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A new interior method for linear programming is presented and a polynomial t ime bound  for 
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algorithms. 
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1. Introduction 

The main motivation for this work was the idea that there should exist an easily 
understood polynomial time algorithm for linear programming, where both the 
algorithm and the proof of the polynomial time bound rely primarily on common 
ideas in the non-linear optimization literature (e.g. convergence of Newton's 
method). Although both the ellipsoid algorithm [7, 8] and Karmarkar's algorithm 
[6] are polynomial time algorithms, the main ideas behind those algorithms and 
the proofs of their polynomial time bounds are certainly novel as regards the 
optimization literature. 

The algorithm presented is based on approximately following a sequence of 
"centers" through the interior of the feasible region. It is reminiscent of the "method 
of centers" of Huard [5]. 

The algorithm solves linear programming problems in the format 

m a x  c"  X 
(1.1) 

s.t. A x  >~ b, 

where A is an m x n matrix. Assuming the coordinates of A, b and c are integers, 
and the sum of the bits needed to represent all entries in A, b and c is L, the 
algorithm solves (1.1) (i.e. determines an optimal solution, or unboundedness,  or 
infeasibility) in O(,fm + n L) iterations. The work in each iteration of the algorithm 
is dominated by solving a system of linear equations. This requires O((m + n)n 2) 
arithmetic operations. The equations are actually only solved approximately, this 
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requiring O((m + n)n2L(log L)(log log L)) bit operations. The total number  of  arith- 

metic operations involved is O((m + n)~Sn2L) and the total number  of bit operations 
is O((m + n)lSn2L2(log L)(log log L)). 

For a linear programming problem (LPP) in the form (1.1), Karmarkar 's  modified 
algorithm first requires that LPP to be recast as an LPP in m + n variables and m 

equations. Then Karmarkar ' s  bound on the number  of  iterations required to solve 
the LPP is O((m + n)L). On the average (where the average is over the O((m + n)L) 
iterations), each iteration requires O ( ( m + n )  25) arithmetic operations, O ( ( m +  

n)2SL(log L)(log log L)) bit operations. Thus, for Karmarkar ' s  modified algorithm, 
the total number  of arithmetic operations required is O((m + n)3SL), and the total 
number of  bit operations is O((m + n)3SL2(log L)(log log L)). 

Comparing, the proven bounds for the algorithm presented herein are identical 

to those for Karmarkar ' s  algorithm if m and n are of  the same magnitude, and are 
better if m >> n. The most important theoretical result in this paper  is the O( mx /~  n L) 
bound on the number  of  iterations. 

The paper  is organized as follows. In the next section we present the algorithm, 
assuming the problem to be solved fits an appropriate framework. We also state 
what we call the "main theorem".  The main theorem does not require the entries 
in A, b and c to be rational, but it does assume all arithmetic operations can be 

performed exactly. It is dubbed the "main  theorem" because it represents the ideas 
at the heart of  the analysis. 

In section three, we describe the ideas behind proving the main theorem. One of 
the key steps in the proof  is a well-chosen change of  coordinates. The new coordinates 
are very reminiscent of  the context of Karmarkar ' s  algorithm, a difference being 
that only our proofs "l ive" in those coordinates, not our algorithm. (Also, we do 

not rely on a potential function, but instead measure progress directly in terms of  
the objective function.) 

Sections 4, 5 and 6 are devoted to proving propositions and theorems stated in 
Section 3. 

In Section 7, we show how to recast any LPP of the form (1.1) into a format 

suitable for the algorithm. 
Finally, in Section 8, we give a complexity analysis of the algorithm assuming 

the entries in A, b and c are integers. We are careful in this analysis to account for 

the effects of  rounding. The analysis is essentially another proof  of  the main theorem, 
but the technicalities involved with accounting for the rounding obscure the central 
ideas that the main theorem and its p roof  highlight. 

In the original version of this paper  I wrote that I did not see how Karmarkar ' s  

algorithm could be carried out with O(L) bits of  accuracy (assuming the number  
of  bits required to represent the original problem is L) as Karmarkar  claimed in 
his paper. Subsequently, Karmarkar  convinced me that this could be done if one 
does not rely on rank one updates, as the algorithm in the present paper  does not. 

The argument, embedded in our complexity analysis, relies on the fact that the 
linear equations that need to be solved need only be solved approximately, and this 
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can be done efficiently using Cholesky factorization and the fact that the condition 

number of the corresponding matrices are bounded by 2 °~L~. Subsequently, Pravin 

Vaidya convinced me that O(L) bits of accuracy also suffice if rank one updating 

is relied upon, which Karmarkar's modified algorithm does. 

I also wrote in the original version of this paper that it was an important and 

open theoretical question whether or not the algorithm in this paper could be 

modified in a manner reminiscent of Karmarkar's modified algorithm to reduce the 
complexity bounds. Pravin Vaidya [15] has apparently answered this question in 

the affirmative. His stated bounds are O(( (m+n)n2+(m+n)LSn)L)  arithmetic 
operations and O(((m + n)n 2 + (m + n)LSn)LZ(log L)(log log L)) bit operations. His 

analysis relies on a potential function. 

Our algorithm is similar to one presented independently by Sonnevend [13, 14], 
who gave no complexity analysis. 

There are several people I would like to thank. I would like to thank Lenore 
Blum [3, 4], who aroused my interest in interior methods for linear programming 

in talks that she gave. I would like to thank Steve Smale [11, 12] for reasons too 

numerous to mention. I would like to thank Jeff Lagarias [2, 9], who gave a talk 

that served as a catalyst for parts of the present work. I would like to thank Nimrod 

Megiddo and Mike Shub [ 10] for several interesting conversations regarding interior 

methods for linear programming. And I would like to thank Jim Curry, whose 

conversation has helped make for a pleasant year at MSRI. Finally, I would like 
to thank a referee for some very useful comments. 

2. The algorithm 

it. 

In this section we introduce the algorithm and state the "main theorem" regarding 

Assume that we wish to solve 

max c. x 
(2.1) 

s.t. Ax ~ b, 

where z ~ R" and A is an m x n matrix. Non-negativity constraints are not distin- 

guished from other inequalities. We assume c # 0 and we assume none of the rows 

of A are the zero vector. 

Let a~ denote the ith row of A. Let l be a positive integer and let ,4 denote the 
(m + l) x n matrix 

-0/1" 

i :  

Ic} 
i 1 times, 

. C°  



62 J. Renegar / A linear programming algorithm 

c being considered as a row vector. Let k(°)~ R and let b(°)c R "+~ be the vector 

(b(°)) T= (b~ . . . .  , bin, k(°),. • . ,  k(°)), 

where b T= ( b l , . . . ,  bin) is the right hand side vector of (2.1). Finally, let (fi~, b ~°~) 
denote the system of inequalities Ax ~> b (°). 

The algorithm is based on approximating the "centers" of a sequence of systems 
{(,4, b(°)} assuming the center of the initial system, (fi~, b(°)), is given. Now we 
develop the notion of the center of a system of inequalities. (Apparently, Sonnevend 
[13, 14] and Bayer and Lagarias [2] were the first to develop the following notion 
of center, as I learned after I had arrived at the same notion.) 

Let (A', b') be a system of linear inequalities where A' is an m' x n' matrix and 
b ' c  ~,n,. We use (A', b') to denote a general system of inequalities throughout this 
paper, as opposed to, for example, (fi~, b ~°~) which is specialized. Assume {x; A'x >~ 
b'} has non-empty interior, Int(A', b'), and let f ' :  Int(A', b ' )~  R be defined by 

m'  m '  

f ' ( x )  = 2 ln(c~, x - b ~ ) = l n  1~ (c~l" x - b l )  
i = 1  i = 1  

where In is the natural logarithm, ce ~ is the ith row of A' and " . "  is the dot product. 
(Primes, as in f ' ,  will always imply a relation to the system (A', b') and will never 
be used to denote a derivative in this paper.) Note that f ' ( x )  goes to -oo as x goes 
to the boundary of Int(A', b'). 

We say that ~:' is a center of (A', b') if ~:' e Int(A', b') and 

f '(~') ~ f ' ( x )  for all x ~ Int(A', b'). 

(Thus, the center of the system (fi,, b ~°~) is the point in Int(?t, b (°~) maximizing 

f(°)(x) = l" l n ( c - x - k ( ° ) ) +  ~ ln(ai" x - b i ) ,  
i = 1  

1 playing the role of a "weight".) 

Proposition 2.1. Assume Int(A', b') is non-empty and bounded. Then f '  is strictly 
concave and the system (A', b') has a unique center ~'. 

Proof. Using the fact that f ' ( x )  is the composition of the maps X ~ - - ~ j  1 ln(X~) and 
x~--~(a'l • x - b ' l , . . . ,  a ' , .  x - b ' , ) ,  it is easily shown that, for x ~  Int(A', b'), 

V2 f = -(A')TDx2A ', (2.2) 

where Dx is the diagonal matrix with (i, i) entry a~ • x - bi. However, since lnt(A', b') 
is assumed non-empty and bounded, it is easily shown that A' is of full-rank, and 
hence, from (2.2), V~f' is strictly negative definite. Thus, f '  is strictly concave. Since 
f ' ( x )  goes to -co as x goes to the boundary of the bounded set Int(A', b'), it follows 
that (A', b') has a unique center. [] 
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Throughout  the rest of  this section we will assume Int(A, b (°)) is non-empty  and 
bounded ,  so that by the proposi t ion,  (4 ,  b (°)) has a unique center ¢(o). We will also 
assume that  we know s t(°), that  is, we know its coordinates.  In Section 7 we will 
show how any linear programming problem can be put  in a f ramework satisfying 
these assumptions.  

It is easily shown that our  assumption that Int(A, b (°)) is bounded  and non-empty  
implies that (2.1) has an optimal solution, but  perhaps infinitely many of  them. It 
is also easily shown that  all optimal solutions for  (2.1) are contained in the bounda ry  
of  Int(/( ,  b(°)). We want  to somehow move f rom the known point  ¢(o) toward  the 
optimal solutions. 

To move from ¢(0) toward  the optimal solutions, we create a new system (,4, b (1)) 
whose center  ¢(1) is known to lie closer to the optimal  solutions than s c(°), and then 
we at tempt to obtain a " g o o d "  approximat ion  to ¢(1). The new system (A, b (1)) is 
identical to (A, b (°)) except  that the value k (°) defining b (°) is replaced by a larger 
value k (~). To guarantee that Int(A, b (~)) is non-empty,  it suffices to choose k(1)< 
c.  ~:(o). Then  s c(°) ~ Int(fi., b(1)). Hence,  k (1) is chosen from the range k (°) < k (1) < 
c"  ~(o). 

The new system (A, b (1)) is bounded  and non-empty.  Also, all optimal solutions 
to (2.1) are contained in the boundary  of  Int(,4, b(~)). Let f(1): Int(fi~, b ~1)) ~ R  be 
the funct ion 

f(1)(x) = / "  ln(c" x-k(1))+ ~ ln (a i ,  x-bi).  
i~l  

Then s c(1), the center of  (/l,  b(~)), is, by definition, the point  in Int(/~, b (1)) that  

maximizes f(1). 
We want  to obtain a " g o o d "  approximat ion  to ~(1). Since ~:(1) is defined to be the 

point  maximizing the strictly concave funct ion f(~), it is natural  to use Newton ' s  
method.  Since ~:(0)~ Int(fi,, b(1)), we can initiate Newton ' s  method  at ~(o). Thus,  
letting # N e w t o n  be a positive integer, define recursively 

x[o]  = ~(o), 
(2.3) 

x[ i] = x[ i-1]+ ~(1) ,,xt~-l], i = 1 , . . . ,  # N e w t o n ,  
(1) where n~ , the Newton  step at x, is defined to be the vector  satisfying 

(V ~f( ' ) )  n(~ 1) = - (V~f ( ' ) )  T, 

that is, 

(ATD~2A+ (c l ) 1 nx =AVD;le-~ (c. x - k  (1)) x__k(1))2cTc (1) C T. 
I 

e e N '~ being the vector of  all ones, Dx being the diagonal  matrix with (i, i) entry 
a<  x - b ~ ,  and c being considered as a row vector. 

As our  approximat ion  to s c(1) we take the point  

x (~) - x [ #  Newton] .  
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(Newton's  method can go astray in attempting to find the center of  a system of 
linear inequalities (A', b'). In particular, even though x c Int(A',  b'), it is quite 
possible that Newton's  method will assign to x a point not in Int(A',  b') so that 
further iterates of  Newton's  method are not even defined. These problems will be 

discussed more fully in section three. For now, we simply assume that the sequence 
(2.3), and hence x (1~, is contained in Int(A, b(~).) 

Having obtained x ~1~ we begin the process again. That is, we choose k (2~ satisfying 
k°~< k(2~< c. x (l~ and let (4,  b (2)) be the corresponding system of inequalities. 

Beginning at x (~ we apply # N e w t o n  iterates of  Newton's  method in attempting to 
maximize j42). We let x (2) be the final point obtained, and so on. 

Here, then, is the algorithm. Fix 0 < 6 < 1. 

Initially: x (°) = s c(°), j = 1. 
Step 1: Let k(J~=6[c . x  (j l ) ] + ( 1 - 6 ) k ( J  1). 
Step 2: Apply # N e w t o n  iterates of Newton's  method, beginning at x (j-l~, in 

attempting to maximize 

f(i)(x) = 1. ln(c.  x-k(J~)+ ~ ln(ai" x-bi) .  
i - - I  

Let x (j) be the resulting point. 

Step 3: j +  1-*j and return to Step 1. 

Main Theorem. Let 6 = 1/13~/7 and # N e w t o n =  1. Then the algorithm is well-defined 
in the sense that Newton's  method applied to maximizing f ~ ,  j = 1, 2 , . . . ,  and 
initiated at x (j-l~, gives points contained in Int(.4, b(J)). Moreover, and most impor- 

tantly, 

45l N// N/1 ~J(kopt_k(O)), 
k°pt-c.x(J~<~ 1 46~m+l) )~ l -14(m+l) /  

w h e r e  k °pt is the optimal objective value of the LPP (2.1). (Note that k ° p t -  c ° x ( j )  

is positive since x (J~ is feasible for the LPP (2.1).) [] 

Of course the bound provided by the theorem decreases by a factor of  

1 -  ,/7 
14(m + 1)) 

with each iterate of  the algorithm. The best factor of  decrease is provided 
when l = m. This is the value of 1 that we will use for the complexity analysis in 
Section 8. 

Since the theorem provides the best estimate when l = m, why did we bother to 
develop the algorithm for arbitrary l rather than just using the value l =  m 
throughout? Because the theorem is a worst case bound. In the final steps of the 

algorithm when an optimal solution is being "zeroed" in on, I expect the best 
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progress will be made (with regards to the parameters l, ~ = 1/13x/l, # N e w t o n =  1) 
if l equals the number  of  active constraints at that solution (ai" x/> bi is "active" 

at y if a i . y  = b~). For most problems I expect that setting l =  m will result in a 
slower algorithm than, say, l = n, but perhaps I am wrong. 

Of course the values for the parameters 6 and # N e w t o n  used in the theorem 
should not necessarily be used in practice. The value of 6 is definitely tied to a 
worst case analysis and is probably overly pessimistic even in that. Also, in practice 
it would probably be wise to choose ~ "large" initially and then reduce it in later 
iterations if Newton's  method begins having trouble in approximating centers. The 

main function of the parameter  6 is to make sure that x (j) is "sufficiently close" to 
~(j+l) to ensure quick convergence of Newton's  method. 

As of this writing, no attempt at implementing the algorithm has been made. 

3. Ideas behind proving the main theorem 

The main theorem is proven inductively. The principal inductive hypothesis is 
that we begin the (j  + 1)th iteration of the algorithm with a "good"  approximation 

x (j) of ~(J). Then we show that Newton's  method initiated at x (j) converges "quickly" 
to ~(j+l). The terms "good"  and "quickly" will be defined quantitatively later in 
this section, but to begin with we will use both terms loosely. 

How astray can Newton's  method go in attempting to find the center of  a system 
of linear inequalities? Here is a simple example. Let n =  1, i.e., one variable, and let 

li!l A '  = , b '  = , 

A' being an (m + 1) x 1 matrix and b ' c  Rm+l. Then Int(A',  b') = (0, 1), the open unit 
interval. For x c (0, 1), simple computations show the Newton step assigned to x is 

1. 
X i~1  I - - X  

n ' -  

x i : ,  ( i - x )  2 

Since ~7_, 1 ~ ( i - x ) =  co and Y~7=, 1 / ( i - x )  2 converges, it follows that if m is large, 

then x + n" will lie far, far away from (0, 1). (Of course what constitutes "large" 
depends on x.) In particular, as m ~ co, the measure of the set of  points at which 

we can initiate Newton's  method and obtain convergence to the center goes to zero. 
The above example makes it clear that x (j) must satisfy more than just the condition 

x (j) ~ Int( ~, b °+1)) if Newton's  method initiated at x (j) is to converge to s ~(j+l). 
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Since Newton ' s  me thod  converges quadrat ica l ly  to s c~j+l) if  init iated sufficiently 
close to s c~j+l), the natural  app roach  to take in a t tempt ing  to prove  the main  theorem 
inductively is to show that  if  3 is sufficiently small,  then s c~j), and hence its " g o o d "  
approx ima t ion  x ~j), are "sufficiently c lose"  to staY+l) for  quadrat ic  convergence of  
Newton ' s  method.  In  a sense this is what  we do. The trick is describing "sufficiently 

close" appropr ia te ly .  The  not ion of  "sufficiently c lose"  that  we will use cor responds  
to the Eucl idean distance defined by a new coordinate  system on R n, the coordinates  
being de te rmined  by the par t icular  system of  inequalit ies whose center  is to be 

approx imated .  
Let (A',  b ')  be a system of  m '  l inear inequalit ies in n'  variables such that  In t (A' ,  b ')  

is non-empty  and bounded .  As will become  clear, the following coordinate  system 
is a natural  coordinate  system to use for  examining  the behav ior  of  Newton ' s  me thod  
appl ied  to finding the center  s t '  o f  (A', b').  For  x c ~" ' ,  define 

a~" x - b ~  
X l ( x )  - i = 1 , . . . ,  m', 

the pr ime on X~(x)  indicat ing these are the coordinates  of  x relative to (A',  b').  

These  coordinates  have a s imple geometr ic  interpretat ion.  Defining, for i = 1 . . . .  , m '  
and  x c ~ " ,  

disi(x) = Eucl idean  distance f rom x to the closest point  on the 
hyperp lane  {y c ~" ' ;  ce~ • y - b~}, 

it is easily shown that  

disi(x)  
x ~ ( x )  = + 

dis i (~ ' ) '  

where " + "  is used if ~ .  x ~  > b~, and " - "  is used otherwise.  
These coordinates  are only a theoret ical  tool. Being able to compute  these 

coordinates  for  a single point  x c R"' is easily seen to be equivalent  to knowing ~'. 
Note  that  in the new coordinates  s c' is assigned the vector  e. 
Let 

Am, = {X E Rm'; X"  e = m '  and Xi > 0 for  all i}. 

The fol lowing propos i t ion  will be p roven  in Section 4. 

Proposition 3.1. Assume  In t (A ' ,  b') is non-empty and bounded and assume x c En, 

Then X ' ( x )  • e = m'. Moreover, x c In t (A' ,  b') i f  and only i f  X ' ( x )  ~ Am,. [] 

A simple consequence  of  Proposi t ion 3.1 is that  if  I IX ' ( x ) - eH  < 1 ,  then x c 
In t (A' ,  b').  Keeping  this and the fact that  st' is ass igned e in the new coordinates  
in mind,  the fol lowing theorem is our  main  tool for  describing the behavior  of  

Newton ' s  me thod  appl ied  to finding the center  o f  (A',  b'). 
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T h e o r e m  3.2. A s s u m e  Int(A' ,  b') is non-empty  and bounded. A s s u m e  x c Int(A' ,  b') 
and e -IIX'(x) - ell < 1. (Here,  II" [1 is the Euc l idean  norm on ~m'.) L e t  n" be the 

(V~f )n~  = - (V~f ' )  T, w h e r e f ' ( z )  = m, vector sat is fying 2 , , ~i=~ ln(a~ • z - b'i). L e t y  = x +  n~. 

Then 

(1+  e) 2 2 
I IX ' (y ) -e l l<~ ( l - e )  e . [] 

Here is a simple consequence of  the theorem. If  IlX'(x)- ell ~ 4 ,  ~<~ then Newton ' s  
< ! then me thod  initiated at x converges to ( .  To see this, just note that if 0 < e ~ 4, 

( l + e )  2 
( l _ e ) l  e2<e"  

The claim follows. 
Theorem 3.2, which is proven in Section 5, is one of  the two main tools to be 

used in proving the main theorem. It provides a useful descript ion of  what  it means 
for  x ~j~ to be "sufficiently close" to ~(j+l) SO that Newton ' s  method  will work well. 
The  other  main tool that is needed is a theorem showing that if 3 is only as small 
as a given quanti ty (i.e. 1/13x/1 in the main theorem) and if x ~j) is a " g o o d "  
approximat ion  to ~J), then x ~j) will be "sufficiently close" to ~J+~ to apply Theorem 
3.2. This is provided by the next theorem. 

Let x~J) (x  ~j~) be the coordinates of  x ~j) defined by (fi~, b~J)), and let ff~(J+l)(x(J)) 
be the coordinates of  x ~j> defined by (fi,, b~J+l~). We assume x ~j~ c Int(fi,, b~J~), i.e., 
thus far the algorithm has been well-defined. 

T h e o r e m  3.3. L e t  0 <  6 < 1, ~ being a parame te r  o f  the algorithm, i.e., k ¢j+1)= 

6 [ c .  x ~j~] + (1 - 6 ) k  ~j). L e t  a = IIx<J~(x <j)) - e II and  fl = IIx<J+'(x<J)) - e II. Then 

[ 1 -  2c~]/32-[  1/~-~26 + (1 + ~/7 6 ) a  ] / 3 -  [ _  L ] - ~ +  x/l ~c~ ] ~<0" 132 _ []  

Theorem 3.3 is proven in Section 6. The point  of  the theorem is that  if 3 and 
a < ½ are given, then fl is no larger than the largest root  of  the resulting quadratic.  
We will use the following specific estimates. 

Coro l lary  3.4.  A s s u m e  that I lX(J~(x(J))-e l l~26 and  0<~3~1/13~/7.  Then 

IIx(J+'(  x(J)) - e II < &. 

Proof.  I f  we let a = [[x(J~(x <j~) - e l l  , substi tution of  the assumed bounds  gives 

1 - 2 a  >~ 1 - 2 > 0 . 9 5  

162 
- - + ( l + ~ a ) a ~ <  
1 - 6  

lt~ 2 1 
- -  + x/i 6a <~ 
1 - 3  

1 14 1 
qt_ (13) (46) < 0.03 

13" 12 

1 
+ < 0.0081. 

1 3 . 1 2  1 3 . 4 6  
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Hence, letting/3 = [[X(~+l)(x(J))- e[[, we have, from Theorem 3.3, 

9500/3 2 -- 300/3 - 81 ~< 0. 

But for t i>1, 

9500t 2 -300 t  - 81 ~> 117 - 3 4 -  81 > 0. 

The corollary follows. [] 

The final tool we need for proving the main theorem is the following proposition, 
which will be proven in Section 4 (it is a corollary of Proposition 3.1). 

Recall that k °pt is defined as the optimal objective value of the linear programming 
problem (2.1). For x ~ ~", let X ( J ) ( x )  be the coordinates of x defined by the system 
(fi, b(J)). 

Proposition 3.5. A s s u m e  x ~ R" satisf ies c . x >~ k (j). Then 

l ( ] [ x ( J ) ( x ) - - e ] , )  k(j)) .  
c " X - -  k (j)/> 1 (k °pt-  

m + l  
[] 

Assuming the theorems and propositions already stated in this section, we can 
now give the 

Proof of the Main Theorem. We use the following inductive assumptions: 

[[X(J)(x (j)) - ell < ~  

and 

(3.1) 

456/ I j kopt k°pt-k(J)~ 1 46(m+1) ( -k(°))" (3.2) 

Clearly these assumptions are satisfied when j = 0. 
Corollary 3.4 and (3.1) imply 

I I x ( J + I ) ( x  (j)) - e II < I. 

Consequently, Theorem 3.2 shows that one iteration of Newton's method, applied 
to finding the center of  (ft., b (~+1)) and initiated at x (j), gives a point x (~+1) satisfying 

Hx(J+I)(x (j+l)) - ell < 1 ,  

thus establishing the inductive assumption (3.1). This also shows, by Proposition 
3.1, that x(J+l)~ Int(.4, b(J+l)). Moreover, using k (~+1)= 6[c.  x ( J ) ] + ( 1 - 3 ) k  (j), we 
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have 

k ° p t -  k ( j+l)  --  k ° p t -  k ( j ) -  (~[c" x ( j ) -  k ( j ) ]  

(1 4 5 ~ /  x opt (j) 
46~-~+1))(k - k  ) 

w 

~<(1 45(5/ ~j+l 
46(-m+/)/ (k°pt- k(°))' 

the first inequality being implied by (3.1) and Proposition 3.5 and the second 
inequality being implied by (3.2). We have now established the inductive assumption 
(3.2). 

Now we establish the bound o n  k ° p t -  c • x (j)  that is stated in the main theorem. 
We have 

k °pt - c • x (j) ~- 

=(1 

k °pt- k ( j ) -  [ c .  x (j) - k (j)] 

[ l [ 1 \  opt (j) -] 

451 \ opt kO)) 
4 6 ~ - +  l) ) ( k - 

45, )( 
46(m+/) 1 

)( 46(m + l) 1 

456/ )J 
. opt __ 

46(m+/) (k k (°)) 

,/7 
14(m + 1 ( k ° p t  - k ( ° ) ) '  

the first inequality being implied by (3.1) and Proposition 3.5, the second inequality 
being implied by (3.2), and the third inequality being obtained by substitution of 
6 = 1/13x/1. This concludes the proof of the main theorem. 

4. Proofs of propositions 

In this section we prove the two propositions stated in the previous section. For 
the reader's convenience, we restate these propositions before proving them. 

Recall that 

Am, = {X C R";  X" e = m' and X~ > 0 for all i} 

and that for x c R"', X ' (x )  are the coordinates assigned to x with respect to the 
system (A', b'). 
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Proposition 3.1. A s s u m e  x c R n'. T h e n  X'(x) • e = m ' .  M o r e o v e r ,  x c Int(A', b') i f  a n n  

o n l y  i f  X ' ( x )  ~ z l~ , .  

Proof. To show X ' ( x )  • e -- m '  for all x c g~n,, it suffices to show that ( X ' ( x )  - e)  • e = 0 

for all x ~ R"'. But, by definition of X'(x) ,  

m x-b; ) 
( X ' ( x )  - e ) .  e = 52 . . . .  1 

i=1 k~I" ~'-b~ 

= 

,=1 ~I" ~ ' -b~  

= (V¢,f')(x - ~') 

= 0 ,  

the last equality since ¢' maximizes f ' ,  and hence V~,f' = 0. 
The claim that x c Int(A', b') if and only if X ' ( x )  ~ Am, now follows immediately 

from the definition of X ' ( x ) .  [] 

Proposition 3.5. A s s u m e  x c R ~ s a t i s f i e s  c .  x >i k (j). T h e n  

1([Ix(J)(x)-e[[) 
e" x - k ( J ) ~  1 ( k ° p t - k ( J ) ) .  

m + l  

Proof. We begin by showing that 

l 
e. ~(J)- k(J)~ > (k°pt-  k(J)). (4.1) 

m + l  

L e t  x °pt be an optimal solution to the LPP (2.1). (Under our assumptions that 
Int(A, b ~°)) is non-empty and bounded, an optimal solution exists.) Let X l J ) ( x  °pt) 

denote the ith coordinate of /opt  with respect to the system (.4, b(J)). By definition 
of the coordinates, 

k ° p t -  k (j) -~ x l J ) ( x ° p t ) ( c  • ~(J) - k(J)) ,  i = m + 1 , . . . ,  m + 1. (4.2) 

On the other hand, by Proposition 3.1, proven above, 

m+l 
52 x ~ J ) ( x  °pt) -~- m + l 

i--1 

and 

x I J ) ( x  °pt) ~ 0 f o r  all i. 

Since v(J) {'r°Pt]- v ( J )  t~om it follows that ~:~, m + l  \ -~ ] . . . .  -~- ~ m + l \ . ~  ]~ 

m + l  
x I J ) ( x  °pt)  ~- for i = m + 1 . . . .  , m +/. (4.3) 

1 

Together, (4.2) and (4.3) imply (4.1). 



J. Renegar / A linear programming algorithm 71 

Now consider arbitrary x c Nn. Then for i = m + 1 , . . . ,  m + l, 

c" x - k (j) = X l J ) ( x ) ( c  • ~(J) - k (j>) 

l 
>I ~ l  Xlj>( x )( + k~j)) 

l 
/> m + / ( 1  -JXI~)(x) - l l)(k °pt-  k(J)), (4.4) 

the first inequality by (4.1). However, since X~)+l(X) . . . . .  X~)+,(x) ,  we have 

n x ( J ) ( x ) - e l l > ~ x / T l x l / ) ( x ) - l ]  for i = m + l , . . . , m + l .  (4.5) 

Substituting (4.5) into (4.4) concludes the proof  of the proposition. [] 

5. Proof  of Theorem 3.2 

Theorem 3.2. A s s u m e  Int(A',  b') is non -emp ty  and  bounded.  A s s u m e  x c Int(A',  b') 
and let = I I X ' ( x ) - e l l  < 1 Let n'x be the vector sa t i s fy ing  2 , , (Vxf )nx  = - (Vxf ' )  T and  
let y = x + n'~. Then, 

, ( l + e )  2 2 
IlX(y)-ell<~ ( l - e )  e . [ ]  

The proof  of  this theorem in the original manuscript  was very long and messy. I 
wrote: "Surely a shorter p roof  must exist!" The following proof  relies on a few key 
observations provided by Jeff Lagarias. 

Let N+' denote the strictly positive orthant in R m' and let F : W"-> R be the function 

ra '  

F ( X )  = 5~ ln(X~). 
i = 1  

We begin the proof  with the following lemma. 

Lemma 5.1. I f  x c Int(A',  b') ,  then 

m '  

f ' ( x ) =  F ( X ' ( x ) ) +  ~. ln(a'~. ~ : ' -b l ) .  
i = 1  

Proof 

m '  

f ' ( x )  = ~ ln (a l "  x - b ' i )  
i--1 

= Y. In + 5~ ln(a~.  ~: '-b~) 
i=i \ a i "  ~ ' - b ' , ]  i=, 

m '  

= F ( X ' ( x ) ) +  Y. ln(a :  • ( - b : ) .  [] 
i - - I  

Let L : N " ' ~ R  m' denote the affine map L ( x ) = X ' ( x ) .  
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Since y is, by definition, the poin t  in R"' maximizing 

q ( z )  = ( V x f ' ) ( z  - x )  +½(z - x ) T ( v 2  f ' ) ( z  -- X), 

it follows f rom L e m m a  5.1 that  X ' ( y )  is the poin t  in the image of  L maximizing 

Q ( X )  = e T D x ! ( x ) ( X  -- X ' ( x ) )  - ½ ( X  - X ' ( x ) )VDx2 , (x ) (X  - X ' ( x ) ) ,  

where D x  is the d iagonal  matr ix  with ith d iagonal  entry Xi. 
Let 2e' denote  the point  in { X ~ W " ' ;  X . e  = m'}  that  maximizes  Q ( X ) .  Then,  

assuming X .  e = m' ,  we have 

Q ( X ) = Q ( Z ' )  1 ,T  -2 - ~ ( X - 7 /  ) D x , ¢ x ) ( X - 7 / ' ) .  (5.1) 

Since X ' ( y )  maximizes  Q over  the image of  L, since the image of  L is contained 

in {X ~ W"'; X .  e = m'},  and since the image of  L is an affine space containing e, 
we find f rom (5.1) that  X ' ( y )  e must  be pe rpend icu la r  to 2 ¢ r - Dx,(x)(7/ - X (y ) ) ,  that  is, 

( X ' ( y )  - e) T Dx?(x)(7] ' -  X ' ( y )  ) = O. 

Hence,  D x l , ( x ) ( X ' ( y ) - e )  is perpendicu la r  to D x ! ( x ) ( 7 ] ' - X ' ( y ) ) .  Consequent ly ,  

II Dx!( , , ) (X ' (y )  - e)I12 + II Dx!(x)(~'  - X'(y) ) I I  = = II Dx~(x)( 7] ' -  e)112 

and thus 

1 1 
IlX'(y) - ell ~ [I ~ ' -  ell 

m a x ( X ' ( x ) )  m i n ( X ' ( x ) )  

where  

m a x ( X )  -max{X~} ,  
i 

We have proven  

m i n ( X )  - min{X~}. 
i 

Proposition 5.2. Let  7/' denote  the optimal solution o f  the problem 

max eTDxl , (x)(X -- X ' ( x ) )  - I ( X  - X ' ( x ) )TDx2 , ( x ) (X  - X ' ( x ) )  

s.t. X "  e = m'.  

Then 

~< m a x ( X ' ( x ) )  
]]X'(y)-e]]  ~ m i n ( X ' ( x ) ) ] [ Z ' -  e]]. []  

Now we obtain a bound  on [[7]'-e]]. 

Proposition 5.3. Let t ing e -  Ilx'(x)-ell, we have  that 

IIZ'-ell ~<(1+~)~2. 
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Proof. It is not difficult to show that 

t~/p 
Z' = 2 X ' ( x ) -  , . . . .  2D2x,(x)e. (5.2) 

a tx) 

Let V = X' (x )  - e. Substituting X'i(x) = 1 + V~ and 

I l x ' ( x ) l l ~  = lie[J2+ [[X'(x) - ell 2 = m '+  e = 

into (5.2) gives, with a little rearrangement, 

1 
~ = 1 + m '+  e ------5 ( e 2 -  m'V~+2e2V")" 

Consequently, 

1 e 2 [~,,=, -]1/2 I Iz'- ell = m '+  ( e~-  rn'V~+Ze2V~)2] 

- < ~ l e  \ t . , : '  l ( r  m'V2)2] 1/2 rm'  V~)Z]l/z). m'+  2 . .  ~2 ( e2-  + [i~1 (2e2 (5.3) 

rn' 2 = E2 However, expanding and making use of the substitution ~i=l Wi shows 

( e 2 - m ' V ~ ) 2 = m  ' - e 4 + m '  ~. V 
i=1 i~l 

,lV ) 
= m ' ( m ' - l ) e  4. 

Also, 

m' 

(2e2Vi)2=4e 6. 
i=1 

Hence, by (5.3), 

~< [m'(m' - 1)]1/2e 2 + 2e 3 
IIZ'-ell m ,+2  

[m'(m'- 1)]~/2e2 + 2e3 
m r 

< e2 q- m2---S e3 ~< e2(1 -t- e ) ,  

the last inequality using m'>~ 2, which follows from the assumption that Int(A', b') 
is bounded. This concludes the proof of the proposition. [] 
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Combin ing  Proposi t ions  5.2 and 5.3 and using the easily p roven  fact that  

m a x ( X ' ( x ) )  ~< 1 + e 

m i n ( X ' ( x ) )  1 - e  

concludes  the p roo f  of  Theo rem 3.2. 

6. Proof of  Theorem 3.3 

Theorem 3.3. L e t  0 < 6 < 1, 
8[c .  x 0)] + (1 - S)k 0), where 

IIX(J+')(x (:)) - eli. Then 

being a parameter of  the algorithm, i.e., k ( /+1)= 

x(i)~ Int(ffi, b(J)). Let a = ]lX(J)(x ( j ) ) -  ell and fl = 

L ] - a  LI - a  

The only assumpt ions  used in the p r o o f  o f  Theo rem 3.3 are that  Int(A,  b t j)) is 
non -empty  and bounded  and  x (j) c Int(A, bt~)). 

To simplify notation throughout this section, we let x = x (J), X (j)= X(J)(x (~)) and 
x ( J  +1) ~__ x (J+l ) ( x ( J ) ) .  

Lemma6,1 ,  For i= m +  l , . .  . ,  m +  l, 

x~J+')>~ (1 - ~ ) x l  j). 

Proof,  Since k (j+l) -- ~ (c .  x)  + (1 - ~ )k  (j) it follows that 

C • X -- k (j+D 
c ' x - k  (j) - ( 1 - 6 ) '  (6.1) 

and hence,  for  i = m + 1 . . . .  , m + l, 

x l  :+') (c.  x -  k(i+'))/(c.  ( : + ' ) -  k ~i+1)) 

Xl ~) - (c .  x -  k(J)/(c • ( J ) -  k <j)) 

= (1 - 6)(c" ~(J)- k(J))/(c • ~(J+') - k(J+l)). 

Consequent ly ,  to prove  the l emma  it suffices to show that  

c" ~:(J) - k 0)/> c" s ~(j+l) - k (j+l). (6.2) 

Let ~ : [ 0 ,  1]--)[k (j), k (j+l)] be the map  

( t) = k (~) + t( k (j+~) - k(J)), 

and let ~(t)  be the center  o f  the system (.4, b(t)) ,  where (b( t ) )  T= 

( b l , . . . ,  b,,, ~ p ( t ) , . . . ,  ~ ( t ) ) .  To show (6.2), it suffices to show that  

( d )  k(J+~) k(:) c" ~--;((t) ~< - (6.3) 
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since 

C" ~(J+')--k(J+l)=c" [~(J)+ f~ - ~ ( t ) d t ] - k  (j) + (k(J)-  k (j+l)) 

Io = c . ~  (j) k(J)+ c d (k(J)_k(J+l)). - • ~ ( t )  d t +  

Since ~:(t) maximizes the function 

y~-~l, ln(c. y - q o ( t ) ) +  ~ ln(%. y -  b,), 
i = 1  

evaluation of the gradient of this function at ~:(t) gives 

C" ~ ( t ) - ~ ( t )  c+i=l ai" ~( t ) -b i  ai =0. 

Taking the derivatives of both sides of the last equation with respect to t, and 
rearranging slightly, gives 

1 v d 

(c. ~ ( t ) -~ ( t ) )  2 

recalling ai and c to be row vectors. Now the dot product of the left side of this 
equation with ((d/dt)~(t)) is non-positive (because the matrix in the bracket is 
negative definite), and thus, from the right side we obtain 

[c 0 
Since 

d 
-~tt ~o( t) = k (j+l)- k(J)> 0, 

this immediately yields (6.3). Thus the proposition. [] 

L e m m a  6 . 2  

m+l x}J)  m+l "-i~(J) 
Y~ y(j+l) - m + l +  2 ~ ) ¢ ~ ( I - X I J + I ) )  • 

i = l  - - i  i = m + l  " 

Proof. Using (6.1), it is easily shown that for any y c R ~, 

c y t C" x - k  ( j ) -  1 + ( 1 - 6 )  x_k(J+l)  1 . 
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In particular, letting y = s c(j+m), we have, for i = m + 1 , . . . ,  m + l, 

c ' ' ( J + ' ) - k ( J )  ( ) 1 1 
C" x - k  (j) - 1 + ( 1 -  ) ~ - 1  = ~ [ 1 - - ~ ( m - - x l J + m ) ) ] .  

Multiplying both sides by 

C " X -- k (j) 

X I J ) -  c" ~(~)- k (j)' 

we find that for i -- rn + 1 , . . . ,  m + I, 

C* ~ ( j + i )  --  k ( j )  x l j )  
- -  x(J+l)[1} -- 3(1 -- Xl/+'))]. 

C ~ k(J) 

Also, for i = 1 , . . . ,  m, 

a i • x -- bi 
ai " [f(j+m)_ bi ai " ,((:)- bi Xl  j) 

a i " ~(J) --  b i ol i • x - b i - X l  j + l ) "  

oli" ~ ( j + l )  _ bi 

(6.4) 

(6.5) 

But now note that the quantities on the left of (6.4) and (6.5) are the coordinates 
of s c(:+1) with respect to (A, b(J)). In particular, by Proposition 3.1, they sum to rn +/. 
Setting the sum of the terms on the right of (6.4) and (6.5) equal to re+l,  and 
rearranging, gives the identity stated in the lemma. [] 

Now we can prove Theorem 3.3. 
Let U = X ( J ) - e  and V=X( :+a) - e .  Of c o u r s e  xlJ+l)>0,  for all i, since x~ 

Int(A, b(J+a)). Thus, expanding r~-~ 1/(1 + rV/) around r = 0, we have, for all i, the 
Taylor series with remainder integral 

1 1 / ' t  2V~ 
- - i Y ( ( J + I ) - - - - 1 -  V/ + V/ Jo (1- t ) -( l+tV/)3 - - d t .  

Consequently, 

m+; x l "  m+; [-~ 
i = 1  ~ Xl  : + l - - - ~ = m + l - v ' e + U ' e - v "  U +  i = l  ~ (1 + U~) Jo ( 1 -  t) (1 +V'tv/) 3 

dr. 

Substituting V . e = U . e = 0 ,  l + U ~ > l - a  and 0 < l + t V ~ < l + t f l  for 0~<t<~l 
(recalling a --]IX (~)- eli, fl = [IX (j+l)- eli), we find 

m+l Xl:) m+t fo 1 2 V~ 
E XlJ+l------5>~m+l-afl+(1-ol) • ( 1 - t ) ~ d t  

i=1 i=1 

- - m + l - a f l + ( 1 - a )  ( 1 - t  dt. (6.6) 
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Using the Taylor expression 

f /  2 
1 = l - f l +  (1 2/3 

i+]3  - t ) ~ d t ,  

(6.6) reduces to 

,,+t XIJ) 1 - -  Ol 2 
i~1 ~ > ~  m + l -  a/3 + ]--~ /3 . (6.7) 

On the other hand, we know from Lemma 6.2 that 

"+' XlJ~ "+~ xlJ) 3 
2 y! j+l)  - r e + l +  2 ~ )  ( I - X ~  j+l)) 
i=l ~-t i=m+l 

which combined with Lemma 6.1 implies 

rn+l x lJ)  m+l 1 
xl.i+i)~<m+l+ 2 ~_~6[1-(1-3)XI  j)] 

i=1 i=m+l 

162 ,.+l 
: m + l +  +3  2 (1-XI j)) 

I - 6  i=m+l 

13 2 
~m+l+l_6+x/13a,  (6.8) 

where we used ~ (1-xIJ))2<~ a to infer that Y ~ + ~  (1-xIJ ) )~<x/ /a .  Combining 

(6.7) and (6.8), clearing the denominator 1 +/3 and rearranging, gives the inequality 
in the theorem. 

7. Recasting an LPP into the proper format 

In this section we show how any linear programming problem can be recast into 
a problem fitting the framework of the algorithm. Such a recasting can be done in 
several ways. The method we develop was chosen primarily for its expository 
simplicity. 

For the complexity analysis to be performed in the next section we need to relate 
complexity measures of the original problem (e.g. number of bits in the representa- 
tion) to complexity measures of the recasted problem, and we need to bound the 
number of arithmetic and bit operations required for the recasting. 

Assume that we are interested in solving 

max ~. x 

s.t. Ax >~/~ (7.1) 

where ~ n ,  /~cE '~ and A, is an rh × ~ matrix. (We reserve A, b and e to refer to 
an LPP already fitting the framework of the algorithm.) 
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For the complexity analysis, we will assume the entries of .4, /~ and ~ are integers 
and we will let 

/~ = sum of bits needed to represent all entries in A, /~ and ~, 

in particular, L~> rfi~. 
In what follows, only those statements referring specifically to the complexity 

analysis are based on the assumption that the entries in /~, /~ and ~ are integers. 
Also, for the complexity analysis we will employ " O ( £ ) "  notation in a manner that 
we now elucidate. Our recasting of an LPP into a format fitting the framework of 
the algorithm will require certain quantities to be specified, for example, upper and 
lower bounds on the coordinates of optimal solutions. Using Cramer's rule and the 
fact that all determinants of [,3, I/~] (i.e. /~ appended to A,) have absolute value 
bounded by 2 £ , such upper and lower bounds are provided by 2 £ and 2 -£ . Rather 
than giving specific bounds such as these, we will simply say that such bounds can 
be chosen of the form 2 °(£) and - 2  °(£~, the intended implication being that specific 
values (involving £ linearly) can be determined by a more lengthy analysis (and 

would need to be determined to carry out the actual recasting o f  the LPP). In practice, 
such values would be guessed at. Values like 2 £ would be ridiculously larger than 
what is generally needed. 

W e  assume that we know integer values lowj, upj, j = 1 . . . .  , r~, such that (i) if the 
LPP (7.1) has an optimal solution, then it has an optimal solution x °pt satisfying 
1OWj ~ x;Pt~ upj for all j, and (ii) if the LPP (7.1) is unbounded, then it has a feasible 
solution x satisfying lowj ~< xj ~< up~ for all j. By standard arguments using Cramer's 
rule, we may choose the low~ and upj so that - 2 ° ( £ ~  < lowj <~ upj <~ 2 °(£) for all j. 

To recast (7.1) into the form required for our algorithm, we create a closely related 
LPP 

max c. (x, t) 
(7.2) 

max A(x,  t)>l b 

where A is an (rh + 2r~ + 3 )x  (~ + 1) matrix, and (x, t ) e  R a× R. The "artificial vari- 
able" t is added to guarantee feasibility. We will see that the number of arithmetic 
operations required to convert (7.1) to (7.2) is O(rfi~), and the number of bit 
operations is O(rfir~L(log/~)(log log/_~)), the factor/~(log/~)(log log L) arising from 
the multiplication of O(/~) bit numbers. Although the number of bits needed to 
represent the LPP (7.2) may not be O(/~), we will see that the bit lengths of the 
determinants of all square submatrices of [A]b] are O(/~), as the entries in c. These 
are the quantities that will be focused on in the complexity analysis contained in 
the next section. 

rh / 
Let v = ~ i = ~ d ~  , where ~i is the ith row of A, and let P o s={ j ; v ~>0 }  and 

Neg = {j; vj < 0}. 
For s c ~, define 

bi+ ~ (up j - low~)+  Y, v j ' u p i +  ~ vj ' lowj . T ( s ) = s ( f f t + 2 ~ + l ) -  - J=l j~Po~ j~N~g 
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Choose s* > 0 sufficiently large so that T(s*) > 0. For the complexity analysis, we 
may choose s* to be an integer bounded by 2°(£). Then T(s*) is also an integer, 
bounded in absolute value by 2 °(£). 

For Yn+m e ~ (to be specified shortly), consider the LPP in ~ + 1 variables (x, t) e 
R~xR, 

max ~" X+~,I+I t 

s.t. ~i ' x  - ( s * + b i ) t ~ - s * ,  i = l , . . . , m ,  

- ( l + v j ) x j - [ s * - ( l + @ u p j ] t > ~ - s  *, f o r j ~ P o s ,  

-xj  - [s*-upj] t>~-s  *, f o r j ~ P o s ,  
(7.3) 

(1 -vj)xj-[s*+(1 -vj)  lowj ] t~  > - s* ,  f o r j ~  Neg, 

xj - [ s *  +lowi] t  ~> - s* ,  for j ~  Neg, 

- t ~  > - 1 ,  

T(s*)t>~ -s*. 

The LPP (7.2) will be the above LPP with one additional constraint. 
The main relation between the feasible region of the above LPP and that of (7.1) 

is the following. A point (x, 1) is feasible for the above LPP if and only if Ax ~>/~ 
and lowj ~< xj <~ upj, j = 1 , . . . ,  rl. The value C~÷1 serves as a "big M "  quantity, and 
will be chosen to force t = 1 in the optimal solution (assuming feasibility). 

The last two inequalities in the above LPP bound t above and below. In turn, 
these bounds and the inequalities involving j c Pos and j ~ Pos bound all variables 
xj from above. Similarly, the inequalities involving j ¢ Neg and j ~ Neg bound all 
variables xj from below. Hence the feasible region for this LPP is bounded. Also, 
it is easily verified that 0 is in the interior of this LPP. 

Lemma 7.1. Let ,4 denote the constraint matrix for (7.3) and let b denote the right 
hand side vector. Then the absolute values of the determinants of all square submatrices 
of [,4]/~] are bounded by 2 °(£). 

Proof. Rearranging slightly, we may assume 

[ Z~ I /~ ] D1 u 
2 

where u e R ~+2e÷2 and Di and D2 are ~ x tl diagonal matrices (e.g. the (j,j) entry 
of D 1 is - ( 1  + vj) i f j  c Pos, and is -1  i f j ~  Pos). Noting that the absolute value of 
the determinants of all square submatrices of A, D1 and D2 are bounded by 2 °(L), 
as are the absolute values of the entries in u and/~, the lemma follows from performing 
cofactor expansion along the last two columns of [AI/~] and making use of the 

diagonal structure of DI and D2. [] 
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Using the fact that all feasible points for the LPP (7.3) have last coordinate t ~< 1, 
choose ~e+l sufficiently large so that if there exists a feasible point for (7.3) with 
t = 1, then all optimal solutions have t = 1. For the complexity analysis, ~+1 can be 
chosen to be a positive integer bounded by 2 °(c). This is a consequence of (i) the 
feasible region for (7.3) is bounded; (ii) by Lemma 7.1 and Cramer's rule, the 
absolute value of the coordinates of all extreme points of (7.3) are bounded by 
2°(I;~; (iii) by Lemma 7.1 and Cramer's rule, all extreme points for (7.3) with last 
coordinate t < 1 actually have t < 1 - 2-°(~2~; and (iv) the values I~[, J = 1 , . . . ,  ~, are 
bounded by 2°(/;k 

Now choose K sufficiently large so that I~- x +  ~n+lt I ~< K for all feasible points 
of (7.3). Using Lemma 7.1 and our previous bound on ~+~ it is easily seen that K 
can be chosen not to exceed 2°(~;k 

Finally, the LPP (7.2) (which is the recast version of the LPP (7.1)), is obtained 
by appending to (7.3) the additional constraint 

- c "  (x, t )~>-K,  

c being the vector (~, ~e+l). This constraint is added to help make 0 the center of 
the polytope. It is easily shown, using Lemma 7.1, that the absolute values of the 
determinants of all square submatrices of [A[b] (A  and b in the recasted problem 
(7.2)) are bounded by 2 °(I;~. 

Since (x, 1) is feasible for the LPP (7.2) if and only if/~x/>/~ and lowj <~ xj ~ upj 
for all j, the following proposition is easily proven (relying on the definitions of 
~e+m, lowj and upj). 

Proposition 7.2. Assume (x, t) is an optimal solution for the LP P  (7.2). I f  t < 1, then 
the LPP  (7.1) is infeasible. I f  t = 1 and lowj < xj < upj for  all j, then (x, t) is an optimal 
solution for the L P P  (7.1). I f  t = 1 and xj = lowj or xj = upj for some j, then either 
(x, t) is an optimal solution for the LPP (7.1) or that L P P  is unbounded. [] 

For 1 a positive integer, let k ~°~= - IK .  By definition of K, k (°) is a lower bound 
on the optimal objective value of the LPP (7.2). As in Section 2, let (fi,, b (°)) be the 
corresponding system of inequalities where c. (x, t)~> k (°) occurs l times, 

Proposition 7.3. The center o f  (fi,, b (°)) is O. 

Proof. It is easily seen that 0~ Int(fi~, b(°~). Also, we know Int(A, b (°)) is bounded. 
Thus, to prove the proposition it suffices to show that the gradient of 

ffz+2~+3 

f (°)(x,  t) = l" ln[c.  (x, t ) -  k (°)] + 5~ ln[ai .  (x, t ) -  b,] 

evaluated at 0 is 0, where ai is the ith row of A. 
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Letting d denote the j th  unit vector in ~ ,  the first ~ coordinates of (Vof (°)) are 

' ~ 1  ( l + v j ~  1 . 
2 - - - E  d - y  - -  i=1 S# a t  j~eos ~k S* J jZPos S* el 

+ y~ (1-vJ '~e  j 1 j 1 1 
+ ~£ - ~ e - - - c + - - c  

/cNeg k S* /] j~:Neg s K 1K 

= ~  v-  X vjd- y vjd =0. 
j~Pos j~Neg 

The last coordinate of (Vof (°)) is 

s* s*+(1  - v j )  lowj '~ - ( s * + b i )  s * -  (1 + vj) upj ~ - u p j  
E 2 

i=1 S* j~Pos S * j~'Pos S* jcNeg S ~ 

_ _  ICn+l - Z s*+lowj  1-~ T(s*)  c,+~ ~ - -  
j~Neg S :¢: S* K IK 

1 b~+ • ( u p j - l o w j ) +  2 = - r h - 2 ~ - I  + ~  -i=1 j=l j~pos 

T(s*___2 
+ 2 /)j IOWj ~- S* 

j~Neg 

Vj u p j  

=0  

by definition of T(s*) .  Thus, the proposition. [] 

In closing this section we remark that if the algorithm is applied to finding an 
optimal solution of the LPP (7.2) and the resulting point (x, t) satisfies t = 1 and 
either xj = lowj or x~ = upj for some j, so that either x is an optimal solution for the 
LPP (7.1) or that LPP is unbounded (Proposition 7.2), one can determine which of 
these is indeed the case by replacing all low~ by lowj - 1 and all upj by upj + 1 and 
running the algorithm again. If the resulting point (x', 1) satisfies ~. x ' >  ~.x,  then 
the LPP (7.1) is unbounded,  whereas if ~- x ' =  ~. x, then x is an optimal solution. 

8. Complexity analysis 

In this section we examine the computational complexity of the algorithm when 
applied to solving 

max c. x 
(8.1) 

s.t. A x  ~ b, 
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A being an m x n matrix and where the entries of  A, b and c are integers. We will 
assume Int(A, b) is bounded and non-empty,  and we will assume that we know an 
integer lower bound k (°) of  k °pt. As in section two, we define 

" a l  I b . l  

ft .= a,. b(O)= bm 
c ) ' k (°) 

" t ° 

: m times k i°) 
- C . 

We restrict I to equal m in this section. 
We will also assume that the center of  (7,, b (°)) is ~(o) = 0. 

We will use L* to denote a known (i.e. efficiently computed) positive integer such 
that 2 L* is an upper  bound on (i) the absolute values of  the determinants of all 
square submatrices of  [A[ b], (ii) the absolute values of the coordinates of  c, and 
(iii) the quantity n. log2(m). 

We will assume that the known lower bound k (°) of  k °pt is an integer and that 

1 ~ k °pt  - k (0) ~ 2 HL*, (8.2) 

H representing some constant independent of L*. The lower bound of 1 on k °pt -  k 
is assumed in order to simplify certain aspects of  the analysis• 

In the last section we saw that any LPP 

m a x  c "  x 

s.t. Ax/>/~ (8.3) 

where A is an th x rl matrix and the entries of  A,/~ and ~ are integers, can be solved 
by solving a related LPP (8.1), with m = r f i + 2 ~ + 3  and n = ~ + 1 ,  which satisfies 
the above assumptions, and where L* of the related problem is 0(/2), £ being the 
number of  bits required to represent (8.3). The constant H in (8.2) can then be 

A 
determined independently of  L. Moreover, the number  of  arithmetic operations 

needed to construct the LPP (8.1) related to the LPP (8.3) is O(rh~), and the number 
A A A  A 

of bit operations required is O ( m n L ( l o g  £)(log log L)). 

Now we describe the slightly modified algorithm that we will study in this section. 
The modifications involve rounding, a stopping criterion, and a method for moving 
to an optimal solution from an "almost"  optimal solution. 

Each step of the algorithm involves an unspecified positive integer constant, e.g., 
the first step of the algorithm rounds the current value k (;) upward to a fraction 
with denominator  2 K1L*, the value K1 being the unspecified constant. By carefully 

proceeding through the subsequent analysis one could determine exact values for 

these constants, independent of  L*, that would suffice to guarantee that the algorithm 
returns an optimal solution, but I am sure that the values thus obtained would be 
too large to be of  use in practice. Leaving the constants unspecified results in a 
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shorter and more easily read analysis. (An earlier draft of this section, with constants 
specified, was unwieldy.) 

Here is the modified version of the algorithm that we consider. 

Initially: x (°) = ~:(o) = O, j = 1. 
Step 1: Let k (j) be the least fraction, with denominator 2 ~:,L*, greater than or equal 

to 

141/~[c • x(J-1)]+(1-14~m)k(J-1).  

Step 2: For i =  1 , . . . ,  m, let d) j) be obtained by rounding 1/[ai" x(J-~)-bi] to the 
nearest fraction with denominator 2 K2L*, and for i = m + 1 , . . . ,  2m, let dl j) 
be obtained by rounding 1/[c .  x (j l )_k( j )]  to the nearest fraction with 
denominator 2 K2L*. Let D (j) be the 2 m x 2 m  diagonal matrix with ith 
diagonal entry dl j). Compute the integer matrix and integer vector 

B(J) = 22K2L* ~T( D(J))271, b(J) = 22K2L* ~T D(J) e. 

Step 3: Obtain, using Cholesky decomposition, a vector ~(J) of fractions with 
denominators 2 K~L* where ~/(J) satisfies the condition that 

max ]~/I j ) -  ([B(J)]-lb(J))i[ <~ 1/2 K3L*, 
i 

(i.e., @J) approximately solves B(J)v = b(J)). Let x (j) = x(J-1)+ v(J). 
Step 4: I f j < K 4 [ ~ / - m ] L  *, let j+l~--~j and return to Step 1. 
Step 5: Let S c {1 , . . . ,  m} denote the set of indices i for which ai" x (J) - b~ <~ 2 -/%L*, 

where J =  K4[~--m]L*. Then (as will be proven), the set {y; a i ' y  = bi for 
all i ~ S} is non-empty. Compute the orthogonal projection of x (j) onto this 
set. This projection is an optimal solution for the LPP (8.1) (as will be 
proven). 

Assuming the validity of the algorithm, let us examine its computational com- 
plexity. For each iteration j < 1(4 [~fm]L*, the work in that iteration is dominated 
by approximately solving the system of linear equations with integer coefficients in 
Step 3, that is, B(J)v = b (j). The coefficients in this system are bounded by 2 °(L*). 
This is a consequence of (i) the absolute value of the determinants of square 
submatrices of A being bounded by 2°(L*); (ii) the fact (as will be proven) that 
x(J-~)~ Int(A, b (j)) from which it follows using (i) and Cramer's rule that the 
coordinates of x (j ~) are bounded by 20(L*); (iii) the coordinates of x (j-l) being 
fractions with common denominator 2 K~L*, and hence, using (ii), a~. x ( j - ' -  b~ 
1/2 °(L*) and c. x (j 1 ) k ( j ) ~  1/2o(t*); and (iv) the entries in D (j) being obtained 
by rounding the values 1/[a~. x ( j - l ) -  hi] and 1/[c .  x ( j - l ) -  k (j)] to a fraction with 
denominator 2K~L*--SO assume K2 is sufficiently large. It is now also easily seen 
that all entries of 22K~L*AV(D(J))2.,{ and 22t(~t*fi.TD(J)e can be computed with O(mn 2) 

arithmetic operations on O(L*) bit numbers, hence with O(mn2L*( log L*)(log 
log L*)) bit operations. 
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As will be shown in Lemma 8.3, [[(V2f(J))-%]] <~ 2°(L*>I[ vii for all v, where x = x (j). 
Here, the constants in O(L*) are dependent on K1 and K3. It follows (as in the 
proof of Lemma 8.4) that if K 2 is sufficiently large, then B (j) is invertible and 
[[[B(J)]-ivll ~<2°(L*)]lvll for all v (we have implicitly used L*>~log n here.) Using 
this and the 2 °(L*) bounds on the absolute values of the coefficients in B (j) and b ~j~, 
Wilkinson's analysis of Cholesky decomposition [16; Section 44] shows that 77 (j) 
as in Step 3 can be obtained by O(n 3) arithmetic operations where each arithmetic 
operation is carried out to O(L*) bits of accuracy. Since multiplication and division 
require O(L*(log L*)(log log L*)) bit operations to be carried out to accuracy O(L*) 
(e.g. see [1, Corollary to Theorem 8.5]), the total number of bit operations required 
in Step 3 is O(n3L*(log L*)(log log L*)). 

The projection P(x) of x in Step 5 of the algorithm can be computed by first 
determining a maximal linearly independent subset of {ai}i~s, letting ,4 be the 
matrix whose rows are this subset and /~ the corresponding right-hand side vector, 
computing (fi~iv) 1 and finally P(x) = x -fiV(fi~iv) I(,~X _/~). A maximal linearly 
independent subset of {~i}i~s can be computed using Edmond's variation on 
Gaussian elimination (this is discussed in the appendix) with O(mn 2) arithmetic 
operations on O(L*) bit numbers, hence with O(mnZL*(log L*)(loglog L*)) bit 
operations. By the Binet-Cauchy theorem (e.g. see [10]), the absolute value of the 
determinants of all square submatrices of 1 f i t  are bounded by 2 °(L*). Hence, the 
inverse of ,~iT can be computed using Edmond's algorithm with O(n 3) arithmetic 
operations on O(L*) bit numbers, hence with O(n3L*(log L*)(loglog L*)) bit 
operations. Finally, it is now easily seen that O((m + n)n 2) arithmetic operations 
and O((m + n) n2L*(log L*)(log log L*)) bit operations suffice to compute the projec- 
tion in Step 5 of the algorithm. 

Since O(x/~L*)  iterations of the algorithm are performed, overall the 
algorithm requires O( (m+ n)n2x/-m L*) arithmetic operations and O((m+ n) x 
nZx/-m (L*)2(log L*)(log log L*)) bit operations. Consequently, using the results of 
the last section, any LPP of the form (8.3) can be solved (or determined infeasible, 
or determined unbounded) by the algorithm with O((m+ n)nZ~--m f~) arithmetic 
operations and O((m+ n)n2x/m(£)Z(log £)(log log/~)) bit operations. 

Now we begin proving that the final point returned by the algorithm is an optimal 
solution for the LPP (8.1). We begin with four lemmas. The constants K ~ , . . . ,  K5 
of the algorithm appear in these lemmas, but the proofs of the lemmas are based 
only on the assumption that these are positive integers which satisfy whatever 
conditions are stated in the lemmas. The constant H of (8.2) appears likewise in 
the lemmas. 

Besides K1, . . . ,  K5 and H, additional positive constants Hi,  .. •,/4o also appear 
in the lemmas. Such constants Hi appearing in the assumptions of a lemma can be 
taken to be any positive constants. The constants Hi appearing in the conclusions 
of a lemma are implied to exist, and specific values for them could be determined 
by a more lengthy analysis. Although constants Hi appearing in the conclusion of 
a lemma may depend on H, they do not depend on K~ . . . .  , Ks, a fact that the reader 
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should keep in mind. Also, in the proofs of the lemmas we employ "O(L*)"  notation 
frequently, where the constants in O(L*) may depend on H and the "/-/~'s" (as will 

be clear from the context), but  will never depend on K1,  . . . , K s .  

The format in which the lemmas are presented was chosen to make for ease of  

application in the subsequent analysis. 

Lemma 8.1. A s s u m e  0 < k °pt-  k (j) ~ 2 H'L* KoH2L*. A s s u m e  x c Int(A, b 0)) satisfies 

IIx<J~-ell <4'6. Le t  S be the set o f  indices i f o r  which cq. x - b i  <~2 KsL*. I f  K4 and  

Ks  are sufficiently large (where what  consti tutes sufficiently large f o r  K 4 depends in 

par t  on K s ,  but  not vice versa),  then the set {y; ai" y = b~for all i ~  S}  is non-empty,  

and  the projection o f  x onto this set is an opt imal  solution f o r  the L P P  (8.1). 

Proof. Let v l , . . . ,  v ° denote the distinct extreme points of  Int(A, b) and assume 
v l , . . . ,  V q a r e  the optimal extreme points. Let T be the set of  indices i for which 
ai" v h=  hi for all of h = 1 , . . . ,  q. We begin by showing that if K4 and K5 are 
sufficiently large, then T = S, where S is as in the statement of  the lemma. 

By the representation theorem for linear programming,  since Int(A, b) is bounded,  
there exist  e h ~ 0, h = 1 , . . . ,  Q, w h e r e  ~?=1 eh = 1 and ~hOl 8h vh = X. Hence, 

c . x =  eh k°Pt+ E e h ( c ' v h ) ,  
h = l  h = q + l  

from which, using q Q ~h=l eh = 1 --~'h=q+l el,, we find 

Q 
k°Pt -c"  x =  E eh(k°Pt--c  • vh). (8.4) 

h = q + l  

However, it can be easily shown that k ° p t - c  " v h ~ 2  - ° ( L * )  for h = q +  1 . . . .  , Q. 

Consequently, since c. x 1> k °), our assumed bound o n  k °pt - k (j) and (8.4) together 
imply 

Q 
eh <~ 2 °(L*)-~4n2L*. (8.5) 

h = q + l  

Now assume i c 72. Then 

Q 
Oli" x - b i  = 2 eh(°li" vh - -b i )  

h--1 

Q 
= 2 eh(O~, " v h - - b i )  • 

h-q+1 

Since 0<~ ai" v h - bi <~ 2 °(L*) for all h (as is easily shown), we thus have, using (8.5), 
that 

a i • X -- b i ~ 20(L*)-K4H2L*. 

Hence, if K 4 is sufficiently large (as determined in part  by Ks), then ai" x - b i  <~ 
2 -K,c*, proving i 6 S. 
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Now assume i ~ T. For  simplicity we may  assume a i .  v 1 ~ bi. Then,  as is easily 
shown, a~. ~)1 ~ b~ + 2 o(L*). In part icular ,  since 1) 1 is an extreme point  o f  Int(A, b(~)), 

we have 

s u p - -  sup{ai  • y;  y ~ Int(fi~, b(J))} ~ > b~+2 -°(L*). (8.6) 
i 

However ,  repeat ing the p r o o f  of  Proposi t ion  3.5 verbat im,  substi tuting a~ for  c, supi 
for  k °pt, b i for  k (j), and  using the fact that  a~ • x/> bi may  occur  only once among  
the 2m inequalit ies in the system (4 ,  b (j)) ( ra ther  than l t imes as was used for  
c. x -  k (j) in the p r o o f  of  Proposi t ion 3.5), one can show that  for  any x c R n, 

, e  (sup ai" x - bi ~>~m(1 - I l x ( J ) ( x )  - 

Hence,  using (8.6) and  our  assumpt ion  that  [ [X(J)(x)-  eli < 1 ,  we have a~. x - b ~  ~> 

2 o(L*). Choos ing  K5 sufficiently large then implies ai" x - b~ > 2 -K~L*, proving i ~ S. 
It is easily shown,  using the definition of  T, that  if  y satisfies A y  >1 b and a~- y = b~ 

for  all i ~ T, then y is an opt imal  point  for  the LPP (8.1). Hence,  since S - -  T, to 
prove  the l emma  it suffices to show that  the project ion P ( x )  of  x onto the set 
{y; ai" y = b~ for  all i ~ S} satisfies A P ( x )  >~ b. 

Using (8.5) it is easily shown that  

X--h~l  ehVh = h=~q+l Eh l')h ~ (h=~q+l eh) mhax [[Vh[[ ~2°(L*)-K4H2L*, 

f rom which it follows, since a~. (2h a eh vh) --bi = 0 for  i e S (=  T), that  

IIx - P (x) l l  ~ 2 °(~*~-~4"~*. 

Hence,  for  all i =  1 , . . . ,  m we have 

ai " P ( x )  - b i ~ oz i • x - b i -20(L*)-K4H2L*. 

Since a i .  x - b~/> 2 KsL* if i ~ S, it fol lows that  if  K4 is sufficiently large and i ~ S, 
then a~. P ( x )  - b~ > 0. On the other  hand,  o f  course a~. P ( x )  - bi = 0 if i c S. In all, 
A P ( x )  >~ b. This comple tes  the p roo f  of  the lemma.  []  

Lemma 8.2. A s s u m e  that  k (j) is a fraction,  with denominator  2/qt*, satisfying 0 <  
k °p t  - k (j) < 2 HL*. Then f o r  any  x, y c R n, 

II x(J>(x) - x(J)(y)1] ~< 2 KIH3L* II x - y II 

(where 113 is dependent  on H ). 

Proof.  We will show that  ~(J), the center  o f  (4 ,  b(J)), satisfies 

a i "  ~(J) --  bi > / 1 / 2  KI"°(L*) 

for  all i, and  

c.  ~(J) - k (s) >1 1/2 K,°(£*). 

(8.7) 

(8.8) 
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These inequalities immediately imply the lemma since 

[ c : ( x - y ) ] 2 +  ~ [ O l i ' ( x - - Y ) ]  2 

IIx(J)(x)-X(J)(y)ll==m c - ( J ) - k ( J ) J  ,% k2,: J " 

To prove (8.7), it suffices to show that for each i there exists z satisfying Az >~ b, 
c. x/> k (~) and 

a i " Z -- b i ~ 1/2  K,'°(L*), (8.9) 

because, by Proposition 3.1, 

X(j)(z ) = ai" z -  bi ~< ~, . ~ ,  ~ 2m.  

However, the existence of z satisfying (8.9) is an immediate consequence of 
Int(A, b (j)) being non-empty and bounded, the fact that the absolute values of the 
determinants of all square submatrices of [A[b (j)) are fractions with numerators 
and denominators bounded by 2 K''°(L*), a n d  Cramer's rule. (Choose z to be a vertex 
of Int(A, b (j)) such that ag. z - b~ ¢ 0.) 

The inequality (8.8) is proven similarly. [] 

Lemma 8.3. Assume that k (~) is a fraction, with denominator 2 K,L*, satisfying 0<~ 
k °pt - k (j) <~ 2 HL*. Also assume that the coordinates o fx  c Int(A, b (j)) can be expressed 
as fractions with common denominator 2 K3L*. Then, for all v c R ~, 

II (V ~f(J)) - ' v  II ~< 2(KI+K3)H4L* II V II 

(where H4 is dependent on H).  

Proof. We first note that the determinant of every square submatrix of /~kT2~l is 
bounded in absolute value by mn2 L*, a n d  hence, 2 °(t*).  This is a simple consequence 
of  the Binet-Cauchy theorem. Thus, by Cramer's rule, each entry of (,~T~)-I is 
bounded in absolute value by 2 °(t*). It follows that for any w e E "  we have 

~_ m T ~n wT,4TAw~I]W]]2/20(L*) , and hence, since ff~T.4=mcTc ~i=, c~; a~, for any wc  

there exists some ai (or c) such that wTaViaiw>-Ilwll2/2 °(L*) (or wTcTcw>~ 
H W [[2/20(~*)). Consequently, since the assumption of  the lemma implies a~. x -  b~ ~> 
1/2 K3"°(t*) (and c. x - k (j) I> 1/2(K'+K3)O(L*)), we must have for the same a~ (or for 
c) that wVa~aiw/(ai • x - b i ) 2 ~  IIw112/2 K3°¢£*) (or wTcTcw/(c • x - k ( J ) ) 2 ~  Ilwl12/ 
2(K'+K~)°(L*)). SO wT(v2f(J))W>~ IIW112/2 ~K'*/%)°~L*) for any w c R  ~, from which it 
follows that II(V~f(J))wll/> Ilwl]/2 ¢K'*/%)°~L*), and thus [l(V2f¢J))-lv[I <~ 
2(K'+K3)O(L*)[[~[[ fo r  all v ~ R  ~. [] 

Lemma 8.4. Assume the same assumptions as in Lemma 8.3 for k (j) and x. Let D (j) 
be obtained as in Step 2 of the algorithm by rounding the quantities 1/[ ai" x -  b~] and 
1/[c. x - k  (j)] to fractions with denominator 2 K2L*. I f  K2 is sufficiently large, then 
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AT(DO))2fi~ is invertihle. Moreover, letting rl °) be as in Step (3) of  the algorithm and 
letting n (~/) satisfy 

(V ~f(J)) n(~ j) = -(V~f(J)) T, 

we have 

II "17 ( j ) -  n(J)[I ~ 2(KI+K3)HsL* K2H6L* q-~-n 2--2K3L* 

(where Hs and H6 depend on H).  

Proof. To ease notation, let 

M = V~f ¢j), ~ ---- - A T ( D ( J ) ) 2 A  = - 2  2K2L*B(J). 

It is easily verified that for all v c ~", 

l l ( ~ - M ) v l l  ~<2 °¢e*) K;~* l lv l l  

where H 7 is a positive constant dependent on H. This, together with Lemma 8.3, 

implies that for all v c R', 

II M - l (  A//-- M)v  II ~ 2(KI+K3)O(L*)--KzHTL*H VII" (8.10) 

Hence, if K2 is sufficiently large, the matrix limit ~=o  ( - 1 ) i [ M - l (  ~ - M ) ] i  exists 
and is the inverse of I + M 1(~/_ M) = M 1~. Consequently, ~ is invertible and 

ill l = ( i ~ = o ( - 1 ) i [ M - l ( J / l - M ) ] i ) M - I  

= M - ' +  Z ( -1 ) ' [M-1(J /g -M)]  i M 1. 
\ ' = l l  

Thus, (8.10) and Lemma 8.3 imply that if K2 is sufficiently large, then for any v ~ R', 

[](M - 1 - 3 / /  1)vii <~2(KI+K~)O(L*)-K2H~L*IIVII. (8.11) 

Also, as can be easily verified, 

II(Vxf(J))T-ATD(J)e]I ~ 2  °(L*) K2HsL*, (8.12) 

where Hs is a positive constant dependent on H. Letting N °) be the exact solution 
to B°)w = b (j), the lemma follows from (8.11), (8.12), Lemma 8.3 and the inequality 

II n ?  ) - n(~J)ll ~ II n~ j ) -  NO)II + II NO) - ~70)11 

< II(M - * - ~  1)ATDO)eI[ + IIM-I[(v~fO))T--ATDO)e][[ 

+ IIN(J)- n(J)ll. [] 
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We are finally ready to prove that the algorithm is well-defined and that the final 
point returned by the algorithm is an optimal solution for the LPP (8.1). We will 
show that for any fixed positive integer K4 we can choose K1, /(2 and K3 such that 
for any j = 0, 1 , . . . ,  K4 [if-raiL* the following inequalities hold; 

ffX(~)(x ( ' )  - ell <~6, (8.13) 

[ - -  ] { ] (op t__  k(O)) (8.14) 
k °pt- k (j) ~< 1 29~fmJ "" 

and 

k°Vt-k(J)~>I1 13x~m] ~. (8.15) 

The most important of the above inequalities is (8.14), although (8.13) does imply 
that the algorithm is well-defined (i.e. can be used to guarantee that x(J)c 
Int(fi,, b (j+l)) so that the algorithm can continue). Inequalities (8.13) and (8.15) will 
be used in the inductive proof of (8.14). 

Letting H1 = H, where H is the constant in (8.2), and letting/-/2 > 0 satisfy 

1 -  r'/"~<~2 -H2 foral l  r e = l , 2 , . . . ,  

(such an /-/2 exists since limt~o~ ( l - l / t )  t =e- l ) ,  note that (8.14) implies for J =  
K4 [~/-m] L* that 

k O p  t _ k (J) ~ 2HIL*-K4H2 L*. 

Hence, assuming the validity of (8.14) and choosing K 4 and K5 sufficiently large, 
Proposition 8.1 shows the final point returned by the algorithm is an optimal solution 
for the LPP (8.1). 

Now we establish the inequalities (8.13)-(8.15) inductively, considering K4 and 
Ks as being fixed. Of course (8.14) holds whenj  = 0, as does (8.13) since x (°) = ~:(o) = 0. 
Also, (8.15) holds when j = 0 by assumption (8.2). 

Choose K1, sufficiently large (independently of L*) so that 

1 1 / 1 \ K4r'~qL* 
~:  92 -K1L* 

14,ff~ ~ ~ / 1  - 1-~-m) 2 . (8.16) 13ff-~ 

This can be accomplished since (1 -1/13,din-) -rml is bounded above independently 
of m and since L* > log2 m. 

Next, choose K3 sufficiently large so that 

,~/-~ 2K1H3L*--K3 L* 1 1 < i ( ~ - ~ ) ,  (8.17) 

where //3 is the constant in Lemma 8.2. 
Finally, choose K2 sufficiently large so that 

2KIH3L*+(KI+K3)Hs L* K2H6L* < ! [ ! _ _  1000 ] (8.18) 
2\46  46656],  

where /-/5 and H6 are as in Lemma 8.4. 
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For the above values of K~, K2 and K3, we show that if (8.13)-(8.15) are valid 
for j < K 4 IvY]L*,  then they are also valid if j is replaced by j + 1. 

Let 

~(j+l)= k ( J+ l ) -  k(j) 

c" x (j) ± k (j) '  

and 

(8.19) 

/~°+1~= 1- -~- [c"  14, /~ x(J~] + (1 - 14@m) k°~ 

1 
- 14,~-~ [c • x °) - k °)] + k °). (8.20) 

Since k °+1) is obtained by rounding/7 °+1) upwards to a fraction with denominator 
2 tqL*, it follows from (8.19) and (8.20) that 

1 1 1 
14~/-m <~ 6 ( J + z ) ~ < ~ - ~  [c" x 0 ) -  k°)]2 K'L*" (8.21) 

However, Proposition 3.5, (8.13), (8.15) and j <  K4[~/m]L* imply 

c. x ° ) -  k(J~> 4~(k°pt- k ~j~) 

,5( 1 _ ~ )  K4r~mlL* ~>~ 1 -  (8.22) 

Together, (8.16), (8.21) and (8.22) imply 

1 1 
14~/-~ ~ a(J+') ~< 13---~m" (8.23) 

We will use these inequalities in several ways. 
Using the definition (8.19), the fact that c- x (j) ~< k °p t ,  the upper hound given by 

(8.23), and the inductive assumption (8.15), we have 

kOpt_ k(J +1) = kOp t _  k(J) _ [k(J +1) + k (j)] 

= k ° p  t _ kO) _ 6o+1)[c . xO) _ kO)] 

(1 -- ~(J+l) ) (k°pt -  k (j)) 

1 j+l 

establishing the inductive assumption (8.15). 
On the other hand, since Proposition 3.5 and (8.13) imply c .  x ° ) - k ° ~ > ~  

45( l,-°Pt L-(J)~ ~2t~ - ~  j, using (8.13) and the lower bound in (8.23) we have 

kOp t _  k(J +1) = k°p t -  k(J )_  ~(J+D[c, x ( J ) -  k (j)] 

1 ag#a+~)\ 
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(1 1 ~J+' - ~ ]  (k°pt-  k~°)), 

establishing the inductive assumption (8.14). 
Together, (8.13), the upper bound in (8.23) and Corollary 3.4 (using 6 = ~O+a)) 

show NXO+I)(x O)) -e l l  < ~. Consequently, Theorem 3.2 shows that one iteration of 
Newton's method, applied to finding the center of (4,  b°+a)), gives a point ff 
satisfying IIX°+1)0 ~ ) -  eli < ~ .  Hence, Lemmas 8.2 and 8.4 show that the vector 
x °+a)= x °) + ~7 °) computed in Step 3 of the algorithm satisfies 

II x(J+I)(X(j+l)) - e II < ~6050 q- 2K'H3L*+(KI+K3)H5L*-K2H6L* "[- ~ 2K'n~L*-K3L*" 

Together with (8.17) and (8.18), this establishes the inductive assumption (8.13). 
This concludes the complexity analysis. 

9. Appendix 

The results in this section are certainly "common knowledge", but I do not know 
of a reference where they are carefully proven. 

Here we describe the variation of Gaussian elimination due to Edmonds [8]. 
Actually, what we describe is itself a slight variation of Edmonds'  work. Edmonds'  
motivation was to compute the rank of a matrix efficiently. But, with only a little 
care, his algorithm can be used to solve linear equations efficiently. 

Assume we wish to solve a system of equations Mx = y, where M is an n x n 
integer matrix (we assume M is a square matrix for simplicity) and y is an integer 
vector. As in standard Gaussian elimination, but with a slight modification to be 
described, through row operations we convert [M lY] to a matrix ready for back 
substitution. We will also assume, for simplicity, that M is of full rank. 

Assume that at the present stage the algorithm has converted [Mly]  to the matrix 
[ m ~], where mlj = 0 if i >  j, j <jo <~ n, and where m lj¢ 0 if i= j, j <~ jo. (This includes 
the simplifying assumption that mjooo ¢ O-row permutations might be required.) Now 
we want to pivot on mjooo to obtain a new matrix with all zeros under the (J0, jo) entry. 

Just as in standard Gaussian elimination, to obtain a zero in the (i, jo) entry, 
where i>jo,  multiply the ith row of [m,'j] by mjooo and subtract from the resulting 
vector the vector obtained by multiplying the joth row by m'. Then divide the tJo" 
difference by m j0 a,jo 1 (defining mjo_lOo_l = 1 ifjo = 0). Doing this for each row i >Jo, 
we obtain a new matrix [m~}] all of whose entries (as Edmonds shows) are deter- 
minants of square submatrices of [M lY], in particular, they are integers with apriori 
bounds on their bit lengths. If  one does not perform the above division, then 
examples can be constructed where the bit lengths of the resulting entries "blow-up".  

Proceeding with the above algorithm, we obtain a matrix, say [~/133], ready for 
back substitution. Now we need to show that the back substitutions can be accom- 
plished without intermediate fractions occurring whose numerators or denominators 
are " too"  large. Although by Cramer's rule, one can show that in reduced form the 



92 J. Renegar / A linear programming algorithm 

numera to r s  and  denomina to r s  can be b o u n d e d  in terms o f  the de te rminan ts  of  

[ M l y ] ,  b l i nd  back  subs t i tu t ion  does  not  necessar i ly  p roduc e  fract ions in r educed  

form. Moreover ,  i f  at some stage o f  the back  subs t i tu t ion  the  coord ina tes  (of  the 

solu t ion)  ob ta ined  thus far  do not  have a c o m m o n  denomina to r ,  then c lear ing the 

de nomina to r s  in the next  equa t ion  to be so lved  results  in the  next  coord ina te  being 

expressed  as a f rac t ion with  even larger  denomina to r .  I f  the f ract ions  are not  

som ehow reduced  (which adds  to the complex i ty ) ,  the resul t ing bi t  lengths can grow 

exponen t i a l ly  with the n u m b e r  o f  coord ina tes  solved for  thus far. 

Let @ deno te  the de t e rminan t  o f  M. We can efficiently de te rmine  the coord ina tes  

o f  the so lu t ion  to M x  = y  t h rough  back  subs t i tu t ion  in [h)/13~] by making  use o f  the 

fact  that  all coord ina tes  o f  the so lu t ion  can be expressed  as f ract ions  with common 

d e n o m i n a t o r  9 .  

E d m o n d s  shows the (n, n) entry in [~/I)~] is p rec ise ly  9.  Thus,  assuming  M x  =y,  

we have x,, = 33n/~. Subst i tu t ing  this for  xn in the  next  to last equat ion ,  subst i tut ing 

zn 1/@ for  xn-1, c lear ing the c o m m o n  d e n o m i n a t o r  @ and solving for  zn-1 a lgebrai -  

cal ly  (the d ivis ion by  rfi ,_l , ,_l  that  occurs  will  be exact) ,  we are able  to ob ta in  X,_l 

as a f rac t ion with d e n o m i n a t o r  9 ,  where  the bi t  lengths  of  the in te rmedia te  numbers  

occurr ing  dur ing  the so lu t ion  process  remain  " n i c e l y "  bounded .  Proceed ing  th rough  

all  the var iables  in this m a n n e r  (i.e., subs t i tu t ing  xi = z i / ~ ) ,  we find that  the back  

subs t i tu t ion  process  can be car r ied  out  in O(mn)  ar i thmet ic  opera t ions  on numbers  

whose  bi t  lengths are o f  o rde r  equal  to the bi t  lengths  o f  the de te rminan t s  of  square  

submat r ices  o f  [ M [ y ] ,  p lus  log2 m (to a l low for  add i t i on  o f  m numbers) .  

This conc ludes  our  d i scuss ion  o f  the bit  complex i ty  of  solving l inear  equat ions .  
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