
Mathematical Programming 40 (1988) 15-27 15 
North-Holland 

C O N V E X  T W O - L E V E L  O P T I M I Z A T I O N  

Jonathan F. BARD 
Operations Research Group, Department of Mechanical Engineering, University of Texas, Austin, 
TX 78712, USA 

Received 13 January 1986 
Revised manuscript received 20 March 1987 

In this paper a model for a two-level planning problem is presented in the form of a static 
Stackelberg game. By assumption, play is sequential and noncooperative; however, the leader 
can influence the actions of the followers through a set of coordination variables while the 
followers' responses may partly determine the leader's payoff. 

Under certain convexity assumptions, it is shown that the feasible region induced by the leader 
is continuous in the original problem variables. This observation, coupled with two corollary 
results, are used as a basis for a hybrid algorithm which clings to the inducible region until a 
local optimum is found. A branching scheme is then employed to located other segments of the 
region, eventually terminating with the global optimum. A number of examples are given to 
highlight the results, while the algorithm's performance is tested in a comparison with two other 
procedures. 

Key words: Bilevel programming, Stackelberg games, branch and bound, active set strategy. 

I. Introduction 

In the standard formulation of a Stackelberg game the dominant player is desig- 
nated the 'leader' and has control over the decision vector x c X ~_ R "1 while the 
'followers' individually control the decision vectors yp c Yp ~ R"% p = 1 , . . . ,  P (see 
Basar and Selbuz, 1979; Simaan and Cruz, 1973; Tolwinski, 1981). It will be assumed 
that the leader is given the first choice and selects an x c O ( X ) ~  X to minimize 
his objective function F. In light of this decision, the followers select a yp c Yp ~ £2p (x) 
to minimize their individual objective functions fp, where F : X x  Y ~ R  1. Y =  
Y1 x Y2 ×" " " × Y p  c R"2, fp : X  x Yp ~ R 1, and the sets O ( X )  and Op(X) place addi- 
tional restrictions on the feasible regions of  the leader and followers, respectively. 
For the static case, this leads to the bilevel programming problem (BLPP) (Aiyoshi 
and Shimizu, 1981; Bard and Falk, 1982; Bard, 1983a; Bialas and Karwan, 1984; 
Fortuny-Amat and McCarl, 1981) given below. 

min F(x, y(x)  ) ( la)  
x 

subjectto x~X={x:H(x)~>O},  (lb) 

min fp (x, yp) (lc) 
Yp 

( l d )  subject to gp(X, yp) >i 0, 
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yp6 Yp={yp: Gp(yp)>~O}, ( le)  

p = l , . . . , P ,  

where H, Gp, and gp are vector valued functions of dimension ml, mzp, and m3p, 
respectively. For convenience define m = }~p (mzp d- m3p ). 

In this paper  we present an active set approach (see Gill et al., 1981) within the 
context of  branch and bound to solve the "quadrat ic"  BLPP. In the next section 
assumptions and basic notation are offered along with an example to help fix ideas. 
The algorithm is presented in Section 3 and demonstrated with a simple example. 
Two problems taken from the literature are analyzed in Section 4 and our general 

computational experience is highlighted in Section 4. Section 5 concludes with a 
discussion of the results, and some suggestions for future research. 

2. Terminology, assumptions, and properties 

In the sequel it will be assumed that tlae leader has full knowledge of the followers' 
problems, and that cooperation is prohibited. This precludes the use of  correlated 

strategies and side payments.  The following notation will be used to facilitate the 
development. 
BLPP Constraint Region: 

~Q = {(x, y): x e X ,  yp¢ Yp, gp(X, yp)>~O, p= 1 , . . .  P}. 

Projection of ~ onto the Leader's Decision Space: 

S2(X) = {x • X:  3y such that (x, y) • S2}. 

Follower p' s Feasible Region for x e X fixed : 

~2p(X) = {yp: yp c Yp, go(X, yp) >i 0}. 

Follower p' s Rational Reaction Set: 

Mp(x) = {yp: min(fp(X, yp): yp c S2p(x))}. 

Inducible Region: 

IR = {(x, y): x e ~ ( X ) ,  yp e Mp(x), p = 1 , . . . ,  P}. 

In order to ensure that (1) is well posed we make the additional assumption that 
g2 is nonempty and compact,  and that for all decisions taken by the leader, each 
follower has some room to respond; i.e., S2p(X) ¢ O. The rational reaction sets, Mp(x), 
define these responses while the inducible region, IR, represents the set over which 
the leader may optimize. Thus, in terms of the above notation, the BLPP can be 

written as 

min(F(x,  y): (x, y) c IR). (2) 
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It should be mentioned that in practice the leader will incur some cost in 
determining the decision space, S2(X), over which he may operate. For example, 
when the BLPP is used as a model for a decentralized firm with the corporate office 
representing the leader and the divisions representing the followers, coordination 
of lower level activities by the former requires detailed knowledge of production 
capacities, technological capabilities, and routine operating procedures (see Bard, 
1983b). Up-to-date information in these areas is not likely to be available to corporate 
planners without constant monitoring and oversight. 

For the remainder of the paper it will be assumed that F, - H ,  and -Gp  are convex 
in all their arguments, -gp is convex in y for x fixed, fp is strictly convex in y for 
x fixed, and that all functions are twice continuously differentiable. This assures 
that all solutions to the subproblems ( l c ) - ( l e )  are unique, implying that Me(x) is 
single-valued and that the inducible region could be replaced by a unique response 
function, say, y = qt(x). As a consequence we have: 

Proposition 1. Under the above assumptions on the functions in problem (1), the 
inducible region, IR, is continuous. 

The basis for the proof  can be found in (Hogan, 1973, Corollary 8.1); the same 
result was established for the linear BLPP by Bard (1984) using duality arguments. 
The fact that the inducible region is continuous will be exploited in the algorithm 
presented in the next section, as will the following result of Bard and Falk (1982). 

Proposition 2. Let fp, -gp, and -Gp  be continuous and convex in ypfor all x ~ X and 
assume that a constraint qualification holds for ( lc)- ( le)  with x fixed at x*. Then a 
necessary and sufficient condition that ( x*, y*) solves (1) is that there exists a u* c Rm2p 
and a U* ~ R m3p such that (x*, y*, u*, U*) solves 

min F(x, y) (4a) 
x,y ,  U, U 

subject to x c X, (4b) 

VyJp (x, yp) - UeV ypgp(x , Yv) - UpV y,,Gp(yv) = O, (4c) 

upgp(x, yp)+ UpGp(yp) =0,  (4d) 

gp(x, yp) >~ O, (4e) 

Gp(yp) >t O, (4f) 

up>~O, Uv>~O , (4g) 

p = l , . . . , P ,  

where Up and Up are the m2p and m3p-dimensional vectors of  Kuhn-  Tucker multipliers 
associated with the followers' problems. 
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Corol lary 1. I f  fp (p = 1 , . . . ,  P) is quadratic in (x, yp) and 22 is polyhedral then the 
inducible region is piecewise linear. 

Proof.  As x is var ied the solut ions to the subprob lems  ( l c ) - ( l e )  either occur  on a 
face of  d imens ion  < ~ m - 1  of  22 or in its interior. In the latter case we have 

Vypfp(x, yp) = 0 f rom (4c). The  result then follows f rom Proposi t ion 1. [] 

Corol lary 2. Let F(x, y) be strictly convex in (x, y), fp(x, yp) be quadratic in (x, yp), 
and22 be polyhedral. I f  z I ~- (x l, yi, u 1, U 1) and z 2 = (x 2, y2, u 2, U 2) are local solutions 

to problem (4) and both lie on the same face 0f22 then that face cannot be in IR. 

Proof. Let g = ()~, 35, 6, U) = az  I + (1 - c~)z 2, c~ c [0, 1] be a line on the face c o m m o n  
to z a and z 2 and assume ff satisfies constraints  (4b)- (4g) ;  i.e., (2, 35) c IR. From strict 
convexi ty  we have F ( f f ) <  ~F(z  1) + ( 1 -  a ) F ( z  2) which, for a in the ne ighborhood  
of  0 or 1, contradicts  the assumpt ion  that  z 1 and z 2 are local opt ima.  In part icular ,  

(4d) must  be  violated.  [] 

Corol lary 3. Let F(x, y) be convex in (x, y), fp(X, yp) be quadratic in (x, yp), and 22 
be polyhedral. Then the set of  solutions to problem (1) is convex. 

Example 1 

min F(x, y) = (x - 5)2+ (2y + 1)2, 
x~O 

min f (x ,  y)  = (y - 1) 2 - 1.5xy 
y~O 

subject to 3 x - y  ~> 3, 

- x + 0 . 5 y ~  > - 4 ,  

- x - y > ~ - 7 ,  

Figure 1 displays the BLPP constraint  region, 22, and the inducible region, IR, 
for  Example  1. Not ice  that  the latter is nonconvex ,  and unlike the case where  all 
the funct ions are linear, does not lie wholly on the faces of  S2; however ,  its piecewise 
l inear nature  can be observed.  Nonconvex i ty  por tends  the existence of  local solutions 
which are located at (1, 0) and (5, 2), and thus suggests that  even the simplest  of  
formula t ions  may  be difficult to solve wi thout  resort ing to some type of  b ranch  and 
bound  or cutt ing p lane  procedure .  Note  that  if (1, 0) and  (5, 2) are jo ined by adding 

the constraint  0 . 5 x - y ~ <  0.5 to the example ,  Corol la ry  2 states that  if  these points  
remain  local op t ima  (which they do) then the hyperp lane  0 . 5 x - y  = 0.5 cannot  be 

in IR. 
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I n d u c i b l e  R e g i o n  

(5/2,9/2) 
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Fig. 1. Geometry and inducible region for Example 1. 

3. Algorithmic developments 

The implicit nature of  Mp(x), and hence, the inducible region, militates against 
solving problem (1) directly. Recognizing this fact, Aiyoshi and Shimizu (1981) 
used a barrier method to recast ( l c ) - ( l e )  into an unconstrained problem of the form 

min P~(x, y , )=  fp(X, yp) + rl3(gp(x, yp), G~(yp) ), r > 0 ,  (5) 
yp 

where/3(gp, Gp) is a barrier function appropriately defined on the interior of £2(x). 
They then replaced (5) with its first order stationarity condition to obtain 

min F(x, y) (6a) 
x,y 

subject to x ~ X = {x: H(x)  >>- 0}, (6b) 

VypP;(x, yp) = O, p = 1 , . . . ,  P. (6c) 

Under the same convexity assumptions stated in Section 2, they were able to show 
that for the strictly null sequence {rk}, solutions to (6) converge to a local solution 
of (1). Bard and Falk (1982) took a similar approach by exploiting Proposition 2, 
but in either case solution times became excessive as the problem size grew. 

In an attempt to improve on current techniques a generalized branch and bound 
algorithm is proposed for the case where F is strictly convex, f is quadratic, and g 
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is affine. Extensions to the case where f and - g  are both convex in y for x fixed 
are straightforward. The basic idea is to first find a point in the inducible region, 

then iterate using an active set strategy to arrive at a local solution to (4). This will 
furnish a good upper  bound on F that will prove valuable in subsequent fathoming. 
For ease of  presentation it will be assumed from hereon out that p = 1 and that 
g(x, y) ~ (gl(x, YO, GI(Yl)) T" Rnl X R":--> R m. Notationally, let I = { 1 , . . . ,  m}. Each 

path Ilk in the branch and bound tree will correspond to an assignment of  either 
u~ = 0 or g~ = 0 for i ~Ik co_ I, thus identifying a partial solution. More specifically, let 

S~ = {i: i ~ lk and g~ = 0}, 

Sk = {i: i c I k and U i = 0 } ,  

I{  = {i: i ~ Ik} = I \ Ik ,  

J k = { i :  i~ Sk, gi =0 ,  I ~ = 0 } .  

A completion of  Ik will be an assignment of  either u~ or g~ for all i in the index set 
Ik  of free variables. Note that when I{  = 0 we are in the inducible region. The last 
set, J{, identifies those surfaces which are incident to the current segment of the 
inducible region and, by Proposition 1, candidates for extending it in the direction 
of decreasing F. In all, the branch and bound tree contains 2 " + 1 -  1 nodes. Upper  

and lower bounds on F wilt be represented by -P and F, respectively, while S \ i  will 
be used to denote S\{i} and S w  i to denote S w { i }  for any set S and element i. 

Algorithm 
Step 1: (Initialization) Solve min{F(x, y): x c  X, Vyf(x, y ) -  uVyg(x, y) =0,  

g(x,y)>~O, u~>0} to get (x° ,y  °, u°), and put F=F(X° ,y° ) ;  also put F = ~ .  
Step 2: (Obtaining a Feasible Point) Fix x at x ° and solve min{f(x  °, y): g(x °, y) >! 

0} to get a point (x °, fo) in IR. I f  F ( x  °,)~°) = _F stop; otherwise determine the 
partition at (x °, )3o) and fix S~ and. S~ for path Ilk. 

Step 3: (Bounding) Solve min{F(x, y): x c X, Vyf(x, y) - UVyg(X, y) =- O, g~(x, y) = 
0, i c S~; u~ =0,  i~ S~} to obtain (x k,yk); put F = m i n [ P ,  F(x  k,yk)] and stop if 
P = F; if no solution exists fathom the node. Go to Step 4. 

Step 4: (Advancing and Fathoming) Select an i c J~, and call it i~. I f  none exists 

fathom all nodes on the path Hk such 
of binding constraints is <n l  + n 2 then 

J k ~ J k \ i l ,  otherwise select an i c S { ,  

that gi = 0 and go to Step 5. I f  the number 

put k ~- k + l, S-£ <-- S~ u il, SZ ~- Sk \ il, and 
call it i2 and put k ~ k + l ,  S ~ S ~ k U i l \ i 2 ,  

S{'+-SkU i2\il, and Jk' ,--J{\i l .  Go to Step 3. 
Step 5: (Backtracking) Select a new i c Jr- (t = 1 , . . . ,  k - 1 )  and call it il. I f  none 

exists fathom all nodes on the pa t h s / / ,  such that gi = 0 and to to Step 6; otherwise 
+ + 

select an i6S~ ,  call it i2 and put k ~ k + l ,  S k ~ S t  wi l \ i2 ,  S { ~ S ~ u i 2 \ i ~ ,  and 
Jk ~ JT\ i l .  Go to Step 3. 

Step 6: (Branching) Select an unfathomed node on any of the paths llk such that 

i c Sk and gi ~ 0, call it i3; if none exists go to Step 8; otherwise go to Step 7. 
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Step 7: (Fathoming) Solve min{F(x, y): x c X, Vyf(X, y) --~,iUiVygi(x, y )  = 0, 

g(x, y) >1 O, gi3(x, y) = 0} to get a point (x °, yO) in IR. I f  F(x  °, yO) >~ p, fathom all 

nodes on paths containing g~3 = 0 and go to Step 5; otherwise put k ~ k + 1 and go 
to Step 2. 

Step 8: (Degenerate Case) Attempt to solve min{F(x, y): x c X, Vyf(X, y )=0 ,  
g(x, y)/> 0, ui = 0, Vi} to get a point (x °, y0) in IR. I f  a solution exists update F. 

Go to Step 9. 
Step 9: (Termination) Declare the feasible point in IR  associated with P the 

optimal solution. 

At Step 1 a relaxed problem is solved to get a lower bound on F. The resultant 
value of x is then used at Step 2 to locate a point in the inducible region and to 
test for global optimality. At Step 3 we minimize over the active constraint surface 
represented by S~ to get (x k, yk), and update the upper  bound accordingly. This is 
an attempt to satisfy Proposition 2. At Step 4, what might be termed an 'entering 
constraint '  is identified (il) which has the property that it is incident to the current 
segment of  the inducible region; that is, gil(x k, yk) = 0 and il ~ S~. A practical way 
of choosing il is to solve: mini[--VF(xk, yk ) 'Vg i (xk ,  yk)/ l lVF(xk,  yk)H. 
IlVgi( xk, y~)ll] which determines the surface on which F is decreasing most rapidly. 
I f  all the elements in Jk  have been exhausted, then, from the continuity of  the 
inducible region (Proposition 1), we can conclude that a local opt imum has been 
found. Finally, the choice of  the 'leaving constraint '  (i2) if necessary is problem 
dependent  and thus fairly arbitrary. With certain qualifications the constraint associ- 
ated with the smallest multiplier seems to produce good results. 

At Step 4 when a local solution is reached all nodes along the paths where 
g(x k, yk) = 0 can be fathomed, once again due to the continuity of  IR and Corollary 

2. This turns out to be an extremely powerful step, tr imming the branch and bound 
tree by a factor as large as 2 M (where M is the number  of  active constraints). 
Backtracking at Step 5 is designed to return to a previously encountered point in 
the inducible region and to continue minimizing, but in a different direction. When 
all the potential paths are explored we branch at Step 6 and then solve a new 

subproblem at Step 7 to return to IR. The last problem to be solved at Step 8 
corresponds to the case where all ui are zero. The procedure terminates when every 
node has been fathomed. 

Theorem 1. For F strictly convex in ( x, y), f quadratic in ( x, y), and g affine, the 
Algorithm terminates with a global optimum to problem (1). 

Proof. By construction, the Algorithm explores all nodes of the underlying branch 
and bound tree. And by hypothesis, all subproblems solved at Step 3 are convex, 

so for a given completion, no superior local opt imum is overlooked. [] 
B o o k k e e p i n g -  The path Hk in the branch and bound tree can be concisely 

represented by an /-dimensional vector, where 1 is the current depth of the tree. 
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The order  o f  the componen t s  is de te rmined  by their  " level ."  Indices  only appea r  
in the vector  Hk if they are in Ik, and appea r  under l ined  if the complemen ta ry  

condi t ion has a l ready been considered.  To  facili tate branching  to any node  in the 
tree the fol lowing nota t ion  is used. I f  i c Ik, let is appea r  i n / / k  as 

{__i ifi~S~andui=OhasnOtbeencOnsidered, 
if  i C S~- and  ui = 0 has been  considered,  

if  i c Sk and  gi = 0 has not  been considered,  

if  i ~ Sk and  gi = 0 has been  considered.  

When  branching  to say g, = 0 f rom node  l'k we s imply change IIk to (IIk, t). In  
backtracking,  the r ightmost  nonunder l ined  entry is under l ined,  its sign changed,  
and all entries to its right erased. I f  this p rocedure  is fol lowed branching  between 
any two nodes  can occur  wi thout  over looking the opt imal  solution. 

Demonstration --  In  order  to see how the a lgor i thm works  let us return to Example  
1 and Figure 1. Solving the relaxed p rob l em at Step 1 yields the point  (4, 0) and a 
lower bound  F = 2. Fixing x at 4 and solving the subprob lem at Step 2 puts us on 
constraint  3 (C3) in the inducible region. Thus S [  = {3}, S~ = {1, 2, 4}, I ] - =  0, and 
(x o, rio) = (4, 3). Minimizing F over  the current  segment  of  the inducible region at 

Step 3 gives (x 1, y l )  = (5, 2), an uppe r  bound  of  P = 25, and J1  = {2}. The first pa th  

i~=¢0 

F=2 

u2=O 

u4=0 

F=42.5 

ul=0 

g2 =0 

u 3 =0 

u4=0 / u4=0 

g l  =0 

u2=0 

g3=O 

I n f e a s .  F=17 ff=25 

Fig. 2. Branch and bound tree for Example 1. 
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in the branch and bound tree as shown in Figure 2 terminates at node 4, and may 
be represented by the vector H1 = ( 3 , - 1 , - 2 , - 4 ) .  At Step 4 we select il = 2  and 
i 2  : 3 and return to Step 3 with k = 2 and / /2  = (-3_, -1 ,  2, -4 ) .  This path corresponds 
to node 8. An attempt to solve this problem fails due to infeasibility so the fathoming 

rule is applied. After eliminating all nodes on paths that contain g3 = 0 and g2 = 0 
we backtrack to J1  which is now empty. Consequently, we branch to an unfathomed 
node at Step 6. The choices are those which are along the paths containing g~ = 0 
or g4 = 0. Arbitrarily selecting the first and then solving the relaxed problem at Step 
7 we arrive at the point (1, 0) with F = 17. Setting k =3  and returning to Step 2 we 

see that this point is in IR. Step 3 gives F =  17 at node 11 in the tree with 
//3 = ( -3 ,  1, -_2, -4 ) ;  Step 4 indicates that this is a local optimum, and proceeding, 
all paths containing ga = 0 and g4 : 0 are fathomed. Skipping to Step 8, the only 
subproblem remaining is associated with ui = 0, Vi. The solution occurs at (~96, 7) in 

Figure 1 with F- -42 .5  and H4= ( - 3 _ , - 1 , - 2 , - 4 )  so the corresponding node (13) 
is fathomed and the algorithm terminates. In all, 4 out of  a possible 16 subproblems 
had to be solved, and 6 out of  a possible 31 nodes had to be explored. 

4. Computational experience 

Before presenting the results of an analysis in which the above algorithm was 
compared with two other approaches, two examples will be given to highlight its 
performance.  The first was prepared by Aiyoshi and Shimizu (1981) and the second 

by Bard (1984). 

Example 2 

max F ( y ( x ) )  = (200 -Yl l  -Y2~)(Ylx +Y21) + (160 -Ya2 -Y22)(YI2+Y22)  

s u b j e c t  to  Xll+X12d-x21+x22~40,  

0~Xl l  ~ 10, 0 ~  X12~ 5 , 

0 <~ x21 <~ 15, 0<~ x22 ~ 20, 

min f~(Yl) = (Yl~ - 4) 2 + (Y12 - 13) 2 

subject to 0.4y11+O.7y12<~x1~, 

0.6y12 + 0.3y22 ~< xl2, 

0 ~ y a l ,  Y12 ~ 20,  

min f2(Y2) = (Y2a - 35)2 + (Yz2 - 2) 2 
Y2 

subject to 0.4y21 + 0.7y22 <~ x21, 

0.6y21 + 0.3y22 ~< x22, 

0 ~- Y21, Y22 ~ 40. 
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A solution to the relaxed problem at Step 1 yields an upper  (rather than lower 
because we are maximizing) bound  P = 6600 at x ° = (8.24, 4.86, 10.76, 16.14), yO = 

(3.1, 10) and y0 = (26.9, 0). Because complementa ry  slackness is not  satisfied at this 

point,  we must  solve the subproblem at Step 3 to find a point  in IR. After advancing 

at Step 4, we arrive at x 1 = (7.91, 4.37, 11.09, 16.63), yal = (2.29, 10) and y~ = (27.21, 0) 

with an objective funct ion value equal to the upper  bound ;  that is, F(x ~, ya) = 6600, 

so we terminate with f l  = 11.92 and f2 = 55. It is interesting to note that x = 
(7, 3, 12, 18), Yl = (0, 10) and Y2 = (30, 0) is also optimal,  providing the followers 

with payoffs off1 = 25 and f2 = 29. Corol lary  3 implies that any convex combinat ion  

of  these points is likewise optimal so some ambiguity still exists in the model;  

however,  for  any of  these points chosen by the leader, the followers '  solutions seem 

to lie on the efficient frontier. In  general, though,  this will not  be the case. 

Example 3 
2 min F = - x  1 - -  3 x 2 -  4yl + y2 

x 

subject to x~+2x2<~ 4, 

X 1 t> 0, X2 ~> 0, 

min 2 2 2Xl + y~ - 5 y 2  
Y 

subject to x~-2xl+x22-2y1+y2>-3, 

x2 + 3yl - 4y2 t> 4, 

Yl t> 0, Y2 ~> 0. 

Because the first constraint  in this example is nonlinear,  the Algori thm has to be 

modified to ensure that no local opt ima are overlooked. In particular, it is no longer 
possible to fa thom all nodes  containing binding constraints at a local solution unless 

they are all linear. Therefore,  rather than try to adhere to the inducible region at 

all costs, the more tradit ional  strategy of  backtracking and solving a relaxed problem 

is adopted  once a local min imum is found.  

To begin, the computa t ions  at Step 1 yield x ° = (0, 2) and yO = (4, 1) with a lower 

bound  F = - 2 1 .  Executing Steps 2 and 3 gives an upper  bound  F = - 1 4 . 1 3  at 
x I = (1.45, 0.95) and yl  = (1.88, 0.64) along the path Ha = (2, - 1 ,  - 3 ,  - 4 ) ,  with J7  = 

{1}. Because there are only 3 binding constraints at this point  and nl + n2 = 2 + 2 = 4, 

we solve the problem associated with the p a t h / / 2  = (2, 1, - 3 ,  - 4 )  to arrive at a new 

upper  bound  P = - 1 4 . 3 6 ,  giving J~ = 0. Ordinarily,  all nodes on paths containing 

gl = 0 and g2 = 0  would  now be fa thomed,  but this would  be incorrect as ment ioned 

above. Instead,  because it seems that g2 = 0 produces  a good  upper  bound ,  we 

branch to the top o f  the tree and solve the relaxed problem where u2 = 0 on path 

/73= (-_2). The resultant formulat ion is infeasible so all successor nodes are 
fa thomed.  An attempt to b ranch  to a different part  of  the inducible region at Step 
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6 with g2 = 0 and  either g3 = 0 or g4 = 0 fails and  the algori thm terminates  with what  

appears to be the global opt imum.  However,  because a n u m b e r  of the subproblems 

encounte red  at Step 3 were nonconvex ,  global opt imali ty  is not  guaranteed  (a l though 

in this case it was at tained).  

Comparative R e s u l t s - - I n  an at tempt to more precisely gauge the efficiency of 

the Algori thm with respect to the under ly ing  b ranch  and  b o u n d  tree, as well as 

other numer ica l  procedures,  a range of sample problems were generated and  solved. 

Specifically, the Algor i thm was compared  with the barr ier  method  of Aiyoshi  and  

Shimizu, and  a version of G R G 2  (Lasdon et al., 1978) appl ied  directly to p rob lem 

(4). The results are presented in Table 1. In  all cases, nonnegat iv i ty  of the variables 

was assumed,  but  not  reflected in the size of m which only counts  the n u m b e r  of 

constraints  of the form g(x ,  y )  >~ O. 

Table 1 

Comparative results 

Procedure Problem size Average Range of Percent of 
(nl, ml, n2, m) a number of iterations problems 

iterations solved b 

Branch and bound algorithm 

Barrier method 

GRG2 

(5,5,5,5) 24 2-84 100% 
(10, 12, 10, 15) 77 21-174 100% 
(15,20,15,20) 209 62-743 100% 

(5, 5,5,5) 53 37-157 60% 
(10, 12,10, 15) 156 122-412 50% 
(15,20,15,20) c - -  __ __ 

(5,5,5,5) 31 11-97 50% 
(10, 12,10, 15) 99 47-241 30% 
(15,20,15,20) 238 108-871 30% 

aNonnegativity of the variables assumed in all cases; m 1 refers to the number of constraints in X, and 
m to the number of constraints of the form g(x, y) >10. 

bGlobal optimum found. 
CNo apparent convergence for most problems after 10 minutes of CPU time. 

Each prob lem set was characterized by the n u m b e r  of x and  y variables,  and  the 

n u m b e r  of i ndependen t  and  jo in t  contraints.  Ten cases were run  for each set with 

per formance  being measured  by the 'average n u m b e r  of i terat ions ' ,  the ' range of 

i terat ions, '  and  whether  or not  the global op t imum was found.  C ompu t a t i on  times 

are not  reported because the work was done  on different machines  using codes 

embodying  disparate levels of sophist ication.  

An i terat ion for the b ranch  and b o u n d  algori thm is defined as the solut ion to one 

subprob lem at a node in the tree 1. Cons ider ing  the first p rob lem set where m + n2 = 10, 

1 At this step, the actual computations were performed with a reduced gradient algorithm, itself 
requiring a number of iterations. This number, though, was relatively small since the previous solution 
provided a good starting point. 
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this implies a total of  2 1 1  - -  1 nodes. For the ten problems investigated 24 iterations 
on average were required, indicating that only about 1% of the tree had to be 

searched. The results were not nearly as positive for the barrier method where an 
iteration is defined as a solution to problem (6) for a particular value of r. Here/3 
was taken to be logarithmic and GRG2 was used for the computations. The code 
was terminated when the objective function failed to improve by more than 2 percent 

in five consecutive iterations, or when the equivalent of  10 minutes of  CPU tiw ~ 
on an IBM 3081-D had elapsed. Notice that none of the problems in the third set 
met the convergence criterion within the allotted time, and for the first two sets 
global optimality proved elusive. For GRG2 an iteration is defined as the calculation 

of the reduced gradient and the solution to the corresponding line search problem. 
Although performance was relatively .good, the global opt imum was rarely 
uncovered, and in some cases, the code stopped with only a point in IR. 

5. Discussion and conclusions 

The branch and bound algorithm presented above is designed to efficiently solve 
the BLPP when the leader's objective function and constraint set are convex, and 
the followers' problems are quadratic. By exploiting the properties of  the inducible 

region an active set strategy permits us to quickly develop a tight upper  bound, and 
thus markedly reduce the number  of  subproblems that must be set up and solved. 
The numerical results tend to bear this out; in all cases, only a small fraction of the 
nodes in the underlying branch and bound tree had to be examined. 

By way of  comparison two other procedures were investigated but did not fare 
quite so well, primarily due to the sharp nonlinearities associated with the BLPP. 

In approximately 50 percent of  the test cases they were unable to find the true 
solution, and in all cases, global optimality could never be independently confirmed. 

As suggested by Example 3, the Algorithm can readily be modified to accommodate  
more general functional forms, but not without suffering some decline in efficiency. 
Further, if the rational reaction sets, M p ( x ) ,  are single-valued, then the Algorithm 

will also solve the linear BLPP with a minor modification to deal with the potential 
for multiple optima in (4). With regard to the nonlinear case, if the followers' 
problems are convex, it may be possible to replace ( l c ) - - ( l e )  with their equivalent 
Lagrangian duals, write the first order stationarity conditions of  each to get (4c), 

and then devise an iterative scheme that will converge at least locally. 
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