for this
problem, the first-order sensitivity equation, Y = - M 1N, reduces to

VEX(E) = -(V2 f) - l V 2xf

Also

V f = 2x + [ele2 exp(e2aVx)]a,

V2f = 2I + a[e,e 2 exp(ezaTx)]a v,

R.H.F. Jackson, G.P. McCormick / Second-order sensitivity analysis 23

and

V~xf= a[exp(e2a V x)][e2, ele2a Tx + el].

Since (2•) -1 --½/, (V2f) -1 can readily be obtained using the Sherman-Woodbury-
Morrison formula (see McCormick, 1983, p. 70) that gives the inverse of a matrix
perturbed by a dyad. This formula is

(A + ucvT) -1 = A -1 - A lu[c(1 + t jTA-luc)-I]vTA -1.

Using this, and letting e = sis 2 exp(ezaVx),

[(4)']
(V2 f) - l=(2 I+acaT) - l=½I - -a c+2aVa a T.

Evaluating these at :~ = 0 and ~ = 0 yields

(V2f)-i = 11,

and

V~xf=0.

Therefore

VEx(e) =0,

and the first-order sensitivity analysis approximation (3.12) gives no additional
information as the problem is perturbed away from ~ = 0. This problem is ideally
suited then for a second-order sensitivity analysis using equations (3.13) and (3.6).
But since V~ x(s)= 0, (3.6) reduces to

V~x(e) = -(V2f) - 'V3~xf

Using the formulae developed in the proof of Theorem 3,

V 3~xf --- V~ (exp[e2aTx]: a[0, el e2aVx] v) + V~ (exp[ezaTx]: ale2, el] x)

= (exp[s2aVx]: a[e2, sls2aVx]V[O, aVx] T)

+ (exp[s2aVx] : a[0, aVx]V[e2, el] v)

+ (exp[ezaVx] : a(e2, s, e2aVx]V[O, aVx] v)

+ (exp[s2aVx]: a[0, 1]T[1, 0] v)

+ (exp[ezaVx]: a[l , 0]T[0, l]V).

Notice the triadic nature of this tensor and the frequency of occurrence of certain
terms. Evaluating these at ~ = 0 and ? = 0 yields

V3~xf = (l : aezel) + (l : aele2) ,

24 R.H.F. Jackson, G.P. McCormick / Second-order sensitivity analysis

where e~ is the ith unit vector in R' . The second partial derivatives with respect to
e of the solution vector are given by

V2~x(e) = - (V2f (~)) - 'V3~f (~) = -3 I [(l :ae2e ,)+ (l:aele2)]

= (-3 : aezel)+(-3: aele2).

For this unconstrained example (3.13) reduces to the second-order estimation

x(~) = x(~) +v~ x (~) (e - ~) + 3V~x(~)(~ - ~)(e - ~),

which at ~ = 0 becomes

x (~) = x (O) + V ~ x (O) ~ 1 2 +~V ~x(O)ee.

Since x(O) is the solution to the original problem, x(O) -- ~ = O. Furthermore, 7~ x(O)
was shown above to vanish also. Thus

x(~) = 3 V ~ x (0) ~

=3[(-½: ae2eO + (-½ : aele2)]ee

(- ¼ e 2 e l : a) + ' . = (- -~E1E 2 • a)

= (--½/~lE2 : a) . (3 . 1 4)

For a more concrete example of this technique, let a = (1, 2) T and perturb the
problem by e = (-1.902, 0.1) T. The solution to this new problem is calculated in
Jackson and McCormick (1986) using Halley's third-order method of tangent
hyperbolas, and is (0.1, 0.2) ~-. However, an estimate is given by (3.14), without
having to solve the new nonlinear programming problem. The approximation is

x(e) ~ ((-0.5)(-1.902)(0.1):[1, 2] T)

= (0.0951, 0.1902) v,

which of course is much better than the first-order approximation, x(e) = O.
Another use of the second-order sensitivity formulae is in solving implicitly defined

optimization problems. Consider for example the optimization problem

max F(p, q) = x*(p, q)+y*(p , q)+pq
(P,q)

where (x*, y*) is defined implicitly as the solution of

rain G(x, y) = (x - y + 3pq) 2 + (x - (p - q)2)2.
(x,y)

The analytic solution of this problem is easily obtained as

x*(p, q) = (p - q)2,

Y*(p, q) = (p - q) 2 + 3pq.

R.H.F. Jackson, G.P. McCormick / Second-order sensitivity analysis 25

Substituting, the other problem becomes

max 2p 2 + 2q 2,
(p,a)

with solution (p*, q*) = (0, 0).
Let e = (p, q)T. The solution of the maximization problem will be accomplished

in one iteration of Newton's method using the second-order sensitivity formulas.
In order to achieve this, it is required to compute

eo- [V ~F(eo)]-lV~F(eo).

Now

and

V~F = V~x* + Vy* +[q, p] T,

Let z denote [x, y]T. Then from first-order sensitivity analysis

V~ z* = -(V~G)-~V~z G.

Now

V=G= _ (2) [1 , -1]+ (2)[1,0]

and

V ~ z G - - - i (2)[3q'3p]+110 (4)(pq)[1,-1] .

The most natural representation of (V~2~G) -~ is in dyadic form and is

The second-order sensitivity formula (3.6) can be rewritten (conceptually) in this
case as

V~z* = - (V ~ G)-'[(V3zzG)(VEz *) + (V3~zG)(V :*) 2

+ V3.zG+ (%:G)(V:*)].

For this problem the only term multiplying the inverse which does not vanish is
V3~zG, a (2 x 2 x 2) matrix. Its triadic form is

V3~zG = (6: [1, --1]T[1, 0]T[0, 1] T) + (6: [1, --1]T[0, 1]T[1, 0] T)

+ (--4: [1, 0]T[1, --1]T[1, --1]T).

26 R.H.F. Jackson, G.P. McCormick / Second-order sensitivity analysis

Suppose in this case that [Po, qo] = [2, 1]. Then

+ 11 [1 , -1] .

Therefore

VEXo* = [2, - -2] T, V ey*o ----- [5, 4] T,

and thus

V~Vo= [2, --2IT+ [5, 4IT+ [1, 2] v= [8, 4] T.

The second-order sensitivity formulas yield

- [72=6] '[V3~zG] = -[(½: [0, -1]v[0, -11 T) + (½: [1, llV[1, 1]T)]

* [(6: [1, --1IT[l, 0IT[0, 1] T)

+ (6:[1, --1IT[0, I]T[1, 0] T)

+ (--4:[1, 0]T[1, --1]T[1, --1]T)].

TO illustrate the computation, one of the six product terms will be computed:

(-½: [0, 1]v[0, -1] v) * (6: [1, --I]T[1, 0]T[0, 1] T)

= (--(1)(½)(6)[0, --1)[1, --1]T: [0, --lIT[l, 0]T[0, 1] v)

= (-3 :[0, 11"[1, o]T[o, 1]*).

In all, the resulting triadic form has the following terms:

(-3 :[0, --1]T[1, 0jr[0, 1] "r) + (--3 :[0, --a]T[0, 1]T[1, 0] T)

+ (2:[1, 1]T[1, -1]T[1, -1]v[1, --1]T).

From this,
2 g V ~Xo = (2: [1, "I]T[1, --11 v)

and

V~yo* = (2: [1, -11711, -13 T)+(3:[0, 11711, 0] T)+(3 :[1, 0]T[0, 1] ~)

Thus

V~Xo +V~yo + = .

Combining,

as desired.

(4)

R.H.F. Jackson, G.P. McCormick / Second-order sensitivity analysis 27

References

R.L. Armacost and A.V. Fiacco, "Computational experience in sensitivity analysis for nonlinear program-
ming," Mathematical Programming 6 (1974) 301-326.

R.L. Armacost and A.V. Fiacco, "Sensitivity analysis for parametric nonlinear programming using penalty
methods," in: Computers and Mathematical Programming, National Bureau of Standards Special
Publication 502 (1978) pp. 261-269.

G.A. Bliss, Lectures on the calculus of variations (University of Chicago Press, Chicago, 1946).
R.S. Dembo, "Sensitivity analysis in geometric programming," Journal of Optimization Theory and

Applications 37 (1982) 1-21.
J.E. Falk, "Global solutions of signomial problems," Technical report T-274, George Washington

University, Department of Operations Research, (Washington, DC, 1973).
J.E. Falk and R.M. Soland, "An algorithm for separable nonconvex programming problems," Manage-

ment Science 15 (1969) 550-569.
A.V. Fiacco and G.P. McCormick, Nonlinear Programing: Sequential Unconstrained Minimization Tech-

niques (Wiley, New York, 1968).
A.V. Fiacco, Sensitivity analysis for nonlinear programming using penalty methods," Mathematical

Programming 10 (1976) 287-311.
A.V. Fiacco, "Nonlinear programming sensitivity analysis results using strong second order assumptions,"

in: L.C.W. Dixon and G.P. Szego, eds., Numerical Optimization of Dynamic Systems (North-Holland,
Amsterdam, 1980), pp. 327-348.

A.V. Fiacco, Introduction to Sensitivity and Stability Analysis in Nonlinear Programming (Academic Press,
New York, 1983).

J.J. Filliben, "DATAPLOT----an interactive high level language for graphics, nonlinear fitting, data
analysis and mathematics," Computer Graphics 15 (1981) 199-213.

A. Graham, Kroneeker Products and Matrix Calculus with Applications (Wiley, New York, 1981).
K.L. Hoffman, "NUGLOBAL~User Guide," Technical report TM-64866, George Washington Univer-

sity, Department of Operations Research (Washington, DC, 1975).
R.H.F. Jackson, "Tensors, Polyads, and High-Order Methods in Factorable Programming," Dissertation,

The George Washington University, Department of Operations Research (Washington, DC, 1983).
R.H.F. Jackson and G.P. McCormick, "The polyadic structure of factorable function tensors with

application to high-order minimization techniques," Journal of Optimization Theory and Applications
51 (1986) 63-94.

R.H.F. Jackson, G.P. McCormick and A. Sofer, "FACTNLS, a factorable programming system for
nonlinear least squares problems," National Bureau Standards Working Paper, to appear.

J. Kyparisi, "Sensitivity and stability for nonlinear and geometric programming: theory and applications.
Dissertation, The George Washington University, Department of Operations Research (Washington,
DC, 1983).

S.G. Leaver, "Computing global maximum likelihood parameter estimates for product models for
frequency tables involving indirect observation," Dissertation, The George Washington University,
Department of Operations Research (Washington, DC, 1984).

A. Linneman, "Higher-order necessary conditions for infinite and semi:infinite optimization," Journal
of Optimization Theory and Applications 38 (1982) 483-511.

W.H. Marlow, Mathematics for Operations Research (Wiley, New York, 1978).
G.P. McCormick, "Second order conditions for constrained minima," SIAM Journal of Applied Mathe-

matics 15 (1967) 37-47.
G.P. McCormick, "Computability of global solutions to factorable nonconvex programs: Part I - - Convex

underestimating problems," Mathematical Programming 10 (1976) 147-175.
G.P. McCormick, Nonlinear Programming: Theory, Algorithms andApplieations (Wiley, New York, 1983).
G.P. McCormick, "Global solutions to factorable nonlinear optimization problems using separable

programming techniques," Technical Report NBSIR 85-3206, National Bureau of Standards
(Gaithersburg, MD, 1985).

L. Pennisi, "An indirect proof of the problem of Lagrange with differential inequalities as added side
conditions," Transactions of the American Mathematical Society 74 (1953) 177-198.

