
Mathematical Programming 10 (1976) 367-378.
North-Holland Publishing Company

INTEGER PROGRAMMING APPROACHES TO THE TRAVEL-
LING SALESMAN PROBLEM

P. MILIOTIS
University of London, London, U.K.

Received 30 July 1974
Revised manuscript received 25 July 1975

The availability of an LP routine where we can add constraints and reoptimize,
makes it possible to adopt an integer programming approach to the travelling-salesman
problem.

Starting with some of the constraints that define the problem we use either a branching
process or a cutting planes routine to eliminate fractional solutions. We then test the re-
suiting integer solution against feasibility and if necessary we generate the violated con-
straints and reoptimize until a "genuine" feasible solution is achieved.

Usually only a small number of the omitted constraints is generated,
The generality of the method and the modest solution times achieved leads us to be-

lieve that such an LP approach to other combinatorial problems deserves further con-
sideration.

1. Introduction

The Travelling Salesman Problem can be described as follows: Find
the order in which a salesman must visit each one of a set of n cities and
return to the starting city so that the total distance travelled is mini-
mized. In graph theoretic terminology this may be stated as: find the
shortest Hamiltonian circuit of a graph.

Integer programming formulations of the problem appeared in [3,4,
151 and were reviewed in [2].

The one that is used in this paper is repeated below:

minimize ~ xq ci! ,
i,]

subject to ~ xq
]

= 1 (i = 1 , . . . , n) ,

367

(1.1)

3 6 8 P. Miliotis /Approaches to the travelling salesman problem

. ~ x i j = l (j = l, ..., n) ,
l

x# t> 1 (1.2)
i~S

for all partitions (S, S) of the set of n cities such that 2 ~< I SI ~< n - 2
where by ISI we denote the number of elements in S.

xij = 0, 1. (1.3)

In the symmetric case (i.e. when c o = cii) the above set of constraints is
reduced to:

xik + ~ xkj -'- 2 (k = 1, ..., n) , (1.4)
i < k j > k

i•sxij/> 2, (1.5)

xii = 0, 1. (1.6)

In this case on ly variables x i / w i t h i < j are considered (or more gen-
erally if xij is considered to be a variable X/i is not). Also if partition
(S, S) is considered, partition (S, S) is not and S must be such that
3 ~ < l S [~ < n - 3 .

Thus it should be clear that the symmetric case involves half the num-
ber of variables and constraints than the asymmetric and no loops of
length 2. Perhaps it is worth mentioning that whenever the set of con-
straints (1.4) is satisfied the set of constraints (1.5) is equivalent to:

Xi] ~< I S I - 1 . (1.7)
i ~ S
j ~ S

Constraints (1.1) or (1.4) describe the related assingment problem.
Constraints (1.2) or (1.5) are called the loop constraints because they

describe the proper connectedness of the graph that represents a given
integer, solution or the equivalent condition of blocking subtours (form
(1.7)).

A number "of branch and bound algorithms [10,13,17] have been

P. Miliotis ~Approaches to the travelling salesman problem 369

developed for this class of problem. The brief review that follows will
help to point out the differences with the presently proposed method.

In the Little (et al.) [13] algorithm, at every stage a variable is chosen
and fixed at its two alternative values thus separating the current subset
of feasible solutions into two other subsets. The assignment problem
which is used to evaluate a lower bound for each of the two subsets is
not actually solved but a lower bound to the assignment problem is ob-
tained (which is also a lower bound to each of the two subsets). This re-
sults in a relatively big tree with relatively little computational effort at
,each node. The separation process continues until either a feasible solu-
tion is discovered, or the current subset is fathomed [7].

Loop constraints are treated implicitly by fixing at 0 after every
separation stage the variables that might create subloops.

In Eastman's [5] and Shapiro's [17] algorithms the related assign-
ment problem is solved at every stage and whenever subloops occur one
of them, say of length k, is chosen and a multiple branch into k sub-
problems is made restricting in turn each of the variables that form the
subloop to take a zero value. This way of eliminating the subloops is
somewhat refined in [1], which also reports using Edmonds' and John-
son's 2-matching algorithm for subproblem solution [6].

Finally in [10] the minimum spanning tree is used to derive a tight
bound thus creating a compact tree at the expense of heavier computa-
tion at each node.

A common characteristic in the above algorithms is that they do not
allow fractional values of the variables to occur. By choosing to deal
either with the assignment problem or the minimum spanning tree they
never generate fractional solutions and the subproblems can be solved
by using a more efficient routine than the simplex method.

The algorithm that we will present treats both the assingment con-
straints and the loop constraints explicitly thus allowing the occurrence
of fractional solutions which are then eliminated by branching.

In that sense it is more similar to the earlier methods proposed for
the solution of the problem by Dantzig, Fulkerson and Johnson [3,4],
and particularly to that proposed by Martin [14].

2. The algorithm

The terminology used to describe the following algorithm is derived
from Geoffrion and Marsten [7].

370 P. Miliotis / Approaches to the travelling salesman problem

The basic feature of the algorithm is that is uses two types of relaxa-
tion.

The first type (R1), is the usual relaxation of the integrality condi-
tions. As a result fractional solutions may arise. Using Little's principle
[13] w.e choose one of the variables currently not satisfying the inte-
grality requirements and fix it Mternatively at each of its two possible
values thereby separating the current subproblem into two others
(descendants), one of which becomes the current subproblem to be
analysed, the other entering the candidate list.

The second type of relaxation (R2) consists of starting the problem
with a subset of the set of constraints that define it.

Let C be the set of the constraints that completely describe the fea-
sible solutions to the problem (apart from the integrality conditions)
and (C1, C2) be a partition of C.

Initially a solution is found satisfying the constraints that belong to
the set C 1. Some of the constraints that belong to C 2 may then be satis-
fied by coincidence. But generally in the absence of these constraints we
may get integer solutions - in most cases after having branched suffi-
ciently - which will be infeasible because they violate some of the
omitted constraints. We then generate some (or all) of the violated con-
straints and reoptimize the current candidate problem.

This is where the present approach is very similar to the approach
taken in [3,4], but it is more general in three ways.

In the first place the relaxation can be used within a branch and
bound context.

Secondly, in principle any subset C 1 of the original set of constraints
can provide a valid starting point.

Thirdly, the additional constraints are generated automatically by a
single computer run. This is made possible by the use of the L a n d -
Powell routines [12]. These enable subroutines to be added to the pro-
grams to test the genuine feasibility of an integer solution, to add any
violated constraints, and a return to feasibility and integrality to be
made.

The use of such a method may be justified by the following con-
siderations.

(1) Integer feasible solutions to some combinatorial problems have a
specified structure which can be asserted without it being necessary to
explicitly test that all the constraints defining that structure are satis-
fied.

P. Miliotis / Approaches to the travelling salesman problem 371

In the case of the travelling-salesman problem, using a proper label-
ling of the cities (nodes of the graph), not only are we able to examine
whether an integer solution is a Hamiltonian cycle, but we also have all
the information to generate the violated constraints if it is not.

(2) By generating only the necessary constraints (i.e. those that are
violated by the current integer solution) we may arrive at the optimal
solution and prove it to be optimal (by exploiting a sufficient number
of branches) having used only a very small proportion of the original
(total) number of constraints. The rest of the constraints will remain
ineffective throughout the process and therefore they will never be gen-
erated explicitly.

In what follows, the basic steps of the algorithm are described. A
Flowchart is given in Fig. 1, and some explanations follow. The capi-
talized names used in the steps refer either to the names of subroutines
or to values of the parameters in the programs used. Since the program
used is set to maximize a function, the objective function is of the form
m a x { - ~ ci/xi/},

Step 1 : Initialization: Define the arcs that form the graph representing
the problem. Generate the constraints that constitute C a . Define the
initial values for the parameters of the LP and the Branch and Bound
routine, e.g. initialize the candidate list to contain the initial LP prob-
lem, the value of the best feasible solution discovered so far (BEST) to
be a large negative number etc. (Subroutines BBDATA and DATA).

Step 2:Select a problem from the candidate list to become the cur-
rent subproblem.

Step 3 : Optimize (or reoptimize) the current subproblem (subroutine
LP).

Step 4: Fathoming Criteria (subroutine ISTAIL).
4.1. If the current subproblems is infeasible go to step 10 (ITAIL

=3).
4.2. If the LP-optimal value of the current subproblem is not bet-

ter than BEST, go to step 10 (ITAIL = 2).
4.3. If the LP-optimal value of the current subproblem is not in-

teger go to step 9. (ITAIL = 0).
Step 5: The current solution is integer. (ITAIL = 1). Label the nodes

of the graph that represents the optimal solution of the current sub-
problem (subroutine VERTEX).

Step 6: If all the assignment constraints are satisfied go to step 7. This
is indicated by MHOLD still being equal to MNOW (M now) the current

372 P. Miliotis / Approaches to the t~avelling salesman problem

7

I UPDATE
CANDIDATE

LIST '

i11o) [CALL BACKUP I

UPDATE 1 18)
OPTIMAL
SOLUTION

~ (1)

L CALL BBDATA [

t
SUBPROBLEM

@ ' (i),

I CALL'STA,L I

191 - O

CALLBRANCH ~ IL~

(1)

(4)

t2)

~-2

F MHOLD=MNOW]

t [(5 and 6)
CALL VERTEX

'TIGHTEN R2
No BY ADDING

ASSIGNMENT
CONSTRAINT(S)

. I . (7)
[CALL CONNECT I

TIGHTEN R2 (8) Yes
- - [CALL SORT] -= BY ADDING

LOOP
CONSTRAINT(S)

Fig. 1.

number of constraints in C 1. Otherwise generate one (or more) of the
violated vertex constraints and go to step 3 (subroutine VERTEX).

Step 7: If all the loop constraints are satisfied (this is tested again by
comparing MHOLD and MNOW) go to step 8. Otherwise generate some
(or all) of the violated loop constraints and go to step 3 (subroutine
CONNECT).

P. Miliotis / Approaches to the travelling salesman problem. 373

Step 8 : A feasible solution with value better than BEST has been
found. Call subroutine SORT to get the order of the visit of the cities
for that solution, update BEST and go to step 10.

Step 9: Separate the current subproblem into two other subproblems
and go to step 11 (subroutine BRANCH).

Step 10: Backtrack (subroutine BACKUP).
Step 11 : Update candidate list.
Step 12:Check if candidate list is empty. If it is empty stop other-

wise and go to step 2.
Remarks. With the exception of VERTEX and CONNECT which are
briefly described below, these are the subroutines described in [12], and
used here with minor modifications.

Subroutine VERTEX sets up a proper labelling of the nodes which
enables us to test feasibility. The rules used are the following:

(1) The nodes of the graph that belong to different disconnected
parts will have labels of different absolute values and the nodes of the
graph that belong to a connected part will have labels of the same ab-
solute value.

(2) The nodes that have an odd number of arcs incident to them will
have a negative label and the nodes that have an even number of arcs
incident to them will have a positive label. VERTEX also generates ex-
plicitly any assignment constraints that are violated at the current in-
teger point.

Subroutine CONNECT generates any violated loop constraints at the
current integer point using the labelling set up in VERTEX. CONNECT
is entered only if the assignment constraints are satisfied and if no con-
straints are generated in CONNECT the solution is feasible.

Both VERTEX and CONNECT can only be entered if an integer solu-
tion (feasible or not) has been found.

It should be clear that the added constraints in VERTEX and CON-
NECT are valid throughout the problem (and not only for the descen-
dants o f the current subproblem as in the case of adding cutting planes)
artd that one must take proper account of the variables already fixed by
branching.

Finally, in the actual program the updating of the candidate list is
embedded within the subroutines BRANCH and BACKUP and the test
whether the list is empty in BACKUP. In the Flowchart they are pre-
sented as different steps in order to point out the connection with a
general branch and bound procedure.

374 P. Miliotis / Approaches to the travelling salesman problem

3. Computational results

Table 1 shows some of the bigger problems that were tried of those
found in the literature using the branch and bound algorithm. The com-
puter used was the CDC 7600. The last two columns of the table show
the results reported in [10] and in [8] respectively, for the same prob-

J

O

0"

O J ,

Fig. 2 .42 cities (Dantzig) Fig. 3 .8 × 8 Knight's tour,

0 feasible solution, ~) optimal solution

P. Miliotis / Approaches to the travelling salesman problem 375

ra~

o

o
,£,

o£, co @ 0 ,'~ ~ 0

o o o o ~ oo

0

0
Z
g.,

376 P. Miliot& / Approaches to the travelling salesman problem

lems (wherever applicable). In the former case an IBM 360/91 was used
and in the latter case an IBM 360/75.

The comparative speed of the different computers involved in the
above computations is very hard to estimate accurately. According to
certain information the CDC 7600 is approximately 10 times faster
than the IBM 360/75 [18, p. 165] and the IBM 360/91 3 times faster
than the IBM 360/75 [8, p. 931.

The starting set of constraints C 1 was the set of the assignment con-
straints. Figs. 2 and 3 show the resulting tree graphs of the branch and
bound procedure for problems (1) and (10).

Heavy lines represent the branches that were actually explored and
light lines branches that were fathomed due to their bounds.

All the problems derived from road networks were run twice. The
first time using the complete distance matrix and the second time using
a reduced distance matrix by a procedure suggested in [16]. The reduc-
tion takes place in two steps. Firstly using Floyd's algorithm we derive

the shortest distances say c)]. Then running Floyd's algorithm backwards
t t

we drop all the variables xij for which cl. j = cik + ck] for some k. This of
course may result in cutting off the optimal route or even producing a
graph with no Hamiltonian circuit.

However in the case where we allow visiting each city at least once
(rather than exactly once) this reduction will still necessarily give the
optimal solution, but this case is not examined here.

In creating problem (2) we tried to restore the original distance ma-
trix by multiplying each cost by 17 and adding 11 to the product. Since
the costs appearing in [3, p. 395] were rounded off, the resulting dis-
tance matrix for problem (2) may well be approximate. Note however
that 699X 1 7 + 4 2 X l l = 12345.

Time includes input and output of data and results.
In problem (8) the solution was obtained without branching.
Some recent work, which will be reported in another paper, has used

a cutting plane algorithm instead of a branch and bound to achieve in-
tegrality. It appears to be more efficient except for cases in which there
is no feasible solution.

A modified version of the programs solves asymmetric problems but
the computational results are not reported here.

P. Miliotis / Approaches to the travelling salesman problem 377

4. Conclusion

The modest solution times achieved for problems which are recog-
nized as testing ones give us encouragement to believe that such an LP
approach to combinatorial problems deserves further consideration. All
that is needed is a routine to test the genuine feasibility of an integer
solution, and if it is not feasible to turn on a device for generating the
violated constraints.

Finally in each case one may experiment using different branching
rules and different starting points (partition into C 1 and C2).

Acknowledgment

I would like to thank Dr. A. Land, the supervisor of my research, for
her guidance and support. However, I should be held solely responsible
for. any errors or omissions that might occur in the present paper.

References

[1] M. Bellmore and J.C. Malone, "Pathology of travelling salesman subtour elimination algo-
rithms", Operations Research 19 (1971) 278~307.

[2] M. Bellmore and G.L. Nemhauser, "The travelling salesman problem: a survey", Opera-
tions Research 16 (1968) 538-558.

[3] G.B. Dantzig, D.R. Fulkerson and S.M. Johnson, "Solution of a large scale travelling sales-
man problem", Operations Research 2 (1954) 393-410.

[4] G.B. Dantzig, D.R. Fulkerson and S.M. Johnson, "On a linear programming, combina-
torial approach to the travelling salesman problem", Operations Research 7 (1959) 58 -
66.

[5] W.L. Eastman, "Linear programming with pattern constraints", Ph.D. Dissertation,
Harvard University, Cambridge, Mass., (1958).

[6] J. Edmonds, "Maximum matching and a polyhedron with 0, 1-vertices", Journal of Re-
search of the NationaI Bureau of Standards 69B (1965) 125-130.

[7] A.M. Geoffrion and R.E. Marsten, "Integer programming algorithms: A framework and
state-of-the-art survey", Management Science 18 (1972) 465-491.

[8] K. Helbig Hansen ahd J. Krarup, "Improvements of the Held-Karp algorithm for the sym-
metric travelling-salesman problem", Mathematical Programming 7 (1974) 87-96.

[9] M. Held and R.M. Karp, "A dynamic programming approach to sequencing problems",
Journal of the Society for Industrial and Applied Mathematics 10 (1962) 196-210.

[10] M. Held and R.M. Karp, "The travelling salesman problem and minimum spanning trees,
Part II", Mathematical Programming 1 (1971) 6 - 25.

[11] L.L. Karg and G.L. Thompson, "A heuristic approach to solving travelling salesman prob-
lems", Management Science i0 (1964) 225-248.

378 P. Miliotis / Approaches to the travelling salesman problem

[12] A. Land and S. Powell, Fortran codes for mathematical programming (Wiley, New York,
1973).

[13] J.D. Little, K.G. Murty, D.W. Sweeney and C. Karel, "An algorithm for the travelling sales-
man problem", Operations Research 11 (1963) 972-989.

[14] G.T. Martin, "Solving the travelling salesman problem by integer linear programming",
CEIR, New York (1966).

[15] C.E. Miller, A.W. Tucker and R.A. Zemlin, "Integer programming formulations and travel-
ling salesman problems", Journal of the Association for Computing Machinery 7 (1960)
326-329.

[16] J.D. Murchland, "A fixed matrix method for all shortest distances in a directed graph and
for the inverse problem", Ph.D. Dissertation, Karlsruhe (1970).

[17] D. Shapiro, "Algorithms for the solution of optimal cost travelling salesman problem",
Sc.D. Thesis, Washington University, St. Louis, Mo. (1966).

[18] "Computers in Central Government: Ten Years Ahead", Civil Service Department,
Management Studies 2, HMSO London (1971) (no authors reported).

