
Mathematical Programming 40 (1988) 59-93 59
North-Holland

A P O L Y N O M I A L - T I M E A L G O R I T H M , B A S E D O N
N E W T O N ' S M E T H O D , F O R L I N E A R P R O G R A M M I N G

James RENEGAR
School of Operations Research and Industrial Engineering, Cornell University, Ithaca, N Y 14853,
USA

Received 4 September 1986
Revised manuscript received 15 June 1987

A new interior method for linear programming is presented and a polynomial t ime bound for
it is proven. The proof is substantially different from those given for the ellipsoid algorithm and
for Karmarkar ' s algorithm. Also, the algorithm is conceptually simpler than either of those
algorithms.

Key words: Linear programming, interior method, computat ional complexity, Newton 's
method.

1. Introduction

The main motivation for this work was the idea that there should exist an easily
understood polynomial time algorithm for linear programming, where both the
algorithm and the proof of the polynomial time bound rely primarily on common
ideas in the non-linear optimization literature (e.g. convergence of Newton's
method). Although both the ellipsoid algorithm [7, 8] and Karmarkar's algorithm
[6] are polynomial time algorithms, the main ideas behind those algorithms and
the proofs of their polynomial time bounds are certainly novel as regards the
optimization literature.

The algorithm presented is based on approximately following a sequence of
"centers" through the interior of the feasible region. It is reminiscent of the "method
of centers" of Huard [5].

The algorithm solves linear programming problems in the format

m a x c" X
(1.1)

s.t. A x >~ b,

where A is an m x n matrix. Assuming the coordinates of A, b and c are integers,
and the sum of the bits needed to represent all entries in A, b and c is L, the
algorithm solves (1.1) (i.e. determines an optimal solution, or unboundedness, or
infeasibility) in O(,fm + n L) iterations. The work in each iteration of the algorithm
is dominated by solving a system of linear equations. This requires O((m + n)n 2)
arithmetic operations. The equations are actually only solved approximately, this

This research was supported by an NSF Mathematical Sciences Postdoctoral Research Fellowship
and by NSF Grant 8120790. The research was performed at the Mathematical Sciences Research Institute
in Berkeley, California.

60 J. Renegar / A linear programming algorithm

requiring O((m + n)n2L(log L)(log log L)) bit operations. The total number of arith-

metic operations involved is O((m + n)~Sn2L) and the total number of bit operations
is O((m + n)lSn2L2(log L)(log log L)).

For a linear programming problem (LPP) in the form (1.1), Karmarkar 's modified
algorithm first requires that LPP to be recast as an LPP in m + n variables and m

equations. Then Karmarkar ' s bound on the number of iterations required to solve
the LPP is O((m + n)L). On the average (where the average is over the O((m + n)L)
iterations), each iteration requires O ((m + n) 25) arithmetic operations, O ((m +

n)2SL(log L)(log log L)) bit operations. Thus, for Karmarkar ' s modified algorithm,
the total number of arithmetic operations required is O((m + n)3SL), and the total
number of bit operations is O((m + n)3SL2(log L)(log log L)).

Comparing, the proven bounds for the algorithm presented herein are identical

to those for Karmarkar ' s algorithm if m and n are of the same magnitude, and are
better if m >> n. The most important theoretical result in this paper is the O(mx /~ n L)
bound on the number of iterations.

The paper is organized as follows. In the next section we present the algorithm,
assuming the problem to be solved fits an appropriate framework. We also state
what we call the "main theorem". The main theorem does not require the entries
in A, b and c to be rational, but it does assume all arithmetic operations can be

performed exactly. It is dubbed the "main theorem" because it represents the ideas
at the heart of the analysis.

In section three, we describe the ideas behind proving the main theorem. One of
the key steps in the proof is a well-chosen change of coordinates. The new coordinates
are very reminiscent of the context of Karmarkar ' s algorithm, a difference being
that only our proofs "l ive" in those coordinates, not our algorithm. (Also, we do

not rely on a potential function, but instead measure progress directly in terms of
the objective function.)

Sections 4, 5 and 6 are devoted to proving propositions and theorems stated in
Section 3.

In Section 7, we show how to recast any LPP of the form (1.1) into a format

suitable for the algorithm.
Finally, in Section 8, we give a complexity analysis of the algorithm assuming

the entries in A, b and c are integers. We are careful in this analysis to account for

the effects of rounding. The analysis is essentially another proof of the main theorem,
but the technicalities involved with accounting for the rounding obscure the central
ideas that the main theorem and its p roof highlight.

In the original version of this paper I wrote that I did not see how Karmarkar ' s

algorithm could be carried out with O(L) bits of accuracy (assuming the number
of bits required to represent the original problem is L) as Karmarkar claimed in
his paper. Subsequently, Karmarkar convinced me that this could be done if one
does not rely on rank one updates, as the algorithm in the present paper does not.

The argument, embedded in our complexity analysis, relies on the fact that the
linear equations that need to be solved need only be solved approximately, and this

3. Renegar / A linear programming algorithm 61

can be done efficiently using Cholesky factorization and the fact that the condition

number of the corresponding matrices are bounded by 2 °~L~. Subsequently, Pravin

Vaidya convinced me that O(L) bits of accuracy also suffice if rank one updating

is relied upon, which Karmarkar's modified algorithm does.

I also wrote in the original version of this paper that it was an important and

open theoretical question whether or not the algorithm in this paper could be

modified in a manner reminiscent of Karmarkar's modified algorithm to reduce the
complexity bounds. Pravin Vaidya [15] has apparently answered this question in

the affirmative. His stated bounds are O(((m+n)n2+(m+n)LSn)L) arithmetic
operations and O(((m + n)n 2 + (m + n)LSn)LZ(log L)(log log L)) bit operations. His

analysis relies on a potential function.

Our algorithm is similar to one presented independently by Sonnevend [13, 14],
who gave no complexity analysis.

There are several people I would like to thank. I would like to thank Lenore
Blum [3, 4], who aroused my interest in interior methods for linear programming

in talks that she gave. I would like to thank Steve Smale [11, 12] for reasons too

numerous to mention. I would like to thank Jeff Lagarias [2, 9], who gave a talk

that served as a catalyst for parts of the present work. I would like to thank Nimrod

Megiddo and Mike Shub [10] for several interesting conversations regarding interior

methods for linear programming. And I would like to thank Jim Curry, whose

conversation has helped make for a pleasant year at MSRI. Finally, I would like
to thank a referee for some very useful comments.

2. The algorithm

it.

In this section we introduce the algorithm and state the "main theorem" regarding

Assume that we wish to solve

max c. x
(2.1)

s.t. Ax ~ b,

where z ~ R" and A is an m x n matrix. Non-negativity constraints are not distin-

guished from other inequalities. We assume c # 0 and we assume none of the rows

of A are the zero vector.

Let a~ denote the ith row of A. Let l be a positive integer and let ,4 denote the
(m + l) x n matrix

-0/1"

i :

Ic}
i 1 times,

. C°

62 J. Renegar / A linear programming algorithm

c being considered as a row vector. Let k(°)~ R and let b(°)c R "+~ be the vector

(b(°)) T= (b~ , bin, k(°),. • . , k(°)),

where b T= (b l , . . . , bin) is the right hand side vector of (2.1). Finally, let (fi~, b ~°~)
denote the system of inequalities Ax ~> b (°).

The algorithm is based on approximating the "centers" of a sequence of systems
{(,4, b(°)} assuming the center of the initial system, (fi~, b(°)), is given. Now we
develop the notion of the center of a system of inequalities. (Apparently, Sonnevend
[13, 14] and Bayer and Lagarias [2] were the first to develop the following notion
of center, as I learned after I had arrived at the same notion.)

Let (A', b') be a system of linear inequalities where A' is an m' x n' matrix and
b ' c ~,n,. We use (A', b') to denote a general system of inequalities throughout this
paper, as opposed to, for example, (fi~, b ~°~) which is specialized. Assume {x; A'x >~
b'} has non-empty interior, Int(A', b'), and let f ' : Int(A', b ')~ R be defined by

m' m '

f ' (x) = 2 ln(c~, x - b ~) = l n 1~ (c~l" x - b l)
i = 1 i = 1

where In is the natural logarithm, ce ~ is the ith row of A' and " . " is the dot product.
(Primes, as in f ' , will always imply a relation to the system (A', b') and will never
be used to denote a derivative in this paper.) Note that f ' (x) goes to -oo as x goes
to the boundary of Int(A', b').

We say that ~:' is a center of (A', b') if ~:' e Int(A', b') and

f '(~') ~ f ' (x) for all x ~ Int(A', b').

(Thus, the center of the system (fi,, b ~°~) is the point in Int(?t, b (°~) maximizing

f(°)(x) = l" l n (c - x - k (°)) + ~ ln(ai" x - b i) ,
i = 1

1 playing the role of a "weight".)

Proposition 2.1. Assume Int(A', b') is non-empty and bounded. Then f ' is strictly
concave and the system (A', b') has a unique center ~'.

Proof. Using the fact that f ' (x) is the composition of the maps X ~ - - ~ j 1 ln(X~) and
x~--~(a'l • x - b ' l , . . . , a ' , . x - b ' ,) , it is easily shown that, for x ~ Int(A', b'),

V2 f = -(A')TDx2A ', (2.2)

where Dx is the diagonal matrix with (i, i) entry a~ • x - bi. However, since lnt(A', b')
is assumed non-empty and bounded, it is easily shown that A' is of full-rank, and
hence, from (2.2), V~f' is strictly negative definite. Thus, f ' is strictly concave. Since
f ' (x) goes to -co as x goes to the boundary of the bounded set Int(A', b'), it follows
that (A', b') has a unique center. []

J. Renegar / A linear programming algorithm 63

Throughout the rest of this section we will assume Int(A, b (°)) is non-empty and
bounded , so that by the proposi t ion, (4 , b (°)) has a unique center ¢(o). We will also
assume that we know s t(°), that is, we know its coordinates. In Section 7 we will
show how any linear programming problem can be put in a f ramework satisfying
these assumptions.

It is easily shown that our assumption that Int(A, b (°)) is bounded and non-empty
implies that (2.1) has an optimal solution, but perhaps infinitely many of them. It
is also easily shown that all optimal solutions for (2.1) are contained in the bounda ry
of Int(/(, b(°)). We want to somehow move f rom the known point ¢(o) toward the
optimal solutions.

To move from ¢(0) toward the optimal solutions, we create a new system (,4, b (1))
whose center ¢(1) is known to lie closer to the optimal solutions than s c(°), and then
we at tempt to obtain a " g o o d " approximat ion to ¢(1). The new system (A, b (1)) is
identical to (A, b (°)) except that the value k (°) defining b (°) is replaced by a larger
value k (~). To guarantee that Int(A, b (~)) is non-empty, it suffices to choose k(1)<
c. ~:(o). Then s c(°) ~ Int(fi., b(1)). Hence, k (1) is chosen from the range k (°) < k (1) <
c" ~(o).

The new system (A, b (1)) is bounded and non-empty. Also, all optimal solutions
to (2.1) are contained in the boundary of Int(,4, b(~)). Let f(1): Int(fi~, b ~1)) ~ R be
the funct ion

f(1)(x) = / " ln(c" x-k(1))+ ~ ln (a i , x-bi).
i~l

Then s c(1), the center of (/l, b(~)), is, by definition, the point in Int(/~, b (1)) that

maximizes f(1).
We want to obtain a " g o o d " approximat ion to ~(1). Since ~:(1) is defined to be the

point maximizing the strictly concave funct ion f(~), it is natural to use Newton ' s
method. Since ~:(0)~ Int(fi,, b(1)), we can initiate Newton ' s method at ~(o). Thus,
letting # N e w t o n be a positive integer, define recursively

x[o] = ~(o),
(2.3)

x[i] = x[i-1]+ ~(1) ,,xt~-l], i = 1 , . . . , # N e w t o n ,
(1) where n~ , the Newton step at x, is defined to be the vector satisfying

(V ~f(')) n(~ 1) = - (V~f (')) T,

that is,

(ATD~2A+ (c l) 1 nx =AVD;le-~ (c. x - k (1)) x__k(1))2cTc (1) C T.
I

e e N '~ being the vector of all ones, Dx being the diagonal matrix with (i, i) entry
a< x - b ~ , and c being considered as a row vector.

As our approximat ion to s c(1) we take the point

x (~) - x [# Newton] .

64 J. Renegar / A linear programming algorithm

(Newton's method can go astray in attempting to find the center of a system of
linear inequalities (A', b'). In particular, even though x c Int(A', b'), it is quite
possible that Newton's method will assign to x a point not in Int(A', b') so that
further iterates of Newton's method are not even defined. These problems will be

discussed more fully in section three. For now, we simply assume that the sequence
(2.3), and hence x (1~, is contained in Int(A, b(~).)

Having obtained x ~1~ we begin the process again. That is, we choose k (2~ satisfying
k°~< k(2~< c. x (l~ and let (4, b (2)) be the corresponding system of inequalities.

Beginning at x (~ we apply # N e w t o n iterates of Newton's method in attempting to
maximize j42). We let x (2) be the final point obtained, and so on.

Here, then, is the algorithm. Fix 0 < 6 < 1.

Initially: x (°) = s c(°), j = 1.
Step 1: Let k(J~=6[c . x (j l)] + (1 - 6) k (J 1).
Step 2: Apply # N e w t o n iterates of Newton's method, beginning at x (j-l~, in

attempting to maximize

f(i)(x) = 1. ln(c. x-k(J~)+ ~ ln(ai" x-bi) .
i - - I

Let x (j) be the resulting point.

Step 3: j + 1-*j and return to Step 1.

Main Theorem. Let 6 = 1/13~/7 and # N e w t o n = 1. Then the algorithm is well-defined
in the sense that Newton's method applied to maximizing f ~ , j = 1, 2 , . . . , and
initiated at x (j-l~, gives points contained in Int(.4, b(J)). Moreover, and most impor-

tantly,

45l N// N/1 ~J(kopt_k(O)),
k°pt-c.x(J~<~ 1 46~m+l))~ l -14(m+l) /

w h e r e k °pt is the optimal objective value of the LPP (2.1). (Note that k ° p t - c ° x (j)

is positive since x (J~ is feasible for the LPP (2.1).) []

Of course the bound provided by the theorem decreases by a factor of

1 - ,/7
14(m + 1))

with each iterate of the algorithm. The best factor of decrease is provided
when l = m. This is the value of 1 that we will use for the complexity analysis in
Section 8.

Since the theorem provides the best estimate when l = m, why did we bother to
develop the algorithm for arbitrary l rather than just using the value l = m
throughout? Because the theorem is a worst case bound. In the final steps of the

algorithm when an optimal solution is being "zeroed" in on, I expect the best

J. Renegar / A linear programming algorithm 65

progress will be made (with regards to the parameters l, ~ = 1/13x/l, # N e w t o n = 1)
if l equals the number of active constraints at that solution (ai" x/> bi is "active"

at y if a i . y = b~). For most problems I expect that setting l = m will result in a
slower algorithm than, say, l = n, but perhaps I am wrong.

Of course the values for the parameters 6 and # N e w t o n used in the theorem
should not necessarily be used in practice. The value of 6 is definitely tied to a
worst case analysis and is probably overly pessimistic even in that. Also, in practice
it would probably be wise to choose ~ "large" initially and then reduce it in later
iterations if Newton's method begins having trouble in approximating centers. The

main function of the parameter 6 is to make sure that x (j) is "sufficiently close" to
~(j+l) to ensure quick convergence of Newton's method.

As of this writing, no attempt at implementing the algorithm has been made.

3. Ideas behind proving the main theorem

The main theorem is proven inductively. The principal inductive hypothesis is
that we begin the (j + 1)th iteration of the algorithm with a "good" approximation

x (j) of ~(J). Then we show that Newton's method initiated at x (j) converges "quickly"
to ~(j+l). The terms "good" and "quickly" will be defined quantitatively later in
this section, but to begin with we will use both terms loosely.

How astray can Newton's method go in attempting to find the center of a system
of linear inequalities? Here is a simple example. Let n = 1, i.e., one variable, and let

li!l A ' = , b ' = ,

A' being an (m + 1) x 1 matrix and b ' c Rm+l. Then Int(A', b') = (0, 1), the open unit
interval. For x c (0, 1), simple computations show the Newton step assigned to x is

1.
X i~1 I - - X

n ' -

x i : , (i - x) 2

Since ~7_, 1 ~ (i - x) = co and Y~7=, 1 / (i - x) 2 converges, it follows that if m is large,

then x + n" will lie far, far away from (0, 1). (Of course what constitutes "large"
depends on x.) In particular, as m ~ co, the measure of the set of points at which

we can initiate Newton's method and obtain convergence to the center goes to zero.
The above example makes it clear that x (j) must satisfy more than just the condition

x (j) ~ Int(~, b °+1)) if Newton's method initiated at x (j) is to converge to s ~(j+l).

66 J. Renegar / A linear programming algorithm

Since Newton ' s me thod converges quadrat ica l ly to s c~j+l) if init iated sufficiently
close to s c~j+l), the natural app roach to take in a t tempt ing to prove the main theorem
inductively is to show that if 3 is sufficiently small, then s c~j), and hence its " g o o d "
approx ima t ion x ~j), are "sufficiently c lose" to staY+l) for quadrat ic convergence of
Newton ' s method. In a sense this is what we do. The trick is describing "sufficiently

close" appropr ia te ly . The not ion of "sufficiently c lose" that we will use cor responds
to the Eucl idean distance defined by a new coordinate system on R n, the coordinates
being de te rmined by the par t icular system of inequalit ies whose center is to be

approx imated .
Let (A', b ') be a system of m ' l inear inequalit ies in n' variables such that In t (A' , b ')

is non-empty and bounded . As will become clear, the following coordinate system
is a natural coordinate system to use for examining the behav ior of Newton ' s me thod
appl ied to finding the center s t ' o f (A', b'). For x c ~" ' , define

a~" x - b ~
X l (x) - i = 1 , . . . , m',

the pr ime on X~(x) indicat ing these are the coordinates of x relative to (A', b').

These coordinates have a s imple geometr ic interpretat ion. Defining, for i = 1 , m '
and x c ~ " ,

disi(x) = Eucl idean distance f rom x to the closest point on the
hyperp lane {y c ~" ' ; ce~ • y - b~},

it is easily shown that

disi(x)
x ~ (x) = +

dis i (~ ') '

where " + " is used if ~ . x ~ > b~, and " - " is used otherwise.
These coordinates are only a theoret ical tool. Being able to compute these

coordinates for a single point x c R"' is easily seen to be equivalent to knowing ~'.
Note that in the new coordinates s c' is assigned the vector e.
Let

Am, = {X E Rm'; X" e = m ' and Xi > 0 for all i}.

The fol lowing propos i t ion will be p roven in Section 4.

Proposition 3.1. Assume In t (A ' , b') is non-empty and bounded and assume x c En,

Then X ' (x) • e = m'. Moreover, x c In t (A' , b') i f and only i f X ' (x) ~ Am,. []

A simple consequence of Proposi t ion 3.1 is that if I IX ' (x) - eH < 1 , then x c
In t (A' , b'). Keeping this and the fact that st' is ass igned e in the new coordinates
in mind, the fol lowing theorem is our main tool for describing the behavior of

Newton ' s me thod appl ied to finding the center o f (A', b').

J. Renegar / A linear programming algorithm 67

T h e o r e m 3.2. A s s u m e Int(A' , b') is non-empty and bounded. A s s u m e x c Int(A' , b')
and e -IIX'(x) - ell < 1. (Here, II" [1 is the Euc l idean norm on ~m'.) L e t n" be the

(V~f)n~ = - (V~f ') T, w h e r e f ' (z) = m, vector sat is fying 2 , , ~i=~ ln(a~ • z - b'i). L e t y = x + n~.

Then

(1+ e) 2 2
I IX ' (y) -e l l<~ (l - e) e . []

Here is a simple consequence of the theorem. If IlX'(x)- ell ~ 4 , ~<~ then Newton ' s
< ! then me thod initiated at x converges to (. To see this, just note that if 0 < e ~ 4,

(l + e) 2
(l _ e) l e2<e"

The claim follows.
Theorem 3.2, which is proven in Section 5, is one of the two main tools to be

used in proving the main theorem. It provides a useful descript ion of what it means
for x ~j~ to be "sufficiently close" to ~(j+l) SO that Newton ' s method will work well.
The other main tool that is needed is a theorem showing that if 3 is only as small
as a given quanti ty (i.e. 1/13x/1 in the main theorem) and if x ~j) is a " g o o d "
approximat ion to ~J), then x ~j) will be "sufficiently close" to ~J+~ to apply Theorem
3.2. This is provided by the next theorem.

Let x~J) (x ~j~) be the coordinates of x ~j) defined by (fi~, b~J)), and let ff~(J+l)(x(J))
be the coordinates of x ~j> defined by (fi,, b~J+l~). We assume x ~j~ c Int(fi,, b~J~), i.e.,
thus far the algorithm has been well-defined.

T h e o r e m 3.3. L e t 0 < 6 < 1, ~ being a parame te r o f the algorithm, i.e., k ¢j+1)=

6 [c . x ~j~] + (1 - 6) k ~j). L e t a = IIx<J~(x <j)) - e II and fl = IIx<J+'(x<J)) - e II. Then

[1 - 2c~]/32-[1/~-~26 + (1 + ~/7 6) a] / 3 - [_ L] - ~ + x/l ~c~] ~<0" 132 _ []

Theorem 3.3 is proven in Section 6. The point of the theorem is that if 3 and
a < ½ are given, then fl is no larger than the largest root of the resulting quadratic.
We will use the following specific estimates.

Coro l lary 3.4. A s s u m e that I lX(J~(x(J))-e l l~26 and 0<~3~1/13~/7. Then

IIx(J+'(x(J)) - e II < &.

Proof. I f we let a = [[x(J~(x <j~) - e l l , substi tution of the assumed bounds gives

1 - 2 a >~ 1 - 2 > 0 . 9 5

162
- - + (l + ~ a) a ~ <
1 - 6

lt~ 2 1
- - + x/i 6a <~
1 - 3

1 14 1
qt_ (13) (46) < 0.03

13" 12

1
+ < 0.0081.

1 3 . 1 2 1 3 . 4 6

68 J. Renegar / A linear programming algorithm

Hence, letting/3 = [[X(~+l)(x(J))- e[[, we have, from Theorem 3.3,

9500/3 2 -- 300/3 - 81 ~< 0.

But for t i>1,

9500t 2 -300 t - 81 ~> 117 - 3 4 - 81 > 0.

The corollary follows. []

The final tool we need for proving the main theorem is the following proposition,
which will be proven in Section 4 (it is a corollary of Proposition 3.1).

Recall that k °pt is defined as the optimal objective value of the linear programming
problem (2.1). For x ~ ~", let X (J) (x) be the coordinates of x defined by the system
(fi, b(J)).

Proposition 3.5. A s s u m e x ~ R" satisf ies c . x >~ k (j). Then

l (] [x (J) (x) - - e] ,) k(j)) .
c " X - - k (j)/> 1 (k °pt-

m + l
[]

Assuming the theorems and propositions already stated in this section, we can
now give the

Proof of the Main Theorem. We use the following inductive assumptions:

[[X(J)(x (j)) - ell < ~

and

(3.1)

456/ I j kopt k°pt-k(J)~ 1 46(m+1) (-k(°))" (3.2)

Clearly these assumptions are satisfied when j = 0.
Corollary 3.4 and (3.1) imply

I I x (J + I) (x (j)) - e II < I.

Consequently, Theorem 3.2 shows that one iteration of Newton's method, applied
to finding the center of (ft., b (~+1)) and initiated at x (j), gives a point x (~+1) satisfying

Hx(J+I)(x (j+l)) - ell < 1 ,

thus establishing the inductive assumption (3.1). This also shows, by Proposition
3.1, that x(J+l)~ Int(.4, b(J+l)). Moreover, using k (~+1)= 6[c. x (J)] + (1 - 3) k (j), we

J. Renegar / A linear programming algorithm 69

have

k ° p t - k (j+l) -- k ° p t - k (j) - (~[c" x (j) - k (j)]

(1 4 5 ~ / x opt (j)
46~-~+1))(k - k)

w

~<(1 45(5/ ~j+l
46(-m+/)/ (k°pt- k(°))'

the first inequality being implied by (3.1) and Proposition 3.5 and the second
inequality being implied by (3.2). We have now established the inductive assumption
(3.2).

Now we establish the bound o n k ° p t - c • x (j) that is stated in the main theorem.
We have

k °pt - c • x (j) ~-

=(1

k °pt- k (j) - [c . x (j) - k (j)]

[l [1 \ opt (j) -]

451 \ opt kO))
4 6 ~ - + l)) (k -

45,)(
46(m+/) 1

)(46(m + l) 1

456/)J
. opt __

46(m+/) (k k (°))

,/7
14(m + 1 (k ° p t - k (°)) '

the first inequality being implied by (3.1) and Proposition 3.5, the second inequality
being implied by (3.2), and the third inequality being obtained by substitution of
6 = 1/13x/1. This concludes the proof of the main theorem.

4. Proofs of propositions

In this section we prove the two propositions stated in the previous section. For
the reader's convenience, we restate these propositions before proving them.

Recall that

Am, = {X C R"; X" e = m' and X~ > 0 for all i}

and that for x c R"', X ' (x) are the coordinates assigned to x with respect to the
system (A', b').

7 0 J. Renegar / A linear programming algorithm

Proposition 3.1. A s s u m e x c R n'. T h e n X'(x) • e = m ' . M o r e o v e r , x c Int(A', b') i f a n n

o n l y i f X ' (x) ~ z l~ , .

Proof. To show X ' (x) • e -- m ' for all x c g~n,, it suffices to show that (X ' (x) - e) • e = 0

for all x ~ R"'. But, by definition of X'(x) ,

m x-b;)
(X ' (x) - e) . e = 52 1

i=1 k~I" ~'-b~

=

,=1 ~I" ~ ' -b~

= (V¢,f')(x - ~')

= 0 ,

the last equality since ¢' maximizes f ' , and hence V~,f' = 0.
The claim that x c Int(A', b') if and only if X ' (x) ~ Am, now follows immediately

from the definition of X ' (x) . []

Proposition 3.5. A s s u m e x c R ~ s a t i s f i e s c . x >i k (j). T h e n

1([Ix(J)(x)-e[[)
e" x - k (J) ~ 1 (k ° p t - k (J)) .

m + l

Proof. We begin by showing that

l
e. ~(J)- k(J)~ > (k°pt- k(J)). (4.1)

m + l

L e t x °pt be an optimal solution to the LPP (2.1). (Under our assumptions that
Int(A, b ~°)) is non-empty and bounded, an optimal solution exists.) Let X l J) (x °pt)

denote the ith coordinate of /opt with respect to the system (.4, b(J)). By definition
of the coordinates,

k ° p t - k (j) -~ x l J) (x ° p t) (c • ~(J) - k(J)) , i = m + 1 , . . . , m + 1. (4.2)

On the other hand, by Proposition 3.1, proven above,

m+l
52 x ~ J) (x °pt) -~- m + l

i--1

and

x I J) (x °pt) ~ 0 f o r all i.

Since v(J) {'r°Pt]- v (J) t~om it follows that ~:~, m + l \ -~] -~- ~ m + l \ . ~]~

m + l
x I J) (x °pt) ~- for i = m + 1 , m +/. (4.3)

1

Together, (4.2) and (4.3) imply (4.1).

J. Renegar / A linear programming algorithm 71

Now consider arbitrary x c Nn. Then for i = m + 1 , . . . , m + l,

c" x - k (j) = X l J) (x) (c • ~(J) - k (j>)

l
>I ~ l Xlj>(x)(+ k~j))

l
/> m + / (1 -JXI~)(x) - l l)(k °pt- k(J)), (4.4)

the first inequality by (4.1). However, since X~)+l(X) X~)+,(x) , we have

n x (J) (x) - e l l > ~ x / T l x l /) (x) - l] for i = m + l , . . . , m + l . (4.5)

Substituting (4.5) into (4.4) concludes the proof of the proposition. []

5. Proof of Theorem 3.2

Theorem 3.2. A s s u m e Int(A', b') is non -emp ty and bounded. A s s u m e x c Int(A', b')
and let = I I X ' (x) - e l l < 1 Let n'x be the vector sa t i s fy ing 2 , , (Vxf)nx = - (Vxf ') T and
let y = x + n'~. Then,

, (l + e) 2 2
IlX(y)-ell<~ (l - e) e . []

The proof of this theorem in the original manuscript was very long and messy. I
wrote: "Surely a shorter p roof must exist!" The following proof relies on a few key
observations provided by Jeff Lagarias.

Let N+' denote the strictly positive orthant in R m' and let F : W"-> R be the function

ra '

F (X) = 5~ ln(X~).
i = 1

We begin the proof with the following lemma.

Lemma 5.1. I f x c Int(A', b') , then

m '

f ' (x) = F (X ' (x)) + ~. ln(a'~. ~ : ' -b l) .
i = 1

Proof

m '

f ' (x) = ~ ln (a l " x - b ' i)
i--1

= Y. In + 5~ ln(a~. ~: '-b~)
i=i \ a i " ~ ' - b ' ,] i=,

m '

= F (X ' (x)) + Y. ln(a : • (- b :) . []
i - - I

Let L : N " ' ~ R m' denote the affine map L (x) = X ' (x) .

72 J. Renegar / A linear programming algorithm

Since y is, by definition, the poin t in R"' maximizing

q (z) = (V x f ') (z - x) +½(z - x) T (v 2 f ') (z -- X),

it follows f rom L e m m a 5.1 that X ' (y) is the poin t in the image of L maximizing

Q (X) = e T D x ! (x) (X -- X ' (x)) - ½ (X - X ' (x))VDx2 , (x) (X - X ' (x)) ,

where D x is the d iagonal matr ix with ith d iagonal entry Xi.
Let 2e' denote the point in { X ~ W " ' ; X . e = m'} that maximizes Q (X) . Then,

assuming X . e = m' , we have

Q (X) = Q (Z ') 1 ,T -2 - ~ (X - 7 /) D x , ¢ x) (X - 7 / ') . (5.1)

Since X ' (y) maximizes Q over the image of L, since the image of L is contained

in {X ~ W"'; X . e = m'}, and since the image of L is an affine space containing e,
we find f rom (5.1) that X ' (y) e must be pe rpend icu la r to 2 ¢ r - Dx,(x)(7/ - X (y)) , that is,

(X ' (y) - e) T Dx?(x)(7] ' - X ' (y)) = O.

Hence, D x l , (x) (X ' (y) - e) is perpendicu la r to D x ! (x) (7] ' - X ' (y)) . Consequent ly ,

II Dx!(, ,) (X ' (y) - e)I12 + II Dx!(x)(~' - X'(y)) I I = = II Dx~(x)(7] ' - e)112

and thus

1 1
IlX'(y) - ell ~ [I ~ ' - ell

m a x (X ' (x)) m i n (X ' (x))

where

m a x (X) -max{X~} ,
i

We have proven

m i n (X) - min{X~}.
i

Proposition 5.2. Let 7/' denote the optimal solution o f the problem

max eTDxl , (x)(X -- X ' (x)) - I (X - X ' (x))TDx2 , (x) (X - X ' (x))

s.t. X " e = m'.

Then

~< m a x (X ' (x))
]]X'(y)-e]] ~ m i n (X ' (x))] [Z ' - e]]. []

Now we obtain a bound on [[7]'-e]].

Proposition 5.3. Let t ing e - Ilx'(x)-ell, we have that

IIZ'-ell ~<(1+~)~2.

J. Renegar / A linear programming algorithm 73

Proof. It is not difficult to show that

t~/p
Z' = 2 X ' (x) - , 2D2x,(x)e. (5.2)

a tx)

Let V = X' (x) - e. Substituting X'i(x) = 1 + V~ and

I l x ' (x) l l ~ = lie[J2+ [[X'(x) - ell 2 = m '+ e =

into (5.2) gives, with a little rearrangement,

1
~ = 1 + m '+ e ------5 (e 2 - m'V~+2e2V")"

Consequently,

1 e 2 [~,,=, -]1/2 I Iz'- ell = m '+ (e~- rn'V~+Ze2V~)2]

- < ~ l e \ t . , : ' l (r m'V2)2] 1/2 rm' V~)Z]l/z). m'+ 2 . . ~2 (e2- + [i~1 (2e2 (5.3)

rn' 2 = E2 However, expanding and making use of the substitution ~i=l Wi shows

(e 2 - m ' V ~) 2 = m ' - e 4 + m ' ~. V
i=1 i~l

,lV)
= m ' (m ' - l) e 4.

Also,

m'

(2e2Vi)2=4e 6.
i=1

Hence, by (5.3),

~< [m'(m' - 1)]1/2e 2 + 2e 3
IIZ'-ell m ,+2

[m'(m'- 1)]~/2e2 + 2e3
m r

< e2 q- m2---S e3 ~< e2(1 -t- e) ,

the last inequality using m'>~ 2, which follows from the assumption that Int(A', b')
is bounded. This concludes the proof of the proposition. []

74 J. Renegar / A linear programming algorithm

Combin ing Proposi t ions 5.2 and 5.3 and using the easily p roven fact that

m a x (X ' (x)) ~< 1 + e

m i n (X ' (x)) 1 - e

concludes the p roo f of Theo rem 3.2.

6. Proof of Theorem 3.3

Theorem 3.3. L e t 0 < 6 < 1,
8[c . x 0)] + (1 - S)k 0), where

IIX(J+')(x (:)) - eli. Then

being a parameter of the algorithm, i.e., k (/+1)=

x(i)~ Int(ffi, b(J)). Let a =]lX(J)(x (j)) - ell and fl =

L] - a LI - a

The only assumpt ions used in the p r o o f o f Theo rem 3.3 are that Int(A, b t j)) is
non -empty and bounded and x (j) c Int(A, bt~)).

To simplify notation throughout this section, we let x = x (J), X (j)= X(J)(x (~)) and
x (J +1) ~__ x (J+l) (x (J)) .

Lemma6,1 , For i= m + l , . . . , m + l,

x~J+')>~ (1 - ~) x l j).

Proof, Since k (j+l) -- ~ (c . x) + (1 - ~)k (j) it follows that

C • X -- k (j+D
c ' x - k (j) - (1 - 6) ' (6.1)

and hence, for i = m + 1 , m + l,

x l :+') (c. x - k(i+'))/(c. (: + ') - k ~i+1))

Xl ~) - (c . x - k(J)/(c • (J) - k <j))

= (1 - 6)(c" ~(J)- k(J))/(c • ~(J+') - k(J+l)).

Consequent ly , to prove the l emma it suffices to show that

c" ~:(J) - k 0)/> c" s ~(j+l) - k (j+l). (6.2)

Let ~ : [0 , 1]--)[k (j), k (j+l)] be the map

(t) = k (~) + t(k (j+~) - k(J)),

and let ~(t) be the center o f the system (.4, b(t)) , where (b(t)) T=

(b l , . . . , b,,, ~ p (t) , . . . , ~ (t)) . To show (6.2), it suffices to show that

(d) k(J+~) k(:) c" ~--;((t) ~< - (6.3)

J. Renegar / A linear programming algorithm 7 5

since

C" ~(J+')--k(J+l)=c" [~(J)+ f~ - ~ (t) d t] - k (j) + (k(J)- k (j+l))

Io = c . ~ (j) k(J)+ c d (k(J)_k(J+l)). - • ~ (t) d t +

Since ~:(t) maximizes the function

y~-~l, ln(c. y - q o (t)) + ~ ln(%. y - b,),
i = 1

evaluation of the gradient of this function at ~:(t) gives

C" ~ (t) - ~ (t) c+i=l ai" ~(t) -b i ai =0.

Taking the derivatives of both sides of the last equation with respect to t, and
rearranging slightly, gives

1 v d

(c. ~ (t) -~ (t)) 2

recalling ai and c to be row vectors. Now the dot product of the left side of this
equation with ((d/dt)~(t)) is non-positive (because the matrix in the bracket is
negative definite), and thus, from the right side we obtain

[c 0
Since

d
-~tt ~o(t) = k (j+l)- k(J)> 0,

this immediately yields (6.3). Thus the proposition. []

L e m m a 6 . 2

m+l x}J) m+l "-i~(J)
Y~ y(j+l) - m + l + 2 ~) ¢ ~ (I - X I J + I)) •

i = l - - i i = m + l "

Proof. Using (6.1), it is easily shown that for any y c R ~,

c y t C" x - k (j) - 1 + (1 - 6) x_k(J+l) 1 .

76 3". Renegar / A linear programming algorithm

In particular, letting y = s c(j+m), we have, for i = m + 1 , . . . , m + l,

c ' ' (J + ') - k (J) () 1 1
C" x - k (j) - 1 + (1 -) ~ - 1 = ~ [1 - - ~ (m - - x l J + m))] .

Multiplying both sides by

C " X -- k (j)

X I J) - c" ~(~)- k (j)'

we find that for i -- rn + 1 , . . . , m + I,

C* ~ (j + i) -- k (j) x l j)
- - x(J+l)[1} -- 3(1 -- Xl/+'))].

C ~ k(J)

Also, for i = 1 , . . . , m,

a i • x -- bi
ai " [f(j+m)_ bi ai " ,((:)- bi Xl j)

a i " ~(J) -- b i ol i • x - b i - X l j + l) "

oli" ~ (j + l) _ bi

(6.4)

(6.5)

But now note that the quantities on the left of (6.4) and (6.5) are the coordinates
of s c(:+1) with respect to (A, b(J)). In particular, by Proposition 3.1, they sum to rn +/.
Setting the sum of the terms on the right of (6.4) and (6.5) equal to re+l, and
rearranging, gives the identity stated in the lemma. []

Now we can prove Theorem 3.3.
Let U = X (J) - e and V=X(:+a) - e . Of c o u r s e xlJ+l)>0, for all i, since x~

Int(A, b(J+a)). Thus, expanding r~-~ 1/(1 + rV/) around r = 0, we have, for all i, the
Taylor series with remainder integral

1 1 / ' t 2V~
- - i Y ((J + I) - - - - 1 - V/ + V/ Jo (1- t) -(l+tV/)3 - - d t .

Consequently,

m+; x l " m+; [-~
i = 1 ~ Xl : + l - - - ~ = m + l - v ' e + U ' e - v " U + i = l ~ (1 + U~) Jo (1 - t) (1 +V'tv/) 3

dr.

Substituting V . e = U . e = 0 , l + U ~ > l - a and 0 < l + t V ~ < l + t f l for 0~<t<~l
(recalling a --]IX (~)- eli, fl = [IX (j+l)- eli), we find

m+l Xl:) m+t fo 1 2 V~
E XlJ+l------5>~m+l-afl+(1-ol) • (1 - t) ~ d t

i=1 i=1

- - m + l - a f l + (1 - a) (1 - t dt. (6.6)

£ Renegar / A linear programming algorithm 77

Using the Taylor expression

f / 2
1 = l - f l + (1 2/3

i+]3 - t) ~ d t ,

(6.6) reduces to

,,+t XIJ) 1 - - Ol 2
i~1 ~ > ~ m + l - a/3 +]--~ /3 . (6.7)

On the other hand, we know from Lemma 6.2 that

"+' XlJ~ "+~ xlJ) 3
2 y! j+l) - r e + l + 2 ~) (I - X ~ j+l))
i=l ~-t i=m+l

which combined with Lemma 6.1 implies

rn+l x lJ) m+l 1
xl.i+i)~<m+l+ 2 ~_~6[1-(1-3)XI j)]

i=1 i=m+l

162 ,.+l
: m + l + +3 2 (1-XI j))

I - 6 i=m+l

13 2
~m+l+l_6+x/13a, (6.8)

where we used ~ (1-xIJ))2<~ a to infer that Y ~ + ~ (1-xIJ))~<x/ /a . Combining

(6.7) and (6.8), clearing the denominator 1 +/3 and rearranging, gives the inequality
in the theorem.

7. Recasting an LPP into the proper format

In this section we show how any linear programming problem can be recast into
a problem fitting the framework of the algorithm. Such a recasting can be done in
several ways. The method we develop was chosen primarily for its expository
simplicity.

For the complexity analysis to be performed in the next section we need to relate
complexity measures of the original problem (e.g. number of bits in the representa-
tion) to complexity measures of the recasted problem, and we need to bound the
number of arithmetic and bit operations required for the recasting.

Assume that we are interested in solving

max ~. x

s.t. Ax >~/~ (7.1)

where ~ n , /~cE '~ and A, is an rh × ~ matrix. (We reserve A, b and e to refer to
an LPP already fitting the framework of the algorithm.)

78 J. Renegar / A linear programming algorithm

For the complexity analysis, we will assume the entries of .4, /~ and ~ are integers
and we will let

/~ = sum of bits needed to represent all entries in A, /~ and ~,

in particular, L~> rfi~.
In what follows, only those statements referring specifically to the complexity

analysis are based on the assumption that the entries in /~, /~ and ~ are integers.
Also, for the complexity analysis we will employ " O (£) " notation in a manner that
we now elucidate. Our recasting of an LPP into a format fitting the framework of
the algorithm will require certain quantities to be specified, for example, upper and
lower bounds on the coordinates of optimal solutions. Using Cramer's rule and the
fact that all determinants of [,3, I/~] (i.e. /~ appended to A,) have absolute value
bounded by 2 £ , such upper and lower bounds are provided by 2 £ and 2 -£ . Rather
than giving specific bounds such as these, we will simply say that such bounds can
be chosen of the form 2 °(£) and - 2 °(£~, the intended implication being that specific
values (involving £ linearly) can be determined by a more lengthy analysis (and

would need to be determined to carry out the actual recasting o f the LPP). In practice,
such values would be guessed at. Values like 2 £ would be ridiculously larger than
what is generally needed.

W e assume that we know integer values lowj, upj, j = 1 , r~, such that (i) if the
LPP (7.1) has an optimal solution, then it has an optimal solution x °pt satisfying
1OWj ~ x;Pt~ upj for all j, and (ii) if the LPP (7.1) is unbounded, then it has a feasible
solution x satisfying lowj ~< xj ~< up~ for all j. By standard arguments using Cramer's
rule, we may choose the low~ and upj so that - 2 ° (£ ~ < lowj <~ upj <~ 2 °(£) for all j.

To recast (7.1) into the form required for our algorithm, we create a closely related
LPP

max c. (x, t)
(7.2)

max A(x, t)>l b

where A is an (rh + 2r~ + 3)x (~ + 1) matrix, and (x, t) e R a× R. The "artificial vari-
able" t is added to guarantee feasibility. We will see that the number of arithmetic
operations required to convert (7.1) to (7.2) is O(rfi~), and the number of bit
operations is O(rfir~L(log/~)(log log/_~)), the factor/~(log/~)(log log L) arising from
the multiplication of O(/~) bit numbers. Although the number of bits needed to
represent the LPP (7.2) may not be O(/~), we will see that the bit lengths of the
determinants of all square submatrices of [A]b] are O(/~), as the entries in c. These
are the quantities that will be focused on in the complexity analysis contained in
the next section.

rh /
Let v = ~ i = ~ d ~ , where ~i is the ith row of A, and let P o s={ j ; v ~>0 } and

Neg = {j; vj < 0}.
For s c ~, define

bi+ ~ (up j - low~)+ Y, v j ' u p i + ~ vj ' lowj . T (s) = s (f f t + 2 ~ + l) - - J=l j~Po~ j~N~g

3". Renegar / A linear programming algorithm 79

Choose s* > 0 sufficiently large so that T(s*) > 0. For the complexity analysis, we
may choose s* to be an integer bounded by 2°(£). Then T(s*) is also an integer,
bounded in absolute value by 2 °(£).

For Yn+m e ~ (to be specified shortly), consider the LPP in ~ + 1 variables (x, t) e
R~xR,

max ~" X+~,I+I t

s.t. ~i ' x - (s * + b i) t ~ - s * , i = l , . . . , m ,

- (l + v j) x j - [s * - (l + @ u p j] t > ~ - s *, f o r j ~ P o s ,

-xj - [s*-upj] t>~-s *, f o r j ~ P o s ,
(7.3)

(1 -vj)xj-[s*+(1 -vj) lowj] t~ > - s* , f o r j ~ Neg,

xj - [s * +lowi] t ~> - s* , for j ~ Neg,

- t ~ > - 1 ,

T(s*)t>~ -s*.

The LPP (7.2) will be the above LPP with one additional constraint.
The main relation between the feasible region of the above LPP and that of (7.1)

is the following. A point (x, 1) is feasible for the above LPP if and only if Ax ~>/~
and lowj ~< xj <~ upj, j = 1 , . . . , rl. The value C~÷1 serves as a "big M " quantity, and
will be chosen to force t = 1 in the optimal solution (assuming feasibility).

The last two inequalities in the above LPP bound t above and below. In turn,
these bounds and the inequalities involving j c Pos and j ~ Pos bound all variables
xj from above. Similarly, the inequalities involving j ¢ Neg and j ~ Neg bound all
variables xj from below. Hence the feasible region for this LPP is bounded. Also,
it is easily verified that 0 is in the interior of this LPP.

Lemma 7.1. Let ,4 denote the constraint matrix for (7.3) and let b denote the right
hand side vector. Then the absolute values of the determinants of all square submatrices
of [,4]/~] are bounded by 2 °(£).

Proof. Rearranging slightly, we may assume

[Z~ I /~] D1 u
2

where u e R ~+2e÷2 and Di and D2 are ~ x tl diagonal matrices (e.g. the (j,j) entry
of D 1 is - (1 + vj) i f j c Pos, and is -1 i f j ~ Pos). Noting that the absolute value of
the determinants of all square submatrices of A, D1 and D2 are bounded by 2 °(L),
as are the absolute values of the entries in u and/~, the lemma follows from performing
cofactor expansion along the last two columns of [AI/~] and making use of the

diagonal structure of DI and D2. []

80 3". Renegar /A linear programming algorithm

Using the fact that all feasible points for the LPP (7.3) have last coordinate t ~< 1,
choose ~e+l sufficiently large so that if there exists a feasible point for (7.3) with
t = 1, then all optimal solutions have t = 1. For the complexity analysis, ~+1 can be
chosen to be a positive integer bounded by 2 °(c). This is a consequence of (i) the
feasible region for (7.3) is bounded; (ii) by Lemma 7.1 and Cramer's rule, the
absolute value of the coordinates of all extreme points of (7.3) are bounded by
2°(I;~; (iii) by Lemma 7.1 and Cramer's rule, all extreme points for (7.3) with last
coordinate t < 1 actually have t < 1 - 2-°(~2~; and (iv) the values I~[, J = 1 , . . . , ~, are
bounded by 2°(/;k

Now choose K sufficiently large so that I~- x + ~n+lt I ~< K for all feasible points
of (7.3). Using Lemma 7.1 and our previous bound on ~+~ it is easily seen that K
can be chosen not to exceed 2°(~;k

Finally, the LPP (7.2) (which is the recast version of the LPP (7.1)), is obtained
by appending to (7.3) the additional constraint

- c " (x, t)~>-K,

c being the vector (~, ~e+l). This constraint is added to help make 0 the center of
the polytope. It is easily shown, using Lemma 7.1, that the absolute values of the
determinants of all square submatrices of [A[b] (A and b in the recasted problem
(7.2)) are bounded by 2 °(I;~.

Since (x, 1) is feasible for the LPP (7.2) if and only if/~x/>/~ and lowj <~ xj ~ upj
for all j, the following proposition is easily proven (relying on the definitions of
~e+m, lowj and upj).

Proposition 7.2. Assume (x, t) is an optimal solution for the LP P (7.2). I f t < 1, then
the LPP (7.1) is infeasible. I f t = 1 and lowj < xj < upj for all j, then (x, t) is an optimal
solution for the L P P (7.1). I f t = 1 and xj = lowj or xj = upj for some j, then either
(x, t) is an optimal solution for the LPP (7.1) or that L P P is unbounded. []

For 1 a positive integer, let k ~°~= - IK . By definition of K, k (°) is a lower bound
on the optimal objective value of the LPP (7.2). As in Section 2, let (fi,, b (°)) be the
corresponding system of inequalities where c. (x, t)~> k (°) occurs l times,

Proposition 7.3. The center o f (fi,, b (°)) is O.

Proof. It is easily seen that 0~ Int(fi~, b(°~). Also, we know Int(A, b (°)) is bounded.
Thus, to prove the proposition it suffices to show that the gradient of

ffz+2~+3

f (°)(x, t) = l" ln[c. (x, t) - k (°)] + 5~ ln[ai . (x, t) - b,]

evaluated at 0 is 0, where ai is the ith row of A.

J. Renegar / A linear programming algorithm 81

Letting d denote the j th unit vector in ~ , the first ~ coordinates of (Vof (°)) are

' ~ 1 (l + v j ~ 1 .
2 - - - E d - y - - i=1 S# a t j~eos ~k S* J jZPos S* el

+ y~ (1-vJ '~e j 1 j 1 1
+ ~£ - ~ e - - - c + - - c

/cNeg k S* /] j~:Neg s K 1K

= ~ v- X vjd- y vjd =0.
j~Pos j~Neg

The last coordinate of (Vof (°)) is

s* s*+(1 - v j) lowj '~ - (s * + b i) s * - (1 + vj) upj ~ - u p j
E 2

i=1 S* j~Pos S * j~'Pos S* jcNeg S ~

_ _ ICn+l - Z s*+lowj 1-~ T(s*) c,+~ ~ - -
j~Neg S :¢: S* K IK

1 b~+ • (u p j - l o w j) + 2 = - r h - 2 ~ - I + ~ -i=1 j=l j~pos

T(s*___2
+ 2 /)j IOWj ~- S*

j~Neg

Vj u p j

=0

by definition of T(s*) . Thus, the proposition. []

In closing this section we remark that if the algorithm is applied to finding an
optimal solution of the LPP (7.2) and the resulting point (x, t) satisfies t = 1 and
either xj = lowj or x~ = upj for some j, so that either x is an optimal solution for the
LPP (7.1) or that LPP is unbounded (Proposition 7.2), one can determine which of
these is indeed the case by replacing all low~ by lowj - 1 and all upj by upj + 1 and
running the algorithm again. If the resulting point (x', 1) satisfies ~. x ' > ~.x, then
the LPP (7.1) is unbounded, whereas if ~- x ' = ~. x, then x is an optimal solution.

8. Complexity analysis

In this section we examine the computational complexity of the algorithm when
applied to solving

max c. x
(8.1)

s.t. A x ~ b,

82 J. Renegar / A linear programming algorithm

A being an m x n matrix and where the entries of A, b and c are integers. We will
assume Int(A, b) is bounded and non-empty, and we will assume that we know an
integer lower bound k (°) of k °pt. As in section two, we define

" a l I b . l

ft .= a,. b(O)= bm
c) ' k (°)

" t °

: m times k i°)
- C .

We restrict I to equal m in this section.
We will also assume that the center of (7,, b (°)) is ~(o) = 0.

We will use L* to denote a known (i.e. efficiently computed) positive integer such
that 2 L* is an upper bound on (i) the absolute values of the determinants of all
square submatrices of [A[b], (ii) the absolute values of the coordinates of c, and
(iii) the quantity n. log2(m).

We will assume that the known lower bound k (°) of k °pt is an integer and that

1 ~ k °pt - k (0) ~ 2 HL*, (8.2)

H representing some constant independent of L*. The lower bound of 1 on k °pt - k
is assumed in order to simplify certain aspects of the analysis•

In the last section we saw that any LPP

m a x c " x

s.t. Ax/>/~ (8.3)

where A is an th x rl matrix and the entries of A,/~ and ~ are integers, can be solved
by solving a related LPP (8.1), with m = r f i + 2 ~ + 3 and n = ~ + 1 , which satisfies
the above assumptions, and where L* of the related problem is 0(/2), £ being the
number of bits required to represent (8.3). The constant H in (8.2) can then be

A
determined independently of L. Moreover, the number of arithmetic operations

needed to construct the LPP (8.1) related to the LPP (8.3) is O(rh~), and the number
A A A A

of bit operations required is O (m n L (l o g £)(log log L)).

Now we describe the slightly modified algorithm that we will study in this section.
The modifications involve rounding, a stopping criterion, and a method for moving
to an optimal solution from an "almost" optimal solution.

Each step of the algorithm involves an unspecified positive integer constant, e.g.,
the first step of the algorithm rounds the current value k (;) upward to a fraction
with denominator 2 K1L*, the value K1 being the unspecified constant. By carefully

proceeding through the subsequent analysis one could determine exact values for

these constants, independent of L*, that would suffice to guarantee that the algorithm
returns an optimal solution, but I am sure that the values thus obtained would be
too large to be of use in practice. Leaving the constants unspecified results in a

J. Renegar / A linear programming algorithm 83

shorter and more easily read analysis. (An earlier draft of this section, with constants
specified, was unwieldy.)

Here is the modified version of the algorithm that we consider.

Initially: x (°) = ~:(o) = O, j = 1.
Step 1: Let k (j) be the least fraction, with denominator 2 ~:,L*, greater than or equal

to

141/~[c • x(J-1)]+(1-14~m)k(J-1).

Step 2: For i = 1 , . . . , m, let d) j) be obtained by rounding 1/[ai" x(J-~)-bi] to the
nearest fraction with denominator 2 K2L*, and for i = m + 1 , . . . , 2m, let dl j)
be obtained by rounding 1/[c . x (j l)_k(j)] to the nearest fraction with
denominator 2 K2L*. Let D (j) be the 2 m x 2 m diagonal matrix with ith
diagonal entry dl j). Compute the integer matrix and integer vector

B(J) = 22K2L* ~T(D(J))271, b(J) = 22K2L* ~T D(J) e.

Step 3: Obtain, using Cholesky decomposition, a vector ~(J) of fractions with
denominators 2 K~L* where ~/(J) satisfies the condition that

max]~/I j) - ([B(J)]-lb(J))i[<~ 1/2 K3L*,
i

(i.e., @J) approximately solves B(J)v = b(J)). Let x (j) = x(J-1)+ v(J).
Step 4: I f j < K 4 [~ / - m] L *, let j+l~--~j and return to Step 1.
Step 5: Let S c {1 , . . . , m} denote the set of indices i for which ai" x (J) - b~ <~ 2 -/%L*,

where J = K4[~--m]L*. Then (as will be proven), the set {y; a i ' y = bi for
all i ~ S} is non-empty. Compute the orthogonal projection of x (j) onto this
set. This projection is an optimal solution for the LPP (8.1) (as will be
proven).

Assuming the validity of the algorithm, let us examine its computational com-
plexity. For each iteration j < 1(4 [~fm]L*, the work in that iteration is dominated
by approximately solving the system of linear equations with integer coefficients in
Step 3, that is, B(J)v = b (j). The coefficients in this system are bounded by 2 °(L*).
This is a consequence of (i) the absolute value of the determinants of square
submatrices of A being bounded by 2°(L*); (ii) the fact (as will be proven) that
x(J-~)~ Int(A, b (j)) from which it follows using (i) and Cramer's rule that the
coordinates of x (j ~) are bounded by 20(L*); (iii) the coordinates of x (j-l) being
fractions with common denominator 2 K~L*, and hence, using (ii), a~. x (j - ' - b~
1/2 °(L*) and c. x (j 1) k (j) ~ 1/2o(t*); and (iv) the entries in D (j) being obtained
by rounding the values 1/[a~. x (j - l) - hi] and 1/[c . x (j - l) - k (j)] to a fraction with
denominator 2K~L*--SO assume K2 is sufficiently large. It is now also easily seen
that all entries of 22K~L*AV(D(J))2.,{ and 22t(~t*fi.TD(J)e can be computed with O(mn 2)

arithmetic operations on O(L*) bit numbers, hence with O(mn2L*(log L*)(log
log L*)) bit operations.

84 J. Renegar / A linear programming algorithm

As will be shown in Lemma 8.3, [[(V2f(J))-%]] <~ 2°(L*>I[vii for all v, where x = x (j).
Here, the constants in O(L*) are dependent on K1 and K3. It follows (as in the
proof of Lemma 8.4) that if K 2 is sufficiently large, then B (j) is invertible and
[[[B(J)]-ivll ~<2°(L*)]lvll for all v (we have implicitly used L*>~log n here.) Using
this and the 2 °(L*) bounds on the absolute values of the coefficients in B (j) and b ~j~,
Wilkinson's analysis of Cholesky decomposition [16; Section 44] shows that 77 (j)
as in Step 3 can be obtained by O(n 3) arithmetic operations where each arithmetic
operation is carried out to O(L*) bits of accuracy. Since multiplication and division
require O(L*(log L*)(log log L*)) bit operations to be carried out to accuracy O(L*)
(e.g. see [1, Corollary to Theorem 8.5]), the total number of bit operations required
in Step 3 is O(n3L*(log L*)(log log L*)).

The projection P(x) of x in Step 5 of the algorithm can be computed by first
determining a maximal linearly independent subset of {ai}i~s, letting ,4 be the
matrix whose rows are this subset and /~ the corresponding right-hand side vector,
computing (fi~iv) 1 and finally P(x) = x -fiV(fi~iv) I(,~X _/~). A maximal linearly
independent subset of {~i}i~s can be computed using Edmond's variation on
Gaussian elimination (this is discussed in the appendix) with O(mn 2) arithmetic
operations on O(L*) bit numbers, hence with O(mnZL*(log L*)(loglog L*)) bit
operations. By the Binet-Cauchy theorem (e.g. see [10]), the absolute value of the
determinants of all square submatrices of 1 f i t are bounded by 2 °(L*). Hence, the
inverse of ,~iT can be computed using Edmond's algorithm with O(n 3) arithmetic
operations on O(L*) bit numbers, hence with O(n3L*(log L*)(loglog L*)) bit
operations. Finally, it is now easily seen that O((m + n)n 2) arithmetic operations
and O((m + n) n2L*(log L*)(log log L*)) bit operations suffice to compute the projec-
tion in Step 5 of the algorithm.

Since O(x/~L*) iterations of the algorithm are performed, overall the
algorithm requires O((m+ n)n2x/-m L*) arithmetic operations and O((m+ n) x
nZx/-m (L*)2(log L*)(log log L*)) bit operations. Consequently, using the results of
the last section, any LPP of the form (8.3) can be solved (or determined infeasible,
or determined unbounded) by the algorithm with O((m+ n)nZ~--m f~) arithmetic
operations and O((m+ n)n2x/m(£)Z(log £)(log log/~)) bit operations.

Now we begin proving that the final point returned by the algorithm is an optimal
solution for the LPP (8.1). We begin with four lemmas. The constants K ~ , . . . , K5
of the algorithm appear in these lemmas, but the proofs of the lemmas are based
only on the assumption that these are positive integers which satisfy whatever
conditions are stated in the lemmas. The constant H of (8.2) appears likewise in
the lemmas.

Besides K1, . . . , K5 and H, additional positive constants Hi, .. •,/4o also appear
in the lemmas. Such constants Hi appearing in the assumptions of a lemma can be
taken to be any positive constants. The constants Hi appearing in the conclusions
of a lemma are implied to exist, and specific values for them could be determined
by a more lengthy analysis. Although constants Hi appearing in the conclusion of
a lemma may depend on H, they do not depend on K~ , Ks, a fact that the reader

J. Renegar / A linear programming algorithm 85

should keep in mind. Also, in the proofs of the lemmas we employ "O(L*)" notation
frequently, where the constants in O(L*) may depend on H and the "/-/~'s" (as will

be clear from the context), but will never depend on K1, . . . , K s .

The format in which the lemmas are presented was chosen to make for ease of

application in the subsequent analysis.

Lemma 8.1. A s s u m e 0 < k °pt- k (j) ~ 2 H'L* KoH2L*. A s s u m e x c Int(A, b 0)) satisfies

IIx<J~-ell <4'6. Le t S be the set o f indices i f o r which cq. x - b i <~2 KsL*. I f K4 and

Ks are sufficiently large (where what consti tutes sufficiently large f o r K 4 depends in

par t on K s , but not vice versa), then the set {y; ai" y = b~for all i ~ S} is non-empty,

and the projection o f x onto this set is an opt imal solution f o r the L P P (8.1).

Proof. Let v l , . . . , v ° denote the distinct extreme points of Int(A, b) and assume
v l , . . . , V q a r e the optimal extreme points. Let T be the set of indices i for which
ai" v h= hi for all of h = 1 , . . . , q. We begin by showing that if K4 and K5 are
sufficiently large, then T = S, where S is as in the statement of the lemma.

By the representation theorem for linear programming, since Int(A, b) is bounded,
there exist e h ~ 0, h = 1 , . . . , Q, w h e r e ~?=1 eh = 1 and ~hOl 8h vh = X. Hence,

c . x = eh k°Pt+ E e h (c ' v h) ,
h = l h = q + l

from which, using q Q ~h=l eh = 1 --~'h=q+l el,, we find

Q
k°Pt -c" x = E eh(k°Pt--c • vh). (8.4)

h = q + l

However, it can be easily shown that k ° p t - c " v h ~ 2 - ° (L *) for h = q + 1 , Q.

Consequently, since c. x 1> k °), our assumed bound o n k °pt - k (j) and (8.4) together
imply

Q
eh <~ 2 °(L*)-~4n2L*. (8.5)

h = q + l

Now assume i c 72. Then

Q
Oli" x - b i = 2 eh(°li" vh - -b i)

h--1

Q
= 2 eh(O~, " v h - - b i) •

h-q+1

Since 0<~ ai" v h - bi <~ 2 °(L*) for all h (as is easily shown), we thus have, using (8.5),
that

a i • X -- b i ~ 20(L*)-K4H2L*.

Hence, if K 4 is sufficiently large (as determined in part by Ks), then ai" x - b i <~
2 -K,c*, proving i 6 S.

86 J. Renegar / A linear programming algorithm

Now assume i ~ T. For simplicity we may assume a i . v 1 ~ bi. Then, as is easily
shown, a~. ~)1 ~ b~ + 2 o(L*). In part icular , since 1) 1 is an extreme point o f Int(A, b(~)),

we have

s u p - - sup{ai • y; y ~ Int(fi~, b(J))} ~ > b~+2 -°(L*). (8.6)
i

However , repeat ing the p r o o f of Proposi t ion 3.5 verbat im, substi tuting a~ for c, supi
for k °pt, b i for k (j), and using the fact that a~ • x/> bi may occur only once among
the 2m inequalit ies in the system (4 , b (j)) (ra ther than l t imes as was used for
c. x - k (j) in the p r o o f of Proposi t ion 3.5), one can show that for any x c R n,

, e (sup ai" x - bi ~>~m(1 - I l x (J) (x) -

Hence, using (8.6) and our assumpt ion that [[X(J)(x)- eli < 1 , we have a~. x - b ~ ~>

2 o(L*). Choos ing K5 sufficiently large then implies ai" x - b~ > 2 -K~L*, proving i ~ S.
It is easily shown, using the definition of T, that if y satisfies A y >1 b and a~- y = b~

for all i ~ T, then y is an opt imal point for the LPP (8.1). Hence, since S - - T, to
prove the l emma it suffices to show that the project ion P (x) of x onto the set
{y; ai" y = b~ for all i ~ S} satisfies A P (x) >~ b.

Using (8.5) it is easily shown that

X--h~l ehVh = h=~q+l Eh l')h ~ (h=~q+l eh) mhax [[Vh[[~2°(L*)-K4H2L*,

f rom which it follows, since a~. (2h a eh vh) --bi = 0 for i e S (= T), that

IIx - P (x) l l ~ 2 °(~*~-~4"~*.

Hence, for all i = 1 , . . . , m we have

ai " P (x) - b i ~ oz i • x - b i -20(L*)-K4H2L*.

Since a i . x - b~/> 2 KsL* if i ~ S, it fol lows that if K4 is sufficiently large and i ~ S,
then a~. P (x) - b~ > 0. On the other hand, o f course a~. P (x) - bi = 0 if i c S. In all,
A P (x) >~ b. This comple tes the p roo f of the lemma. []

Lemma 8.2. A s s u m e that k (j) is a fraction, with denominator 2/qt*, satisfying 0 <
k °p t - k (j) < 2 HL*. Then f o r any x, y c R n,

II x(J>(x) - x(J)(y)1] ~< 2 KIH3L* II x - y II

(where 113 is dependent on H).

Proof. We will show that ~(J), the center o f (4 , b(J)), satisfies

a i " ~(J) -- bi > / 1 / 2 KI"°(L*)

for all i, and

c. ~(J) - k (s) >1 1/2 K,°(£*).

(8.7)

(8.8)

J. Renegar / A linear programming algorithm 87

These inequalities immediately imply the lemma since

[c : (x - y)] 2 + ~ [O l i ' (x - - Y)] 2

IIx(J)(x)-X(J)(y)ll==m c - (J) - k (J) J ,% k2,: J "

To prove (8.7), it suffices to show that for each i there exists z satisfying Az >~ b,
c. x/> k (~) and

a i " Z -- b i ~ 1/2 K,'°(L*), (8.9)

because, by Proposition 3.1,

X(j)(z) = ai" z - bi ~< ~, . ~ , ~ 2m.

However, the existence of z satisfying (8.9) is an immediate consequence of
Int(A, b (j)) being non-empty and bounded, the fact that the absolute values of the
determinants of all square submatrices of [A[b (j)) are fractions with numerators
and denominators bounded by 2 K''°(L*), a n d Cramer's rule. (Choose z to be a vertex
of Int(A, b (j)) such that ag. z - b~ ¢ 0.)

The inequality (8.8) is proven similarly. []

Lemma 8.3. Assume that k (~) is a fraction, with denominator 2 K,L*, satisfying 0<~
k °pt - k (j) <~ 2 HL*. Also assume that the coordinates o fx c Int(A, b (j)) can be expressed
as fractions with common denominator 2 K3L*. Then, for all v c R ~,

II (V ~f(J)) - ' v II ~< 2(KI+K3)H4L* II V II

(where H4 is dependent on H).

Proof. We first note that the determinant of every square submatrix of /~kT2~l is
bounded in absolute value by mn2 L*, a n d hence, 2 °(t*). This is a simple consequence
of the Binet-Cauchy theorem. Thus, by Cramer's rule, each entry of (,~T~)-I is
bounded in absolute value by 2 °(t*). It follows that for any w e E " we have

~_ m T ~n wT,4TAw~I]W]]2/20(L*) , and hence, since ff~T.4=mcTc ~i=, c~; a~, for any wc

there exists some ai (or c) such that wTaViaiw>-Ilwll2/2 °(L*) (or wTcTcw>~
H W [[2/20(~*)). Consequently, since the assumption of the lemma implies a~. x - b~ ~>
1/2 K3"°(t*) (and c. x - k (j) I> 1/2(K'+K3)O(L*)), we must have for the same a~ (or for
c) that wVa~aiw/(ai • x - b i) 2 ~ IIw112/2 K3°¢£*) (or wTcTcw/(c • x - k (J)) 2 ~ Ilwl12/
2(K'+K~)°(L*)). SO wT(v2f(J))W>~ IIW112/2 ~K'*/%)°~L*) for any w c R ~, from which it
follows that II(V~f(J))wll/> Ilwl]/2 ¢K'*/%)°~L*), and thus [l(V2f¢J))-lv[I <~
2(K'+K3)O(L*)[[~[[fo r all v ~ R ~. []

Lemma 8.4. Assume the same assumptions as in Lemma 8.3 for k (j) and x. Let D (j)
be obtained as in Step 2 of the algorithm by rounding the quantities 1/[ai" x - b~] and
1/[c. x - k (j)] to fractions with denominator 2 K2L*. I f K2 is sufficiently large, then

88 J. Renegar / A linear programming algorithm

AT(DO))2fi~ is invertihle. Moreover, letting rl °) be as in Step (3) of the algorithm and
letting n (~/) satisfy

(V ~f(J)) n(~ j) = -(V~f(J)) T,

we have

II "17 (j) - n(J)[I ~ 2(KI+K3)HsL* K2H6L* q-~-n 2--2K3L*

(where Hs and H6 depend on H).

Proof. To ease notation, let

M = V~f ¢j), ~ ---- - A T (D (J)) 2 A = - 2 2K2L*B(J).

It is easily verified that for all v c ~",

l l (~ - M) v l l ~<2 °¢e*) K;~* l lv l l

where H 7 is a positive constant dependent on H. This, together with Lemma 8.3,

implies that for all v c R',

II M - l (A//-- M)v II ~ 2(KI+K3)O(L*)--KzHTL*H VII" (8.10)

Hence, if K2 is sufficiently large, the matrix limit ~=o (- 1) i [M - l (~ - M)] i exists
and is the inverse of I + M 1(~/_ M) = M 1~. Consequently, ~ is invertible and

ill l = (i ~ = o (- 1) i [M - l (J / l - M)] i) M - I

= M - ' + Z (-1) ' [M-1(J /g -M)] i M 1.
\ ' = l l

Thus, (8.10) and Lemma 8.3 imply that if K2 is sufficiently large, then for any v ~ R',

[](M - 1 - 3 / / 1)vii <~2(KI+K~)O(L*)-K2H~L*IIVII. (8.11)

Also, as can be easily verified,

II(Vxf(J))T-ATD(J)e]I ~ 2 °(L*) K2HsL*, (8.12)

where Hs is a positive constant dependent on H. Letting N °) be the exact solution
to B°)w = b (j), the lemma follows from (8.11), (8.12), Lemma 8.3 and the inequality

II n ?) - n(~J)ll ~ II n~ j) - NO)II + II NO) - ~70)11

< II(M - * - ~ 1)ATDO)eI[+ IIM-I[(v~fO))T--ATDO)e][[

+ IIN(J)- n(J)ll. []

J. Renegar / A linear programming algorithm 89

We are finally ready to prove that the algorithm is well-defined and that the final
point returned by the algorithm is an optimal solution for the LPP (8.1). We will
show that for any fixed positive integer K4 we can choose K1, /(2 and K3 such that
for any j = 0, 1 , . . . , K4 [if-raiL* the following inequalities hold;

ffX(~)(x (') - ell <~6, (8.13)

[- -] {] (op t__ k(O)) (8.14)
k °pt- k (j) ~< 1 29~fmJ ""

and

k°Vt-k(J)~>I1 13x~m] ~. (8.15)

The most important of the above inequalities is (8.14), although (8.13) does imply
that the algorithm is well-defined (i.e. can be used to guarantee that x(J)c
Int(fi,, b (j+l)) so that the algorithm can continue). Inequalities (8.13) and (8.15) will
be used in the inductive proof of (8.14).

Letting H1 = H, where H is the constant in (8.2), and letting/-/2 > 0 satisfy

1 - r'/"~<~2 -H2 foral l r e = l , 2 , . . . ,

(such an /-/2 exists since limt~o~ (l - l / t) t =e- l) , note that (8.14) implies for J =
K4 [~/-m] L* that

k O p t _ k (J) ~ 2HIL*-K4H2 L*.

Hence, assuming the validity of (8.14) and choosing K 4 and K5 sufficiently large,
Proposition 8.1 shows the final point returned by the algorithm is an optimal solution
for the LPP (8.1).

Now we establish the inequalities (8.13)-(8.15) inductively, considering K4 and
Ks as being fixed. Of course (8.14) holds whenj = 0, as does (8.13) since x (°) = ~:(o) = 0.
Also, (8.15) holds when j = 0 by assumption (8.2).

Choose K1, sufficiently large (independently of L*) so that

1 1 / 1 \ K4r'~qL*
~: 92 -K1L*

14,ff~ ~ ~ / 1 - 1-~-m) 2 . (8.16) 13ff-~

This can be accomplished since (1 -1/13,din-) -rml is bounded above independently
of m and since L* > log2 m.

Next, choose K3 sufficiently large so that

,~/-~ 2K1H3L*--K3 L* 1 1 < i (~ - ~) , (8.17)

where //3 is the constant in Lemma 8.2.
Finally, choose K2 sufficiently large so that

2KIH3L*+(KI+K3)Hs L* K2H6L* < ! [! _ _ 1000] (8.18)
2\46 46656],

where /-/5 and H6 are as in Lemma 8.4.

90 J. Renegar / A linear programming algorithm

For the above values of K~, K2 and K3, we show that if (8.13)-(8.15) are valid
for j < K 4 IvY]L*, then they are also valid if j is replaced by j + 1.

Let

~(j+l)= k (J+ l) - k(j)

c" x (j) ± k (j) '

and

(8.19)

/~°+1~= 1- -~- [c" 14, /~ x(J~] + (1 - 14@m) k°~

1
- 14,~-~ [c • x °) - k °)] + k °). (8.20)

Since k °+1) is obtained by rounding/7 °+1) upwards to a fraction with denominator
2 tqL*, it follows from (8.19) and (8.20) that

1 1 1
14~/-m <~ 6 (J + z) ~ < ~ - ~ [c" x 0) - k°)]2 K'L*" (8.21)

However, Proposition 3.5, (8.13), (8.15) and j < K4[~/m]L* imply

c. x °) - k(J~> 4~(k°pt- k ~j~)

,5(1 _ ~) K4r~mlL* ~>~ 1 - (8.22)

Together, (8.16), (8.21) and (8.22) imply

1 1
14~/-~ ~ a(J+') ~< 13---~m" (8.23)

We will use these inequalities in several ways.
Using the definition (8.19), the fact that c- x (j) ~< k °p t , the upper hound given by

(8.23), and the inductive assumption (8.15), we have

kOpt_ k(J +1) = kOp t _ k(J) _ [k(J +1) + k (j)]

= k ° p t _ kO) _ 6o+1)[c . xO) _ kO)]

(1 -- ~(J+l)) (k°pt - k (j))

1 j+l

establishing the inductive assumption (8.15).
On the other hand, since Proposition 3.5 and (8.13) imply c . x °) - k ° ~ > ~

45(l,-°Pt L-(J)~ ~2t~ - ~ j, using (8.13) and the lower bound in (8.23) we have

kOp t _ k(J +1) = k°p t - k(J)_ ~(J+D[c, x (J) - k (j)]

1 ag#a+~)\

J. Renegar / A linear programming algorithm 91

(1 1 ~J+' - ~] (k°pt- k~°)),

establishing the inductive assumption (8.14).
Together, (8.13), the upper bound in (8.23) and Corollary 3.4 (using 6 = ~O+a))

show NXO+I)(x O)) -e l l < ~. Consequently, Theorem 3.2 shows that one iteration of
Newton's method, applied to finding the center of (4, b°+a)), gives a point ff
satisfying IIX°+1)0 ~) - eli < ~ . Hence, Lemmas 8.2 and 8.4 show that the vector
x °+a)= x °) + ~7 °) computed in Step 3 of the algorithm satisfies

II x(J+I)(X(j+l)) - e II < ~6050 q- 2K'H3L*+(KI+K3)H5L*-K2H6L* "[- ~ 2K'n~L*-K3L*"

Together with (8.17) and (8.18), this establishes the inductive assumption (8.13).
This concludes the complexity analysis.

9. Appendix

The results in this section are certainly "common knowledge", but I do not know
of a reference where they are carefully proven.

Here we describe the variation of Gaussian elimination due to Edmonds [8].
Actually, what we describe is itself a slight variation of Edmonds' work. Edmonds'
motivation was to compute the rank of a matrix efficiently. But, with only a little
care, his algorithm can be used to solve linear equations efficiently.

Assume we wish to solve a system of equations Mx = y, where M is an n x n
integer matrix (we assume M is a square matrix for simplicity) and y is an integer
vector. As in standard Gaussian elimination, but with a slight modification to be
described, through row operations we convert [M lY] to a matrix ready for back
substitution. We will also assume, for simplicity, that M is of full rank.

Assume that at the present stage the algorithm has converted [Mly] to the matrix
[m ~], where mlj = 0 if i > j, j <jo <~ n, and where m lj¢ 0 if i= j, j <~ jo. (This includes
the simplifying assumption that mjooo ¢ O-row permutations might be required.) Now
we want to pivot on mjooo to obtain a new matrix with all zeros under the (J0, jo) entry.

Just as in standard Gaussian elimination, to obtain a zero in the (i, jo) entry,
where i>jo, multiply the ith row of [m,'j] by mjooo and subtract from the resulting
vector the vector obtained by multiplying the joth row by m'. Then divide the tJo"
difference by m j0 a,jo 1 (defining mjo_lOo_l = 1 ifjo = 0). Doing this for each row i >Jo,
we obtain a new matrix [m~}] all of whose entries (as Edmonds shows) are deter-
minants of square submatrices of [M lY], in particular, they are integers with apriori
bounds on their bit lengths. If one does not perform the above division, then
examples can be constructed where the bit lengths of the resulting entries "blow-up".

Proceeding with the above algorithm, we obtain a matrix, say [~/133], ready for
back substitution. Now we need to show that the back substitutions can be accom-
plished without intermediate fractions occurring whose numerators or denominators
are " too" large. Although by Cramer's rule, one can show that in reduced form the

92 J. Renegar / A linear programming algorithm

numera to r s and denomina to r s can be b o u n d e d in terms o f the de te rminan ts of

[M l y] , b l i nd back subs t i tu t ion does not necessar i ly p roduc e fract ions in r educed

form. Moreover , i f at some stage o f the back subs t i tu t ion the coord ina tes (of the

solu t ion) ob ta ined thus far do not have a c o m m o n denomina to r , then c lear ing the

de nomina to r s in the next equa t ion to be so lved results in the next coord ina te being

expressed as a f rac t ion with even larger denomina to r . I f the f ract ions are not

som ehow reduced (which adds to the complex i ty) , the resul t ing bi t lengths can grow

exponen t i a l ly with the n u m b e r o f coord ina tes solved for thus far.

Let @ deno te the de t e rminan t o f M. We can efficiently de te rmine the coord ina tes

o f the so lu t ion to M x = y t h rough back subs t i tu t ion in [h)/13~] by making use o f the

fact that all coord ina tes o f the so lu t ion can be expressed as f ract ions with common

d e n o m i n a t o r 9 .

E d m o n d s shows the (n, n) entry in [~/I)~] is p rec ise ly 9. Thus, assuming M x =y,

we have x,, = 33n/~. Subst i tu t ing this for xn in the next to last equat ion , subst i tut ing

zn 1/@ for xn-1, c lear ing the c o m m o n d e n o m i n a t o r @ and solving for zn-1 a lgebrai -

cal ly (the d ivis ion by rfi ,_l , ,_l that occurs will be exact) , we are able to ob ta in X,_l

as a f rac t ion with d e n o m i n a t o r 9 , where the bi t lengths of the in te rmedia te numbers

occurr ing dur ing the so lu t ion process remain " n i c e l y " bounded . Proceed ing th rough

all the var iables in this m a n n e r (i.e., subs t i tu t ing xi = z i / ~) , we find that the back

subs t i tu t ion process can be car r ied out in O(mn) ar i thmet ic opera t ions on numbers

whose bi t lengths are o f o rde r equal to the bi t lengths o f the de te rminan t s of square

submat r ices o f [M [y] , p lus log2 m (to a l low for add i t i on o f m numbers) .

This conc ludes our d i scuss ion o f the bit complex i ty of solving l inear equat ions .

References

[1] A. Aho, J. Hopcroft and J. Ullman, The Design and Analysis of Computer Algorithms (Addison-
Wesley, Reading, MA, 1974).

[2] D.A. Bayer and J.C. Lagarias, "The non-linear geometry of linear programming, 1. Affine and
projective scaling trajectories, II. Legendre transform coordinates, IlI. Central trajectories," pre-
prints, AT&T Bell Laboratories (Murray Hill, NJ, 1986).

[3] L. Blum, talk at Workshop on Problems Relating Numerical Analysis to Computer Science,
Mathematical Sciences Research Institute, Berkeley, California (January 1986).

[4] L. Blum, "Towards an asymptotic analysis of Karmarkar's algorithm," Information Processing Letters
23 (1986) 189-194.

[5] P. Huard, "Resolution of mathematical programming with non-linear constraints by the method
of centers," in: J. Abadie, ed., Non-Linear Programming (North-Holland, Amsterdam, 1967) pp.
207-219.

[6] N. Karmarkar, "A new polynomial-time algorithm for linear programming," in: Proceedings of the
16th AnnuaIACMSymposium on Theory of Computing (1984), ACM, New York, 1984, pp. 302-311;
revised version: Combinatorica 4 (1984) pp. 373-395.

[7] L.G. Khachiyan, "A polynomial algorithm in linear programming," Soviet Mathematics Doklady
20 (1979) pp. 191-194.

[8] L.G. Khachiyan, "Polynomial algorithms in linear programming," USSR Computational Mathe-
matics and Mathematical Physics 20 (1980) pp. 53-72.

[9] J. Lagarias, talk at Mathematical Sciences Research Institute (Berkeley, California, December, 1985).

J. Renegar / A linear programming algorithm 93

[10] N. Megiddo and M. Shub, "Boundary behavior of interior point algorithms in linear programming,"
Research Report RJ5319, IBM Thomas J. Watson Research Center (1986).

[11] S. Smale, "On the efficiency of algorithms of analysis," Bulletin of the American Mathematical
Society 13 (1985) pp. 87-121.

[12] S. Smale, "Algorithms for solving equations," to appear in: Proceedings, International Congress of
Mathematicians (Berkeley, 1986).

[13] Gy. Sonnevend, "A new method for solving a set of linear (convex) inequalities and its applications
for identification and optimization," preprint, Department of Numerical Analysis, Institute of
Mathematics, E6tv6s University, 1088, Budapest, Muzeum K6rut 6-8.

[14] Gy. Sonnevend, "An analytical centre' for polyhedrons and new classes of global algorithms for
linear (smooth convex) programming," preprint, Department of Numerical Analysis, Institute of
Mathematics, E6tv6s University, 1088, Budapest, Muzeum K6rut 6-8.

[15] P. Vaidya, "An algorithm for linear programming which requires O((m+ n)n2+(m + n)aSn)L)
arithmetic operations," AT&T Bell Laboratories, Murray Hill, NJ (1987).

[16] J.H. Wilkinson, The algebraic Eigenvalue Problem (Oxford University Press, Oxford, 1965).

