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1. In trodu c t ion  

In an earlier paper  (Jackson and McCormick  (1986)) the structure taken by 

N-dimens iona l  arrays of  N t h  partial derivatives o f  the special class of  factorable 

functions was examined. The N-dimens iona l  arrays (or tensors as they are sometimes 

called) turn out to be computab le  naturally as the sum o f  generalized outer  p roduc t  

matrices (polyads).  
This natural  polyadic  structure has impor tant  computa t ional  implications for 

solving problems associated with nonl inear  programming.  It means for  example 

that with some minor  modif icat ion to existing software routines, h igh-order  deriva- 

tives can be calculated efficiently, making previously intractable techniques that 

require them, again worthy of  consideration.  In the dissertation by Jackson (1983) 

f rom which most  o f  the material in this paper  is taken, these implications were 

pursued for  second-order  sensitivity analysis and high-order  methods  for  solving 
the problem: 

minimize f ( x ) ,  
x~R° (1.1) 

subject to gi(x)  >~ O, 

for i = 1 , . . . ,  m, when f ( x )  and gi(x) are factorable functions.  

The ability to compute  third derivatives efficiently provides ready access to 

second-order  nonl inear  p rogramming  sensitivity information.  In Section 3 o f  this 

* Research sponsored by contract N00014-86-K-0052, US Office of Naval Research. 
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paper, second-order sensitivity analysis methods are developed for analyzing the 
behavior of a local solution to (1.1) when the problem functions are perturbed 

slightly. Section 3 begins by summarizing results from first-order sensitivity analysis 
which provide formulas for the first derivatives of the components of the local 
solution with respect to the problem parameters. Also developed are formulas, 
involving third-order tensors, for computing the second derivatives of the local 
solution with respect to the problem parameters. In addition, the polyadic structure 
of  the tensors is investigated and displayed, and techniques for manipulating these 
three-dimensional arrays, capitalizing on this special structure, are developed. In 
general, this type of array manipulation is straightforward but time-consuming and 
requires significant computer  storage. It is shown that these difficulties are amelior- 
ated when the special structure of factorable functions is exploited. Examples of 
the use of these formulas for estimating the solution to perturbed problems using 
Taylor series approximations are also given. 

The next section provides some definitions and mathematical background useful 
in understanding the results given in Section 3. Before proceeding, however, some 
comments on notation are required. There are unavoidable complications in the 
theory that follows that require subscripted subscripts. In some cases these are used. 
In other cases, subscripted subscripts are replaced with subscript functions. For 

example, /j ~ i ( j ) .  ~ The choice in each case was made on the basis of  clarity of 
resulting formulae. Also in what follows, all vectors are assumed to be column 
vectors, and, where not otherwise stated, differentiation is with respect to the vector 
X = ( X l ,  X 2 ,  . . . ,  Xn) T. Lastly, we use 8 and V to indicate partial differentiation, and 
d and D indicate total differentiation. 

2. The  po lyad ic  structure o f  tensors o f  fac torable  funct ions  

Loosely, a factorable function is a multivariable function that can be written as 
the last of  a finite sequence of functions, in which the first n functions in the sequence 
are just the coordinate variables, and each function beyond the nth is a sum, a 

product, or a single-variable transformation of previous functions in the sequence. 

More rigorously, let [ f l ( x ) , f z ( x )  . . . .  , fL (X)]  be a finite sequence of functions such 
that f : R "  ~ R,  where each f (x) is defined according to one of the following rules. 
Rule  1. For i = 1 , . . . ,  n, f ( x )  is the value of the ith Euclidean coordinate: 

f , ( x )  = x,. 

R u l e 2 .  For i = n + 1 , . . . ,  L,f(x) is formed using one of  the following compositions: 

(a) f ( x ) = f j ( i ) ( x ) + f k ( i ) ( x ) ,  or 
(b) f ( x ) = f j ( i ) ( x ) " f k ~ , ) ( x ) ,  or (1.2) 

(c)  f , ( x )  = ~ [ f j ( , ) ( x ) ] ,  

where j ( i )  < i, k ( i )  < i, and Ti is a function of a single variable. 
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Then f ( x )  =fL(x)  is a factorable function and [fl (x), f 2 ( x ) , . . . ,  fL(x)] is a factored 
sequence. Thus a func t ion , f  (x), will be called factorable if it can be formed according 
to Rules 1 and 2, and the resulting sequence of functions will be called a factored 
sequence or, at times, the function written in factored form. 

Although it is not always immediately grasped, the concept of  a factorable function 
is actually a very natural one. In fact, it is just a formalization of the natural 
procedure one follows in evaluating a complicated function. See Jackson and 
McCormick (1986) for examples that illustrate this. 

In order to understand what follows, the concept of  an outer product  matrix must 
be introduced. An (m x n) matrix A is called an outer product matrix if there exists 
a scalar ce, and (m x 1) vector a, and an (n x 1) vector b such that 

A = aceb T. 

The expression aceb v is called an outer product or a dyad. Note that a dyad is 
conformable since the dimensions of the product  are (m x 1)(1 x 1)(1 x n), which 
yields the (m x n) outer product matrix A as desired. A useful property of  outer 
product matrices is that, if they are kept as dyads, matrix multiplication with them 
is simplified to inner products alone, saving the computations required to form the 
matrices involved. For example, 

AC = a a [ b  T c], 

dTA = [dTa]ab v, and 

A F  = a~ [ bTF],  

where c is (n x 1), d is (m x 1) and F is (n xp ) .  
It is well-known (see McCormick (1983)) that factorable functions possess two 

very special properties that can be exploited to produce efficient (fast and accurate) 
algorithms: (i) once written in factorable form, their gradients and Hessians may 
be computed exactly, automatically, and efficiently; and (ii) their Hessians occur 
naturally as sums of dyads whose vector factors are gradients of  terms in the factored 
sequence. The first of  these properties has eased the task of providing the derivatives 
of  a nonlinear programming problem to a computer  code that solves it, and has the 
potential eventually to trivialize it. The second, as noted above, changes the way 

we look at matrix multiplication, which in many cases results in less computat ional  
effort. 

There are factorable problems whose structure is such that the factorable approach 
results in more work: small, dense problems, for example. For these problems, the 
factorable approach can still be used for easy input, but some of the matrix techniques 
would be replaced by classical approaches. 

Software packages have been written that perform the factoring automatically 

from natural language input. See Jackson and McCormick (1987) for a history of 
such efforts and more recently, Jackson, McCormick,  and Sofer (1988). The latter 
describes a system that allows user input for nonlinear functions in a format similar 
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to FORTRAN, without any requirement on the user to understand the details of 
factorable functions. 

As mentioned above, one fundamental  value of factorable functions lies in the 
simple and computationally efficient forms that result for their Hessians. In fact 
factorable programming is based on the existence of, and the simplified operations 
that result from, these simple forms. The seminal result, (Fiacco and McCormick, 
1968, pp. 184-188), is that the Hessian of a factorable function can be written as 
the sum of dyads, or outer products, of  gradients of  functions in the factored 
sequence. This basic result was generalized in Jackson and McCormick (1986). 
Before explaining the generalization, it is necessary to generalize the concepts of  
Hessian and dyad. 

Let A c R ~n, . . . . . .  N), and let Ai ...... iN denote the ( i ~ , . . . ,  iN) th  element of this array. 
For the purposes of  this paper,  A is called the Nth-order  tensor of a multivariable 
function f ( x )  if 

A i  . . . . . .  iN : c ' ) N f ( x ) / O X i N  " " " c~Xil" 

Note that gradients and Hessians are tensors of order 1 and 2 respectively. 
An N-dimensional  array A is called generalized outer product  matr ix  if there exists 

a scalar a, and an ordered set of  vectors a ~ , . . . ,  aN (where each ak is (nk × 1)) such 
that each element of  A is generated by the product of  the scalar a and certain 
specific elements of  the vectors al . . . .  , aN as follows 

Ail , . . . , i  N : a :g a l , i l  rg . . . ~ a N ,  iN, 

for i~ = 1 , . . . ,  nl; • • • ; iN = 1 , . . . ,  nN, where ak, ik represents the (ik)th element of the 
(nk X 1) vector ak. 

The scalar and set of  vectors which generate a generalized outer product matrix 
taken together are called a polyad and are written 

(o~ :al  . • • aN) ,  (2.1) 

where order is important,  i.e. the vector in position j is associated with the j th  
dimension. A polyad containing N vector factors is an N-ad.  Also, an expression 
containing a sum of  polyads is a polyadic, and an expression containing a sum of  
N-ads is an N-adic.  (The actual addition here is performed as a sum of the associated 
generalized outer product  matrices.) When vector factors in a polyad are repeated, 
exponential notation is used, as in the case of  the symmetric N-ad,  (a :  [a]N).  Note 
that the representation of a generalized outer product matrix by a polyad is not 
unique. For example, (o~ / y : [ a 1 ~ / ]  ° " " aN) generates the same N- dimensional array 
of numbers as does (2.1) for any nonzero scalar 3/. Finally, a 2-ad of the form 
(a  : ab)  is equivalent to the more familiar dyad of the form aab  T, and the two will 
be used interchangeably. 

The generalization mentioned above is given in the following theorem. It states 
that all tensors (that exist) of  factorable functions possess a natural polyadic 
structure. 
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Theorem 1 (Polyadic tensors). Let f ( x )  be a factorable function in R n, let 

[ f l (x) ,  f 2 ( x ) , . . . ,  fL(x)] be a factored sequence for f ( x ) ,  and assume that f ( x )  ~ C N 
and f ( x )  ~ C N, for i= 1 , . . . ,  L. Then the Nth-order tensor o f f ( x )  can be written as 

the sum of  generalized outer product matrices whose associated polyads have the form 

(a : al • • • a N )  where each a k is the gradient o f  some function in the factored sequence, 

and the scalar a is a product o f  functions in the factored sequence and derivatives o f  

the single-variable transformations used in defining the functions in the sequence. Only 
derivatives okT[ f ] /  Of k, for  1 <~ k <~ N, are used. 

Proof. See Jackson and McCormick (1986). 

It was also shown in Jackson and McCormick (1986) that the vector factors that 
comprisse the monads of the gradient are the same vector factors which comprise 
the dyads of  the Hessian, the triads of the third order tensor, and so on. This has 
important computational implications in mathematical programming. It means that 
once the gradient of a factorable function is computed, a major portion of the work 
involved in computing higher-order derivatives is already calculated. Consequently, 
high-order minimization techniques, previously considered computationally intract- 
able, are once again worthy of consideration. See Jackson and McCormick (1986) 
for more. 

It should be noted that, by their very nature, the tensors of factorable functions 
are ideally suited for computation on parallel processing and array processing 
computers. We know of few other such ideal applications in numerical optimization. 
Also, it has been shown (McCormick (1985)) that all factorable programming 
problems have an equivalent separable programming representation, and that 
efficient algorithms (Falk and Soland (1969), Falk (1973), Hoffman (1975), McCor- 
mick (1976), Leaver (1984)) exist for finding global solutions to these problems. 
Thus there exists the potential of finding global solutions to factorable programming 
problems fast and accurately. 

3. Second-order sensitivity analysis in nonlinear programming 

3.1. Basic first-order sensitivity results 

One application of the results in Section 2 is in obtaining high-order sensitivity 
information for nonlinear programming problems, although only the second-order 
case is considered in this paper. Sensitivity analysis in nonlinear programming is 
concerned with analyzing the behavior of a local solution when the problem functions 
are perturbed slightly. This perturbation might be due to an inexactness with which 
certain parameter values in the problem are calculated or because the optimization 
model was parameterized and one is interested in the solution for a variety of values 
of  the parameters. For additional information on this topic, see Armacost and Fiacco 
(1974), Armacost and Fiacco (1978), Fiacco (1980) and especially Fiacco (1983) 
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and its excellent bibliography. The parametric problem is written 

P(e) :  minimize f (x ,  e), 
x~R" (3.1) 

subject to gi(x, e) >1 O, 

for i = 1 , . . . ,  m, where e is an (r x 1) vector of parameters. The more general version 
of the sensitivity problem includes equality constraints, but  these are not included 
here for simplicity. The ideas and results presented in this section generalize readily 
to the equality-constrained problem. 

The essence of sensitivity analysis in nonlinear programming is the application 
of the Implicit Function Theorem (see, e.g. Bliss (1946) to the Karush-Kuhn-Tucker  
(KKT) necessary conditions for the problem, P(e),  in (3.1). First, define the 
Lagrangian for P(e) as 

m 
L(x, u, e )= f ( x ,  e ) -  • uigi(x , e). 

i--I 

Then, assuming continuous differentiability in x of the problem functions, the KKT 
conditions for P(e)  are that there exists a feasible point, x, for (3.1) and associated 
vector of Lagrange multipliers, u, such that 

VL(x, u, e)= O, 

u i g i ( x ,  e )  ---- 0, (3.2) 

ui >-- O, 

for i=  1 , . . . ,  m. 
The statement of the first-order sensitivity results given in Theorem 3 below also 

requires that the second-order sufficient conditions (SOSC) hold at a particular 
solution Y, of P(g)  (which is just (3.1) for a specified vector of parameter values, 
~). These conditions may be written as follows. 

Theorem 2 (SOSC). Let ~ be a feasible point for P(~) and assume that the functions 
of P( g) are twice-continuously differentiable in x in a neighborhood of ~. Let (~, ~, ~) 
be a triple that satisfies the K K T  conditions in (3.2) and define 

B={i[gi(~,~)=O} and D={i[~,>O}. 

Further, suppose that 

dTV2L()~, u, ~)d > 0, 

for all d ~ O, such that 

dTVgi(:~, ~)>~0 for all ic  B, 
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and 

dWVgi(2, ?) = 0 for all i ~ D. 

Then ~ is a strict local minimizer for P( ?). 

The earliest known reference to these conditions is Pennisi (1953), although it 
was almost 15 years (see McCormick (1967), and Fiacco and McCormick (1968)) 
before they were more fully developed and exploited. 

The following theorem can be viewed as the basic result in nonlinear programming 
sensitivity analysis. 

Theorem 3 (First-order sensitivity)• Let x be a feasible point for P( ?) and assume that 
(i) the functions in (3.1) are twice-continuously differentiable in x and the cross- 

partial derivatives exist and are jointly continuous in x and e in a neighborhood of  (2, ?); 
(ii) the second-order sufficient conditions ( Theorem 2) for a local minimum of P(?)  

hold at 2, with associated Lagrange multipliers ~; 
(iii) the gradients of  the binding constraints, i.e., Vgi(~, ?), i c B ,  are linearly 

independent; and 
(iv) ui > 0 for all i c B. 
Then, for e in a sufficiently small neighborhood of  ?, there exists a unique, once- 

continuously differentiable vector function 

y(e)  = [x(e)  T, u(e)W] T, 

satisfying the K K T  conditions for P( e ), with 

y(g) = [x(?) T, U(?)T] T, 

such that x(e)  is a locally unique isolated minimizer for P(e) .  Furthermore, the first 
partial derivatives of  x( e ) and u( e ) with respect to e can be obtained from the equation 

Y =  - M - 1 N ,  (3.3) 

where 

Y =  V,y = 

OX1 
• , o 

°° o 

OXn 
• , o 

OE~ 

3U2 

OE1 

0 Um 

381 

3X~ 

3er 

OX n 

08r 

OU 1 ' 

Oer 

OUm 

Oe r 
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V 2 L  - V g l  -Vg2 . . . .  V g m  1 

Ul•gTI g l  0 " • " o I 
u 2 V g ~ O g 2 " ' ' : m  ] .  . .  

Um V gTm 0 0 " " " 

V~xL 

ulV ~gT 
N= u2V ~g~ 

.u~ V ~g T 

with all quantities in M and N evaluated at  ()~T, /~T)T 

Proof. See Fiacco (1983). 

3.2. Development of the second-order equation 

The result in (3.3) provides a direct way of calculating first-order sensitivity 
information and is the point of departure for the work given here, which begins 
with the following theorem due to Fiacco (1983). 

Theorem 4 (Higher-order sensitivity). Let :~ be a feasible point for P( g) and assume 
conditions (i) through (iv) in Theorem 3. Assume also that all (k + 1)st-order partial 
derivatives in x and all (k + 1)st-order cross partial derivatives in x and e exist and 
are jointly continuous in x and e in a neighborhood of (~, ~). Then in a sufficiently 
small neighborhood of g, the vector function y( e ) is k times continuously differentiable. 

Proof. The proof follows directly from the fact that if the Jacobian, M, of the KKT 
conditions in (3.2) is nonsingular, and if the functions involved posses the appropri- 
ate degree of differentiability, the Implicit Function Theorem (see Bliss, 1946, p. 270) 
guarantees the existence of the higher-order partial derivatives. Nonsingularity of 
M for (3.2) was shown in Fiacco and McCormick (1968). Thus the theorem is 
proved by direct application of the Implicit Function Theorem. 

If this high-order sensitivity information is to be used, it is necessary also to 
develop a convenient mechanism for calculating it. This is done next for the case 
when k = 2. Consider the matrix equation in (3.3) and rewrite it as 

M Y  = -N .  
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The (i , j ) th element of this matricial equation is 

E Mi~Ysj=-Nij, 
s 

and, by straightforward applications of the product-rule and the chain rule, the 
total derivative of this equation is written 

OY, j [ ~  OM/s aMi,'] y,j+~ ON 0 ONij 
- Z Mi,-T "-~ = Z Oek , s - Ty, . (3.4) 

Now consider the left-hand-side (lhs) in (3.4) more closely. It can be written 

02y~ 
--~s misoek aej' 

which is of the form 

- ~ Mi,Asjk, 
s 

which in turn gives the (i, j, k)th element of  the three-dimensional array that results 
from the matrix multiplication of M and the kth (counting from front to rear) 
two-dimensional matrix of A that is parallel to the xz-plane in R 3. 

Observe that 02yi/aekOe~ can be obtained by premultiplying both sides of (3.4) 
by H = M -~. Then 

OZyi _ _ ~  t_i~,{~ [~ OMr~ Oy, OMrs'] Oy~ __ ONrj OYt k ONrj~ 
• ~ - - / - - + Z  - -  ( 3 . 5 )  

OEj Oe k OYt Oek Oek l Oej t Oyt 08k Oek J ' 

which is the (i,j, k)th element of the three-dimensional array of second partial 
derivatives of y = [x(e)  v, u(e)v] v with respect to e. 

It is desired next to write (3.5) using array notation. Because these operations 
are performed in three-space, however, some new notation must be developed before 
this is rewritten. In order to motivate the new notation, consider a multivariable 
function f(x).  It is perhaps clear in this case what is meant by V f, V2f and ~73f, i.e., 
Vf  is a vector that is written down the page, V2f requires taking the gradient of 
each element of Vf  and writing that result across the page to form a two-dimensional 
matrix, and thus to form va f  one would take the gradient of each element of  V2f 
and write that result into the third dimension (into the page, say). Hence if M is a 
matrix, it should be clear what is meant by VM; i.e., take the gradient of each 
element of  M and write the result into the third dimension. 

But, if y is a vector in R 2, there are three possible orientations parallel to the 
coordinate planes in R 3 for the matrix usually notated as Vy. These are shown 1 in 
Figure 1. In order clearly to differentiate among these, the notation "V{. }" will be 

1 All graphs were produced using DATAPLOT as described in Filliben (1981). 
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used. Thus V{.} operates on the argument by taking its gradient into the third 
dimension. Note that 

Vy # V{y} # V{yT}. 

Whereas the elements of these vectors are the same, their orientations in three-space 
are not. These, too, are shown in Fig. 1. The same comments apply with regard to 
total differentiation, for which the notation D{-} will be used. This notation, of 
course, is only used for an operation from R 2 to R 3, analogs exist for higher 
dimensions. 

Now with this notation, the matrix form of (3.5) is written: 

VZ~y = -M-I[V,MV~{y}V~y+V~MV~y+V,NV~{y}+V~N], (3.6) 

where, letting p = (n+  m), 

VZ~y is(pxrxr),  V~y i s ( p x r x l ) ,  

M -1 i s ( p x p x l ) ,  V~M is(pxpxr),  

VyM is(pxpxp), VyN is(pxrxp), 

V~{y} i s ( p x l x r ) ,  V~N is(pxrxr),  

and the multiplication in three-space is carried out so that each array within the 
brackets on the rhs of (3.6) is ( p x  r x r). This ( p x  r x r) array must then be 
premultiplied by M- l ,  a (p x p x 1) array. This multiplication is effected by premulti- 
plying each of the r matrices of dimension (p x r) by M -a, resulting in r matrices 
of dimension ( p x  r), or a ( p x  r x  r) array again, as required by V~y. More on 
three-dimensional array multiplication (including graphical depictions) is given in 
Section 3.5. 

Vy 

V{y} 

V{yT} 

Fig. 1. Possible orientations of a matrix in three-space. 
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Observe that (3.3) could have been differentiated directly using the techniques 
for differentiation of matrices as given in Marlow (1978). He uses Kronecker products 
and a special two-dimensional representation of three-dimensional arrays for per- 
forming this kind of differentiation. A disadvantage of this approach is that whatever 
special structure that exists in the three-dimensional arrays is lost in the process. 
This "structural integrity" is maintained in the approach given here, allowing the 
more detailed analysis given in the next section. 

There has been some previous work in second-order sensitivity analysis. Dembo 
(1982) derived a computationally efficient technique for getting an approximation 
to the second derivative with respect to e of  the vector function y, correct to terms 
of order two. By contrast, (3.6) is exact. Also, a result for the geometric programming 
problem for the case where e is a scalar was provided by Kyparisis (1983). 

The material in the remainder of  this section addresses the issue of computational  
efficiency when the problem functions are factorable. Sections 3.3 and 3.4 are 
admittedly rather detailed. The reason for including them is twofold: to illustrate 
the special polyadic structure of the tensors in nonlinear programming sensitivity 
analysis, and to stimulate more research in these areas. It is not necessary to wade 
through this material for each second-order sensitivity calculation. Ultimately this 
will be performed automatically by the Factorable Programming system of programs 

being developed at the National Bureau of Standards. 

3.3. Structure of the three-dimensional arrays 

While the formula in (3.6) may be mathematically succinct, it may not be obvious 
how the polyadic structure of  derivatives of  factorable functions can assist in its 
calculation. To understand how these calculations are performed, it is necessary to 
investigate further the structure of  the three-dimensional arrays involved. These are: 
VyM, V~M, VyN, and V~N. Since V~N is the simplest of  these, it is considered first. 

Strictlyspeaking, the (i,j, k)th element of  VEN is 

03 L /;ek c3"--~j OXi' i<~n' 
(V~N)/jk = | 02gi-, 

lUi n - - - - ,  i>n. 
L Oe k Oej 

This can be thought of  as taking the gradient with respect to e of each element of 
N into the third dimension, and thus can be pictured as a partit ioned rectangular 
parallelepiped as shown in Fig. 2. The partitioning, which is due to the parts in y, 
separates V~N into an "upper"  part which is V3eex L and a " lower" part  which is 
just a stack of constraint Hessians with respect to e. This more detailed structure 

is shown in the exploded view of VeN given in Fig. 3. 
The next simplest array to portray is VyN. This is a three-dimensional array that 

has four parts, again a result of the two parts in y, arranged as shown in Fig. 4. 
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Vy 

v~ 
/ 

V~ 
Fig. 2. Basic partitioned structure of V~N. 

i 
I 

V3ccx L 

I = 

V2 g i 

Fig. 3. Exploded view of structural details of V~N. 

Vy 

Vy 

V~ 

Fig. 4. Basic partitioned structure of VyN. 
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These partitions are described mathematically as: 

03L 
i<~n, k<~n, 

OX k cgej cgXi" 

O2 gi_. 
i>n, k<~n, ui-"~Xk Oej' 

(VyN)i jk  = t92gk n 
i<~n, k>n,  

Oej Oxi' 
c')g~_, 

i>n, k>n,  i=k, 
Oxj ' 

0, otherwise. 

These are depicted graphically in the exploded view in Fig. 5, where the different 
orientations of  the various matrices and vectors in three-space are more easily 
grasped. 

The next three-dimensional array to consider is V~M. This too is partit ioned into 
four smaller three-dimensional arrays, but with an orientation that differs from VyN. 
The basic structure of  the parts is shown in Fig. 6, and each element of  the array 

Vaxcx L 

V2¢× gi 

. . . . . .  _----7- 

Vg~ 

Fig. 5. Exploded view of structural details of VyN. 

Vy 

Vy 

Fig. 6. Basic partitioned structure of V~M. 
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is defined in the following equations: 

(V~M)uk = 

03L 

Oek Oxj Oxi' 

02gj_ , 

OekOXi ' 

02 gi n 

Ui nOe~"~OXj, 

Ogi-n 

Oek 

.0, 

i<~n, j<~n, 

i<~n,j>n, 

i> n, j<~n, 

i> n, j >  n, i=j, 

otherwise. 

The three-dimensional orientation of these matrices and vectors is shown in more 
detail in Fig. 7. 

The last three-dimensional array to be depicted is VyM, the most complicated, 
with eight parts that result from differentiating three times with respect to the 
partitioned vector y. The eight parts are shown in Fig. 8, and the mathematical 

uiV2exgi 

Vegi 

Fig. 7. Exploded view of structural details of V~M. 

Vy 

~ l  ~ -- - - ~ _ _ _  

Vy . . . .  i "=  . . . . . . .  

Fig. 8. Basic partitioned structure of VyM. 
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statement of  the (i,j, k)th element for each case is given below. 

03L 

Oxk Oxj Ox~ ' 
O=gj_ , 
Oxk Oxi' 

02gi_n 
Ui--n OX---~ OXj' 

Oi n 
(VyM)0 k = 

O x , ~  ' 

02 gk_n 
Oxj Oxi' 

0, 

Ogi-n 

Ox~' 
O, i>n,  j > n ,  k>n ,  
0, otherwise. 

And finally, these structures are shown in detail in Fig. 9. 

i<~n, j<~n, k<~n, 

i<~n, j > n ,  k<~n, 

i>n,  j<~n, k<~n, 

i> n, j >  n, k<~n, i : j ,  

i<~n, j<~n, k>n ,  

i<~n, j > n ,  k>n ,  

i>n,  j<~n, k>n ,  i=k,  

15 

3.4. Polyadics in second-order sensitivity analysis 

3.4.1. The dyadics in the second-order terms 
Although the material in the previous section provided insight into the three- 

dimensional structure of  the second-order sensitivity analysis formula in (3.6), it 
still may not be clear how the natural polyadic structure of  tensors of  factorable 
functions can assist in the evaluation of the formula. To see this, it is first necessary 
to show that each substructure exhibited in Figs 3, 5, 7, and 9, is a polyadic, and 

V3L 

UiV2gi 

-V2gi 

Vgj 

Fig. 9. Exploded view of structural details of VyM. 
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then to demonstrate how the multiplication with V~y (or V~{y}) is to be carried out. 
This section addresses the former of these activities by providing proofs that 
factorable functions of (x, e) have polyadic derivatives. Section 3.5 addresses the 
latter. 

First notice that if the functions of the problem given in (3.1) are factorable in x 
and e, so too is the Lagrangian of that problem factorable in x and e. Then the task 
of  this section reduces to considering some function f(x, e) =ft(x, e), with factored 
sequence [fl(x, e), f 2 ( x ,  6 ) ,  . . . , fL(x, e)] formed using the following modification to 
the rules given in (1.2). 

Rule 1. For i ~< n, 

f ( x ,  ~) = x,. 

Rule Z For i > n, either 

(a) f (x ,  e) =fj(i)(x, e)+fk(i)(x, e), or 

(b) f (x ,  e) =fj(o(x, e) "fk(,)(x, e), or (3.7) 

(C)  f ( X ,  8 ) =  T i [ f j ( i ) ( x  , 8 ) ,  8]; 

where j ( i )<i ,  and k(i)<i,  and the derivatives with respect to e of the T~ are 
themselves factorable functions in e. 

For convenience, in the rest of  this section, let j(i)=.~ k(i)= k, and drop the 
arguments (x, e) and [fj(i)(x, e)]. Thus, e.g., T~[fj(i)(x, e), e]~ Ti. 

Calculation of the Hessians with respect to x of the forms in (3.7) is straightforward 
and shown in Table 1. Notice that these forms are uncomplicated by derivatives 
with respect to ~. Therefore Theorem 1 can be invoked here to show that it is possible 
to write V2f(x, e) as a sum of dyads of the appropriate form. 

Table 1 

Hessians of factorable function forms in sensitivity analysis 

Rule f, V2f, 

1 X i On× n 
2a f j  + fl~ V2fj + 72fk 

2b ~ fk ~ v G  + vf~vf7 +A. v2fj + v f # f i  
2C T/ 'Fi V2fj q- Vfj T/V f)  T 

The calculation of the matrix of second partial derivatives o f f ( x ,  e) with respect 
to x and e is slightly more complicated by the fact that T~ is a composite function 
o f f (x ,  e) and ~. This requires the chain rule to obtain the second derivative matrix. 
Hence, 

D~T, = D~[ ~Vfj] = ~V2~fj + VffiO,V~fjv+ Vf/Vfl'T, 
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where ~ =- 0 T~ Of and Ti = 02 T~ Of 2. With this, the formulae for the matrix of  second 

partials o f f  with respect to x and e can be written as in Table 2. The first appearance 
of these formulae was in de Silva and McCormick (1978). 

Using the results displayed in Table 4, an inductive argument paralleling that 
used in the proof  of  Theorem 2 in Jackson and McCormick (1986) will yield the 
fact that V2xf can also be written as the sum of  dyads. The difference is that for 

VZxf the first vector in the dyads is a gradient with respect to x of  a factored-sequence 
function, and the second vector is a gradient with respect to e of  a factored-sequence 
function or a derivative of  a single-variable transformation. 

This result implies that the submatrices of  second-order derivatives which appear  
in the arrays VyM, V~M, VyN, and V~N on the rhs of  (3.6) and in Figs 3, 5, 7, and 
9, are all dyadics. What remains is to show that the subarrays of  third-order 
derivatives, in these same four arrays, are triadics. Those subarrays, arising from 
the block ~72L in M and the block 2 3 V~xL in N, a re  ~73L, 3 3 V ~xL. Vx,xL, V~x~L, and 
The first case, V3L, again is uncomplicated by derivatives with respect to e, and 
thus is a triadic by Theorem 1. The proofs for the other cases are in the same vein 
as the proof  of  Theorem 2 in Jackson and McCormick (1986) and require that the 
formulae for the third derivatives with respect to x and e respectively be derived 
for the forms in Table 1. Consider for example V3~xxf The first step in showing that 

V3~x~f is triadic is to apply the operator D~{. } to each factorable function form in 
Table 1. This is straightforward for cases 1 and 2a. Case 2b represents the first use 
of the new notation, and is developed below. 

D~ {fj V2fk + VfkVfT+fkV2fj + Vfj Vf[} 

= f~V 3~fk + V=fk V ~ {fj} + vAv~fvff} + vffv~{vfk} -[-fkV3exx£ 
+v=£vAA}+ ~ v£v~{vfA+ vf~w{v£}. 

The more complicated case is 2c, which is a result of  the fact that, as noted earlier, 
each T/ (and hence ~ and ~ )  is a composite function o f f ( x ,  e) and e, requiring 
the chain rule to calculate the total derivative. This is shown below. 

D~{ Z V ~ £  + V £ ~ V f 7 }  = ~V3exxfj + V 2 f j o e {  r i } +  V e { V f j }  r i v f 7  

+ V fiDe{ ~}Vf7  + Vfj~-V ~ {vff}. (3.8) 

Table 2 

Hessians with respect to x and e of factorable function forms in sensitivity 
analysis 

Rule f V2~f 

1 x~ O,,xr 
2a f j+f~ V~:,fj+Vzxfk 
2b fj " fk fjV 2~xfk + V fk V~f iT +fkV 2.~ + V~V~fkT 

r, v j ,  + vfjr, v~fj + v f j w L  2c Ti[fj , 8] • 2 "" q" " T 
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However, using the chain rule, 
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and (3.9) 

= + V . ( # , } .  

After using (3.9), the rhs of (3.8) becomes: 

~ V  3exxf j + TiV2£V e {£} -~- va£Ve{ ~} "~ V e{Vfj} LvfT+ Vfj ~V ~ {fj}Vf7 

+ V fjV~{ Ti}V f T + V f j~V~{VYT}.  

These third-derivative formulae for V 3 ~ f  are collected in Table 3. The proof  that 
V 3.~xf is triadic is a straightforward application of  induction to the factored sequence 

and mimics the argument used in the proof  of  Theorem 2 of Jackson and McCormick 
(1986). The result is that V 3 ~ f  can be written as the sum of triads of  the form 

(Oe: ala2a3) , 

where 

al is (n x 1), 

a2 is ( n  x 1) ,  

a3 is ( r  x 1),  

and a is a product of  factored sequence functions and first, second, and third 
derivatives of the single-variable transformations used in forming the factored 
sequence. Also, the vector factors a, and a2 are gradients with respect to x of a 

factored sequence function, and a 3 is a gradient with respect to e of a factored- 
sequence function or of a first or second derivative with respect to f of one of the 
single-variable transformations in the factored sequence. 

Similar arguments, tables, and results are obtained for the remaining cases: V 3 ~ f  
and 3 V ~ f  See Jackson (1983) for the details. 

Table 3 

Third-order tensors with respect to x, x, and e of factorable function forms in sensitivity analysis 

Rule f/ V3x.~ f/ 

1 x i 

2a fj+fk 
2b f .fj 

2c Ti[~, e I 

Onxnxr 
v3.xxf, + vL,f ,  
f,v~xfk + v=fk%{f,} + vfkv o(vf 7} + v/TvAvf~} +f~vLxfj 

+ V2J}V.{fk} + V fk V.{W[} + V f'~V .{V fj} 
L v G f , +  i;V~J;Ve{f,}+V=fjVA~}+%{Vfj}i',Vf7 

+ VfiTiV.{fj}Vf~ + VfjV.{Ti}Vf~ + VfjTiV~{Vf f} 
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3.5. A r r a y  mult ipl icat ion with general ized outer  product  matr ices  

In the previous section, the polyadic nature of  the arrays in (3.6) was exhibited. 

This section takes up the notion of multiplying these generalized outer product 
matrices by Y = V~y, which appears in (3.6) with two different three-space orienta- 

tions; via., V~y which is (p × r × 1) and V~{y} which is (p × 1 x r). Multiplication is 
one area wherein Factoriable Programming, through the natural polyadic nature of 
the function derivatives involved, offers a potentially great computational  saving 
over alternative approaches. 

Consider for instance the case of  multiplication of a dyad and a matrix, 

( a : a b )  * F = ( a a b T ) F ,  

wher a is (n × 1), b is ( m x  1), F is (m × n) and a is a scalar. Of  course one method 
of computing this is to form ( a a ) b  f which requires n ( m  + 1) multiplications, then 
to multiply the result by F, requiring mn 2 multiplications and additions. A far more 
efficient way, however, is to form c = b f F ,  requiring the same nm multipliccations 
and additions, but now store the result in the dyadic form as 

( a : ac ) = a a c  T, 

thus saving the ran2+ n operations required to compute everything explicitly. In 
fact, one of the basic tenets of  Factorable Programming is that certain matrices need 
never be formed explicitly, since all required calculations can be performed with 
the dyadic structures. This of  course offers a potentially great computational saving. 

It only needs demonstrating, therefore, how to perform the multiplications in 
(3.6). Consider then multiplication between a generalized outer product matrix of  
order 3, a triad, and a two-dimensional matrix in three-space. Since there are three 
possible orientations for a two-dimensional matrix in three-space, one could guess 
that there are six ways to perform the multiplication depending on whether the 
matrix is pre- or post-multiplying the three-dimensional array. This is of course the 
case, and these multiplications are illustrated in Fig. 10, where in each case the 
matrix post-multiplies each similarly oriented matrix-slice of the three-dimensional 
array. A similar situation obtains for pre-multiplication. 

Just as with the multiplication of a dyad and a matrix, these three multiplications 
are simplified when the three-dimensional array is stored as a triadic and it is desired 
to store the result as a triadic also. Let one of the triads be (a  : abc) and the matrix 

be F, and consider the post-multiplication of each matrix-slice by F. Then the result 
of the multiplications in Fig. 10 is just 

(i) ( a : a [ b f F ] T c ) ,  

(ii) (a  : ab[cTF]T), and 

(iii) ( a : a b [ c T F ] V ) .  

(That which appears at first to be an error in (iii) is in fact a result of  the simple 
fact that the vector in the third position, associated with the third dimension, is 
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9 
Fig. 10. Three ways to multiply a three-dimensional array by a matrix. 

involved in defining two sets of  slabs: one set with the vector a in the first dimension, 
and one set with the vector b in the second dimension). 

One use of  this ability to multiply polyads and matrices is in further exploiting 
the polyadic structure of  the matrices in (3.6). This was used, for example, in a 
recent application of this technique to an unconstrained problem for the U.S. 
Department  of  Energy. For an unconstrained problem, (3.6) becomes 

2 V ~ x = _ ( V 2 f )  I[V3fVe{x}VEx + V3xxfVex  + 3 3 V x ~ x f V ~ { x } + V ~ x f ] .  

In this particular problem, all but the leading term inside the brackets vanished, 

leaving 

VZ x = - (V2 f ) - l [ v3 fV~{x}V~x] .  

Also in this problem it turned out that the triadic structure of  V3f was naturally 
symmetric, and thus can be written 

V 3 L =  i (fli: b~bjbj). 
j--1 

This by the way is not unusual. Many large problems have a natural symmetric 
polyadic structure. The objective function for the chemical equilibrium problem is 
another example. 

For the DOE problem above, the Hessian inverse was also factorable and was 
written 

i - -1  i - -1  

Then, for this unconstrained case, 
2 m 

V ~ x =  • (ai:a,c,)  ([3j:b~bjbj)V~{x}V~x. 
i = 1  j = l  
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Application of (ii) yields 

V2~x = ~ (a,:a,ci) ~ (flj:bj[bTV~x]bj)V~{x}, 
i--1 i--I 

and application of (iii) yields 

V2,x = ~. (a~:a,c,) '~, (flj:bj[bTV~x][bTV~x]). 
i=1 j - -1 

Similar rules obtain for premultiplication and yield, using the associative law also, 

V2~x = ~ ~ (ai~j[c~bj]:a,[b~V~x][b~V~x]), 
i--1 j = l  

the efficiency of which should be apparent. If it were desired, as it was in the 
Department of Energy problem, to produce each frontal slab of this in turn, the 
kth of these is given by 

~ (a,~,[aTbj]a,,k:[bTV~xl[bTV,x]), 
i--l j--1 

where, as before, a~,k denotes the kth element of the vector ai. 

3.6. Parameter tensors of the optimal value function 

In this section, formulae are developed for the tensors (through order 3) of the 
optimal value function f* (e )  =fix(e),  e] of problem P(e) given in (3.1). Armacost 
and Fiacco (1974) were the first to extend basic first-order results for the right-hand- 
side perturbation problem to the general parametric problem in (3.1), and also 
developed the second-order results given below in theorem 5. Fiacco (1983) gives 
a complete treatment of all cases for all the variations of (3.1). Our interest is in 
providing results for the third-order tensor of f *(e) and we begin with the first and 
second-order cases. Theorem 5 is due to Armacost and Fiacco (1974). 

Theorem 5 (First- and second-order changes in f*(e) for P(e)). Let x be a feasible 
point for P(g) and assume conditions (i) through (iv) in Theorem 3. Then, for e in a 
sufficiently small neighborhood of 

(a) f*(e)= L*, 

(b) V~T*(e)=V~L=V~f- ~ u~V~& 
i=1 

=V~f-urV~g,  and 

(c) V2~f*(e)=V2~LV~y+V2~L 

= V2~LV~ x - V~ grv~ u + V2~L. 



22 R.H.F.  Jackson,  G.P. M c C o r m i c k  / Second-order sensit ivity analysis 

Proof. See Fiacco (1983). 

It is easy to see from their forms and from the results given in the previous section 
that V~f*(e)  is monadic and vZ~f*(e)  is dyadic. The result for the third-order 
tensor of f *(e) is given in.the following. 

Theorem 6 (Third-order changes in f *  (e) for P(e)) .  I f  the conditions of  Theorem 5 
hold and all third-order partial derivatives in x and third-order partial derivatives in 
x a n d  e exist and are continuous in x and e in a neighborhood of  (~, ~), then 

V3 f , ( e ) =  2 2 3 3 3 .~ Vy~LV ~ y  + Vyy~LV~ {y}V~ y + V ~y~ LV~ y + V ~ L +  Vy~LV ~ y 

~ 2  L V 2  , 3 3 = v  . . . .  x ± V ~ L V ~ { x } V ~ x + V ~ L V ~ { u } V ~ x + V 3 ~ L V ~  x 

- -V s g T v  2~e U -- V{Vs  g T } v  e {X}V e U -- V e {V e g T } v  sU q- V 3ee e L,  

and V3~f*(e )  is a triadic. 

Proof. Straightforward differentiation of (c) in Theorem 5 gives the formula for 
V3~f*(e) .  The proof of its triadic structure is also straightforward using the results 
of the previous sections. 

3.7. Second-order sensitivity results in use 

The direct use of first- and second-order sensitivity results is in estimating the 
solution and multiplier vectors for P(e)  as the problem is perturbed away from 
P(Y). This estimation is done using the Taylor series approximations to two and 
three terms: 

y ( e )  ~ y (~ )  + v~ y ( ~ ) ( e  - ~), (3.12) 

y ( e ) _ y ( ~ ) + V ~ y ( ~ ) ( e _ A  , 2 e) +sV ~ y ( e ) ( e  - ?)(e - ~), (3.13) 

where the multiplication in the third term on the rhs of (3.13) is understood to be 
inner product multiplication that reduces the dimension of V~y. 

To illustrate this idea as well as some of the other ideas in this section, consider 
the following parameterized nonlinear programming problem: 

minimize f ( x ,  e) = xXx+ el exp(e2aTx). 
x ~ R  n 

At ? = 0 ,  the solution by inspection is at ~ = 0 .  Since L(x, u, e ) = f ( x ,  e) for this 
problem, the first-order sensitivity equation, Y = - M  1N, reduces to 

VEX(E) = -(V2 f ) - l V  2xf 

Also 

V f =  2x + [ele2 exp(e2aVx)]a, 

V2f  = 2I  + a[e,e  2 exp(ezaTx)]a v, 
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and 

V~xf= a[exp( e2a V x) ][ e2, ele2a Tx + el]. 

Since (2•) -1 --½/, (V2f) -1 can readily be obtained using the Sherman-Woodbury- 
Morrison formula (see McCormick, 1983, p. 70) that gives the inverse of a matrix 
perturbed by a dyad. This formula is 

( A +  ucvT) -1 = A -1 - A  lu[c(1 + t jTA-luc)-I]vTA -1. 

Using this, and letting e = sis  2 exp(ezaVx), 

[(4 )'] 
(V2 f ) - l=(2 I+acaT) - l=½I - -a  c+2aVa a T. 

Evaluating these at :~ = 0 and ~ = 0 yields 

(V2f)-i = 11, 

and 

V~xf=0. 

Therefore 

VEx(e) =0, 

and the first-order sensitivity analysis approximation (3.12) gives no additional 
information as the problem is perturbed away from ~ = 0. This problem is ideally 
suited then for a second-order sensitivity analysis using equations (3.13) and (3.6). 
But since V~ x(s)= 0, (3.6) reduces to 

V~x(e)  = -(V2f) - 'V3~xf 

Using the formulae developed in the proof of Theorem 3, 

V 3~xf --- V~ (exp[e2aTx]: a[0, el e2aVx] v) + V~ (exp[ezaTx]: ale2, el] x) 

= (exp[s2aVx]: a[e2, sls2aVx]V[O, aVx] T) 

+ (exp[s2aVx] : a[0, aVx]V[e2, el] v) 

+ (exp[ezaVx] : a(e2, s, e2aVx]V[O, aVx] v) 

+ (exp[s2aVx]: a[0, 1]T[1, 0] v) 

+ (exp[ezaVx]: a[ l ,  0]T[0, l]V). 

Notice the triadic nature of this tensor and the frequency of occurrence of certain 
terms. Evaluating these at ~ = 0 and ? = 0 yields 

V3~xf = ( l : aezel) + ( l : aele2) , 
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where e~ is the ith unit vector in R' .  The second partial derivatives with respect to 
e of the solution vector are given by 

V2~x(e) = - (V2f (~) ) - 'V3~f (~)  = -3 I [ ( l :ae2e , )+  (l:aele2)] 

= ( -3 :  aezel )+(-3:  aele2). 

For this unconstrained example (3.13) reduces to the second-order estimation 

x(~) = x(~) +v~  x ( ~ ) ( e  - ~) + 3V~x(~)(~ - ~)(e - ~), 

which at ~ = 0 becomes 

x ( ~ ) = x ( O ) + V ~ x ( O ) ~  1 2 +~V ~x(O)ee. 

Since x(O) is the solution to the original problem, x(O) -- ~ = O. Furthermore, 7~ x(O) 
was shown above to vanish also. Thus 

x(~) = 3 V ~ x ( 0 ) ~  

=3[(-½: ae2eO + (-½ : aele2) ]ee 

( - ¼ e 2 e l : a )  + ' . = ( - -~E1E 2 • a )  

= (--½/~lE2 : a ) .  ( 3 . 1 4 )  

For a more concrete example of this technique, let a = (1, 2) T and perturb the 
problem by e = (-1.902, 0.1) T. The solution to this new problem is calculated in 
Jackson and McCormick (1986) using Halley's third-order method of tangent 
hyperbolas, and is (0.1, 0.2) ~-. However, an estimate is given by (3.14), without 
having to solve the new nonlinear programming problem. The approximation is 

x(e)  ~ ((-0.5)(-1.902)(0.1):[1,  2] T) 

= (0.0951, 0.1902) v, 

which of course is much better than the first-order approximation, x(e)  = O. 
Another use of the second-order sensitivity formulae is in solving implicitly defined 

optimization problems. Consider for example the optimization problem 

max F(p, q) = x*(p, q )+y*(p ,  q )+pq 
(P,q) 

where (x*, y*) is defined implicitly as the solution of  

rain G(x, y) = (x - y + 3pq) 2 + (x - (p - q)2)2. 
(x,y) 

The analytic solution of  this problem is easily obtained as 

x*(p, q) = (p - q)2, 

Y*(p, q) = (p - q ) 2  + 3pq. 



R.H.F. Jackson, G.P. McCormick / Second-order sensitivity analysis 25 

Substituting, the other problem becomes 

max 2p 2 + 2q 2, 
(p,a) 

with solution (p*, q*) = (0, 0). 
Let e = (p, q)T. The solution of the maximization problem will be accomplished 

in one iteration of Newton's method using the second-order sensitivity formulas. 
In order to achieve this, it is required to compute 

eo- [V ~F(  eo) ]-lV~F( eo). 

Now 

and 

V~F = V~x* + Vy* +[q, p] T, 

Let z denote [x, y]T. Then from first-order sensitivity analysis 

V~ z* = -(V~G)-~V~z G. 

Now 

V=G= _ (2 ) [1 , -1 ]+  (2)[1,0] 

and 

V ~ z G - - - i  (2)[3q'3p]+110 (4)(pq)[1,-1] .  

The most natural representation of (V~2~G) -~ is in dyadic form and is 

The second-order sensitivity formula (3.6) can be rewritten (conceptually) in this 
case as 

V~z* = - ( V ~  G)-'[ (V3zzG)(VEz *) + (V3~zG)(V :* )  2 

+ V3.zG+ (%:G)(V:*)]. 

For this problem the only term multiplying the inverse which does not vanish is 
V3~zG, a ( 2 x 2 x 2 )  matrix. Its triadic form is 

V3~zG = (6: [1, --1]T[1, 0]T[0, 1] T) + (6: [1, --1]T[0, 1]T[1, 0] T) 

+ (--4: [1, 0]T[1, --1]T[1, --1]T). 
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Suppose in this case that [Po, qo] = [2, 1]. Then 

+ 11 [1 , -1] .  

Therefore 

VEXo* = [2, - -2]  T, V ey*o ----- [5, 4]  T, 

and thus 

V~Vo= [2, --2IT+ [5, 4IT+ [1, 2] v= [8, 4] T. 

The second-order sensitivity formulas yield 

- [72=6]  '[V3~zG] = -[(½: [0, -1]v[0, -11 T) + (½: [1, llV[1, 1]T)] 

* [(6: [1, --1IT[l, 0IT[0, 1] T) 

+ (6:[1, --1IT[0, I]T[ 1, 0] T) 

+ (--4:[1, 0]T[1, --1]T[1, --1]T)]. 

TO illustrate the computation, one of the six product terms will be computed: 

(-½: [0, 1]v[0, -1]  v) * (6: [1, --I]T[1, 0]T[0, 1] T) 

= (--(1)(½)(6)[0, --1)[1, --1]T: [0, --lIT[l, 0]T[0, 1] v) 

= ( -3  :[0, 11"[1, o]T[o, 1]*). 

In all, the resulting triadic form has the following terms: 

( -3  :[0, --1]T[1, 0jr[0, 1] "r) + (--3 :[0, --a]T[0, 1]T[1, 0] T) 

+ (2:[1, 1]T[1, -1]T[1, -1]v[1, --1]T). 

From this, 
2 g V ~Xo = (2: [1, "I]T[1, --11 v) 

and 

V~yo* = (2: [1, -11711, -13 T)+(3:[0, 11711, 0] T)+(3 :[1, 0]T[0, 1] ~) 

Thus 

V~Xo +V~yo + = . 

Combining, 

as desired. 

(4) 
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