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In this paper a model for a two-level planning problem is presented in the form of a static
Stackelberg game. By assumption, play is sequential and noncooperative; however, the leader
can influence the actions of the followers through a set of coordination variables while the
followers’ responses may partly determine the leader’s payoff.

Under certain convexity assumptions, it is shown that the feasible region induced by the leader
is continuous in the original problem variables. This observation, coupled with two corollary
results, are used as a basis for a hybrid algorithm which clings to the inducible region until a
local optimum is found. A branching scheme is then employed to located other segments of the
region, eventually terminating with the global optimum. A number of examples are given to
highlight the resuits, while the algorithm’s performance is tested in a comparison with two other
procedures.
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1. Introduction

In the standard formulation of a Stackelberg game the dominant player is desig-
nated the ‘leader’ and has control over the decision vector x€ X = R™ while the
‘followers’ individually control the decision vectors y,€ Y, < R™», p=1,..., P (see
Basar and Selbuz, 1979; Simaan and Cruz, 1973; Tolwinski, 1981). It will be assumed
that the leader is given the first choice and selects an x € 2(X)< X to minimize
his objective function F. In light of this decision, the followers selecta y, € Y, n £2,(x)
to minimize their individual objective functions f,, where F: XxY->R' Y=
YixY,x:--xY,cR™, f,: XxY,>R', and the sets 2(X) and 0,(x) place addi-
tional restrictions on the feasible regions of the leader and followers, respectively.
For the static case, this leads to the bilevel programming problem (BLPP) (Aiyoshi
and Shimizu, 1981; Bard and Falk, 1982; Bard, 1983a; Bialas and Karwan, 1984,
Fortuny-Amat and McCarl, 1981) given below.

min F(x, y(x)) (1a)
subjectto xe X ={x: H(x)=0}, (1b)
min f,(x, y,) (1¢)

subjectto g,(x,y,)=0, (14d)
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Y€ Y, ={y: Gp(3,) =0}, (1e)
p=1,..., P,

where H, G,, and g, are vector valued functions of dimension m,, m,,, and m,,,
respectively. For convenience define m =% (m,, +m;,).

In this paper we present an active set approach (see Gill et al., 1981) within the
context of branch and bound to solve the “quadratic” BLPP. In the next section
assumptions and basic notation are offered along with an example to help fix ideas.
The algorithm is presented in Section 3 and demonstrated with a simple example.
Two problems taken from the literature are analyzed in Section 4 and our general
computational experience is highlighted in Section 4. Section 5 concludes with a
discussion of the results, and some suggestions for future research.

2. Terminology, assumptions, and properties

In the sequel it will be assumed that the leader has full knowledge of the followers’
problems, and that cooperation is prohibited. This precludes the use of correlated
strategies and side payments. The following notation will be used to facilitate the
development.

BLPP Constraint Region:

N={(x,y):xeX,y,€Y,,8(xy)=0,p=1,... P}
Projection of (2 onto the Leader’s Decision Space:
Q(X)={xe X: 3y such that (x, y) € 2}.
Follower p’s Feasible Region for x € X fixed:
2,(x)={3p: ¥, € ¥y, g,(x, ,) =0}
Follower p’s Rational Reaction Set:
M, (x) ={y,: min(f,(x, y,): y, € 2,(x))}.
Inducible Region:
IR={(x,y): xe 2(X),y,e M,(x),p=1,..., P}.

In order to ensure that (1) is well posed we make the additional assumption that
£ is nonempty and compact, and that for all decisions taken by the leader, each
follower has some room to respond; i.e., £2,(x) # 0. The rational reaction sets, M, (x),
define these responses while the inducible region, IR, represents the set over which
the leader may optimize. Thus, in terms of the above notation, the BLPP can be
written as

min(F(x, y): (x, y) € IR). (2)
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It should be mentioned that in practice the leader will incur some cost in
determining the decision space, £2(X), over which he may operate. For example,
when the BLPP is used as a model for a decentralized firm with the corporate office
representing the leader and the divisions representing the followers, coordination
of lower level activities by the former requires detailed knowledge of production
capacities, technological capabilities, and routine operating procedures (see Bard,
1983b). Up-to-date information in these areas is not likely to be available to corporate
planners without constant monitoring and oversight.

For the remainder of the paper it will be assumed that F, —H, and — G, are convex
in all their arguments, —g, is convex in y for x fixed, f, is strictly convex in y for
x fixed, and that all functions are twice continuously differentiable. This assures
that all solutions to the subproblems (1c)-(1e) are unique, implying that M,(x) is
single-valued and that the inducible region could be replaced by a unique response
function, say, y = ¥(x). As a consequence we have:

Proposition 1. Under the above assumptions on the functions in problem (1), the
inducible region, IR, is continuous.

The basis for the proof can be found in (Hogan, 1973, Corollary 8.1); the same
result was established for the linear BLPP by Bard (1984) using duality arguments.
The fact that the inducible region is continuous will be exploited in the algorithm
presented in the next section, as will the following result of Bard and Falk (1982).

Proposition 2. Let f,, —g,, and —G, be continuous and convex in y, for all x€ X and
assume that a constraint qualification holds for (1c)-(1e) with x fixed at x*. Then a
necessary and sufficient condition that (x*, y*) solves (1) is that there exists au™* € R™»
and a U*e R™» such that (x*, y*, u*, U*) solves

nin F (x, ) (4a)
subject to xe X, (4b)
Vo fo (%, 3) =,V g,(x, y,) — UV, G, (y,) =0, (4¢c)
u,g, (%, y,) + U, Gy(y,) =0, (4d)
8, (x,5,)=0, (4e)
G,(y,) =0, (4f)
u,=0, U,=0, (4g)
p=1,..., P,

where u, and U, are the m,, and m;,-dimensional vectors of Kuhn- Tucker multipliers
associated with the followers’ problems.
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Corollary 1. If f, (p=1,..., P) is quadratic in (x, y,) and {2 is polyhedral then the
inducible region is piecewise linear.

Proof. As x is varied the solutions to the subproblems (1¢)-(1e) either occur on a
face of dimension <m—1 of £ or in its interior. In the latter case we have
V,,f>(%, y,) =0 from (4c). The result then follows from Proposition 1. [J

Corollary 2. Let F(x, y) be strictly convex in (x, y), f,(x, y,) be quadratic in (x, y,),
and  be polyhedral. Ifz"' = (x', y', u', U') and 2> = (x?, y?, u”, U?) are local solutions
to problem (4) and both lie on the same face of {2 then that face cannot be in IR.

Proof. Let z= (%, 7, i, U)=az'+(1—a)z’, a« €[0, 1] be a line on the face common
to z' and z” and assume Z satisfies constraints (4b)-(4g); i.e., (X, ) € IR. From strict
convexity we have F(Z) < aF(z')+(1—a)F(z?) which, for « in the neighborhood
of 0 or 1, contradicts the assumption that z' and z* are local optima. In particular,
(4d) must be violated. [J

Corollary 3. Let F(x, y) be convex in (x, y), f,(x, y,) be quadratic in (x, y,), and ()
be polyhedral. Then the set of solutions io problem (1) is convex.

Example 1

min F(x, y) = (x—5)2+(2y+1)%,

x=0

min f(x, y) = (y = 1)’ ~ 1.5xy

subjectto 3x—y=3,
—x+0.5y=—4,
—x—y=-7,

Figure 1 displays the BLPP constraint region, {2, and the inducible region, IR,
for Example 1. Notice that the latter is nonconvex, and unlike the case where all
the functions are linear, does not lie wholly on the faces of (2; however, its piecewise
linear nature can be observed. Nonconvexity portends the existence of local solutions
which are located at (1,0) and (5,2), and thus suggests that even the simplest of
formulations may be difficult to solve without resorting to some type of branch and
bound or cutting plane procedure. Note that if (1, 0) and (5, 2) are joined by adding
the constraint 0.5x —y < 0.5 to the example, Corollary 2 states that if these points
remain local optima (which they do) then the hyperplane 0.5x — y = 0.5 cannot be
in IR.
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Fig. 1. Geometry and inducible region for Example 1.
3. Algorithmic developments

The implicit nature of M,(x), and hence, the inducible region, militates against
solving problem (1) directly. Recognizing this fact, Aiyoshi and Shimizu (1981)
used a barrier method to recast (1¢)-(1e) into an unconstrained problem of the form

min P;(x,,) = /,(%, 3) + 1B (g (% 3p), Gyp(3,)), >0, (5)

where 8(g,, G,) is a barrier function appropriately defined on the interior of 2(x).
They then replaced (5) with its first order stationarity condition to obtain

min F(x, y) (6a)

x,y

subjectto xe X ={x: H(x)=0}, (6b)
v, Pp(x,¥,)=0, p=1,...,P. (6¢)

Under the same convexity assumptions stated in Section 2, they were able to show
that for the strictly null sequence {r*}, solutions to (6) converge to a local solution
of (1). Bard and Falk (1982) took a similar approach by exploiting Proposition 2,
but in either case solution times became excessive as the problem size grew.

In an attempt to improve on current techniques a generalized branch and bound
algorithm is proposed for the case where F is strictly convex, f is quadratic, and g
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is affine. Extensions to the case where f and —g are both convex in y for x fixed
are straightforward. The basic idea is to first find a point in the inducible region,
then iterate using an active set strategy to arrive at a local solution to (4). This will
furnish a good upper bound on F that will prove valuable in subsequent fathoming.
For ease of presentation it will be assumed from hereon out that p=1 and that
g(x, y)=(g:(x, y), Gi(y1))": R" x R R™. Notationally, let I ={1, ..., m}. Each
path II, in the branch and bound tree will correspond to an assignment of either
u; =0 or g; =0 for i€ I, = I, thus identifying a partial solution. More specifically, let

Si={iiiel, and g, =0},
Se={i:iel, and u; =0},

Iy ={itig I} =1\I,
Ji={izie Sy, g=0,I,=0}

A completion of I, will be an assignment of either u; or g; for all i in the index set
I, of free variables. Note that when I, =@ we are in the inducible region. The last
set, J, identifies those surfaces which are incident to the current segment of the
inducible region and, by Proposition 1, candidates for extending it in the direction
of decreasing F. In all, the branch and bound tree contains 2™ —1 nodes. Upper
and lower bounds on F will be represented by F and F, respectively, while S\i will
be used to denote S\{i} and S Ui to denote S U {i} for any set S and element i.

Algorithm

Step 1: (Initialization) Solve min{F(x, y):xe X, V f(x,y)—uV, g(x,y)=0,
g(x,y)=0, u=0} to get (x° y°, u®), and put F = F(x°, y°); also put F =co.

Step 2: (Obtaining a Feasible Point) Fix x at x° and solve min{f(x°, y): g(x°, y)=
0} to get a point (x° 7°) in IR. If F(x° #°)=F stop; otherwise determine the
partition at (x°, #°) and fix S} and S for path II,.

Step 3: (Bounding) Solve min{F(x, y): x€ X,V f(x, y) —uV,g(x,y) =0, gi(x, y) =
0, ieS;; u;=0, ie Sy} to obtain (x*, y*); put F=min[F, F(x* y*)] and stop if
F = F; if no solution exists fathom the node. Go to Step 4.

Step 4: (Advancing and Fathoming) Select an i € J, and call it i;. If none exists
fathom all nodes on the path II, such that g;=0 and go to Step 5. If the number
of binding constraints is <n,+n, then put k< k+1, Sy « Sy ui,, Sx < Se\i;, and
Ji < Ji\iy; otherwise select an i€ Sy, call it i, and put k< k+1, Sy« S{ Ui\,
Sr < Scui\i;, and J < J;\i;. Go to Step 3.

Step 5: (Backtracking) Select a new ieJ, (r=1,...,k—1) and call it ;. If none
exists fathom all nodes on the paths II, such that g; =0 and to to Step 6; otherwise
select an i€ S;, call it i, and put k< k+1, S < S, Ui\, St < S; Ui\i;, and
Je<JA\i;. Go to Step 3.

Step 6: (Branching) Select an unfathomed node on any of the paths II; such that
ie Sy and g; #0, call it i;; if none exists go to Step 8; otherwise go to Step 7.
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Step 7: (Fathoming) Solve min{F(x,y):xeX, V f(x,y)~2ZuV,g(x,y)=0,
g(x,¥)=0, g.(x,y) =0} to get a point (x°, »°) in IR. If F(x° y°)= F, fathom all
nodes on paths containing g, =0 and go to Step 5; otherwise put k< k+1 and go
to Step 2.

Step 8: (Degenerate Case) Attempt to solve min{F(x, y): xe X, V,f(x,y)=0,
g(x,y)=0, u;=0, Vi} to get a point (x°, y°) in IR. If a solution exists update F.
Go to Step 9.

Step 9: (Termination) Declare the feasible point in IR associated with F the
optimal solution.

At Step 1 a relaxed problem is solved to get a lower bound on F. The resultant
value of x is then used at Step 2 to locate a point in the inducible region and to
test for global optimality. At Step 3 we minimize over the active constraint surface
represented by S} to get (x*, y*), and update the upper bound accordingly. This is
an attempt to satisfy Proposition 2. At Step 4, what might be termed an ‘entering
constraint’ is identified (i;) which has the property that it is incident to the current
segment of the inducible region; that is, g, (x*, y*) =0 and i, £ S;. A practical way
of choosing i, is to solve: min,[~VF(x* y*)-Vg(x" y*)/|VF(x¥ y")| -
[Vg:(x¥, ¥*)||] which determines the surface on which F is decreasing most rapidly.
If all the elements in J; have been exhausted, then, from the continuity of the
inducible region (Proposition 1), we can conclude that a local optimum has been
found. Finally, the choice of the ‘leaving constraint’ (i,) if necessary is problem
dependent and thus fairly arbitrary. With certain qualifications the constraint associ-
ated with the smallest multiplier seems to produce good results.

At Step 4 when a local solution is reached all nodes along the paths where
g(x*, y*) =0 can be fathomed, once again due to the continuity of IR and Corollary
2. This turns out to be an extremely powerful step, trimming the branch and bound
tree by a factor as large as 2™ (where M is the number of active constraints).
Backtracking at Step 5 is designed to return to a previously encountered point in
the inducible region and to continue minimizing, but in a different direction. When
all the potential paths are explored we branch at Step 6 and then solve a new
subproblem at Step 7 to return to IR. The last problem to be solved at Step 8
corresponds to the case where all u; are zero. The procedure terminates when every
node has been fathomed.

Theorem 1. For F strictly convex in (x,y), f quadratic in (x,y), and g affine, the
Algorithm terminates with a global optimum to problem (1).

Proof. By construction, the Algorithm explores all nodes of the underlying branch
and bound tree. And by hypothesis, all subproblems solved at Step 3 are convex,
so for a given completion, no superior local optimum is overlooked. [
Bookkeeping — The path II, in the branch and bound tree can be concisely
represented by an [-dimensional vector, where ! is the current depth of the tree.
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The order of the components is determined by their “level.” Indices only appear
in the vector I, if they are in I, and appear underlined if the complementary
condition has already been considered. To facilitate branching to any node in the
tree the following notation is used. If i€ I, let is appear in II; as

i if ie Sy and u; =0 has not been considered,
i if ie ST and u; =0 has been considered,
—i if ie S, and g; =0 has not been considered,
—i if ie S and g; =0 has been considered.

When branching to say g, =0 from node v, we simply change II, to (II;, t). In
backtracking, the rightmost nonunderlined entry is underlined, its sign changed,
and all entries to its right erased. If this procedure is followed branching between
any two nodes can occur without overlooking the optimal solution.
Demonstration — In order to see how the algorithm works let us return to Example
1 and Figure 1. Solving the relaxed problem at Step 1 yields the point (4,0) and a
lower bound F =2. Fixing x at 4 and solving the subproblem at Step 2 puts us on
constraint 3 (C3) in the inducible region. Thus S} ={3}, S; ={1, 2,4}, I; =@, and
(x°, 7% = (4, 3). Minimizing F over the current segment of the inducible region at
Step 3 gives (x', ') = (5, 2), an upper bound of F =25, and J; ={2}. The first path

=00
=2

ool

=42.5 Infeas. F=17 F=25

Fig. 2. Branch and bound tree for Example 1.
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in the branch and bound tree as shown in Figure 2 terminates at node 4, and may
be represented by the vector I, =(3, —1, -2, —4). At Step 4 we select i, =2 and
i, =3 and return to Step 3 with k =2 and I, = (-3, —1, 2, —4). This path corresponds
to node 8. An attempt to solve this problem fails due to infeasibility so the fathoming
rule is applied. After eliminating all nodes on paths that contain g;=0 and g,=0
we backtrack to J; which is now empty. Consequently, we branch to an unfathomed
node at Step 6. The choices are those which are along the paths containing g, =0
or g, = 0. Arbitrarily selecting the first and then solving the relaxed problem at Step
7 we arrive at the point (1, 0) with F =17. Setting k =3 and returning to Step 2 we
see that this point is in IR. Step 3 gives F=17 at node 11 in the tree with
I11;,=(-3,1, -2, —4); Step 4 indicates that this is a local optimum, and proceeding,
all paths containing g; =0 and g,=0 are fathomed. Skipping to Step 8, the only
subproblem remaining is associated with u; =0, Vi. The solution occurs at (%5, %) in
Figure 1 with F=42.5 and II,= (-3, -1, =2, —4) so the corresponding node (13)
is fathomed and the algorithm terminates. In all, 4 out of a possible 16 subproblems
had to be solved, and 6 out of a possible 31 nodes had to be explored.

4. Computational experience

Before presenting the results of an analysis in which the above algorithm was
compared with two other approaches, two examples will be given to highlight its
performance. The first was prepared by Aiyoshi and Shimizu (1981) and the second
by Bard (1984).

Example 2

max F(y(x))=(200=y;;— y,1)(¥11+y21) + (160 = y15— y22) (12 + y22)
subjectto  xy;+ X125+ X1 + X2, <40,

0<x,,<10,0sx,<35,

0=<x,=<15,0=<x,,=<20,

min £,(3) = (= 4)+ (2= 13)°

subjectto 0.4y, t+ 0.7y, = xy4,

0.6y, 1+ 0.3y = x5,
0=y, y12=<20,
H;izn (32 =(ya— 35)°+ (y—2)

subjectto 0.4y, +0.7y,, < X5,
0.6y,1+0.3y5, < X35,
0=y, ¥22=<40.
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A solution to the relaxed problem at Step 1 yields an upper (rather than lower
because we are maximizing) bound F =6600 at x°=(8.24, 4.86, 10.76, 16.14), 1% =
(3.1,10) and y3=(26.9, 0). Because complementary slackness is not satisfied at this
point, we must solve the subproblem at Step 3 to find a point in IR. After advancing
at Step 4, we arrive at x' =(7.91, 4.37, 11.09, 16.63), y; = (2.29, 10) and y3 = (27.21, 0)
with an objective function value equal to the upper bound; that is, F(x', y") = 6600,
so we terminate with f;=11.92 and f,=355. It is interesting to note that x=
(7,3,12,18), y,=(0,10) and y,=(30,0) is also optimal, providing the followers
with payoffs of f; =25 and f, =29. Corollary 3 implies that any convex combination
of these points is likewise optimal so some ambiguity still exists in the model,
however, for any of these points chosen by the leader, the followers’ solutions seem
to lie on the efficient frontier. In general, though, this will not be the case.

Example 3

min F = —x{—3x,—4y,+y3

X
subjectto  x3+2x,<4,
x, 20, x,=0,

min 2x7+y7 -5y,
y

subjectto  x;~2x,+x3—2y,+y, =3,
X +3y,—4y, =4,
y12=0, y,=0.

Because the first constraint in this example is nonlinear, the Algorithm has to be
modified to ensure that no local optima are overlooked. In particular, it is no longer
possible to fathom all nodes containing binding constraints at a local solution unless
they are all linear. Therefore, rather than try to adhere to the inducible region at
all costs, the more traditional strategy of backtracking and solving a relaxed problem
is adopted once a local minimum is found.

To begin, the computations at Step 1 yield x°= (0, 2) and y°= (4, 1) with a lower
bound F=-21. Executing Steps 2 and 3 gives an upper bound F=-14.13 at
x'=(1.45,0.95) and y' = (1.88, 0.64) along the path II, = (2, —1, —3, —4), with J| =
{1}. Because there are only 3 binding constraints at this point and n,+n,=2+2=4,
we solve the problem associated with the path IT,=(2, 1, —3, —4) to arrive at a new
upper bound F=—14.36, giving J, = 0. Ordinarily, all nodes on paths containing
g:1=0 and g, =0 would now be fathomed, but this would be incorrect as mentioned
above. Instead, because it seems that g, =0 produces a good upper bound, we
branch to the top of the tree and solve the relaxed problem where u,=0 on path
II;=(-2). The resultant formulation is infeasible so all successor nodes are
fathomed. An attempt to branch to a different part of the inducible region at Step
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6 with g, =0 and either g; =0 or g, =0 fails and the algorithm terminates with what
appears to be the global optimum. However, because a number of the subproblems
encountered at Step 3 were nonconvex, global optimality is not guaranteed (although
in this case it was attained).

Comparative Results — In an attempt to more precisely gauge the efficiency of
the Algorithm with respect to the underlying branch and bound tree, as well as
other numerical procedures, a range of sample problems were generated and solved.
Specifically, the Algorithm was compared with the barrier method of Aiyoshi and
Shimizu, and a version of GRG2 (Lasdon et al., 1978) applied directly to problem
(4). The results are presented in Table 1. In all cases, nonnegativity of the variables
was assumed, but not reflected in the size of m which only counts the number of
constraints of the form g(x, y)=0.

Table 1

Comparative results

Procedure Problem size Average Range of Percent of
(n,, m, n,, m)* number of iterations problems
iterations solved®
Branch and bound algorithm (5,5, 5, 5) 24 2-84 100%
(10,12, 10, 15) 77 21-174 100%
(15, 20,15, 20) 209 62-743 100%
Barrier method (5,5,5,9) 53 37-157 60%
(10, 12,10, 15) 156 122-412 50%
(15,20,15,20) ¢ — — —_
GRG2 (5,5,5,5) 31 11-97 50%
(10, 12, 10, 15) 99 47-241 30%
(15, 20,15, 20) 238 108-871 30%

*Nonnegativity of the variables assumed in all cases; m, refers to the number of constraints in X, and
m to the number of constraints of the form g(x, y)=0.

*Global optimum found.

°No apparent convergence for most problems after 10 minutes of CPU time.

Each problem set was characterized by the number of x and y variables, and the
number of independent and joint contraints. Ten cases were run for each set with
performance being measured by the ‘average number of iterations’, the ‘range of
iterations,” and whether or not the global optimum was found. Computation times
are not reported because the work was done on different machines using codes
embodying disparate levels of sophistication.

An iteration for the branch and bound algorithm is defined as the solution to one
subproblem at a node in the tree'. Considering the first problem set where m + n, = 10,

! At this step, the actual computations were performed with a reduced gradient algorithm, itself
requiring a number of iterations. This number, though, was relatively small since the previous solution
provided a good starting point.
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this implies a total of 2''—1 nodes. For the ten problems investigated 24 iterations
on average were required, indicating that only about 1% of the tree had to be
searched. The results were not nearly as positive for the barrier method where an
iteration is defined as a solution to problem (6) for a particular value of r. Here B
was taken to be logarithmic and GRG?2 was used for the computations. The code
was terminated when the objective function failed to improve by more than 2 percent
in five consecutive iterations, or when the equivalent of 10 minutes of CPU timr-
on an IBM 3081-D had elapsed. Notice that none of the problems in the third set
met the convergence criterion within the allotted time, and for the first two sets
global optimality proved elusive. For GRG?2 an iteration is defined as the calculation
of the reduced gradient and the solution to the corresponding line search problem.
Although performance was relatively good, the global optimum was rarely
uncovered, and in some cases, the code stopped with only a point in IR.

5. Discussion and conclusions

The branch and bound algorithm presented above is designed to efficiently solve
the BLPP when the leader’s objective function and constraint set are convex, and
the followers’ problems are quadratic. By exploiting the properties of the inducible
region an active set strategy permits us to quickly develop a tight upper bound, and
thus markedly reduce the number of subproblems that must be set up and solved.
The numerical results tend to bear this out; in all cases, only a small fraction of the
nodes in the underlying branch and bound tree had to be examined.

By way of comparison two other procedures were investigated but did not fare
quite so well, primarily due to the sharp nonlinearities associated with the BLPP.
In approximately 50 percent of the test cases they were unable to find the true
solution, and in all cases, global optimality could never be independently confirmed.

As suggested by Example 3, the Algorithm can readily be modified to accommodate
more general functional forms, but not without suffering some decline in efficiency.
Further, if the rational reaction sets, M,(x), are single-valued, then the Algorithm
will also solve the linear BLPP with a minor modification to deal with the potential
for multiple optima in (4). With regard to the nonlinear case, if the followers’
problems are convex, it may be possible to replace (1c)—(1e) with their equivalent
Lagrangian duals, write the first order stationarity conditions of each to get (4c),
and then devise an iterative scheme that will converge at least locally.
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