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The availability of an LP routine where we can add constraints and reoptimize, 
makes it possible to adopt an integer programming approach to the travelling-salesman 
problem. 

Starting with some of the constraints that define the problem we use either a branching 
process or a cutting planes routine to eliminate fractional solutions. We then test the re- 
suiting integer solution against feasibility and if necessary we generate the violated con- 
straints and reoptimize until a "genuine" feasible solution is achieved. 

Usually only a small number of the omitted constraints is generated, 
The generality of the method and the modest solution times achieved leads us to be- 

lieve that such an LP approach to other combinatorial problems deserves further con- 
sideration. 

1. Introduction 

The Travelling Salesman Problem can be described as follows: Find 
the order in which a salesman must visit each one of  a set of n cities and 
return to the starting city so that the total distance travelled is mini- 
mized. In graph theoretic terminology this may be stated as: find the 
shortest Hamiltonian circuit of  a graph. 

Integer programming formulations of the problem appeared in [3,4, 
151 and were reviewed in [2]. 

The one that is used in this paper is repeated below: 

minimize ~ xq ci! , 
i,] 

subject to ~ xq 
] 

= 1 ( i =  1 , . . . , n ) ,  
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. ~ x i j = l  ( j =  l, ..., n) , 
l 

x# t> 1 (1.2) 
i~S 

for all partitions (S, S) of the set of  n cities such that 2 ~< I SI ~< n - 2 
where by ISI we denote the number of  elements in S. 

xij = 0, 1. (1.3) 

In the symmetric case (i.e. when c o = cii ) the above set of  constraints is 
reduced to: 

xik + ~ xkj  -'- 2 (k = 1, ..., n ) ,  (1.4) 
i < k  j > k  

i•sxij/> 2,  (1.5) 

xii = 0, 1. (1.6) 

In this case on ly  variables x i / w i t h  i < j are considered (or more gen- 
erally if xij is considered to be a variable X/i is not). Also if partition 
(S, S) is considered, partition (S, S) is not and S must be such that 
3 ~ < l S [ ~ < n - 3 .  

Thus it should be clear that the symmetric case involves half the num- 
ber of  variables and constraints than the asymmetric and no loops of  
length 2. Perhaps it is worth mentioning that whenever the set of  con- 
straints (1.4) is satisfied the set of  constraints (1.5) is equivalent to: 

Xi] ~< I S I  - 1 . (1.7) 
i ~ S  
j ~ S  

Constraints (1.1) or (1.4) describe the related assingment problem. 
Constraints (1.2) or (1.5) are called the loop constraints because they 

describe the proper connectedness of the graph that represents a given 
integer, solution or the equivalent condition of  blocking subtours (form 
(1.7)). 

A number "of branch and bound algorithms [ 10,13,17] have been 
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developed for this class of problem. The brief review that follows will 
help to point out the differences with the presently proposed method. 

In the Little (et al.) [13] algorithm, at every stage a variable is chosen 
and fixed at its two alternative values thus separating the current subset 
of feasible solutions into two other subsets. The assignment problem 
which is used to evaluate a lower bound for each of the two subsets is 
not actually solved but a lower bound to the assignment problem is ob- 
tained (which is also a lower bound to each of the two subsets). This re- 
sults in a relatively big tree with relatively little computational effort at 
,each node. The separation process continues until either a feasible solu- 
tion is discovered, or the current subset is fathomed [7]. 

Loop constraints are treated implicitly by fixing at 0 after every 
separation stage the variables that might create subloops. 

In Eastman's [5] and Shapiro's [17] algorithms the related assign- 
ment problem is solved at every stage and whenever subloops occur one 
of them, say of length k, is chosen and a multiple branch into k sub- 
problems is made restricting in turn each of the variables that form the 
subloop to take a zero value. This way of eliminating the subloops is 
somewhat refined in [ 1 ], which also reports using Edmonds' and John- 
son's 2-matching algorithm for subproblem solution [6]. 

Finally in [10] the minimum spanning tree is used to derive a tight 
bound thus creating a compact tree at the expense of heavier computa- 
tion at each node. 

A common characteristic in the above algorithms is that they do not 
allow fractional values of the variables to occur. By choosing to deal 
either with the assignment problem or the minimum spanning tree they 
never generate fractional solutions and the subproblems can be solved 
by using a more efficient routine than the simplex method. 

The algorithm that we will present treats both the assingment con- 
straints and the loop constraints explicitly thus allowing the occurrence 
of fractional solutions which are then eliminated by branching. 

In that sense it is more similar to the earlier methods proposed for 
the solution of the problem by Dantzig, Fulkerson and Johnson [3,4], 
and particularly to that proposed by Martin [14]. 

2. The algorithm 

The terminology used to describe the following algorithm is derived 
from Geoffrion and Marsten [7]. 
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The basic feature of the algorithm is that is uses two types of relaxa- 
tion. 

The first type (R1), is the usual relaxation of the integrality condi- 
tions. As a result fractional solutions may arise. Using Little's principle 
[13] w.e choose one of the variables currently not satisfying the inte- 
grality requirements and fix it Mternatively at each of  its two possible 
values thereby separating the current subproblem into two others 
(descendants), one of  which becomes the current subproblem to be 
analysed, the other entering the candidate list. 

The second type of  relaxation (R2) consists of starting the problem 
with a subset of  the set of  constraints that define it. 

Let C be the set of  the constraints that completely describe the fea- 
sible solutions to the problem (apart from the integrality conditions) 
and (C1, C2) be a partition of  C. 

Initially a solution is found satisfying the constraints that belong to 
the set C 1. Some of the constraints that belong to C 2 may then be satis- 
fied by coincidence. But generally in the absence of  these constraints we 
may get integer solutions - in most cases after having branched suffi- 
ciently - which will be infeasible because they violate some of the 
omitted constraints. We then generate some (or all) of  the violated con- 
straints and reoptimize the current candidate problem. 

This is where the present approach is very similar to the approach 
taken in [3,4], but  it is more general in three ways. 

In the first place the relaxation can be used within a branch and 
bound context.  

Secondly, in principle any subset C 1 of the original set of constraints 
can provide a valid starting point. 

Thirdly, the additional constraints are generated automatically by a 
single computer  run. This is made possible by the use of  the L a n d -  
Powell routines [ 12]. These enable subroutines to be added to the pro- 
grams to test the genuine feasibility of an integer solution, to add any 
violated constraints, and a return to feasibility and integrality to be 
made. 

The use of  such a method may be justified by the following con- 
siderations. 

(1) Integer feasible solutions to some combinatorial problems have a 
specified structure which can be asserted without  it being necessary to 
explicitly test that all the constraints defining that structure are satis- 
fied. 



P. Miliotis / Approaches to the travelling salesman problem 371 

In the case of the travelling-salesman problem, using a proper label- 
ling of the cities (nodes of the graph), not only are we able to examine 
whether an integer solution is a Hamiltonian cycle, but we also have all 
the information to generate the violated constraints if it is not. 

(2) By generating only the necessary constraints (i.e. those that are 
violated by the current integer solution) we may arrive at the optimal 
solution and prove it to be optimal (by exploiting a sufficient number 
of branches) having used only a very small proportion of the original 
(total) number of constraints. The rest of the constraints will remain 
ineffective throughout the process and therefore they will never be gen- 
erated explicitly. 

In what follows, the basic steps of  the algorithm are described. A 
Flowchart is given in Fig. 1, and some explanations follow. The capi- 
talized names used in the steps refer either to the names of  subroutines 
or to values of the parameters in the programs used. Since the program 
used is set to maximize a function, the objective function is of  the form 
m a x { -  ~ ci/xi/}, 

Step 1 : Initialization: Define the arcs that form the graph representing 
the problem. Generate the constraints that constitute C a . Define the 
initial values for the parameters of the LP and the Branch and Bound 
routine, e.g. initialize the candidate list to contain the initial LP prob- 
lem, the value of the best feasible solution discovered so far (BEST) to 
be a large negative number etc. (Subroutines BBDATA and DATA). 

Step 2:Select  a problem from the candidate list to become the cur- 
rent subproblem. 

Step 3 : Optimize (or reoptimize) the current subproblem (subroutine 
LP). 

Step 4: Fathoming Criteria (subroutine ISTAIL). 
4.1. If the current subproblems is infeasible go to step 10 (ITAIL 

=3).  
4.2. If the LP-optimal value of the current subproblem is not bet- 

ter than BEST, go to step 10 (ITAIL = 2). 
4.3. If the LP-optimal value of the current subproblem is not in- 

teger go to step 9. (ITAIL = 0). 
Step 5: The current solution is integer. (ITAIL = 1). Label the nodes 

of the graph that represents the optimal solution of the current sub- 
problem (subroutine VERTEX). 

Step 6: If all the assignment constraints are satisfied go to step 7. This 
is indicated by MHOLD still being equal to MNOW (M now) the current 
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7 
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LOOP 
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Fig. 1. 

number of constraints in C 1. Otherwise generate one (or more) of the 
violated vertex constraints and go to step 3 (subroutine VERTEX). 

Step 7: If all the loop constraints are satisfied (this is tested again by 
comparing MHOLD and MNOW) go to step 8. Otherwise generate some 
(or all) of the violated loop constraints and go to step 3 (subroutine 
CONNECT). 
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Step 8 : A  feasible solution with value better than BEST has been 
found. Call subroutine SORT to get the order of  the visit of  the cities 
for that solution, update BEST and go to step 10. 

Step 9: Separate the current subproblem into two other subproblems 
and go to step 11 (subroutine BRANCH). 

Step 10: Backtrack (subroutine BACKUP). 
Step 11 : Update candidate list. 
Step 12:Check if candidate list is empty. If it is empty stop other- 

wise and go to step 2. 
Remarks. With the exception of  VERTEX and CONNECT which are 
briefly described below, these are the subroutines described in [12 ], and 
used here with minor modifications. 

Subroutine VERTEX sets up a proper labelling of the nodes which 
enables us to test feasibility. The rules used are the following: 

(1) The nodes of  the graph that belong to different disconnected 
parts will have labels of  different absolute values and the nodes of  the 
graph that belong to a connected part will have labels of  the same ab- 
solute value. 

(2) The nodes that have an odd number of  arcs incident to them will 
have a negative label and the nodes that have an even number of  arcs 
incident to them will have a positive label. VERTEX also generates ex- 
plicitly any assignment constraints that are violated at the current in- 
teger point. 

Subroutine CONNECT generates any violated loop constraints at the 
current integer point using the labelling set up in VERTEX. CONNECT 
is entered only if the assignment constraints are satisfied and if no con- 
straints are generated in CONNECT the solution is feasible. 

Both VERTEX and CONNECT can only be entered if an integer solu- 
tion (feasible or not) has been found. 

It should be clear that the added constraints in VERTEX and CON- 
NECT are valid throughout  the problem (and not  only for the descen- 
dants o f  the current subproblem as in the case of  adding cutting planes) 
artd that one must take proper account of  the variables already fixed by 
branching. 

Finally, in the actual program the updating of  the candidate list is 
embedded within the subroutines BRANCH and BACKUP and the test 
whether the list is empty  in BACKUP. In the Flowchart  they are pre- 
sented as different steps in order to point  out  the connection with a 
general branch and bound procedure. 
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3. Computational results 

Table 1 shows some of the bigger problems that were tried of those 
found in the literature using the branch and bound algorithm. The com- 
puter used was the CDC 7600. The last two columns of the table show 
the results reported in [ 10] and in [8] respectively, for the same prob- 
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lems (wherever applicable). In the former case an IBM 360/91 was used 
and in the latter case an IBM 360/75. 

The comparative speed of the different computers involved in the 
above computations is very hard to estimate accurately. According to 
certain information the CDC 7600 is approximately 10 times faster 
than the IBM 360/75 [18, p. 165] and the IBM 360/91 3 times faster 
than the IBM 360/75 [8, p. 931. 

The starting set of constraints C 1 was the set of the assignment con- 
straints. Figs. 2 and 3 show the resulting tree graphs of the branch and 
bound procedure for problems (1) and (10). 

Heavy lines represent the branches that were actually explored and 
light lines branches that were fathomed due to their bounds. 

All the problems derived from road networks were run twice. The 
first time using the complete distance matrix and the second time using 
a reduced distance matrix by a procedure suggested in [ 16]. The reduc- 
tion takes place in two steps. Firstly using Floyd's algorithm we derive 

the shortest distances say c)]. Then running Floyd's algorithm backwards 
t t 

we drop all the variables xij for which cl. j = cik + ck] for some k. This of 
course may result in cutting off the optimal route or even producing a 
graph with no Hamiltonian circuit. 

However in the case where we allow visiting each city at least once 
(rather than exactly once) this reduction will still necessarily give the 
optimal solution, but this case is not examined here. 

In creating problem (2) we tried to restore the original distance ma- 
trix by multiplying each cost by 17 and adding 11 to the product. Since 
the costs appearing in [3, p. 395] were rounded off, the resulting dis- 
tance matrix for problem (2) may well be approximate. Note however 
that 699X 1 7 + 4 2 X l l  = 12345. 

Time includes input and output of data and results. 
In problem (8) the solution was obtained without branching. 
Some recent work, which will be reported in another paper, has used 

a cutting plane algorithm instead of a branch and bound to achieve in- 
tegrality. It appears to be more efficient except for cases in which there 
is no feasible solution. 

A modified version of the programs solves asymmetric problems but 
the computational results are not reported here. 
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4. Conclusion 

The modest  solution times achieved for problems which are recog- 
nized as testing ones give us encouragement to believe that such an LP 
approach to combinatorial problems deserves further consideration. All 
that is needed is a routine to test the genuine feasibility of  an integer 
solution, and if it is not feasible to turn on a device for generating the 
violated constraints. 

Finally in each case one may experiment using different branching 
rules and different starting points  (partition into C 1 and C2). 
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